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One thousand plant transcriptomes and 
the phylogenomics of green plants

One Thousand Plant Transcriptomes Initiative

Green plants (Viridiplantae) include around 450,000–500,000 species1,2 of great 
diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part 
of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative 
transcriptomes of 1,124 species that span the diversity of plants in a broad sense 
(Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) 
and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework 
for examining the evolution of green plants. Most inferred species relationships are 
well supported across multiple species tree and supermatrix analyses, but discordance 
among plastid and nuclear gene trees at a few important nodes highlights the 
complexity of plant genome evolution, including polyploidy, periods of rapid 
speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization 
and massive expansions of gene families punctuate the evolutionary history of green 
plants. Notably, we find that large expansions of gene families preceded the origins of 
green plants, land plants and vascular plants, whereas whole-genome duplications are 
inferred to have occurred repeatedly throughout the evolution of flowering plants and 
ferns. The increasing availability of high-quality plant genome sequences and advances 
in functional genomics are enabling research on genome evolution across the green 
tree of life.

Viridiplantae comprise an estimated 450,000–500,000 species1,2, 
encompass a high level of diversity and evolutionary timescales3, and 
have important roles in all terrestrial and most aquatic ecosystems. This 
ecological diversity derives from developmental, morphological and 
physiological innovations that enabled the colonization and exploitation 
of novel and emergent habitats. These innovations include multicel-
lularity and the development of the plant cuticle, protected embryos, 
stomata, vascular tissue, roots, ovules and seeds, and flowers and fruit 
(Fig. 1). Thus, plant evolution ultimately influenced environments glob-
ally and created a cascade of diversity in other lineages that span the 
tree of life. Plant diversity has also fuelled agricultural innovations and 
growth in the human population4.

Phylogenomic approaches are now widely used to resolve species 
relationships5 as well as the evolution of genomes, gene families and gene 
function6. We used mostly vegetative transcriptomes for a broad taxo-
nomic sampling of 1,124 species together with 31 published genomes to 
infer species relationships and characterize the relative timing of organ-
ismal, molecular and functional diversification across green plants.

We evaluated gene history discordance among single-copy genes. 
This is expected in the face of rapid species diversification, owing to 
incomplete sorting of ancestral variation between speciation events7. 
Hybridization8, horizontal gene transfer9, gene loss following gene and 
genome duplications10 and estimation error can also contribute to gene-
tree discordance. Nevertheless, through rigorous gene and species tree 
analyses, we derived robust species tree estimates (Fig. 2 and Supple-
mentary Figs. 1–3). Gene-family expansions and genome duplications 
are recognized sources of variation for the evolution of gene function 

and biological innovations11,12. We inferred the timing of ancient genome 
duplications and large gene-family expansions. Our findings suggest that 
extensive gene-family expansions or genome duplications preceded the 
evolution of major innovations in the history of green plants.

Integrated analysis of genome evolution
Because genome sizes vary by 2,340-fold in land plants13 and 4,680-
fold in chlorophyte and streptophyte green algae14, we used a reduced-
representation sequencing approach to reconstruct gene and species  
histories. Specifically, we generated 1,342 transcriptomes represent-
ing 1,124 species across Archaeplastida, including green plants, glau-
cophytes and red algae. Comparing phylogenetic inferences based 
on nuclear and plastid genes (Figs. 2, 3 and Supplementary Figs. 1–3), 
we obtained well-supported, largely congruent results across diverse 
datasets and analyses. Resolution of some relationships, however, was 
confounded by gene-tree discordance (Fig. 3), which is attributable to 
factors that include rapid diversification, reticulate evolution, gene 
duplication and loss, and estimation error.

Inferred whole-genome duplications (WGDs; that is, polyploidy) 
across the gene-tree summary phylogeny estimated using ASTRAL15 
were not uniformly distributed (Fig. 4, Supplementary Fig. 8 and Sup-
plementary Table 2). Comparing distributions of gene duplication times 
for each species16 (Supplementary Table 3) and orthologue divergence 
times17 (Supplementary Table 4) with gene-tree analyses18 (Supplemen-
tary Tables 5, 6), we inferred 244 ancient WGDs across Viridiplantae 
(Supplementary Fig. 8 and Supplementary Table 2). Although there 
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are limitations to the inference of WGD events using this approach, 
we found that comparisons of these results with 65 overlapping pub-
lished genome-based WGD inferences revealed 6 false-negative results 
in our tree-based estimates and no false-positive results (Supplementary 
Table 2). Analyses based on whole-genome sequences are needed for 
further resolution of WGD events.

With the exception of most Selaginella species and some liverworts 
(Fig. 1g), our analyses implicated at least one ancient WGD in the ances-
try of every land plant lineage. By contrast, most algal lineages showed 
no evidence of WGD. Notably, the predicted sister clade of land plants 
(Fig. 2), Zygnematophyceae (Fig. 1e), exhibited the highest density of 
WGDs among algal lineages (Fig. 4), although the apparent increase in 
WGD was largely restricted to the desmid clade (Desmidiales) within 
Zygnematophyceae.

Increased diversification rates did not precisely co-occur with WGDs 
on the phylogeny. WGDs are expected to contribute to the evolution of 
novel gene function11,12. For example, novel functions among duplicate 
MADS-box genes that arose through WGD have been linked to the origin 
of flowering plants19,20 and core eudicots21, and functional diversifi-
cation of gene families after WGD has contributed to the evolution of 
fruit colour in tomato species22,23 and to nodule development within 
legumes22,24. Consistent with previous studies with less extensive taxon 
sampling24–27, however, we inferred lags between WGDs and increased 
species diversity. Integrated phylogenomic and functional investi-
gations are required to gain a mechanistic understanding of the lag 

between WGD, the evolution of novel gene functions and their potential 
influence on diversification rates.

Gene-family expansions (and contractions) contribute to the dynamic 
evolution of metabolic, regulatory and signalling networks28,29. Given 
the inherent limitations of transcriptome data, we searched for large-
fold changes in 23 of the largest gene families in Arabidopsis thaliana30 
that are involved in many important functions (such as transcriptional 
regulation, enzymatic and signalling function, and transport; Fig. 5 and 
Supplementary Tables 7, 8). Although our RNA-sequencing-based sam-
pling of expressed genes is incomplete, the median representation of 
universally conserved genes31 was 80–90% for taxa across Viridiplantae 
(Extended Data Fig. 3a, b). Furthermore, there was a strong correlation 
(r = 0.95) between gene-family sizes in our transcriptomes (focusing 
on the largest gene families) and those of fully sequenced genomes 
(Extended Data Fig. 3c–f). We identified gene-family expansions and 
contractions, including some that have been described previously32–34. 
Specifically, the AP2, bHLH, bZip and WRKY transcription factor families 
were inferred to be present in the last common ancestor of Viridiplan-
tae, whereas the origin of GRAS and NAC genes occurred in early strep-
tophytes after divergence from the chlorophyte algal lineage (Fig. 5). 
The highest concentration of expansion events was inferred along the 
‘spine’ of the phylogeny between the origins of Viridiplantae and vascular 
plants (Fig. 5b and Supplementary Table 7). Expansions of some focal 
gene families also continued after the origin of embryophytes; however, 
no expansions occurred in association with the origin and radiation of 
angiosperms (Fig. 5). Gene-family expansions and functional diversi-
fication may have contributed to the adaptations required for life in 
terrestrial habitats, but the sizes of these focal gene families apparently 
stabilized in the face of continued gene duplication and loss throughout 
the evolution of vascular plants.

Primary acquisition of the plastid
The primary acquisition of the plastid in an ancestor of extant Archae-
plastida was a pivotal event in the history of life. All possible relation-
ships among Viridiplantae, Glaucophyta and Rhodophyta have been 
hypothesized, with alternative implications for the gain and loss of 
characters35 in the early history of the three lineages. Strong support for 
the sister relationship of Viridiplantae and Glaucophyta35 (Figs. 2, 3a)  
found here indicates that ancestral red algae lost flagella and pepti-
doglycan biosynthesis, perhaps associated with a reduction in genome 
size36. Peptidoglycan biosynthesis was independently lost early in the 
evolution of Chlorophyta37 and within angiosperms38.

The history of Viridiplantae
The origin of Viridiplantae is marked by the loss of light-harvesting 
phycobilisomes composed of phycobiliproteins, the evolution of the 
accessory photosynthetic pigment chlorophyll b, which has a distinct 
light-absorption spectrum relative to chlorophyll a, and intraplastidial 
starch synthesis and deposition. Viridiplantae are consistently recovered 
as monophyletic, with early diverging Chlorophyta and Streptophyta 
lineages39–41. However, the placement of the picoplanktonic algal lineage 
Prasinococcales was unstable in our analyses (Fig. 3e).

Diversification within Chlorophyta
All nuclear-gene analyses resolved a grade of largely marine unicellular 
lineages subtending the core clade consisting of Trebouxiophyceae, Ulvo-
phyceae and Chlorophyceae42 (Fig. 1a–c and Supplementary Figs. 1–3).  
The nuclear supermatrix and ASTRAL trees placed Trebouxiophyceae 
as sister to a clade containing Chlorophyceae and Ulvophyceae42,43. 
However, whereas the supermatrix trees supported Ulvophyceae as 
monophyletic, the ASTRAL tree resolved Ulvophyceae as a grade and 
Bryopsidales is poorly supported as sister to Chlorophyceae (Fig. 3h). All 
tree estimates suggest that there were multiple origins of multicellularity 
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Fig. 1 | Diversity within the Viridiplantae. a–e, Green algae. a, Acetabularia sp. 
(Ulvophyceae). b, Stephanosphaera pluvialis (Chlorophyceae). c, Botryococcus 
sp. (Trebouxiophyceae). d, Chara sp. (Charophyceae). e, ‘Spirotaenia’ sp. 
(taxonomy under review) (Zygnematophyceae). f–p, Land plants. f, Notothylas 
orbicularis (Anthocerotophyta (hornwort)). g, Conocephalum conicum 
(Marchantiophyta (thalloid liverwort)). h, Sphagnum sp. (Bryophyta (moss)).  
i, Dendrolycopodium obscurum (Lycopodiophyta (club moss)). j, Equisetum 
telmateia (Polypodiopsida, Equisetidae (horsetail)). k, Parablechnum 
schiedeanum (Polypodiopsida, Polypodiidae (leptosporangiate fern)). l, Ginkgo 
biloba (Ginkgophyta). m, Pseudotsuga menziesii (Pinophyta (conifer)).  
n, Welwitschia mirabilis (Gnetophyta). o, Bulnesia arborea (Angiospermae, 
eudicot, rosid). p, Paphiopedilum lowii (Angiospermae, monocot, orchid).  
a, Photograph reproduced with permission of Thieme Verlag, Stuttgart66.  
b–e, Photographs courtesy of M. Melkonian. f–j, l–n, p, Photographs courtesy of 
D.W.S. k, Photograph courtesy of R. Moran. o, Photograph courtesy of W. Judd.
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within Ulvophyceae. Only 12 out of 119 sampled chlorophyte species 
exhibited evidence of a WGD in their ancestry, and most of these puta-
tive WGDs were restricted to single clades.

