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A B S T R A C T

Land change models are increasingly being employed to predict future landscapes and influence policy and
decision-making. To ensure the highest model accuracy, validation methods have become commonplace fol-
lowing a land change simulation. The most common validation method employed uses quantity and allocation
disagreement. However, these current measures may not account for differences in the configurations of land
change, placing them in potential conflict with the principals of heterogeneity and spatial patterning of land-
scape ecology. We develop a new metric, termed configuration disagreement, designed to focus on the size,
shape, and complexity of land change simulations. Using this metric, we demonstrate the value of including
errors of configuration disagreement – in addition to quantity and allocation error – in the assessment of land
change models. Four computational experiments of land change that vary only in spatial pattern are developed
using the FUTURES land change model. For each experiment, configuration disagreement and the traditional
validation metrics are computed simultaneously. Results indicate that models validated only with consideration
of quantity and allocation error may misrepresent, or not fully account for, spatial patterns of landscape change.
The research objective will ultimately guide which component, or components, of model disagreement are most
critical for consideration. Yet, our work reveals why it may be more helpful to validate simulations in terms of
configuration accuracy. Specifically, if a study requires accurately modeling the spatial patterns and arrange-
ments of land cover. Configuration disagreement could add critical information with respect to a model's si-
mulated changes in size, shape, and spatial arrangements, and possibly enhance ecologically meaningful land
change science.

1. Introduction

Models of land use and land change can be powerful tools for si-
mulating future patterns of landscape change and guiding decision
making (Eigenbrod et al., 2011; Nedkov & Burkhard, 2012; Nelson
et al., 2009; Pickard, Gray, & Meentemeyer, 2017; Renard, Rhemtulla,
& Bennett, 2015; Tayyebi, Pijanowski, & Pekin, 2015). Computational
in nature, they enable experiments at varying spatial scales to in-
vestigate how land cover can change under differing conditions and the
ecological implications of such alterations (van Vliet et al., 2016). Land
change models can incorporate social, environmental, institutional, and
economic processes, thereby creating a wide variety of methodological
approaches. Land change models use statistical correlations (inductive),
explicitly describe processes (deductive), infer underlying processes
from observed patterns of land change (patter-based), or simulate in-
dividual decision makers (agent-based) (Mas, Kolb, Paegelow,
Camacho-Olmedo, & Houet, 2014). Examples include CLUE (Verburg &
Overmars, 2009), SLEUTH (Clark, Hoppen, & Gaydos, 1997),

Metronamica (White, Engelen, & Uljee, 1997), FUTURES (Meentemeyer
et al., 2013), IDRISI's suite of tools (LCM, GEOMOD, CA_MARKOV), and
DINAMICA, with new models constantly being developed. Given their
variety and prevalence, accurate, ecologically-relevant simulations are
needed to advance meaningful land change science and to provide a
better basis for decision making and policy formulation that relies on
the use of such models.

Consensus regarding model accuracy assessments focuses on quan-
tifying two specific types of accuracy: quantity and allocation (Chen, Li,
& Ai, 2014; Pontius Jr & Millones, 2011). Quantity disagreement is the
difference between observed and simulated maps attributable to the
difference in proportions of map categories (e.g., simulating too much
or too little change). Allocation disagreement is the differences between
observed and simulated maps attributed to differences in matching
spatial allocation of categories (e.g., simulating change at a location
where no change was observed). While these methods provide useful
information of model accuracy, they do not explicitly address the de-
gree to which simulations match the spatial arrangement of observed
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landscape patterns. Landscape ecology focuses on the ecological effects
of spatial patterning (Forman, 1995; Turner, 1989) and particularly
important in a wide range of landscape scale science (e.g. habitat
connectivity, surface water flow, urban planning). Therefore, in the
context of validating land change models employed in ecology-based
work, greater emphasis on the spatial arrangement of patches is needed,
with more focus on configuration and less on correctness of single
pixels. For example, a simulation that places the same number of
change pixels into a single large patch can have identical allocation
disagreement compared to a simulation that has several fragmented
patches (Pickard, Van Berkel, Petrasova, & Meentemeyer, 2017). This
implies that current validation methods may be misleading land change
scientists as to how accurate their models really are.

Pontius Jr et al. (2018) show that the quantity of simulated change
can confound the accuracy results. Therefore, to understand model
accuracy, it is important to simulate the correct number of pixels that
change. Pontius Jr et al. (2018) demonstrated that models that predict
less change than observed may have higher accuracy than those that
predict more change. When the exact number of simulated change
pixels is achieved (i.e. no quantity error) a model's behavior can be
evaluated with respect to allocation (or configuration). However, no
research to date has modeled multiple simulations with zero quantity
error, thereby varying only in spatial arrangement of simulated change
in order to assess configuration disagreement.

