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Abstract The rapid growth of data in water resources has created new opportunities to accelerate

knowledge discovery with the use of advanced deep learning tools. Hybrid models that integrate theory

with state‐of‐the art empirical techniques have the potential to improve predictions while remaining true to

physical laws. This paper evaluates the Process‐Guided Deep Learning (PGDL) hybrid modeling

framework with a use‐case of predicting depth‐specific lake water temperatures. The PGDLmodel has three

primary components: a deep learning model with temporal awareness (long short‐term memory

recurrence), theory‐based feedback (model penalties for violating conversation of energy), and model

pretraining to initialize the network with synthetic data (water temperature predictions from a

process‐based model). In situ water temperatures were used to train the PGDL model, a deep learning (DL)

model, and a process‐based (PB) model. Model performance was evaluated in various conditions, including

when training data were sparse and when predictions were made outside of the range in the training

data set. The PGDL model performance (as measured by root‐mean‐square error (RMSE)) was superior to

DL and PB for two detailed study lakes, but only when pretraining data included greater variability than

the training period. The PGDL model also performed well when extended to 68 lakes, with a median RMSE

of 1.65 °C during the test period (DL: 1.78 °C, PB: 2.03 °C; in a small number of lakes PB or DL models

were more accurate). This case‐study demonstrates that integrating scientific knowledge into deep learning

tools shows promise for improving predictions of many important environmental variables.

1. Introduction

Scientific knowledge advances through progress in empiricism and theory. Empirical observations of

environmental dynamics give researchers hints about how systems are structured and how they may

function, while theory synthesizes information into conceptual frameworks where data are used to test

or refine scientific understanding. The rapid growth of data along with advances in computation have

led to powerful empirical tools such as deep learning (DL; see LeCun et al., 2015; or Shen, 2018 for

DL background tailored for water scientists) that can make accurate predictions based on data alone,

which has sparked a discussion regarding the reduced need for theory in science (Mazzocchi, 2015).

Indeed, DL tools have been applied to water resource challenges ranging from model parameterization

(e.g., Gentine et al., 2018) to image processing (e.g., Islam et al., 2018; Karpatne et al., 2016; Rezaee

et al., 2018) with promising results. In contrast, process‐based models encode our understanding of

the world (theory) developed from decades of observations and experiments. Process‐based models are

also successful in tackling water resource challenges (Kollet & Maxwell, 2008), predicting outside the

range of data sets on which they were developed (Me et al., 2018; Scibek & Allen, 2006; Winslow

et al., 2017), and providing the basis for exploring scenarios of environmental change (Cobourn et al.,

2018). Process‐based models remain the preferred choice for environmental modeling (Fatichi et al.,

2016; Hipsey et al., 2015).

Deep learning and process‐based modeling approaches each have drawbacks that can reduce trust in

outcomes and limit their application. DL models often require extensive training data sets in order to

learn the dynamics of complex systems (e.g., H. Chen et al., 2018). Since these models have no
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assumptions of the processes underlying the data, known laws or theory are ignored (such as conserva-

tion of energy) and this omission can lead to spurious and inaccurate predictions (e.g., Lazer et al.,

2014; Nayak et al., 2013), particularly when predictions are made outside the range of data used to train

the DL models. In contrast, while process‐based models are strongly rooted in scientific theory, their

implementation represents a subset of the real processes controlling ecosystems, leading to a number

of constraints (Hilborn & Mangel, 1997). When confronted with data from environmental systems,

the calibration of these models may be strongly influenced by real‐world processes not included in

the model (Arhonditsis & Brett, 2004) and process‐based models often diverge from theory (Clark

et al., 2016). Moreover, these models are typically designed with rigid relationships between numerical

code and data; additional data beyond what is used to configure and drive process‐based models cannot

be integrated without major effort (e.g., adding new predictors), increasing the lag between data growth

and modeling improvements.