Streptophyta
The evolution of streptophytes was associated with several adapta-
tions to terrestrial habitats44–46. All analyses recovered Mesostigma, 
Chlorokybus and Spirotaenia minuta in a clade that is sister to the 
remainder of Streptophyta39 with successive divergence of Klebsor-
midiales, Charophyceae (Fig. 1d), Coleochaetophyceae and Zygnema-
tophyceae (Fig. 1e) relative to Embryophyta. However, with greatly 
increased taxon sampling relative to our previous work39, internal 
branch lengths are diminished, and we could not reject the possibility 
of a true radiation giving rise to Coleochaetales, Zygnematophyceae 
and embryophyte lineages (land plants; Figs. 1f–p, 3g(II)). Although 
quartet support for a clade of Coleochaetales and Zygnematophyceae 
as sister to embryophytes was similar to support for Zygnematophy-
ceae as sister to embryophytes, a clade consisting of Coleochaetales 
and land plants was not supported.

Embryophyta
Land plants include many of the most familiar green plants (for example, 
bryophytes (Fig. 1f–h), lycophytes (Fig. 1i), ferns (Fig. 1j, k) and seed 
plants (Fig. 1l–p)). They exhibit key innovations, including protected 
reproductive organs (archegonia and antheridia) and the development 
of the zygote within an archegonium into an embryo that receives mater-
nal nutrition. Resolving relationships among bryophytes (mosses, liv-
erworts and hornworts) and their relationships to the remaining land 
plants has long been problematic, but is critical for understanding the 

evolution of fundamental innovations within land plants, including 
the tolerance to desiccation, shifts in the dominance of multicellular 
haploid and diploid generations, and parental retention of a multicel-
lular embryo.

Bryophytes have sometimes been resolved as a grade47,48, with liver-
worts, mosses and hornworts as successive sister groups to Tracheo-
phyta (vascular plants; Fig. 1i–p). We recovered extant bryophytes as 
monophyletic in the ASTRAL analysis of nuclear gene trees (Fig. 3b) 
and plastome analyses, with hornworts sister to a moss and liverwort 
clade. All analyses rejected the hypothesis that liverworts are sister to 
all other extant land plant lineages39,49.

The largest number of gene-family expansions in our analyses was 
associated with the origin of land plants and the evolution of bryophytes 
(transition between streptophyte algae and bryophytes in Fig. 5b). By 
contrast, we found no evidence of WGD on the stem branch for land 
plants (Supplementary Tables 5, 6).

Vascular plants
Within the vascular plants, lycophytes are supported as the sister group 
of Euphyllophyta (ferns and seed plants). We found no evidence of  
pan-vascular-plant or ancestral euphyllophyte WGDs, but some  
gene-family expansions were associated with the origin of vascular 
plants (Fig. 5b).

Within ferns (Polypodiopsida), plastid data weakly support Equise-
tales as sister to Psilotales and Ophioglossales (Supplementary Fig. 3), 
whereas nuclear gene analyses robustly place Equisetales sister to the 
remaining ferns50. The supermatrix and plastome-based trees placed 
Marattiales sister to the leptosporangiate ferns50 (Polypodiidae), but 
ASTRAL recovers nearly equal quartet support for this hypothesis or 
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Fig. 2 | Phylogenetic inferences of major clades. Phylogenetic inferences were 
based on ASTRAL analysis of 410 single-copy nuclear gene families extracted 
from genome and transcriptome data from 1,153 species, including 1,090 green 
plant (Viridiplantae) species (Supplementary Table 1). a, Phylogram showing 
internal branch lengths proportional to coalescent units (2Ne generations) 
between branching events, as estimated by ASTRAL-II15 v.5.0.3. b, Relationships 

among major clades with red box outlining flowering plant clade. Species 
numbers are shown for each lineage. Most inferred relationships were robust 
across data types and analyses (Supplementary Figs. 1–3) with some exceptions 
(Supplementary Fig. 6). Data and analysis scripts are available at https://doi.
org/10.5281/zenodo.3255100.
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for Marattiales as sister to Psilotales and Ophioglossales (Fig. 3f). Lepto-
sporangiate ferns (Fig. 1k) experienced more WGD events than any 
other lineage of Viridiplantae outside the angiosperms, with an average 
of 3.79 inferred WGDs in the history of each sampled species (Fig. 4). 
WGD was inferred in an ancestor of all extant ferns and an additional 
19 putative WGDs were implicated in the ancestry of fern subclades 
(Ophioglossaceae and Polypodiaceae; Fig. 4, Supplementary Fig. 8 
and Supplementary Tables 2, 5, 6). Considering the high chromosome 
numbers of some ferns, our discovery that they exhibit one of the high-
est frequencies of palaeopolyploidization among green plants is not 
unexpected51.

Whereas none of our focal gene families exhibited significant expan-
sion in ferns, significantly more MIKC-type MADS-box genes—involved 
in specification of ovule and flower development in seed plants52—were 
observed in leptosporangiate ferns relative to all other green plant line-
ages, other than seed plants (Extended Data Fig. 1). The ancestral number 
of MIKC-type MADS-box genes for ferns and seed plants was 4 or 5, and 
gene numbers increased independently within leptosporangiate ferns 
and seed plants (Extended Data Figs. 1, 2).

Seed plants
A WGD in the ancestry of all extant seed plants has been inferred pre-
viously18,53 but remains contested54. Gene-tree18 analyses revealed 

significantly more gene duplications on the branch leading to extant 
seed plants than expected from background gene birth and death rates 
(analyses D1 (P < 2.0 × 10−18) and D2 (P < 8.9 × 10−16) in Supplementary 
Table 5). Numerous gene-family expansions were also associated with 
the origin of seed plants, and only one contraction was detected among 
the gene families analysed (Fig. 5b). Type II MIKC-type MADS-box genes 
exhibited a nearly twofold expansion independent of their expansion 
in ferns (Extended Data Figs. 1, 2).

Extant gymnosperms (approximately 1,000 species) are sister to 
flowering plants, and all of our analyses recovered Cycadales and Ginkgo 
(Fig. 1l) as a sister clade to the remaining gymnosperms (Fig. 3c). The 
placement of Gnetales conflicts strongly among the ASTRAL, superma-
trix and plastome-based trees. Plastid data strongly support the ‘Gnecup’ 
hypothesis, with Gnetales as sister to a clade comprising Araucariales 
and Cupressales47, whereas the supermatrix analysis of nuclear genes 
supports a ‘Gnepine’ hypothesis with Gnetales as sister to Pinales55,56. 
ASTRAL analyses strongly support the ‘Gnetifer’ hypothesis, with coni-
fers (Araucariales, Cupressales and Pinales) sister to Gnetales57. The 
short internal branches in the ASTRAL tree suggest rapid diversification 
(Fig. 2). However, the uneven frequencies of gene-tree quartets—which 
support the alternative Gnecup and Gnepine hypotheses—suggest 
that gene-tree estimation biases58 associated with increased substitu-
tion rates in Gnetales59 or gene flow are possible sources of gene-tree 
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discordance8. Previously inferred WGDs in ancestors of Welwitschia, 
Pinaceae and Cupressales18 are supported, as is a new inference of WGD in 
the ancestry of Podocarpaceae (Fig. 4 and Supplementary Tables 2, 5, 6).

Angiosperms are by far the largest clade of green plants (more than 
370,000 species2) and are marked by multiple key innovations, including 
the carpel, double fertilization, endosperm, and for most angiosperms, 
vessel elements. Both nuclear and plastid phylogenomic analyses agree 
with previous studies39 in providing strong support for angiosperm 
monophyly and in placements of Amborellales, Nymphaeales and Aus-
trobaileyales as successive sisters to all other angiosperms (Figs. 2, 3). 
Chloranthales and magnoliids comprise a clade in the ASTRAL and super-
matrix analyses, but were resolved with poor support as successive sister 
lineages to all other Mesangiospermae (monocots, Ceratophyllum and 
eudicots) in the plastome-based tree. Whereas Ceratophyllum is sister 
to eudicots in the ASTRAL and plastome trees, it is poorly supported as 
sister to monocots in the supermatrix tree (Supplementary Figs. 1–3). All 
analyses suggest short time intervals between branching of the mono-
cots, Magnoliidae, Chloranthales, Ceratophyllales and eudicot lineages 
in early mesangiosperm history (Fig. 2 and Supplementary Figs. 1–3).

Pentapetalae (70% of all angiosperms) are marked by the evolution 
of the pentamerous flower. Substantial gene-tree discordance was 
observed for relationships among core rosids, Saxifragales, Vitales, 
Dillenia, Santalales, Berberidopsidales, Caryophyllales, asterids and 
Gunnerales (the sister group of Pentapetalae; Fig. 3i). Short internal 
branches and poor support in the ASTRAL tree at the base of the core 
eudicots (Figs. 2, 3i) indicate rapid diversification following two rounds 
of WGD that resulted in palaeohexaploidy preceding the origin of the 
clade60,61 (Supplementary Fig. 8). The supermatrix and plastid trees 
conflict with the poorly supported ASTRAL branching order (Fig. 3i). 
With the exception of the Berberidopsidales and core asterid clade, 

we were not able to reject the possibility of polytomies at the evaluated 
nodes in ASTRAL analyses (Fig. 3i).

Genomic and phylogenomic analyses have identified numerous WGDs 
throughout angiosperm history62,63. We found evidence that extant 
flowering plants descend from a polyploid common ancestor19,53. Gene-
tree analyses detected a significantly larger-than-background number 
of gene duplications on the branch leading to the last common ancestor 
of extant angiosperms after divergence from the extant gymnosperm 
clade (analyses E1 (P < 1.8 × 10−41) and E2 (1.4 × 10−24) in Supplementary 
Table 5). Furthermore, the numbers of inferred duplications on the 
stem branch of angiosperms were consistent with expectations for 
WGD (analyses E1 and E2 in Supplementary Table 6). We inferred over 
180 WGDs within flowering plants, including 132 in eudicots and 35 in 
monocots (Supplementary Table 2).