Using a simple example (Fig. 1), we demonstrate the added context
that configuration accuracy might play in the validation of a land
change model. Consider a forested landscape experiencing urbaniza-
tion, with each map representing a simulated example of where new
development is expected to occur. Each map consists of thirty-six pixels,
with each pixel being classified as forest (green), existing urban (dark
gray), or projected new development (white). We also provide a re-
ference map which illustrates the “observed” development from which
the accuracy of each simulation is evaluated (Fig. 1, box with dotted
box surrounding it). Although each of the maps has the same number of
forest pixels simulated as changing from forest to developed (i.e., four
pixels in the white category), they differ in the specific configurations of
where changes occur. Using the same number of change pixels in each
scenario eliminates quantity error in these computational experiments.
Based on the current validation method of allocation disagreement
(Pontius Jr & Millones, 2011), each map is equally accurate. However,
most readers will clearly note varying accuracy in how well the

simulations replicate the observed configuration. The ecological im-
plications of these configurations are likely to vary considerably de-
pending on which configuration is considered. This inaccuracy high-
lights a critical methodological gap in the assessment of a model's
overall accuracy.

In this paper we propose a metric for assessing accuracy of land
change models, called configuration disagreement, designed to be
complimentary to the existing validation methods of quantity and al-
location. We demonstrate its need using a spatially-explicit land change
model (FUTURES; Meentemeyer et al., 2013) capable of simulating
variation in spatial configuration. Using a rapidly urbanizing region,
Charlotte, North Carolina and the surrounding nine counties, we pre-
sent a case study analyzing computation experiments of varying con-
figurations of urbanization. As with the simplified examples in Fig. 1,
each computational experiment differs only in the spatial arrangement
of simulated change pixels the number of change pixels are held con-
stant across all experiments. By calculating both allocation and con-
figuration disagreement simultaneously for each experiment, we de-
monstrate the need for considering configuration to more holistically
understand model accuracy. Our results illustrate that allocation dis-
agreement does not indicate configuration and can lead to spurious
results if the purpose of the model relies on correctly predicting ob-
served configurations. Our proposed metric of configuration disagree-
ment likely provides a better metric for specific instances concerned
with configuration.

2. Methods

2.1. Computation experiments

Four computational experiments of differing configurations of
urban development were designed and compared to observed urban
development. Using the observational dataset, the number of pixels that
were converted from undeveloped to developed were identified an-
nually and used as inputs for each configuration experiment. By
creating multiple experiments depicting different configurations of
newly assigned development pixels, and ensuring the same number of
observed change pixels were allocated in each experiment, we can di-
rectly compare validation methods. Allocation and configuration dis-
agreement were calculated for each experiment and compared to the
observational dataset to identify which computational experiment had

Fig. 1. Reference (dotted box) and comparison maps
showing multiple configurations with identical
quantity and allocation disagreement values. The
white boxes represent simulated change pixels. Each
of the five configurations have zero quantity dis-
agreement and 22% allocation disagreement. Using
current validation methods (Pontius Jr & Millones,
2011) each map is considered identical in accuracy
compared to the reference map.
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the lowest levels of disagreement. A total of nine years (2006–2016,
excluding 2012) were used to validate the modeled results to account
for the stochastic, human-ecological interactions that shape the pro-
cesses driving land change (Olmedo, Pontius Jr, Paegelox, & Mas,
2015). Therefore, validation results can be evaluated while accounting
for a land change models' difficulty in capturing these complex inter-
actions (Kolb, Mas, & Galicia, 2013; Olmedo et al., 2015; Perez-Vega,
Mas, & Lingmann-Zielinska, 2012).

2.2. Study extent

The study extent is located within the Piedmont physiographic
province of Central North Carolina (Fig. 2), and is a key urban center

within the “Charlanta” megaregion (Florida, Gulden, & Mellander,
2008). We selected nine counties within and surrounding North Car-
olina's most urbanized portion of the state, intersecting three rapidly
expanding metropolitan areas that are expected to double in population
by 2030 (North Carolina State Demographic Office, 2017). Develop-
ment, thus far, has manifested as a pattern of urban sprawl typical of
much of the United States in the late 20th and early 21st century
(Terando et al., 2014).

2.3. Input data

We used satellite imagery from Landsat MultiSpectral Scanner
(MSS; Landsat 4), Thematic Mapper (TM; Landsat 5), and Operational

Fig. 2. Nine county study extent depicting developed lands observed during calibration (1976, 1985, 1996, and 2006) and validation (2007–2016) phases.
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Land Manager (OLI; Landsat 8), to classify the amount of development
that occurred within the region from 1976 to 2016 (Table 1). Land
cover data was divided into two datasets: 1) a calibration phase con-
sisting of four time points (1976, 1985, 1996, 2006), and 2) a validation
phase consisting of annual maps (2007–2016). Land cover for the year
2012 was omitted from the validation phase because a suitable set of
images free of scan line corrector (SLC, Arvidson, Goward, Gasch, &
Williams, 2006) errors with cloud cover< 20% was not available. Land
change models require at a minimum two dates for calibration (e.g.
Verburg & Overmars, 2009), yet recent trends in research suggest ca-
librating with multiple time points provides greater information re-
garding temporal trends in land change (e.g. Clark et al., 1997;

Meentemeyer et al., 2013; Terando et al., 2014).
For each year, we produced fractional components representing the

vegetation, impervious and soil components of each Landsat image
pixel using vegetation-impervious surface-soil (VIS) classification and
unconstrained linear spectral unmixing analysis (Ridd, 1995; Wu,
2004). We then selected training sites to represent pure end members
for each VIS component using aerial orthophotography. We next clas-
sified each pixel within the map as developed or undeveloped by em-
ploying logistic regression comparing the fraction images generated by
the spectral unmixing analysis and the interpretations of 1000 points in
the current year's orthophotography. Sing only two classes reduces the
likelihood of error when compared to multi-class image classification

Table 1
Accuracy results based on Olofsson et al. (2013) of Landsat imagery classification using Vegetation-Impervious Surface-Soil (VIS) method.