A new modeling paradigm—“Theory‐Guided Data Science” (TGDS; Karpatne et al., 2017)—is designed

to combine the strengths of empiricism and theory. TGDS models use advanced empirical methods to

extract pattern from data while also imposing structure or rules based on scientific theory. Because

these hybrid models can be designed to remain true to accepted theory or physical laws while also

learning very complex relationships when data are abundant, their predictions tend to be physically

and biologically realistic, and more accurate than process‐based models (see Fang et al., 2017;

Humphrey et al., 2016; Hunter et al., 2018; Jia et al., 2019). Under the broad umbrella of TGDS models,

Process‐Guided Deep Learning (PGDL) pairs Earth systems process understanding with the most

promising class of predictive tools. Deep learning currently represents the state‐of‐the‐art model

architectures for prediction, as evidenced by their success in a number of challenging tasks, including

computer vision, natural language processing, and drug design (H. Chen et al., 2018; Hof, 2013;

Howard, 2013; LeCun et al., 2015). Novel examples of PGDL relevant to environmental predictions

include the use of domain knowledge to reduce training data needs for computer vision tasks

(Stewart & Ermon 2014), the use of a physical constraint as a loss term in an artificial neural network

(Karpatne et al., 2018), and the recent advancements by Jia et al. (2019) to include penalties for energy

conservation violations and initialize recurrent neural network weights by “pretraining” on the predic-

tions from existing process‐based models. Despite the compelling results from early PGDL efforts, appli-

cations to Earth‐science modeling will likely be limited until PGDL can be shown to provide reliable

generalizability to multiple systems and extrapolation beyond the original training data set.

Societally relevant water resources information and new research pathways will emerge from improved

predictive accuracy for foundational environmental variables. Water temperature is one such variable,

considered an ecosystem “master factor” because it controls metabolism, influences water chemistry, and

is directly linked to growth, survival, and reproduction of fish (Brett, 1971; Magnuson et al., 1979).

Further, the thermal regimes of aquatic ecosystems are changing (O'Reilly et al., 2015), and understanding

the physical, biological, and economic consequences of these changes is a primary challenge for water

resource scientists and managers. Unfortunately, water temperature data are lacking at the relevant spatial

and temporal scales needed for decision‐making, including in waterbodies with sparse observations or

during previously unobserved time periods. Existing predictions of lake temperature at scale are limited to

surface waters (e.g., Bachmann et al., 2019; Toffolon et al., 2014) or, when extended to deeper waters, have

limited accuracy (J. S. Read et al., 2014; Winslow et al., 2017). Process‐Guided Deep Learning models have

shown great promise to improve prediction accuracy of water column lake temperatures; however,

implementations are currently limited to one or two well‐observed lakes where models were trained and

evaluated under similar conditions (Jia et al., 2019; Karpatne et al., 2018). To fill this information gap, addi-

tional efforts are needed to explore the use of PGDL models at increased spatial scale and in conditions

where representative training data do not exist.

Here we evaluate Process‐Guided Deep Learning for lake temperature prediction. Our objectives are to (1)

evaluate the effect of incomplete data (sparse data and out‐of‐bound data) on predictions from process‐

based, deep‐learning‐only, and PGDL models; (2) Improve the understanding of how synthetic (model‐gen-

erated) data can augment limited environmental observations for PGDL training; and (3) test whether we

can scale predictive modeling beyond highly studied systems by applying the PGDL modeling approach to

dozens of lakes in the Midwestern United States.
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2. Methods

2.1. Overview

We describe a method for integrating process knowledge (i.e., theory), advanced empirical techniques, and

observational data sets to predict environmental variables, specifically lake water temperature at multiple

depths. We evaluated three methods for predicting water temperature, one method was based on theory,

another on empiricism, and the third method was a hybrid of the first two. First, we used an existing

process‐basedmodel to generate predictions that are consistent with the known effects of meteorological dri-

vers on lake temperature. Next, we developed deep learning tools to learn empirical relationships between

meteorological drivers and patterns in lake water temperatures to make temperature predictions. Lastly,

by combining these two approaches, we created a Process‐Guided Deep Learning (PGDL) model by integrat-

ing process knowledge of energy conservation into the DL modeling framework (this formulation was first

implemented and described by Jia et al., 2019). The PGDL model learned patterns in lake temperature data

from predictions generated by a default configuration of the process‐based model, and then refined those

predictions based on training from lake temperature observations and a loss term that penalized predictions

that did not conserve energy. We built on the PGDL framework of Jia et al. (2019), with additional explora-

tion of the limits of PGDL and background written specifically for a water resources audience. Here data

sparsity experiments originally presented by Jia et al. (2019) were refined and used to reevaluate our under-

standing of the impact of sparsity on modeling approaches, and new experiments were designed to examine

model performance during out‐of‐bound conditions, contrast the effects of using different amounts of pre-

training data, and apply PGDL at scale for a diverse collection of temperate lakes in the Midwest United

States. Descriptions of the data, model components, PGDL integration, and model evaluations are found

below, and more detailed information and links to code and data sets can be found in Texts S1–S5 in the

supporting information.