The origin of the angiosperms was preceded by three focal gene-family 
contractions and no expansions (Fig. 5b), consistent with the hypothesis 
that the innovations in angiosperms may have involved the functional 
co-option of genes that were duplicated earlier in the evolution of seed 
plants19. We find that orthologues of some floral homeotic MADS-box 
genes originated in the stem group of extant seed plants approximately 
300 million years ago (Extended Data Fig. 2), supporting the hypothesis 
that the origin of the angiosperm flower involved recruitment of devel-
opmental regulators that already existed in their seed plant ancestors19,64.

Synthesis
These analyses establish a foundation for advancing our understanding 
of the overall phylogenetic framework of green plants and the genetic 
changes that were responsible for the characteristic traits associated 
with major evolutionary transitions in Viridiplantae. Portions of the 
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in the ancestry of each species 
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Fig. 4 | The distribution of inferred ancient WGDs across lineages of green 
plants. a, The locations of estimated WGDs are labelled red in the phylogeny of all 
1000 Plants (1KP) samples. b, The number of inferred ancient polyploidization 
events within each lineage is shown in the violin plots. The white dot indicates the 
median, the thick black bars represent the interquartile range, the thin black lines 

define the 95% confidence interval and the grey shading represents the density of 
data points. The sample sizes for each lineage are shown within parentheses along 
with taxon names on the phylogeny. The phylogenetic placement of inferred 
WGDs is illustrated in Supplementary Fig. 8 and data supporting each WGD 
inference are provided in Supplementary Table 2.
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species tree reported here remain unresolved. Phylogenetic analyses 
of genes extracted from a broad sampling of whole-genome sequences 
may improve gene family circumscriptions and resolve the species tree 
further. Expanded genome sequencing may also help to accurately 
account for interspecific gene flow, and orthology in the face of gene 
duplications and losses. However, for some nodes in the species tree, 
extensive discordance among inferred gene histories suggests that 
rapid diversification may not always conform to strict bifurcation of 
ancestral species into two descendent species.

Gene and genome duplications have long been considered a source 
of evolutionary novelty11,12, producing an expanded molecular reper-
toire for adaptive evolution of key pathways and shifts in plant devel-
opment and ecology. However, the direct connections between key 
innovations and specific gene duplications are rarely known, due 
in part to lag times between duplications and such inovations25–27. 
Phylogenetically informed experimental investigations of changes 
in gene content and function will improve our understanding of the 
roles of gene and genome duplications in the evolution of key innova-
tions. Such efforts are underway, drawing on an expanding number 

of experimental model species distributed across the green plant 
tree of life65.

Online content
Any methods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-019-1693-2

1.	 Corlett, R. T. Plant diversity in a changing world: status, trends, and conservation needs. 
Plant Divers. 38, 10–16 (2016).

2.	 Lughadha, E. N. et al. Counting counts: revised estimates of numbers of accepted 
species of flowering plants, seed plants, vascular plants and land plants with a review of 
other recent estimates. Phytotaxa 272, 82–88 (2016).

3.	 Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, 
timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

4.	 Schery, R. W. Plants for Man 2nd edn (Prentice-Hall, 1972).
5.	 Philippe, H., Delsuc, F., Brinkmann, H. & Lartillot, N. Phylogenomics. Annu. Rev. Ecol. Evol. 

Syst. 36, 541–562 (2005).

Fo
ld

 c
ha

ng
es

 o
f e

xp
an

si
on

s
an

d
 c

on
tr

ac
tio

ns
 

ABC
ABI3VP1
AP2/EREBP
bHLH
bZIP
C2H2
C3H
F-box
GH28
GRAS
GT1
HB
MADS box
MYB
NAC
NBS LRR
P450s
PHD
PP2C
PPR P class
PPR PLS class
Receptor-like kinases
WRKY

a

b

0.125
0.250
0.500

2
4
8
16
32

Birth

M
ea

n 
re

la
tiv

e 
si

ze
of

 2
3 

ge
ne

 fa
m

ili
es

0

50

100

150

200

250

C
hr

om
is

ta
 (2

3)
R

ho
d

op
hy

ta
 (1

8)
G

la
uc

op
hy

ta
 (2

)

C
hl

or
op

hy
ta

 (9
4)

S
tr

ep
to

p
hy

te
 a

lg
ae

 (4
2)

H
or

nw
or

ts
 (7

)
Li

ve
rw

or
ts

 (1
8)

M
os

se
s 

(3
8)

Ly
co

p
hy

te
s 

(1
6)

Fe
rn

s 
(5

9)

G
ym

no
sp

er
m

s 
(7

6)

A
N

A
 g

ra
d

e 
(6

)

M
on

oc
ot

s 
(9

6)

M
ag

no
lii

d
s 

(2
2)

C
R

P
T+

B
 g

ra
d

e 
(2

9)

A
st

er
id

s 
(2

05
)

C
ar

yo
p

hy
lla

le
s 

(4
8)

R
os

id
s 

(1
76

)

S
ax

ifr
ag

al
es

 (2
3)

S
an

ta
la

le
s 

(6
)*

Fig. 5 | Assessment of significant expansions and contractions of largest 
plant gene families. a, Weighted average gene-family size for species groups 
(normalized to account for differences in gene-family sizes, weight = 1/
(maximum observed gene-family size)). The ANA grade comprises Amborellales, 
Nymphaeales and Austrobaileyales, successive sister lineages to a clade with the 
remaining extant angiosperms; the ‘CRPT+B’ grade includes Ceratophyllales, 
Ranunculales, Proteales lineages and a Trochodendrales + Buxales clade in the 
ASTRAL tree (Fig. 2). Sample sizes are proportional to bar widths (from left to 
right, n = 23 (Chromista), 18 (Rhodophyta), 2 (Glaucophyta), 94 (Chlorophyta),  

42 (streptophyte algae), 7 (hornworts), 18 (liverworts), 38 (mosses),  
16 (lycophytes), 59 (ferns; monilophytes), 76(gymnosperms), 6 (ANA grade),  
96 (monocots), 1 (*representing Chloranthales), 22 (magnoliids), 29 (CRPT+B grade), 
205 (asterids), 48 (caryophyllids), 176 (rosids), 23 (Saxifragales) and 6 (Santalales).  
b, Gene families exhibiting significant copy number changes (two-sided 
Kolmogorov–Smirnov test; P < 1 × 10−6; gene-family expansions represent a gain of 
more than 50% and contractions represent a loss of more than 33%) with colour codes 
showing the magnitude of the observed fold changes. Data and analysis scripts are 
available at https://github.com/GrosseLab/OneKP-gene-family-evo.

https://doi.org/10.1038/s41586-019-1693-2
https://github.com/GrosseLab/OneKP-gene-family-evo


Nature  |  Vol 574  |  31 October 2019  |  685

6.	 Eisen, J. A. Phylogenomics: improving functional predictions for uncharacterized genes 
by evolutionary analysis. Genome Res. 8, 163–167 (1998).

7.	 Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the 
multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).

8.	 Solís-Lemus, C., Yang, M. & Ané, C. Inconsistency of species tree methods under gene 
flow. Syst. Biol. 65, 843–851 (2016).

9.	 Yang, Z. et al. Horizontal gene transfer is more frequent with increased heterotrophy and 
contributes to parasite adaptation. Proc. Natl Acad. Sci. USA 113, E7010–E7019 (2016).

10.	 Rasmussen, M. D. & Kellis, M. Unified modeling of gene duplication, loss, and 
coalescence using a locus tree. Genome Res. 22, 755–765 (2012).

11.	 Ohno, S. Evolution by Gene Duplication (Springer-Verlag, 1970).
12.	 Force, A. et al. Preservation of duplicate genes by complementary, degenerative 

mutations. Genetics 151, 1531–1545 (1999).
13.	 Leitch, I. J. & Leitch, A. R. in Plant Genome Diversity Vol. 2 (eds Greilhuber, J. et al.)  

307–322 (Springer, 2013).
14.	 Kapraun, D. F. Nuclear DNA content estimates in green algal lineages: chlorophyta and 

streptophyta. Ann. Bot. 99, 677–701 (2007).
15.	 Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with many 

hundreds of taxa and thousands of genes. Bioinformatics 31, i44–i52 (2015).
16.	 Barker, M. S. et al. Multiple paleopolyploidizations during the evolution of the 

Compositae reveal parallel patterns of duplicate gene retention after millions of years. 
Mol. Biol. Evol. 25, 2445–2455 (2008).

17.	 Barker, M. S. et al. EvoPipes.net: Bioinformatic Tools for Ecological and Evolutionary 
Genomics. Evol. Bioinform. Online 6, 143–149 (2010).

18.	 Li, Z. et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 1, 
e1501084 (2015).

19.	 Amborella Genome Project. The Amborella genome and the evolution of flowering 
plants. Science 342, 1241089 (2013).

20.	 Ruelens, P. et al. The origin of floral organ identity quartets. Plant Cell 29, 229–242 (2017).
21.	 Vekemans, D. et al. Gamma paleohexaploidy in the stem lineage of core eudicots: 

significance for MADS-box gene and species diversification. Mol. Biol. Evol. 29,  
3793–3806 (2012).

22.	 Vanneste, K., Maere, S. & Van de Peer, Y. Tangled up in two: a burst of genome 
duplications at the end of the Cretaceous and the consequences for plant evolution. Phil. 
Trans. R. Soc.B 369, 20130353 (2014).

23.	 The Tomato Genome Consortium. The tomato genome sequence provides insights into 
fleshy fruit evolution. Nature 485, 635–641 (2012).

24.	 Cannon, S. B. et al. Multiple polyploidy events in the early radiation of nodulating and 
nonnodulating legumes. Mol. Biol. Evol. 32, 193–210 (2015).

25.	 Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, 
novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15, 
147–153 (2012).

26.	 Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased 
diversification rates often follow whole genome duplications. New Phytol. 207, 454–467 
(2015).

27.	 Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in 
angiosperms. Am. J. Bot. 105, 348–363 (2018).

28.	 Maere, S. et al. Modeling gene and genome duplications in eukaryotes. Proc. Natl Acad. 
Sci. USA 102, 5454–5459 (2005).