Undeveloped Developed Total Wi User's Producer's Overall

2016 – (OLI)
Undeveloped 227 23 250 0.647 0.908 0.998 0.939
Developed 1 249 250 0.354 0.996 0.856
Total 228 272 500 1.000

2015 – (OLI)
Undeveloped 225 25 250 0.650 0.900 0.993 0.931
Developed 3 247 250 0.349 0.988 0.841
Total 228 272 500 1.000

2014 – (OLI)
Undeveloped 206 44 250 0.657 0.824 0.997 0.883
Developed 1 249 250 0.343 0.996 0.747
Total 207 293 500 1.000

2013 – (OLI)
Undeveloped 214 36 250 0.664 0.856 0.998 0.903
Developed 1 249 250 0.335 0.996 0.777
Total 215 285 500 1.000

2011 – (TM)
Undeveloped 214 36 250 0.676 0.856 0.996 0.900
Developed 2 248 250 0.324 0.992 0.768
Total 216 284 500 1.000

2010 – (TM)
Undeveloped 216 34 250 0.682 0.864 1.000 0.907
Developed 0 250 250 0.318 1.000 0.774
Total 216 284 500 1.000

2009 – (TM)
Undeveloped 215 35 250 0.685 0.860 0.998 0.903
Developed 1 249 250 0.315 0.996 0.761
Total 216 284 500 1.000

2008 – (TM)
Undeveloped 221 29 250 0.701 0.884 0.998 0.918
Developed 1 249 250 0.299 0.996 0.786
Total 222 278 500 1.000

2007 – (TM)
Undeveloped 219 31 250 0.715 0.876 0.995 0.908
Developed 3 247 250 0.285 0.988 0.761
Total 222 278 500 1.000

2006 – (TM)
Undeveloped 225 225 250 0.732 0.900 0.982 0.915
Developed 11 11 250 0.268 0.956 0.778
Total 236 236 500 1.000

1996 – (TM)
Undeveloped 237 237 250 0.828 0.948 0.988 0.947
Developed 14 14 250 0.172 0.944 0.791
Total 251 251 500 1.000

1985 – (TM)
Undeveloped 242 242 250 0.947 0.968 0.986 0.956
Developed 63 63 250 0.053 0.748 0.565
Total 305 305 500 1.000

1976 – (MSS)
Undeveloped 218 218 250 0.967 0.872 0.999 0.875
Developed 9 9 250 0.033 0.964 0.204
Total 227 227 500 1.000
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(Pontius Jr & Maliza, 2004). Each final classified map was designed to
allow for both gross gain and loss of urban, however in this case study
there was little to no loss of urban in any specific year.

Several methods have been proposed to report error found in ob-
served maps (Olofsson et al., 2014; Olofsson, Foody, Stehman, &
Woodcock, 2013; Pontius Jr & Li, 2010; Pontius Jr & Lippitt, 2006), and
images classified in this analysis followed the “good practice re-
commendations” of Olofsson et al. (2014). Each land cover dataset was
evaluated against 500 stratified random sample points (250 each for
developed and undeveloped) using concurrent high-resolution ortho-
photography. Samples for assessing classification error for each year
were selected separately from the other samples. Error matrices were
quantified for each year, reporting raw point counts, estimated area
proportions, and user's, producers, and overall accuracy.

2.4. FUTURES land change model

The FUTure Urban-Regional Environmen Simulation model
(FUTURES; Meentemeyer et al., 2013) is a fully open source, multi-
level, spatio-temporal land change model that is run through a suite of
modules in GRASS GIS. Here we focus on conversion of forest and
farmland to impervious development. Processes of landscape change
are represented through three sub-models: 1) specification of the
quantity, or amount, of new development (DEMAND sub-model), 2)
location of development (POTENTIAL sub-model) based on local site
suitability factors, and 3) the spatial pattern of development simulated
by a stochastic patch growing algorithm (PGA sub-model).