The objectives of this study were to build and evaluate models for predicting lake temperature dynamics at

multiple depths for temperate lakes. As such, a brief background on lake thermal regimes is relevant to

understanding this challenge (see Wetzel & Likens, 2000 for a more detailed overview). Lake temperatures

in temperate regions respond to seasonal changes in air temperature and solar radiation, and often form a

surface layer of ice cover during the winter. The minimum temperatures for these lakes are typically

bounded by the freezing point of water (at or near 0 °C), and maximum temperatures are reached in middle

to late summer, with values in our study region between 25 and 35 °C. Most sources of incoming energy are

absorbed by surface waters, warming the water and decreasing water density. If mixing energy (e.g., from

wind) is insufficient to redistribute surface heating, a vertical density gradient forms in the lake and tem-

perature dynamics of deeper waters begin to diverge from surface waters. This phenomenon is called ther-

mal stratification. In the temperate region, thermal stratification can generate differences between surface

and bottom waters of up to 30 °C. Accurate prediction of lake water temperature requires that models incor-

porate temperature changes from prevailing weather conditions while also reproducing features resulting

from the presence, absence, strength, and duration of thermal stratification, including differing dynamics

of surface and bottom waters. Additionally, while the thermal dynamics above were described in a one‐

dimensional (vertical) context, there are numerous factors that can generate horizontal heterogeneity in lake

temperatures (e.g., differences in spatial patterns of heating, cooling, and/or mixing energy sources). These

three‐dimensional patterns in drivers and water temperatures were ignored for this study as all three mod-

eling approaches focus on predicting one‐dimensional lake temperatures through time.

2.2. Data Sources

Lake temperature in situ measurements were used to train and test all models. Sources of lake temperature

observations included the Water Quality Portal (E. K. Read et al., 2017), North Temperate Lakes Long‐Term

Ecological Research program, and databases from the Minnesota and Wisconsin Department of Natural

Resources. The search was limited to observations from lakes in the U.S. states of Minnesota and

Wisconsin in the years 1980–2018. Most data were discrete water temperature profile measurements. A

smaller number of lakes were instrumented with buoys that measured temperature continuously for certain

periods of the year. All data were reduced to a single vertical temperature profile per lake‐day. In the case of

continuous measurements or multiple discrete measurements per lake‐day, observations closest to noon

local time were used to represent the daily profile. In the case of multiple sampling locations per lake‐day,
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the mean temperature across locations was used. Lakes were chosen for this analysis (see Experiment 3

below) based on the availability of temperature observations; lakes were included if they had at least 200

sampling dates with at least five observation depths per date, and were stratified (temperature differential

of more than 1 °C between the shallowest and deepest depths measured) for >70% of those profiles. We

chose stratified lakes to model as they represent more challenging tests for all of the models used (versus pre-

dicting temperature in a single well‐mixed water layer).

Meteorological data were gathered from gridded data sets and formatted as predictors for water temperature

modeling. Gridded data are necessary when scaling modeling domains beyond well‐monitored individual

systems. Following Winslow et al. (2017), we downloaded North American Land Data Assimilation

System (NLDAS‐2; Mitchell, 2004; Xia et al., 2012) primary forcing data for each grid cell that contained

the centroid of a lake in our study, and transformed the variables into process‐based model inputs (see

Hipsey et al., 2019). The sum of incoming and outgoing energy fluxes is the primary control on lake tempera-

ture change (Lenters et al., 2005; Wetzel & Likens, 2000), and these fluxes were computed from daily time

series inputs that included air temperature, shortwave radiation, longwave radiation, windspeed, relative

humidity, and precipitation. All inputs were normalized for use as features in the DL network, and a second

nonnormalized copy of the energy fluxes was used to calculate a process constraint within the same model

(only used for the PGDL formulation; see details below) and also as drivers for lake‐specific process‐

based models.