29.	 Hanada, K., Zou, C., Lehti-Shiu, M. D., Shinozaki, K. & Shiu, S.-H. Importance of lineage-
specific expansion of plant tandem duplicates in the adaptive response to environmental 
stimuli. Plant Physiol. 148, 993–1003 (2008).

30.	 Nelson, D. & Werck-Reichhart, D. A P450-centric view of plant evolution. Plant J. 66,  
194–211 (2011).

31.	 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: 
assessing genome assembly and annotation completeness with single-copy orthologs. 
Bioinformatics 31, 3210–3212 (2015).

32.	 Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia 
polymorpha genome. Cell 171, 287–304 (2017).

33.	 Catarino, B., Hetherington, A. J., Emms, D. M., Kelly, S. & Dolan, L. The stepwise increase  
in the number of transcription factor families in the Precambrian predated the 
diversification of plants on land. Mol. Biol. Evol. 33, 2815–2819 (2016).

34.	 Wilhelmsson, P. K. I., Mühlich, C., Ullrich, K. K. & Rensing, S. A. Comprehensive genome-
wide classification reveals that many plant-specific transcription factors evolved in 
streptophyte algae. Genome Biol. Evol. 9, 3384–3397 (2017).

35.	 Rodríguez-Ezpeleta, N. et al. Monophyly of primary photosynthetic eukaryotes: green 
plants, red algae, and glaucophytes. Curr. Biol. 15, 1325–1330 (2005).

36.	 Qiu, H., Price, D. C., Yang, E. C., Yoon, H. S. & Bhattacharya, D. Evidence of ancient 
genome reduction in red algae (Rhodophyta). J. Phycol. 51, 624–636 (2015).

37.	 van Baren, M. J. et al. Evidence-based green algal genomics reveals marine diversity and 
ancestral characteristics of land plants. BMC Genomics 17, 267 (2016).

38.	 Grosche, C. & Rensing, S. A. Three rings for the evolution of plastid shape: a tale of land 
plant FtsZ. Protoplasma 254, 1879–1885 (2017).

39.	 Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of 
land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

40.	 Lewis, L. A. & McCourt, R. M. Green algae and the origin of land plants. Am. J. Bot. 91, 
1535–1556 (2004).

41.	 Becker, B. & Marin, B. Streptophyte algae and the origin of embryophytes. Ann. Bot. 103, 
999–1004 (2009).

42.	 Marin, B. Nested in the Chlorellales or independent class? Phylogeny and classification 
of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of 
complete nuclear and plastid-encoded rRNA operons. Protist 163, 778–805 (2012).

43.	 Cocquyt, E., Verbruggen, H., Leliaert, F. & De Clerck, O. Evolution and cytological 
diversification of the green seaweeds (Ulvophyceae). Mol. Biol. Evol. 27, 2052–2061 
(2010).

44.	 Delaux, P.-M. et al. Algal ancestor of land plants was preadapted for symbiosis. Proc. Natl 
Acad. Sci. USA 112, 13390–13395 (2015).

45.	 Maugarny-Calès, A. et al. Apparition of the NAC transcription factors predates the 
emergence of land plants. Mol. Plant 9, 1345–1348 (2016).

46.	 Delwiche, C. F. & Cooper, E. D. The evolutionary origin of a terrestrial flora. Curr. Biol. 25, 
R899–R910 (2015).

47.	 Nickrent, D. L., Parkinson, C. L., Palmer, J. D. & Duff, R. J. Multigene phylogeny of land 
plants with special reference to bryophytes and the earliest land plants. Mol. Biol. Evol. 
17, 1885–1895 (2000).

48.	 Shaw, A. J., Szövényi, P. & Shaw, B. Bryophyte diversity and evolution: windows into the 
early evolution of land plants. Am. J. Bot. 98, 352–369 (2011).

49.	 Puttick, M. N. et al. The interrelationships of land plants and the nature of the ancestral 
embryophyte. Curr. Biol. 28, 733–745 (2018).

50.	 Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 low-copy nuclear 
genes. Am. J. Bot. 102, 1089–1107 (2015).

51.	 Barker, M. S. & Wolf, P. G. Unfurling fern biology in the genomics age. Bioscience 60,  
177–185 (2010).

52.	 Theißen, G. & Gramzow, L. in Plant Transcription Factors: Evolutionary, Structural, and 
Functional Aspects (ed. Gonzalez, D. H.) 127–138 (Academic, 2016).

53.	 Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 
(2011).

54.	 Ruprecht, C. et al. Revisiting ancestral polyploidy in plants. Sci. Adv. 3, e1603195 (2017).
55.	 Bowe, L. M., Coat, G. & dePamphilis, C. W. Phylogeny of seed plants based on all three 

genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest 
relatives are conifers. Proc. Natl Acad. Sci. USA 97, 4092–4097 (2000).

56.	 Chaw, S. M., Parkinson, C. L., Cheng, Y., Vincent, T. M. & Palmer, J. D. Seed plant 
phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms 
and origin of Gnetales from conifers. Proc. Natl Acad. Sci. USA 97, 4086–4091 (2000).

57.	 Chaw, S. M., Zharkikh, A., Sung, H. M., Lau, T. C. & Li, W. H. Molecular phylogeny of extant 
gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol. 
Biol. Evol. 14, 56–68 (1997).

58.	 Zhong, B., Yonezawa, T., Zhong, Y. & Hasegawa, M. The position of Gnetales among seed 
plants: overcoming pitfalls of chloroplast phylogenomics. Mol. Biol. Evol. 27, 2855–2863 
(2010).

59.	 Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. Nat. Plants 4, 
82–89 (2018).

60.	 Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in 
major angiosperm phyla. Nature 449, 463–467 (2007).

61.	 Jiao, Y. et al. A genome triplication associated with early diversification of the core 
eudicots. Genome Biol. 13, R3 (2012).

62.	 Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 
(2009).

63.	 Vanneste, K., Baele, G., Maere, S. & Van de Peer, Y. Analysis of 41 plant genomes supports 
a wave of successful genome duplications in association with the Cretaceous-Paleogene 
boundary. Genome Res. 24, 1334–1347 (2014).

64.	 Moyroud, E. et al. A link between LEAFY and B-gene homologues in Welwitschia mirabilis 
sheds light on ancestral mechanisms prefiguring floral development. New Phytol. 216, 
469–481 (2017).

65.	 Chang, C., Bowman, J. L. & Meyerowitz, E. M. Field guide to plant model systems. Cell 
167, 325–339 (2016).

66.	 Berger, S. & Kaever, M. J. Dasycladales: an Illustrated Monograph of a Fascinating Algal 
Order (Thieme Verlag, 1992).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s Creative Commons license 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

http://creativecommons.org/licenses/by/4.0/


Article
One Thousand Plant Transcriptomes Initiative

James H. Leebens-Mack1,135*, Michael S. Barker2,135, Eric J. Carpenter3,134, Michael K. 
Deyholos4,135, Matthew A. Gitzendanner5,6,134, Sean W. Graham7,135, Ivo Grosse8,11,135, Zheng 
Li2,134, Michael Melkonian9,135, Siavash Mirarab10,134,135, Martin Porsch11,134, Marcel Quint12,135, 
Stefan A. Rensing13,14,135, Douglas E. Soltis6,15,135, Pamela S. Soltis6,15,135, Dennis W. 
Stevenson16,135, Kristian K. Ullrich17,134, Norman J. Wickett18,19, Lisa DeGironimo16,134, Patrick P. 
Edger20,134, Ingrid E. Jordon-Thaden5,6,21,134, Steve Joya7,134, Tao Liu22,134, Barbara Melkonian9,134, 
Nicholas W. Miles23,134, Lisa Pokorny24,25,26,134, Charlotte Quigley27,134, Philip Thomas28,134, Juan 
Carlos Villarreal29,134, Megan M. Augustin30, Matthew D. Barrett31,32,33, Regina S. Baucom34, 
David J. Beerling35, Ruben Maximilian Benstein36, Ed Biffin37, Samuel F. Brockington38, Dylan 
O. Burge39, Jason N. Burris40,41,42, Kellie P. Burris40,43, Valérie Burtet-Sarramegna44, Ana L. 
Caicedo45, Steven B. Cannon46, Zehra Çebi9, Ying Chang7,47, Caspar Chater48, John M. 
Cheeseman49, Tao Chen50, Neil D. Clarke51, Harmony Clayton52, Sarah Covshoff38, Barbara J. 
Crandall-Stotler53, Hugh Cross54, Claude W. dePamphilis55,134, Joshua P. Der56, Ron 
Determann57, Rowan C. Dickson58, Verónica S. Di Stilio59, Shona Ellis7, Eva Fast9, Nicole Feja9, 
Katie J. Field60, Dmitry A. Filatov61, Patrick M. Finnegan31, Sandra K. Floyd62, Bruno 
Fogliani44,63, Nicolás García64, Gildas Gâteblé63, Grant T. Godden6, Falicia (Qi Yun) Goh65, 
Stephan Greiner66, Alex Harkess1,30, James Mike Heaney5,6, Katherine E. Helliwell67,68, 
Karolina Heyduk1,69, Julian M. Hibberd38, Richard G. J. Hodel5,6,34, Peter M. Hollingsworth28, 
Marc T. J. Johnson70, Ricarda Jost31,71, Blake Joyce40,72, Maxim V. Kapralov73, Elena Kazamia38, 
Elizabeth A. Kellogg30,74, Marcus A. Koch75, Matt Von Konrat76, Kálmán Könyves77,78, Toni M. 
Kutchan30, Vivienne Lam7, Anders Larsson79, Andrew R. Leitch80, Roswitha Lentz9, Fay-Wei 
Li81, Andrew J. Lowe82, Martha Ludwig52, Paul S. Manos83, Evgeny Mavrodiev5,6, Melissa K. 
McCormick84, Michael McKain85, Tracy McLellan86, Joel R. McNeal1,87, Richard E. Miller88, 
Matthew N. Nelson89,90,91, Yanhui Peng40,92, Paula Ralph55, Daniel Real93, Chance W. Riggins94, 
Markus Ruhsam28, Rowan F. Sage95, Ann K. Sakai96, Moira Scascitella7, Edward E. Schilling97, 
Eva-Marie Schlösser9, Heike Sederoff98, Stein Servick5, Emily B. Sessa5, A. Jonathan Shaw83, 
Shane W. Shaw99, Erin M. Sigel100, Cynthia Skema101, Alison G. Smith38, Ann Smithson31, C. 
Neal Stewart Jr40,41, John R. Stinchcombe95,102, Peter Szövényi103, Jennifer A. Tate58, Helga 
Tiebel9, Dorset Trapnell1, Matthieu Villegente44, Chun-Neng Wang104, Stephen G. Weller96, 
Michael Wenzel57, Stina Weststrand105, James H. Westwood106, Dennis F. Whigham84, 
Shuangxiu Wu107,134, Adrien S. Wulff44,63, Yu Yang108, Dan Zhu109, Cuili Zhuang7, Jennifer 
Zuidof110, Mark W. Chase26,111,135, J. Chris Pires112,134, Carl J. Rothfels83,113,114,134, Jun Yu107,134, Cui 
Chen115, Li Chen116, Shifeng Cheng117, Juanjuan Li116, Ran Li116, Xia Li116, Haorong Lu116, Yanxiang 
Ou116, Xiao Sun118, Xuemei Tan116, Jingbo Tang119, Zhijian Tian115, Feng Wang120, Jun Wang121, 
Xiaofeng Wei116, Xun Xu116, Zhixiang Yan116, Fan Yang116, Xiaoni Zhong118, Feiyu Zhou116, Ying 
Zhu116, Yong Zhang116,118,135, Saravanaraj Ayyampalayam1,122, Todd J. Barkman123, Nam-phuong 
Nguyen124, Naim Matasci125, David R. Nelson126, Erfan Sayyari10, Eric K. Wafula55, Ramona L. 
Walls72, Tandy Warnow127,134, Hong An128, Nils Arrigo2, Anthony E. Baniaga2, Sally Galuska2, 
Stacy A. Jorgensen129, Thomas I. Kidder2, Hanghui Kong130, Patricia Lu-Irving2, Hannah E. 
Marx2,34, Xinshuai Qi2, Chris R. Reardon2, Brittany L. Sutherland2, George P. Tiley83, Shana R. 
Welles2, Rongpei Yu131, Shing Zhan113, Lydia Gramzow132, Günter Theißen132 & Gane Ka-Shu 
Wong3,116,133,135*