The DEMAND sub-model of FUTURES requires the user to manually
specify the number of new development pixels to be allocated each
year. Using the observed annual land cover datasets generated for
2007–2016, we identified the specific number of pixels developed each
year and used these pixels as inputs for the FUTURES model. Specifying
the exact same amount of new development eliminates the quantity
disagreement from each computational experiment. To determine the
locations of where new development will be sited, FUTURES requires
the input of a site suitability surface (e.g., Dorning, Kock, Shoemaker, &
Meentemeyer, 2013; Meentemeyer et al., 2013; Pickard, Gray, &
Meentemeyer, 2017). We used a linear mixed-effects model to de-
termine the relationship between natural lands converted to developed
based on environmental conditions (Meentemeyer et al., 2013) to
create a site suitability surface. We then selected a set of key indicators
explaining locations of urban growth (Table 2) using principal com-
ponent analysis. Model parameters were determined based on the

binary response (land converted or not) for approximately 20,000
randomly sampled points. We accounted for variability among counties
by assigning a random effect to the intercept and development pressure
variable. These random effects account for unexplained development
factors that likely influence development but were not included in the
model, such as zoning constraints.

To simulate new development experiments, the FUTURES model
uses the specified quantity of new development with the site suitability
surface to project development based on an iterative, stochastic site
selected process and a patch-based region growing algorithm designed
to mimic distinct spatial structures. The PGA stochastically selects a
location for development across the site suitability surface. An urban
patch is successfully developed in the model if the chosen location
survives a randomized (i.e., Monte Carlo) challenge. Locations that
survive this challenge spread into discrete patches based on distribu-
tions of patch sizes and shapes derived from observed development
patterns. The PGA stochastically selects a patch within the library and
allocates it to the successful location. When the total number of new
cells for a computational experiment year are allocated (determined by
user specified quantity), the development pressure variable is updated,
and the site suitability surface is recalculated. This process is repeated
for each experiment until the final year of development occurs.

Computational experiments of development configuration can be
explored in FUTURES using the PGA incentive parameter. This para-
meter applies a power transformation to the site suitability surface,
changing the distribution and spatial configuration of new patches
across the landscape (Fig. 3). By varying this parameter, we generated
multiple computational experiments ranging from extreme sprawl
(Experiment 1) to compact infilling (Experiment 4). In each of these, all
model parameters and amount of new development are constant, with
the only variation coming from the spatial arrangement of the new
patches.

2.5. Quantity and allocation disagreement

We assessed current validation methods as prescribed by Pontius Jr
and Millones (2011) for each of the FUTURES experiments. Quantity
disagreement is the difference between observed and simulated maps
attributable to the difference in proportions of categories (Pontius Jr &
Millones, 2011), and is calculated as:

Table 2
Coefficients from the multilevel mixed effects model used to develop the site suitability surface
within FUTURES (Meentemeyer et al., 2013).

Fixed effects Estimate SE P value

Intercepta −1.95 0.65 0.002
Distance to interchange 0.22 0.03 < 0.001
Distance to roads −0.21 0.03 < 0.001
Slope −0.03 0.01 < 0.001

Random effects

County Intercept Development pressure

Cabarrus −4.3 0.11
Catawba −4.01 0.10
Lincoln −4.36 0.11
Rowan −4.39 0.12
Iredell −4.08 0.11
Stanley −4.71 0.12
Gaston −4.21 0.09
Mecklenburg −4.14 0.09
Union −4.38 0.11

a Varies by county.
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where, pig and pgj represent the estimated proportion of class g in the
simulated and reference maps, respectively. For the purposes of this
analysis, we designed all the experiments such that quantity disagree-
ment is equal to zero. Allocation disagreement is the difference between
observed and simulated maps attributed to the differences in matching
spatial allocation of categories (Pontius Jr & Millones, 2011), computed
as:
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where, the first argument within the minimum function is the omission
of class g and the second argument is the commission of class g. To
determine the total disagreement between the simulated and observed
map, a user simply sums the quantity and allocation disagreements.

2.6. Configuration disagreement

In addition to current accuracy measures we applied a validation
metric meant to be complimentary, termed configuration disagreement.
Initial developments of configuration disagreement (Chen et al., 2014;
Pickard, Van Berkel, et al., 2017) have relied on quantifying spatial
metrics using the open-source FRAGSTATS package (McGarigal,
Cushman, Neel, & Ene, 2002). Previously, configuration disagreement
has been determined by comparing four metrics of the simulated de-
velopment class with observed development class maps, yet the quan-
tity of newly simulated pixels differed (Pickard, Gray, & Meentemeyer,
2017). Here, we improve upon this method by modifying the number
and selection of specific FRAGSTATS metrics to be evaluated across the
landscape and by eliminating quantity disagreement from these

computational experiments. This allows for focusing only on how well a
model matches the size, shape, complexity, aggregation, dispersion,
patch variability, fragmentation, proximity to other classes, edge effects
and perimeter-area ratios of observed new development. Seven class-
level metrics were identified base don the results of Cushman,
McGarigal, and Neel (2008) (Table 2). These seven metrics (Table 2)
were incorporated into a final index value, configuration disagreement,
calculated as:

= −GYRATE FRAC CO E ENN NP Sim Obs
Obs

x, , R 0 , , | | 100AM AM AM AM (3)

= −ENN ECON Sim Obs, | |CV AM (4)

∑=C GYRATE FRAC CORE ENN ECON NP

ENN

1
7

, , , , ,

,

dis AM AM AM AM AM

CV (5)

where, GYRATEAM, FRACAM, COREAM, ENNAM are area-weighted means
of the patch parameters gyration, fractal dimension index, core area,
and Euclidean nearest neighbor, respectively (see Section 2.7.1); NP is
the number of patches (Section 2.7.3); ENNCV and ECONCV are the
coefficients of variation for Euclidean nearest neighbor and edge con-
trast; Sim and Obs are metric values for the simulated and observed
classes, respectively (Table 3).