Weather stations that measured local meteorological conditions provided an enhanced source of predictor

data for two of the study lakes. There exists a trade‐off between coverage and accuracy for meteorological

data products, as national/global data sets have known biases and inaccuracies (Xia et al., 2012) not present

in carefully maintained and appropriately instrumented local observatories. For Lake Mendota (43.1113°N,

−89.4255°E) and Sparkling Lake (46.0091°N, −89.6995°E), we assembled daily time series of the same vari-

ables described above which were measured from fixed stations approximately 2 and 10 km away from the

two lakes, respectively. Gridded NLDAS data sources for solar radiation and relative humidity were used in

place of weather station data for Sparkling Lake because instrumentation issues were present during signif-

icant parts of the modeling period for these two variables.

Contextual data collated for each lake included water clarity, lake size, depth, shape, and surrounding land-

scape type (Table S1 in the supporting information). Earlier multilake modeling studies in this region

assembled data for process‐based modeling (J. S. Read et al., 2014; Winslow et al., 2017), and we drew from

their data sets for these variables. See Winslow et al. (2017) for a detailed description of the sources and pro-

cessing of these data, but in brief: bathymetric maps from a variety of sources were digitized to generate

depth/area relationships for each lake, water clarity estimates from in situ observations (E. K. Read et al.,

2017; Soranno et al., 2017) and remote sensing images (for methods, see Torbick et al., 2013) were averaged

into a single water clarity estimate for each lake, the National Hydrography Data set medium resolution

“Permanent identifiers” (version 2; Simley & Carswell, 2009) were used to connect data to each lake's surface

geometry, and lastly, the dominant land‐cover type within a 100‐m shoreline buffer from the 2011 National

Land‐Cover Database (Homer et al., 2015) was used to estimate the degree of wind‐sheltering (Markfort

et al., 2010) for each lake. These data were used to set parameters in the process‐based lake temperature

model but were omitted from the DL modeling process (with the exception of the depth/area relationship,

which was used in the PGDL formulation).

2.3. Model Components

To extract pattern from lake water temperature observations, we used a Long Short‐Term Memory (LSTM)

network as our primary deep learning model component (Gers et al., 1999; Hochreiter & Schmidhuber,

1997). An LSTM is a type of Recurrent Neural Network (RNN) that includes specialized memory cells that

can capture multitime‐step relationships, such as recognizing that water temperature change is slow and

muted in the fall in contrast to the highly variable spring warming period. Temperature dynamics in lakes

fluctuate with differences in heating and cooling. These patterns have basic temporal structure (e.g., seaso-

nal differences between summer and winter) coupled with short‐term responses to prevailing weather con-

ditions. With appropriate training and predictor data, LSTMs have the potential to simulate these time series

dynamics. We built DLmodels as LSTMs (these empirical‐only models are referred to simply as “DL” below)
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with 20 hidden units and the normalized meteorological inputs specified in section 2.2 for simulating daily

lake water temperatures at multiple depths.

To make predictions of water temperature based on theory, we used the General Lake Model (GLM version

2; Hipsey et al., 2019) for process‐based modeling. GLM is an open‐source, one‐dimensional lake hydrody-

namic model that balances fluxes of mass and energy on a daily (or subdaily) time step, and tracks state vari-

ables (such as temperature) with Lagrangian layers resolved in the vertical dimension (see https://github.

com/AquaticEcoDynamics/GLM). GLM contains complex vertical mixing routines that redistribute heat

in response to prevailing conditions and external forcing. Processed‐based modeling of lake temperatures

has a long history of software development and application, and many other models exist that are similar

to GLM both in performance and formulation of physical processes (SIMSTRAT: Goudsmit et al., 2002;

DYRESM: Imberger, 1981; MINLAKE: Riley & Stefan, 1988); many similar models were reviewed and com-

pared by Perroud et al. (2009). GLM was chosen for this study because of its proven ability to simulate ther-

mal dynamics in lakes and reservoirs, and because the open‐source codebase and supported integration with

other modeling modules (via the Framework for Aquatic Biogeochemical Models; Bruggeman & Bolding,

2014) gives modelers additional control over simulation complexity.