1Department of Plant Biology, University of Georgia, Athens, GA, USA. 2Department of Ecology 
and Evolutionary Biology, University of Arizona, Tucson, AZ, USA. 3Department of Biological 
Sciences, University of Alberta, Edmonton, Alberta, Canada. 4Department of Biology, The 
University of British Columbia Okanagan, Kelowna, British Columbia, Canada. 5Department of 
Biology, University of Florida, Gainesville, FL, USA. 6Florida Museum of Natural History, 
University of Florida, Gainesville, FL, USA. 7Department of Botany, University of British 
Columbia, Vancouver, British Columbia, Canada. 8German Centre for Integrative Biodiversity 
Research (iDiv), Halle-Jena-Leipzig, Germany. 9Botanical Institute, University of Cologne, 
Cologne, Germany. 10Department of Electrical and Computer Engineering, University of 
California, San Diego, San Diego, CA, USA. 11Institute of Computer Science, Martin Luther 
University Halle-Wittenberg, Halle (Saale), Germany. 12Institute of Agricultural and Nutritional 
Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany. 13BIOSS Centre 
for Biological Signalling Studies, University of Freiburg, Freiburg, Germany. 14Plant Cell 
Biology, Faculty of Biology, University of Marburg, Marburg, Germany. 15UF Biodiversity 
Institute, and UF Genetics Institute, University of Florida, Gainesville, FL, USA. 16New York 
Botanical Garden, New York, NY, USA. 17Department of Evolutionary Genetics, Max Planck 
Institute for Evolutionary Biology, Plön, Germany. 18Negaunee Institute for Plant Conservation 
Science and Action, Chicago Botanic Garden, Glencoe, IL, USA. 19Program in Plant Biology 
and Conservation, Northwestern University, Evanston, IL, USA. 20Department of Horticulture, 
Michigan State University, East Lansing, MI, USA. 21Department of Botany, University of 
Wisconsin-Madison, Madison, WI, USA. 22Ocean University of China, Qingdao, China. 
23Department of Biological Sciences, University of North Texas, Denton, TX, USA. 24Centre for 
Plant Biotechnology and Genomics (CBGP, UPM-INIA), Madrid, Spain. 25Department of 
Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain. 26Jodrell 
Laboratory, Royal Botanic Gardens, Kew, London, UK. 27School of Marine Sciences, University 
of Maine, Orono, ME, USA. 28Royal Botanic Garden Edinburgh, Edinburgh, UK. 29Department of 
Plant Biology, Laval University, Quebec, Quebec, Canada. 30Donald Danforth Plant Science 
Center, St Louis, MO, USA. 31School of Biological Sciences, The University of Western 
Australia, Perth, Western Australia, Australia. 32Kings Park and Botanic Garden, Department of 
Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia. 33Australian 
Tropical Herbarium, James Cook University, Cairns, Queensland, Australia. 34Department of 

Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA. 35Department 
of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. 36Umeå Plant Science 
Centre, Umeå Universitet, Umeå, Sweden. 37Australian Centre for Evolutionary Biology and 
Biodiversity, Environment Institute, School of Earth and Environmental Science, University of 
Adelaide, Adelaide, South Australia, Australia. 38Department of Plant Sciences, University of 
Cambridge, Cambridge, UK. 39Royal Botanic Garden Sydney, Sydney, New South Wales, 
Australia. 40Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA. 
41Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA. 
42Department of Food Science, University of Tennessee, Knoxville, TN, USA. 43Department of 
Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 
USA. 44Institute for Exact and Applied Sciences, University of New Caledonia, Noumea, New 
Caledonia. 45Department of Biology, University of Massachusetts, Amherst, MA, USA. 46USDA-
Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, USA. 
47Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA. 
48Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK. 
49Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA. 
50Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China. 51Yale-NUS 
College, Singapore, Republic of Singapore. 52School of Molecular Sciences, The University of 
Western Australia, Perth, Western Australia, Australia. 53Department of Plant Biology, Southern 
Illinois University, Carbondale, IL, USA. 54Department of Anatomy, University of Otago, 
Dunedin, New Zealand. 55Biology Department, Pennsylvania State University, University Park, 
PA, USA. 56Department of Biological Science, California State University Fullerton, Fullerton, 
CA, USA. 57Atlanta Botanical Garden, Atlanta, GA, USA. 58Massey University, School of 
Fundamental Sciences, Palmerston North, New Zealand. 59Department of Biology, University 
of Washington, Seattle, WA, USA. 60Centre for Plant Sciences, Faculty of Biological Sciences, 
University of Leeds, Leeds, UK. 61Department of Plant Sciences, University of Oxford, Oxford, 
UK. 62School of Biological Sciences, Monash University, Melbourne, Victoria, Australia. 
63Institut Agronomique néo-Calédonien (IAC), Equipe ARBOREAL, Païta, New Caledonia. 
64Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, 
Santiago, Chile. 65Genome Institute of Singapore, Singapore, Singapore. 66Max Planck 
Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. 67Biosciences, College of 
Life and Environmental Sciences, University of Exeter, Exeter, UK. 68Marine Biological 
Association, The Laboratory, Plymouth, UK. 69Department of Ecology and Evolutionary 
Biology, Yale University, New Haven, CT, USA. 70Department of Biology, University of Toronto 
Mississauga, Mississauga, Ontario, Canada. 71School of Life Sciences, La Trobe University, 
Bundoora, Victoria, Australia. 72CyVerse, BIO5 Institute, University of Arizona, Tucson, AZ, 
USA. 73School of Natural and Environmental Sciences, Newcastle University, Newcastle upon 
Tyne, UK. 74University of Missouri, St Louis, St Louis, MO, USA. 75Centre for Organismal Studies 
Heidelberg, Department of Biodiversity and Plant Systematics, Botanic Garden and 
Herbarium Heidelberg, University of Heidelberg, Heidelberg, Germany. 76The Field Museum, 
Chicago, IL, USA. 77Royal Horticultural Society Garden Wisley, Woking, UK. 78University of 
Reading Herbarium, School of Biological Sciences, University of Reading, Reading, UK. 
79Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden. 80School 
of Biological and Chemical Sciences, Queen Mary University of London, London, UK. 81Boyce 
Thompson Institute, Cornell University, Ithaca, NY, USA. 82Environment Institute, School of 
Biological Science, University of Adelaide, Adelaide, South Australia, Australia. 83Department 
of Biology, Duke University, Durham, NC, USA. 84Smithsonian Environmental Research Center, 
Edgewater, MD, USA. 85Department of Biological Sciences, University of Alabama, Tuscaloosa, 
AL, USA. 86School of Molecular and Cell Biology, University of the Witwatersrand, 
Johannesburg, South Africa. 87Department of Ecology, Evolution and Organismal Biology, 
Kennesaw State University, Kennesaw, GA, USA. 88Flower Diversity Institute, Arvada, CO, USA. 
89CSIRO Agriculture and Food, Perth, Western Australia, Australia. 90Millennium Seed Bank, 
Wakehurst, Royal Botanic Gardens, Kew, Ardingly, UK. 91The UWA Institute of Agriculture, The 
University of Western Australia, Perth, Western Australia, Australia. 92Centers for Disease 
Control and Prevention, Atlanta, GA, USA. 93Department of Primary Industries and Regional 
Development, Perth, Western Australia, Australia. 94Department of Crop Sciences, University 
of Illinois at Urbana-Champaign, Urbana, IL, USA. 95Department of Ecology and Evolutionary 
Biology, The University of Toronto, Ontario, Canada. 96Department of Ecology and 
Evolutionary Biology, University of California, Irvine, Irvine, CA, USA. 97Department of Ecology 
and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA. 98Department of Plant 
and Microbial Biology, North Carolina State University, Raleigh, NC, USA. 99Manoa, Honolulu, 
HI, USA. 100Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA. 
101Morris Arboretum of the University of Pennsylvania, Philadelphia, PA, USA. 102Koffler 
Scientific Reserve, University of Toronto, King City, Ontario, Canada. 103Department of 
Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland. 104National 
Taiwan University, Institute of Ecology and Evolutionary Biology, Department of Life Science, 
Taipei, Taiwan. 105Systematic Biology, Department of Organismal Biology, Evolutionary 
Biology Centre, Uppsala University, Uppsala, Sweden. 106Department of Plant Pathology, 
Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA. 107CAS Key Laboratory of 
Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision 
Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 
China. 108Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural 
University, Harbin, China. 109College of Life Science, Qingdao Agricultural University, 
Qingdao, China. 110Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada. 
111Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 
Australia. 112Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, 
Columbia, MO, USA. 113Department of Zoology, University of British Columbia, Vancouver, British 