2.7. FRAGSTATS metrics for simulated and observed maps

2.7.1. Patch-based metrics
Within FRAGSTATS multiple metrics are calculated for both the

observed and simulated maps. The following equations listed below are
used to quantify specific FRAGSTATS metrics. Eqs. (6)–(10) describe
how to calculate patch-based metrics to be used in Eq. (11) for calcu-
lating area weighted means (AM). Eq. (12) describes how the number of
patches, or NP, is calculated. Lastly, Eqs. (13)–(15) detail how to

Fig. 3. Range of power functions (INCENTIVE parameter) for transforming the site suitability surface (P). Four scenarios were developed to test multiple config-
uration scenarios. Curves were adapted from Meentemeyer et al. (2013).
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calculate the coefficient of variation for the Euclidean nearest neighbor
metric (ENN).

The radius of gyration, or GYRATE, equals the mean distance (m)
between each cell in the patch and the patch centroid. It is a measure of
patch extent and is affected by both patch size and patch compaction.
GYRATE is calculated as follows:

∑=
=

GYRATE
h
zr

z
ijr

1 (6)

where, hijr equals the distance (m) between cell ijr, located within patch
ij, and the centroid of patch ij (the average location), based on the cell
center-to-cell distance; z equals the number of cells in patch ij. The
fractal dimension index (FRAC) accounts for shape complexity across a
range of spatial scales and patch sizes. It is computed as:

=FRAC
p

a
2 ln(0.25 )
ln( )

ij

ij (7)

where, pij equals the perimeter of patch ij; aij equals the area of patch ij.
Core area is defined as the area within a patch beyond a specified edge
distance. CORE is computed as:

=CORE
a

10,000
ij
c

(8)

where, aij equals the core area in meter of patch ij that is further than
the specified c depth-of-edge distance from the patch perimeter. The
edge contrast index (ECON) is a relative measure of the amount of
contrast along a patch perimeter. It is computed as:

=
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p d
p
( x )

x 100k
m

ijk ik

ij

1

(9)

where, pijkis the length of edge of patch ij adjacent to patch type (class)
k; dik is the dissimilarity (edge contrast weight) between patch types i
an k; pij equals the length of perimeter of patch ij. The Euclidean nearest
neighbor distance (ENN) has been used extensively to understand patch
isolation. It is defined as the shortest straight-line distance between the
focal patch and its nearest neighbor of the same class, it is computed as:

=ENN hij (10)

where, hij is the distance in meters from patch ij to nearest neighboring
patch of the same type (class), based on patch edge-to-edge distance,
computed from cell center to cell center.

2.7.2. Area-weighted mean calculations
Prior to use in the configuration metric (Eq. (3)), patch metrics (Eqs.

(4)–(8)) require an area-weighted mean calculated as:
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where, AM equals the sum, across all patches of the corresponding

patch type n, of the corresponding metric value Xij multiplied by the
proportional abundance of the patch aij divided by the sum of the patch
areas.

2.7.3. Number of patches
Number of patches is a simple metric that quantifies the extent of

subdivision of fragmentation of the patch type. It equals the number of
patches of a particular patch type and is computed as:

=NP ni (12)

where, ni is the number of patches in the landscape of patch type (class)
i.

2.7.4. Euclidean nearest neighbor of coefficient of variation
Euclidean nearest neighbor equals the distance in meters to the

nearest neighboring patch of the same type, based on shortest edge-to-
edge distance. The coefficient of variation is quantified as the standard
deviation of ENN divided by the mean of ENN, multiplied by 100 to
convert to a percentage. The following equations are used to compute
ENNCV:
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where, hij is the distance in meters from patch ij to nearest neighboring
patch of the same type (class), based on patch edge-to-edge distance,
computed from cell center to cell center; ni is the number of patches in
the landscape of patch type (class) i.

3. Results

No quantity disagreement was identified for each experiment,
consistent with the design of this study. Each computational experiment
had the exact same number of new development pixels distributed
across the study area for each year. Fig. 4 provides a zoomed example
for part of the ten-county study area showing the varying spatial con-
figuration of each experiment. Therefore, we were able to confirm that
each experiment differed only in the arrangement of pixels within the
study area.

Allocation disagreement for each experiment is summarized in
Fig. 5, demonstrating the amount of disagreement using the current
validation methods. Allocation disagreement was the lowest for Ex-
periment 4, with disagreement reaching 12.7% by 2016. Experiment 3
had allocation disagreement values reaching 13.3% after ten years.
Experiments 1 and 2 had allocation disagreement values of 14.8 and
14.4% over the same time period. Using current validation methods, we

Table 3
Components of configuration, description and FRAGSTAT metrics used to calculate configuration disagreement. Specific FRAGSTAT metrics were selected based on
the analysis of Cushman et al. (2008).

Component Name Description FRAGSTAT metric

Edge Contrast Degree of contrast between the focal class and its neighborhood, where contrast represents the magnitude of difference between
classes.

GYRATE_AM

Patch shape complexity Shape complexity of patches, where shape is defined by perimeter-area relationships. FRAC_AM
Aggregation Degree of aggregation of cells in the class, where large, compact clusters of cells are considered to be aggregated. CORE_AM
Nearest neighbor distance Proximity of patches of the focal class, based on the area-weighted average distance between neighbors. ENN_AM
Patch dispersion Spatial dispersion of patches, reflecting whether patches tend to be uniformly distributed or over-dispersed. ECON_AM
Large patch dominance Degree of concentration of focal class area in a few, large patches with large core areas. ENN_CV
Neighborhood similarity Degree of isolation of patches from nearby patches of the same or similar class. # of Patches (NP)
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would conclude that Experiment 4 had the lowest disagreement among
the four experiments (Fig. 5). However, allocation differences among
each experiment were not statistically significant. Finally, we examined
configuration disagreement for each experiment and compared that

result to each experiments allocation disagreement. No single experi-
ment had the lowest disagreement (highest accuracy) for both config-
uration and allocation (Fig. 5). Configuration disagreement results also
demonstrated greater inter-annual variability within the computational

Fig. 4. An area demonstrating observed (A-Observed) and each configuration experiment (B-E) from 2006 to 2016. Visually, Experiment 4 is the poorest match of the
patterns and shapes of new development of the four experiments, however it performs well with respect to the commonly applied accuracy measure of allocation.
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experiments, indicating that at times some experiments exhibited less
disagreement than others and vice-versa. We found that while Experi-
ment 4 had the lowest allocation disagreement, it had the greatest
configuration disagreement (Fig. 5). Intuitively this result makes sense,
as visual inspection of Experiment 4 shows a distinctly different pattern
of simulated new development than the observed dataset. Configura-
tion disagreement for Experiment 2 appears to best simulate the ob-
served configuration and patterns of new development with the lowest
configuration disagreement for the entire ten-year validation period, in
spite of its higher allocation disagreement.

4. Discussion

Environmental research, decision making, and policy formation rely
on land change models, creating an imperative that they be ecologically
meaningful, accurate, and repeatable (DeAngelis & Yurek, 2017). This
work builds upon previous research to better understand land change
model accuracy (Olmedo et al., 2015; Pickard, Van Berkel, et al., 2017;
Pontius Jr & Millones, 2011; Pontius Jr & Parmentier, 2014; van Vliet,
Bregt, & Hagen-Zanker, 2011) and introduces a methodology that may
provide greater ecological context with respect to model accuracy. The
metric we tested here, configuration disagreement, can provide clarity
on the performance of land change simulations with respect to the size,
shape, and spatial arrangement of simulated pixels. Our results indicate
that current validation methods may misrepresent, or altogether fail to
account for, the accuracy of a simulation in realistically mimicking the
spatial arrangement of land change. We revealed that current validation
methods (e.g. Pontius Jr & Millones, 2011) identified simulations with
configurations that were dissimilar to observed patterns, yet having the
highest allocation accuracy. Therefore, land change research that is
motivated by spatial patterning will likely achieve more realistic results
by focusing on configuration over allocation accuracy.

This work demonstrates inherent misrepresentations in the way that
we determine land change simulation accuracy. By eliminating quantity

disagreement and only manipulating the spatial arrangement of newly
simulated pixels, we identified substantial differences in computational
experiments that previously would be considered equally accurate.
Landscape ecology focuses on broad spatial scales and the ecological
effects of spatial patterning of ecosystems (Forman, 1995; Turner,
1989). Validation of land change simulations should, likewise, focus on
a broad spatial scales and take into account spatial patterning (i.e.,
configuration), with less concern for how correct a single pixel location
may be. The configuration of a landscape can impact many ecological
processes and functions, species richness (Weibull, Ostman, &
Granquist, 2003), fragmentation (Nagendra, Munroe, & Southworth,
2004) or edge effects (Villasenor, Driscoll, Escobar, Gibbons, &
Lindenmayor, 2014), pollination (Kennedy et al., 2013), temperature
and urban heat islands (Connors, Galletti, & Chow, 2013), water quality
(Chaplin-Kramer et al., 2016), and ecosystem services (Eigenbrod et al.,
2011; Pickard, Gray, & Meentemeyer, 2017), and should not be over-
looked when evaluating land change model accuracy. With the in-
creasing emphasis of coupling land change model outputs with ecolo-
gical processes models (e.g, Pickard, Van Berkel, et al., 2017; Xie,
Huang, He, & Zhao, 2018), configuration accuracy is critical for rea-
listically assessing the ecological ramifications resulting from land
change.