Columbia, Canada. 114University Herbarium and Department of Integrative Biology, University of 
California, Berkeley, Berkeley, CA, USA. 115Beijing Genomics Institute-Wuhan, Wuhan, China. 
116BGI-Shenzhen, Shenzhen, China. 117Agricultural Genome Institute at Shenzhen, Chinese 
Academy of Agricultural Sciences, Shenzhen, China. 118Huahan Gene, Shenzhen, China. 119MGI, 
BGI-Shenzhen, Shenzhen, China. 120Allwegene Technology, Beijing, China. 121iCarbonX, 
Shenzhen, China. 122Georgia Advanced Computing Resource Center, University of Georgia, 
Athens, GA, USA. 123Department of Biological Sciences, Western Michigan University, 
Kalamazoo, MI, USA. 124Department of Computer Science and Engineering, University of 
California, San Diego, San Diego, CA, USA. 125Lawrence J. Ellison Institute for Transformative 
Medicine, University of Southern California, Los Angeles, CA, USA. 126Microbiology, 
Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, 
TN, USA. 127Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, 
IL, USA. 128Division of Biological Sciences, University of Missouri, Columbia, MO, USA. 129Arizona 
Research Laboratories, University of Arizona, Tucson, AZ, USA. 130Key Laboratory of Plant 

Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese 
Academy of Sciences, Guangzhou, China. 131Flower Research Institute, Yunnan Academy of 
Agricultural Sciences, Kunming, China. 132Department of Genetics, Matthias Schleiden Institute, 
Friedrich-Schiller-University Jena, Jena, Germany. 133Department of Medicine, University of 
Alberta, Edmonton, Alberta, Canada. 134These authors contributed equally: Eric J. Carpenter, 
Matthew A. Gitzendanner, Zheng Li, Siavash Mirarab, Martin Porsch, Kristian K. Ullrich, Lisa 
DeGironimo, Patrick P. Edger, Ingrid E. Jordon-Thaden, Steve Joya, Tao Liu, Barbara Melkonian, 
Nicholas W. Miles, Lisa Pokorny Montero, Charlotte Quigley, Philip Thomas, Juan Carlos 
Villarreal. 135These authors jointly supervised this work: James H. Leebens-Mack, Michael S. 
Barker, Michael K. Deyholos, Sean W. Graham, Ivo Grosse, Michael Melkonian, Siavash 
Mirarab, Marcel Quint, Stefan A. Rensing, Douglas E. Soltis, Pamela S. Soltis, Dennis W. 
Stevenson, Claude W. dePamphilis, Mark W. Chase, J. Chris Pires, Carl J. Rothfels, Jun Yu, Yong 
Zhang, Tandy Warnow, Shuangxiu Wu, Gane Ka-Shu Wong. *e-mail: jleebensmack@uga.edu; 
gane@ualberta.ca

mailto:jleebensmack@uga.edu
mailto:gane@ualberta.ca


Article
Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized, although simulations included in 
the genome duplication analyses did include drawing from random 
distributions. The investigators were not blinded to allocation during 
experiments and outcome assessment.

Transcriptome sequencing
RNA was isolated from young vegetative tissue from all of the species 
that were included in our phylogenomic analyses as described else-
where39,67,68. Reproductive tissues were also included for some species 
(Supplementary Table 1). Transcript assembly, contaminant identifica-
tion and gene-family circumscription were also performed as described 
previously39 and are described in more detail in the Supplementary 
Methods.

Phylogeny reconstruction
Analyses were performed on single-copy gene trees using ASTRAL to 
account for variation among gene trees owing to incomplete lineage 
sorting15,69. ASTRAL analyses were performed on gene trees estimated 
from unbinned amino acid alignments, first and second codons, statisti-
cally binned supergenes with unweighted bins70,71 and filtered taxon sets 
(excluding ‘rogue’ taxa as described below), with filtering of gene-tree 
bootstrap support thresholds of up to 33% to see whether the effects of 
gene-tree estimation error could be reduced (Supplementary Fig. 6). Bin-
ning left the majority of genes in singleton bins and had minimal effects 
on the overall species tree. Unless otherwise specified, we use ‘ASTRAL 
topology’ to refer to the tree inferred from 410 unbinned amino acid 
alignments in which branches with 33% or less support are contracted. 
In addition, supermatrix analyses were performed on concatenated 
nuclear gene alignments and concatenated plastid gene alignments 
compiled using previously described methods72. All scripts used to 
perform analyses on the nuclear gene data are available at https://doi.
org/10.5281/zenodo.3255100.

Multiple sequence alignment and data filtering. We built a multiple 
sequence alignment based on predicted amino acid sequences of each 
gene and forced DNA sequences to conform to the amino acid alignment. 
We first divided sequences in each gene into two subsets, full-length 
and abnormal sequences, and then used PASTA73 with default settings 
to align full-length sequences and UPP74 to add abnormal sequences to 
the full-length alignment. We designated as abnormal any sequence that 
was 66% shorter or 66% longer than the median length of the full-length 
gene sequences. Once UPP alignments were obtained, we removed from 
them all unaligned (that is, insertion) sites. DNA alignments were then 
derived from amino acid sequence alignments (FAA2FNA) and third 
codon positions were removed owing to extreme among-species vari-
ation in GC content (Supplementary Fig. 7). To reduce running time, we 
then masked all sites from the alignment that contained more than 90% 
gaps. Finally, because the inclusion of fragmentary data in gene-tree 
estimation can be problematic75, we removed any sequence that had 
a gap for at least 67% of the sites in the site-filtered alignment (the 67% 
threshold was chosen based on simulation results75). Gene sequence 
occupancy for 410 single-copy genes in the 1,178 accessions used in our 
analyses is displayed as a frequency histogram (Supplementary Fig. 4) 
and a heat map (Supplementary Fig. 5).

In addition to filtering gappy sites and fragmentary sequences, we 
identified and removed sequences that were placed on extremely long 
branches on their respective gene trees. To identify these, we used the 
initial alignments to build gene trees (see below). We then rooted each 
gene tree by finding the bipartition that separated the largest exclusive 
group of outgroup or red algae taxa. If red algae were entirely missing 
for the gene, we used Glaucophyta, Prasinococcales, prasinophytes, 

Volvox carteri, Chlamydomonas reinhardtii or Klebsormidium nitens. 
We then removed any sequences that had a root-to-tip distance that was 
four standard deviations longer than the median root-to-tip distance in 
each gene tree. Once these sequences on long branches were removed, 
alignments were re-estimated using the same approach described above, 
and new gene trees were estimated.

Gene-tree estimation. To estimate gene trees, we used RAxML v.8.1.1776, 
with one starting tree for building initial trees (used for long-branch 
filtering) and 10 different starting trees for final gene trees. Support 
was assessed with 100 replicates of bootstrapping. For DNA analyses, 
the GTR substitution model and the GAMMA-distributed site rates were 
used. For amino acid sequences, we used a Perl script adapted from the 
RAxML website to search among 16 different substitution models on a 
fixed starting tree per gene and chose the model with the highest likeli-
hood ( JTT, JTTF or JTTDCMUT were selected for 349 out of 410 genes). 
For amino acid trees, we also used the GAMMA-distributed site rates.

Species tree estimation. We used ASTRAL-II15 v.5.0.3 to estimate the 
species tree on the basis of all 410 genes; using 384 genes that each in-
cluded at least half of the species changed only 3 low-support branches. 
We used multi-locus bootstrapping77,78 and the built-in local posterior 
probabilities of ASTRAL to estimate branch support69 and to test for 
polytomies79, drawn on species trees estimated based on the maximum-
likelihood gene trees. We also used the built-in functionality of ASTRAL 
(version 4.11.2) to compute the percentage of gene trees that agreed 
with each branch in the species tree, by finding the average number 
of gene-tree quartets defined around the branch (choosing one taxon 
from each side) that were congruent with the species tree and used 
DiscoVista80 to visualize them (Fig. 4). Median representation of each 
species across the 410 single-copy gene trees was 82.4% with 88.2% and 
67.1% of species having assemblies for at least 50% or 75% of the 410 
single-copy genes, respectively. A large body of work on phylogenetic 
methodologies has established that gene and species tree estimation can 
be robust to missing data, particularly with dense taxon sampling75,81,82. 
Recent papers have even established statistical consistency under miss-
ing data83. Similar evidence of robustness also exists in the context of 
concatenated analyses84–86.

All supermatrix analyses are based on the filtered amino acid and 
first and second codon position alignments that included at least half 
of the species for 384 genes. The (1) unfiltered supermatrices used the 
gene alignments as is; the (2) eudicot supermatrices retained only eud-
icot species in the supermatrix; and the (3) supermatrices with eight 
‘rogue’ taxa removed (Dillenia indica, Tetrastigma obtectum, Tetrastigma 
voinierianum, Vitis vinifera, Cissus quadrangularis, ‘Spirotaenia’ sp., 
Ceratophyllum demersum and Prasinococcus capsulatus) that varied 
in placement among our full ASTRAL, supermatrix and plastid genome 
analyses. Well-supported branching orders were stable among analyses 
(Supplementary Fig. 6).

Maximum-likelihood supermatrix analyses were performed using 
ExaML v.3.0.1487. Similar to the gene-tree analyses, the GAMMA model 
of rate heterogeneity across sites was used for all maximum-likelihood 
supermatrix analyses. To better handle model heterogeneity across 
genes, we divided the supermatrix into partitions. For the amino acid 
alignments, the protein model selected for each gene family in the gene-
tree estimation process was used to group genes into partitions, creating 
one partition per substitution model. For the nucleotide alignments, 
we estimated the GTR transition rate parameters and the alpha shape 
parameter for each codon position (first and second positions) of each 
alignment using RAxML v.8.1.2176. We then projected the maximum-
likelihood parameter values for each gene into a two-dimensional plane 
using principal component analysis88. We performed k-means cluster-
ing89 in R90 to group the codon positions into partitions, selecting k = 8, 
which accounted for 80% of the variation. Trees derived from nucleotide 
alignments can be found at https://doi.org/10.5281/zenodo.3255100).
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To examine the influence of the starting tree on the likelihood of the 
final tree, we performed preliminary analyses on an earlier version of 
our supermatrices. We generated nine different maximum-parsimony 
starting trees using RAxML v.8.1.21 and one maximum-likelihood start-
ing tree using FastTree-2 v.2.1.591. We then ran ExaML on each of the 
starting trees, noting the final maximum-likelihood score. We found that 
in all cases, the ExaML maximum-likelihood tree using the FastTree-2 
maximum-likelihood starting tree had a better maximum-likelihood 
score than any of the ExaML maximum-likelihood trees using maximum-
parsimony starting trees. Thus, for all of the supermatrix analyses, we 
used FastTree-2 to generate our initial starting tree. Support was inferred 
for the branches of the final tree from 100 bootstrap replicates.