Assessment of configuration disagreement should be considered
complimentary to current validation metrics (Pontius Jr & Millones,
2011; Pontius Jr & Santacruz, 2014), rather than a replacement. Un-
derstanding the quantity, allocation, and configuration disagreement of
a land change simulation collectively provides a more comprehensive
understanding of simulation accuracy then any single metric alone
(Aquejdad, Houet, & Hubert, 2017; Pickard, Van Berkel, et al., 2017).
While the relative importance of different components of model accu-
racy will depend on the study objective, limiting quantity disagreement
should always be considered a key priority (Pontius Jr et al., 2018).
Beyond quantity, land change science is potentially reaching a cross-
roads, where the next generation of models may better serve the

Fig. 5. Annual allocation and configuration disagreement from 2007 to 2016 for each experiment. Experiment 4 has the lowest allocation disagreement but the
highest configuration disagreement. Comparatively, Experiment 2 has the second highest allocation disagreement but the lowest configuration disagreement.
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research community by focusing on configuration, even at the cost of
decreased allocation accuracy. Furthermore, with the decrease in time
and resource costs to develop multiple validation maps, we suggest
that, regardless of specific metric, future accuracy assessments be re-
quired at multiple time points. Understanding trends in model accuracy
can be far more enlightening than any one assessment at a single time
point. Our results are consistent with previous research showing de-
creasing trends in model accuracy as a simulation extends further from
the initialization timepoint (Aguilera, Valenzuela, & Botequilha, 2011;
Olmedo et al., 2015; Peterson, Bergen, & Brown, 2009). By assessing
model accuracy at multiple time points, it is possible to weight the
choice of extending a simulation further into the future compared to the
observed trend in accuracy.

We have demonstrated several reasons why it might be more helpful
to validate simulations in terms of configuration accuracy, yet the
methods to measure configuration come with some limitations. First,
configuration disagreement is an index, making it difficult to under-
stand the differences between two configuration values without eval-
uating specific accuracy scores for each FRAGSTAT metric. For ex-
ample, configuration disagreement in 2008 for simulations 1 and 4 was
approximately 16 and 26%, respectively (Fig. 5). While the index va-
lues are not easily interpretable beyond their direct comparison (e.g., a
map with 16% disagreement is a better representation of configuration
compared to a map with 26%), they do identify differences in map
accuracy that are likely useful in validating pattern and spatial ar-
rangements. When combined with a robust sensitivity analysis of each
individual FRAGSTAT metric, model accuracy can be improved by
modifying specific components (e.g. number of patches, shape or size).
Using Experiment 4 as an example, by evaluating each individual me-
tric we could conclude that to improve the model's accuracy more
patches of particular sizes would likely be needed. Configuration dis-
agreement provides an overarching value to compare model accuracy,
and when combined with individual FRAGSTAT metrics the researcher
can now be better informed of how the model is performing. FRAGS-
TATS contains dozens of metrics that could be used to interpret con-
figuration (Cushman et al., 2008), further research is needed that fo-
cuses on the selection of specific metrics for use in assessing landscape
configuration.

This research evaluated configuration disagreement at the broadest
spatial extent simulated for each Experiment. In this case configuration
disagreement values provide an estimate of how well each experiment
performed across the entire simulated landscape, however future re-
search is needed to explore the relationship between scale and accu-
racy. Within each Experiment it is likely that some geographic areas
perform differently in simulating new development compared to the
overall configuration disagreement score. Approaches such as using a
moving window or randomly selecting smaller geographical units could
provide a different level of detail with respect to model accuracy.
Ultimately, the choice of scale or boundary unit for use in quantifying
configuration disagreement is at the researcher's discretion and should
be chosen based on the specific research objectives. For example, re-
search focusing on flooding within an urban neighborhood projected to
further develop may have better results by evaluating configuration

disagreement for only that neighborhood, rather than the entire county.
The purpose of this research is to provide new methods for under-
standing model accuracy with respect to modeling patch shapes and
sizes, and for the researcher to adapt this index to their specific needs.

Like previous model validation studies, our results include some
limitations and assumptions. We classified Landsat imagery into cate-
gorical maps, distinguishing between developed and undeveloped.
Discretizing Landsat imagery introduces error into the reference map.
Accuracy assessments of the classified imagery can provide information
regarding this error (Olofsson et al., 2013; Olofsson et al., 2014).
However, final results of model accuracy tests must consider the un-
derlying error associated with the reference maps. Landsat imagery is
used often in validation studies, likely because it is free and has high
temporal coverage across the United States. Whether 30-m spatial re-
solution provides high enough detail to adequately capture realistic
patterns of new development has been widely debated (Cadenasso,
Pickett, & Schwarz, 2007). Using finer scale resolution imagery may
better capture the spatial heterogeneity of urban cities and suburbs and
represents an emerging land change modeling research frontier. Lastly,
we used a land change model that attempts to correlate environmental
variables with observed changes in landscapes, yet other socioeconomic
drivers exist in the determination of where new development is sited.
Inclusion of socioeconomic or development planning related informa-
tion may increase validation accuracy and further increase the realism
of simulations.