Outgroup taxa from outside Archaeplastida were used to root all spe-
cies trees estimated using nuclear genes (all ASTRAL and supermatrix 
analyses). The plastome supermatrix tree for Viridiplantae was rooted 
using Rhodophyta as outgroup.

Inferring and placing WGDs
DupPipe analyses of WGDs from transcriptomes of single species. 
For each transcriptome, we used the DupPipe pipeline to construct gene 
families and estimate the age distribution of gene duplications16,17. We 
translated DNA sequences and identified reading frames by compar-
ing the Genewise92 alignment to the best-hit protein from a collection 
of proteins from 25 plant genomes from Phytozome93. For all DupPipe 
runs, we used protein-guided DNA alignments to align our nucleic acid 
sequences while maintaining the reading frame. We estimated synony-
mous divergence (Ks) using PAML with the F3X4 model94 for each node in 
the gene-family phylogenies. We identified peaks of gene duplication as 
evidence of ancient WGDs in histograms of the age distribution of gene 
duplications (Ks plots). We identified species with potential WGDs by 
comparing their paralogue age distribution to a simulated null using 
a Kolmogorov–Smirnov goodness of fit test95. We then used mixture 
modelling and manual curation to identify significant peaks consistent 
with a potential WGD and to estimate their median paralogue Ks values. 
Significant peaks were identified using a likelihood ratio test in the boot.
comp function of the package mixtools in R96.

Estimating orthologous divergence. To place putative WGDs in rela-
tion to lineage divergence, we estimated the synonymous divergence 
of orthologues among pairs of species that may share a WGD based on 
their phylogenetic position and evidence from the within-species Ks 
plots. We used the RBH Orthologue pipeline17 to estimate the mean and 
median synonymous divergence of orthologues and compared those 
to the synonymous divergence of inferred paleopolyploid peaks. We 
identified orthologues as reciprocal best blast hits in pairs of transcrip-
tomes. Using protein-guided DNA alignments, we estimated the pairwise 
synonymous divergence for each pair of orthologues using PAML with 
the F3X4 model94. WGDs were interpreted to have occurred after lineage 
divergence if the median synonymous divergence of WGD paralogues 
was younger than the median synonymous divergence of orthologues. 
Similarly, if the synonymous divergence of WGD paralogues was older 
than that orthologue synonymous divergence, then we interpreted 
those WGDs as shared.

MAPS analyses of WGDs from transcriptomes of multiple species. 
To infer and locate putative WGDs in our datasets, we used a gene-tree 
sorting and counting algorithm, the multi-taxon paleopolyploidy search 
(MAPS) tool18. For each MAPS analysis, we selected at least two species 
that potentially share a WGD in their ancestry as well as representative 
species from lineages that may phylogenetically bracket the WGD. MAPS 
uses this given species tree to filter collections of nuclear gene trees for 
subtrees consistent with relationships at each node in the species tree. 
Using this filtered set of subtrees, MAPS identifies and records nodes 
with a gene duplication shared by descendant taxa. To infer and locate 
a potential WGD, we compared the number of duplications observed 

at each node to a null simulation of background gene birth and death 
rates97,98. A Fisher’s exact test, implemented in R90, was used to identify 
locations with significant increases in gene duplication compared with 
a null simulation (Supplementary Table 5). Locations with significantly 
more duplications than expected were then compared to a simulated 
WGD at this location. If the observed duplications were consistent with 
this simulated WGD using Fisher’s exact test, we identified the location as 
a WGD if it was consistent with inferences from Ks plots and orthologue 
divergence data. In some cases, MAPS inferred significant duplications 
without apparent signatures in Ks plots or previously published research. 
In these cases, we recognized the event as a significant burst of gene 
duplication.

Each MAPS analysis was designed to place focal WGDs near the centre 
of a species tree to minimize errors in WGD inference. Errors in tran-
scriptome or genome assembly, gene-family clustering and the con-
struction of gene-family phylogenies can result in topological errors in 
gene trees99. Previous studies have suggested that errors in gene trees 
can lead to biased placements of duplicates towards the root of the 
tree and losses towards the tips of the tree100. For this reason, we aimed 
to put focal nodes for a particular MAPS analysis test in the middle of 
the phylogeny. To further decrease potential error in our inferences of 
gene duplications, we required at least 45% of the ingroup taxa to be 
present in all subtrees analysed by MAPS97. If this minimum requirement 
of ingroup taxa numbers is not met, the gene subtree will be filtered 
out and excluded from our analysis. Increasing taxon occupancy leads 
to a more accurate inference of duplications and reduces some of the 
biases in mapping duplications onto a species tree100,101. To maintain suf-
ficient gene-tree numbers for each MAPS analysis, we used collections 
of gene-family phylogenies for six to eight taxa to infer ancient WGDs.

For each MAPS analysis, the transcriptomes were translated into 
amino acid sequences using the TransPipe pipeline17. Using these trans-
lations, we performed reciprocal protein BLAST (BLASTp) searches 
among datasets for the MAPS analysis using a cut-off of E = 1 × 10−5. We 
clustered gene families from these BLAST results using OrthoFinder 
under the default parameters102. Using a custom Perl script (https://
bitbucket.org/barkerlab/MAPS), we filtered for gene families that con-
tained at least one gene copy from each taxon in a given MAPS analysis 
and discarded the remaining OrthoFinder clusters. We used PASTA73 for 
automatic alignment and phylogeny reconstruction of gene families. 
For each gene-family phylogeny, we ran PASTA until we reached three 
iterations without an improvement in likelihood score using a centroid 
breaking strategy. Within each iteration of PASTA, we constructed subset 
alignments using MAFFT103, used Muscle104 for merging these subset 
alignments and RAxML76 for tree estimation. The parameters for each 
software package were the default options for PASTA (https://bitbucket.
org/barkerlab/1kp). We used the best-scoring PASTA tree for each multi-
species nuclear gene family to collectively estimate the numbers of 
shared gene duplications on each branch of the given species.

To generate null simulations, we first estimated the mean background 
gene duplication rate (λ) and gene loss rate (μ) with WGDgc98 (Supple-
mentary Tables 5, 11). Gene count data were obtained from OrthoFinder102 
clusters associated with each species tree (Supplementary Table 5).  
λ and μ were estimated using only gene clusters that spanned the root 
of their respective species trees, which has been shown to reduce biases 
in the maximum-likelihood estimates98 of λ and μ. We chose a maximum 
gene-family size of 100 for parameter estimation, which was necessary 
to provide an upper bound for numerical integration of node states98. 
We provided a prior probability distribution on the number of genes at 
the root of each species tree, such that ancestral gene-family sizes fol-
lowed a shifted geometric distribution with mean equal to the average 
number of genes per gene family across species (Supplementary Table 5).

Gene trees were then simulated within each MAPS species trees using 
the GuestTreeGen program from GenPhyloData105. For each species 
tree, we simulated 3,000 gene trees with at least one tip per species: 
1,000 gene trees at the λ and μ maximum-likelihood estimates, 1,000 
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gene trees at half the estimated λ and μ, and 1,000 trees at three times λ 
and μ. For all simulations, we applied the same empirical prior used for 
estimation of λ and μ. We then randomly resampled 1,000 trees without 
replacement from the total pool of gene trees 100 times to provide a 
measure of uncertainty on the percentage of subtrees at each node. For 
positive simulations of WGDs, we simulated gene trees using the same 
approach used to generate null distributions (Supplementary Table 5) 
but incorporated a WGD at the test branch. Previous empirical estimates 
of paralogues retained following a plant WGD are 10% on average106. To 
be conservative for inferring WGDs in our MAPS analyses, we allowed 
at least 20% of the genes to be retained following the simulated WGD to 
account for biased gene retention and loss. For WGDs that might have a 
lower gene retention rate, we used an additional simulation using 15% 
gene retention (Supplementary Table 6).

Gene-family evolution
Transcriptome-based gene-family size estimation. To robustly 
estimate gene-family sizes from transcriptomic data, we needed to 
overcome three major challenges: (1) the fragmentation of transcript 
sequences; (2) the absence of low-abundance transcripts; and (3) the 
over-prediction of gene-family sizes due to assembly duplications and 
biological isoforms. We dealt with these challenges as follows.

Fragmentation of data. The multiple sequence alignments used to 
construct the domain-specific profile hidden Markov models (HMMs) 
ranged from 23 to 463 amino acids in length; 78% of these alignments were 
shorter than 120 amino acids, and 84.6% of the assembled and translated 
transcripts were longer than 120 amino acids. By mainly characterizing 
gene families using single domains (Supplementary Table 9), we limited 
the effect of the fragmentation of transcripts from the assembly of short 
read data. HMMs used for gene-family classification and decision rules 
obtained from either published work107 or gene-family experts are given 
in Supplementary Table 9; 12 out of 23 gene families were classified by a 
single ‘should’ rule, 2 out of 23 were defined by a XOR ‘should’ rule, which 
also classifies a sequence by the presence of a single domain, 8 out of 23 
gene families were classified by a more complex rule set including ‘should 
not’ rules. The only gene family for which multiple domains needed to 
be present was the PLS subfamily of the PPR gene family.

Loss of low abundance transcripts. To account for possible bias in 
the sampling of the gene space, all species that showed low levels of 
transcriptome completeness were removed. The lowest value of tran-
scriptome completeness obtained from 30 annotated plant genomes 
was used as the lower exclusion limit. We removed all samples in which 
more than 42.5% of BUSCO31 sequences were missing using default  
settings and the eukaryotic dataset as the query database.

Gene-family over-prediction. We clustered assembled protein  
sequences by sequence similarity and merged sequences that showed at 
least 99% identity. To check for the possibility of merging sequences that 
should be counted separately, different identity cut-offs were compared 
between the 1KP datasets and 32 annotated plant genomes.