5. Conclusion

As modeling capabilities continue to increase exponentially, it is
critical that validation approaches simultaneously expand. Using four
computational experiments we demonstrate the importance of in-
cluding errors of configuration disagreement in addition to allocation
and quantity disagreement in the assessment of land change models.
Ultimately, the research objective will guide which component, or
components, of model disagreement are most critical for consideration.
Here, we demonstrate why it may be more helpful to validate simula-
tions in terms of configuration accuracy if a study requires accurately
modeling the spatial patterns and arrangements of land cover. When
configuration disagreement is considered, ecologically meaningful land
change science could be enhanced. Further study will be required to
better understand the best methods to quantify spatial patterning and
arrangement at the landscape scale. Configuration disagreement pro-
vides a common starting framework for comparing across land change
models with respect to the form and arrangement of simulated land
change.
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Appendix

Appendix A Results of each FRAGSTATS metric for the observed and experiments 1–4.

Number of patches (NP)

Year 2007 2008 2009 2010 2011 2013 2014 2015 2016

Obs 36,369 66,023 74,470 74,793 79,982 86,239 84,975 86,869 87,129
Exp 1 26,046 34,065 42,111 43,281 46,098 50,393 53,234 55,445 57,119
Exp 2 23,734 29,557 35,478 36,335 38,571 41,575 43,596 44,960 46,051
Exp 3 17,431 17,824 18,032 18,231 18,659 18,985 19,270 19,587 19,478
Exp 4 15,821 15,307 14,690 14,690 14,452 14,044 13,775 13,554 13,343
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GYRATE_AM
Year 2007 2008 2009 2010 2011 2013 2014 2015 2016
Obs 7499 8034 10,228 10,365 11,666 12,076 13,028 13,965 14,115
Exp 1 4790 4696 5163 5140 5116 5239 5309 5322 5320
Exp 2 4874 6717 6642 6649 6608 6694 6742 6743 6793
Exp 3 5312 5461 6018 6091 6150 7551 7599 8352 8325
Exp 4 5384 5610 6358 6393 6512 7914 7987 8041 9349

FRAC_AM
Year 2007 2008 2009 2010 2011 2013 2014 2015 2016
Obs 1.248 1.261 1.283 1.285 1.291 1.299 1.308 1.317 1.320
Exp 1 1.219 1.217 1.219 1.219 1.219 1.221 1.222 1.223 1.223
Exp 2 1.223 1.233 1.235 1.236 1.237 1.239 1.241 1.243 1.244
Exp 3 1.234 1.238 1.244 1.246 1.248 1.256 1.257 1.261 1.261
Exp 4 1.220 1.218 1.218 1.218 1.219 1.221 1.221 1.221 1.223

CORE_AM
Year 2007 2008 2009 2010 2011 2013 2014 2015 2016
Obs 29,504 34,304 44,342 45,424 51,223 54,929 62,384 66,653 67,979
Exp 1 16,875 16,814 20,374 20,375 20,350 21,750 22,380 22,649 22,890
Exp 2 17,426 29,381 29,835 30,147 30,170 31,821 32,733 33,072 33,911
Exp 3 20,472 21,859 25,813 26,356 26,739 37,798 38,542 42,423 42,521
Exp 4 21,063 23,386 29,069 29,361 30,176 41,780 42,934 43,862 51,263

ENN_AM
Year 2007 2008 2009 2010 2011 2013 2014 2015 2016
Obs 71.454 66.478 64.360 64.249 63.756 63.330 62.949 62.754 62.631
Exp 1 78.718 76.155 73.698 73.288 72.586 71.498 70.809 70.198 69.837
Exp 2 78.865 76.381 74.143 73.795 72.988 71.956 71.263 70.787 70.438
Exp 3 80.007 78.108 76.411 75.865 74.886 73.560 72.547 71.998 71.860
Exp 4 82.613 82.203 81.481 81.136 80.696 80.225 80.066 79.573 79.133

ENN_CV
Year 2007 2008 2009 2010 2011 2013 2014 2015 2016
Obs 0.289 0.297 0.296 0.296 0.293 0.291 0.291 0.290 0.290
Exp 1 0.168 0.196 0.216 0.219 0.225 0.237 0.242 0.247 0.251
Exp 2 0.167 0.193 0.211 0.214 0.220 0.229 0.234 0.237 0.241
Exp 3 0.140 0.161 0.176 0.181 0.191 0.201 0.208 0.213 0.214
Exp 4 0.085 0.085 0.086 0.089 0.093 0.093 0.094 0.096 0.093

ECON_CV
Year 2007 2008 2009 2010 2011 2013 2014 2015 2016
Obs 94.144 95.793 95.769 95.768 95.798 95.860 95.195 95.963 96.037
Exp 1 94.901 94.998 95.077 95.093 95.152 95.227 95.289 95.285 95.329
Exp 2 94.954 95.099 95.243 95.273 95.334 95.456 95.499 95.541 95.603
Exp 3 95.028 95.066 95.058 95.103 95.161 95.220 95.249 95.279 95.304
Exp 4 94.456 94.179 93.632 93.609 93.537 93.252 93.090 92.991 93.076
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