Extended Data Figure 3c, d shows the average gene-family sizes for 23 
gene families and 13 clades obtained from 1KP samples and 32 annotated 
plant genomes. These gene-family sizes show a high Pearson correlation 
(r = 0.95) between 1KP samples and plant genomes, and therefore a linear 
relationship between the two approaches is indicated. The results from 
the 1KP dataset are on average smaller by a factor of 2.3. Although this 
is a clear underestimate, the scale factor by which the estimate is too 
small is relatively consistent, especially as the gene-family sizes increase.

Sequence clustering. We used cdhit v.4.5.7108,109 to reduce the number 
of protein sequence duplications in the dataset. We assessed 100%, 
99.5%, 99%, 95% and 90% sequence identity thresholds. The percentage 
of remaining sequences for the 1KP samples and 32 reference genomes 

is displayed in Extended Data Fig. 3f. We chose 99% sequence identity 
as the value to use for this study.

Estimation of gene-family size. Gene-family experts provided the 
knowledge to classify protein sequences as members of gene families 
with profile HMMs. In total, 46 HMMs representing 23 large gene fami-
lies30 were used to estimate gene-family sizes in the analysed species. 
Classification rules and HMMs for 14 gene families that have been pub-
lished previously107 were converted to HMMER3 format and used in this 
study. Gene-family classification rules and HMMs for the remaining nine 
families can be found in Supplementary Table 8. HMMs were taken from 
the Pfam database (accessed 12 May 2016) or were provided by gene-
family experts (Supplementary Table 8). HMMER110 (v.3.1b2) was used 
to scan for matches in the filtered 1KP dataset. Where available, gather-
ing thresholds were used; otherwise an E-value cut-off was applied to 
indicate domain presence. If the E value is not noted in Supplementary 
Table 9, the default E value of 10 was applied. The results on the species 
level are listed in Supplementary Table 10s.

Statistical test for expansions and contractions. To assess whether a 
gene family expanded or contracted in a lineage, we compared a weight-
ed average of gene numbers in adjacent clades and grades (Fig. 4). We 
also checked for expansions and contractions within clades but did 
not find any statistically significant shifts. The counts of gene-family 
members from two clades or grades were compared with a Kolmogo-
rov–Smirnov test with a P-value threshold of 1 × 10−6 in R90. The tests 
conducted in this study are listed in Supplementary Table 7. Fold changes 
were computed using the trimmed arithmetic mean in which the top and 
bottom 5% of the data were discarded. Only expansions larger than 1.5 
fold (or contractions smaller than 2/3) are reported.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All raw sequence reads have been posted in the NCBI SRA database under 
BioProject accession PRJEB4922. SRA entries for each assembly are 
listed in Supplementary Table 1. All sequence, gene tree and species 
tree data can be accessed through CyVerse Data Commons at https://
doi.org/10.25739/8m7t-4e85. In addition, gene-family nucleotide and 
amino acid FASTA files can also be found at http://jlmwiki.plantbio.uga.
edu/onekp/v2/; multiple sequence alignments, gene trees and species 
trees for single-copy nuclear genes included in phylogenomic analyses 
are also at https://doi.org/10.5281/zenodo.3255100; Ks plots, alignments 
and trees used for WGD analyses can be found at https://bitbucket.org/
barkerlab/1kp; and data used for gene-family expansion analyses can 
be found at https://github.com/GrosseLab/OneKP-gene-family-evo.

Code availability
Scripts used for phylogenomic species tree analyses are available at 
https://doi.org/10.5281/zenodo.3255100. Scripts used for MAPS anal-
yses of WGDs are available at https://bitbucket.org/barkerlab/maps 
and scripts used for gene-family expansion analyses are available at 
https://github.com/GrosseLab/OneKP-gene-family-evo. All script files 
are also accessible through CyVerse Data Commons at https://doi.
org/10.25739/8m7t-4e85.
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Extended Data Fig. 1 | Mean number of MADS-box genes in the 
transcriptomes of different plant clades. Type I genes are shown in green; 
type II genes are shown in purple and orange. Transcripts in which only a K-box 
was identified (which are probably partial transcripts of type II genes) are shown 
in orange. Data are mean ± s.d. Dots indicate the numbers of MADS-box genes in 

individual transcriptomes. Sample sizes (n) are as follows: liverworts, n = 26; 
hornworts, n = 7; mosses, n = 37; lycophytes, n = 22; eusporangiate ferns, n = 10; 
leptosporangiate ferns, n = 62; gymnosperms, n = 84; and angiosperms, n = 820. 
A total of 1,068 transcriptomes were analysed for this figure.



Extended Data Fig. 2 | RAxML phylogeny of classic type II MIKCc MADS-box 
genes of liverworts, mosses, lycophytes, monilophytes (ferns) and 
spermatophytes (seed plants). CgMADS1 from Chara globularis was used as a 
representative of the outgroup. Branches leading to genes from the different 
phyla are coloured according to the simplified phylogeny of land plants that is 
shown in the top left corner. The phylogenetic position of some known type II 

MIKCc MADS-box genes111 representative of previously described clades of 
MADS-box genes are indicated on the right together with the species and 
phylum in which these genes have been identified. The four clades of MIKCc 
MADS-box genes that trace back to the most recent common ancestor of 
Euphyllophytes are shaded in grey.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Assessments of transcriptome assembly gene-family 
representation relative to gene-family members identified in annotated 
genomes. a, BUSCO versus CEGMA (CEG) gene occupancy for each sample. 
BUSCO transcriptome completeness is given as ‘complete plus fragmented’ 
BUSCO percentage using the eukaryota_odb9 database. CEGMA transcriptome 
completeness is given as conditional reciprocal best BLAST hits 
(see Supplementary Methods). Dotted line represents 57.5% (BUSCO) and 70% 
(CEGMA) gene occupancy threshold. Black dots represent 1KP samples 
(n = 1,020) and blue dots annotated plant genomes (n = 30). b, BUSCO gene 
occupancy for each major clade. Boxes represent lower and upper quartiles; the 
black bold line represents the median and whiskers extend to the most-extreme 
data points. Sample sizes: Chromista, n = 23; Rhodophyta, n = 18; Glaucophyta, 
n = 2; Chlorophyta, n = 94; streptophyte algae, n = 42; hornworts, n = 7; 
liverworts, n = 18; mosses, n = 38; lycophytes, n = 16; monilophytes, n = 59; 
gymnosperms, n = 76; ANA grade, n = 6; monocots, n = 96; Chloranthales, n = 1; 

magnoliids, n = 22; CRPT grade, n = 29; asterids, n = 205; Caryophyllales, n = 48; 
rosids, n = 176; Saxifragales, n = 23; Santalales, n = 6. Dotted line represents 57.5% 
(BUSCO) gene occupancy threshold. c, Scatterplot of gene-family sizes in 
transcriptomes versus genomes on a logarithmic scale. The grey line indicates 
x = y, the black line indicates a linear regression fitted to the data (n = 299; 23 
gene families in 13 species groups). Pearson and Spearman correlation 
coefficients (n = 299) are indicated. d, Box plot of transcriptome:genome ratios 
of gene-family sizes for each species group. Boxes indicate upper and lower 
quartiles with median; whiskers extend to data points no more than 1.5× the 
interquartile range (n = 23) with outliers plotted as individual data points. e, f, 
Number of remaining sequences after filtering with cd-hit and a threshold of 
100%, 99.9%, 99%, 95% or 90% in transcriptome sequences and reference 
genomes (Supplementary Table 8). Boxes indicate upper and lower quartiles 
with median; whiskers extend to data points no more than 1.5× the interquartile 
range (e, n = 1,451; f, n = 32) with outliers plotted as individual data points.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection

Data analysis

Transcripts were assembled using SOAPdenovo-Trans assembler (version of 2012-04-05); NCBI BLAST, TransRate,  CEGMA6 and 
BUSCO were used to assess assembly quality, translations were performed using TransPipe and Genewise 2.2.2, Gene and species tree 
estimates RAxML v. 8.1.17, FastTree-2 v. 2.1.5, and ExaML v. 3.0.14,ASTRAL-II v. 5.0.3 was used to estimate species trees; scripts for post-
processing, DiscoVista,  of trees - https://github.com/smirarab/1kp ; genome duplications were investigated using the DupPipe, PAML, 
and the MAPS pipelines including the GuestTreeGen program withinGenPhyloData -  https://bitbucket.org/barkerlab/maps  ; analysis 
of gene family expansions included HMMER v3.1b2 and scrips available at https://github.com/GrosseLab/OneKP-gene-family-evo

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data are public: Raw reads in NCBI SRA database - http://www.onekp.com/public_read_data.html  ; Assembled transcripts and transcript translations - http://
www.onekp.com/public_data.html ; Gene family nucleotide and amino acid fasta files - http://jlmwiki.plantbio.uga.edu/onekp/v2/ ; Multiple sequence 
alignments, gene trees and species trees for single copy nuclear genes - https://github.com/smirarab/1kp 
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Gene and species phylogenies were estimated in order to infer: relationships across the green tree of life (Viridiplantae), the timing 
of genome-scale duplication events, and the timing of gene family expansions.

RNA was isolated from young vegetative tissue from 1342 samples representing 1147 species across all major subclades of 
Viridiplantae, glaucophytes (Glaucophyta) and red algae (Rhodophyta) and used to generate RNA seq reads and assemblies.  

Samples  were collected as available in living collections.  Species were chosen for RNA seq with a priority to maximize taxonomic 
diversity across Viridiplantae and outgroups 

RNA samples were derived from vouchered material in living collections as described in Table 1.

Timing and spatial scale Samples were collected as available.  No attempt was made to control for environmental variation

Data exclusions RNA samples exhibiting evidence of contamination were excluded from phylogenetic analyses.  Contamination was diagnosed 
through BLAST comparisons to ribosomal RNA and plastid gene databases.

Reproducibility Bootstrap analyses and Bayesian posterior probabilities were estimated for all nodes in gene trees and species trees.

Randomization Bootstrap support for nodes gene trees and species trees were estimated in a standard fashion through random resampling of 
columns in sequence alignments. 

Blinding No blinding was done for any of our analyses.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
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Unique biological materials
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Eukaryotic cell lines
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Animals and other organisms
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Obtaining unique materials Most samples are available in live collections and/or herbarium vouchers.
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