To establish a theoretical underpinning for hybrid water temperature modeling, we used the law of conser-

vation of energy. Conservation of energy is the primary law implemented in GLM and other similar process‐

based models, and it is a critical component for evaluating the physical reasonableness of water temperature

predictions. A simplified numerical energy budget (see equation (1)) that could be used in a hybrid formula-

tion was designed by evaluating the magnitude of terms (Lenters et al., 2005). We reduced complexity by

including only primary contributions to energy change at a daily time step, ignoring what are typically rela-

tively small energy fluxes in lakes, such as sediment heating and advection (precipitation, in/outflows, and

other water budget components). Collectively, the fluxes that were not included in this simplified model

typically account for less than 1% of the daily energy budget terms (Lenters et al., 2005). Additionally, the

processes of ice formation, ice melt, time‐varying albedo, and sublimation were considered to be beyond

the scope of this simplified energy budget model (see Hamilton et al., 2018 for details on lake ice simulations)

and were ignored. The resulting formulation was therefore not valid when the lakes were likely ice covered

and the constraint was not enforced for predictions during those conditions. The details of this formulation

are as follows:

dU

dt
¼ ϕSW in

−ϕE−ϕH þ ϕLW in
−ϕLW out

(1)

For process‐based thermodynamic models (such as GLM), the conservation of energy requires the volume‐

averaged change in thermal energy (dU) to match the net energy flux over the same time period (dt).ϕSW in
is

the incoming shortwave radiation minus reflected (7%), ϕE and ϕH are the latent and sensible heat fluxes

(respectively), ϕLW in
is the incoming longwave radiation minus reflected (3%), and ϕLWout

is the longwave

radiation emitted from the lake. Both values for reflected percentages are used here as constants, and these

values (7% and 3%) are commonly used in energy budget studies (e.g., Lenters et al., 2005). All terms are in

W/m2. ϕE, ϕH, and ϕLW out
fluxes require an estimate of the temperature at the surface of the lake (an expan-

sion of these terms and their relationship to other meteorological drivers can be found in Jia et al. (2019) or

Hipsey et al. (2019)). The thermal energy at any point in time can be estimated based on water temperatures

and depth‐specific area of the lake:

U ¼
cw

As

∑
nlayers
i¼1 ρiT iV i (2)

where cw is the specific heat capacity of water (4,186 J kg−1 °C−1), AS is the surface area of the lake (in m2), ρi
is the water density (kg/m3), Ti is the water temperature (C°), and Vi is the volume (m3), all for each layer of

the model i.

2.4. Integrating Process Into Deep Learning Models

Our method for guiding deep learning with existing theory involved identifying parsimonious con-

straints from theory and translating these constraints into a deep learning framework. As mentioned
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above, conservation of energy is an obvious choice for a physical constraint in the use‐case of tempera-

ture simulations. Our simplified energy budget formulation was created for this purpose, as each flux

term can be calculated directly from DL inputs or from a combination of inputs and DL‐predicted sur-

face water temperatures (Jia et al., 2019). The expected balance of these terms—the net thermal energy

change over the model time step—can be calculated by combining DL‐predicted temperatures with lake

geometry (see equation (2)). When predictions and inputs fail to close the energy budget as defined by

equation (1), the model framework can penalize model performance at each time step that violates

energy conservation.

The penalty for energy conservation violations can be implemented as an element of the DL training objec-

tive function. Training a DLmodel involves iteratively adjustingmodel parameters to minimize the objective

function, which is most commonly accomplished using a process called backpropagation (Werbos, 1988).

The objective function quantifies the loss at each training iteration and is simply a weighted sum of the loss

from the accuracy, any standard regularization loss terms that penalize for increased model complexity, and

any user‐designed penalties. The weights for each term are hyperparameters defined by the network's engi-

neer in order to balance the importance of each penalty for the modeling application. For this study, the loss

terms included the sum of squared errors between predicted and observed temperature and the mean abso-

lute value of energy conservation violations beyond an assumed error threshold, with zero loss assessed for

lesser violations. A loss threshold was used because penalizing all minor energy conservation violations

implies all energy conservation terms are present (see section 2.3 description of minor terms that were

ignored) and that the measurement of incoming fluxes is without observation errors, neither of which are

true in this case. For directly measured energy fluxes, the error threshold was set to 24 W/m2 (experiments

1 and 2; this threshold choice was informed by the assumed error distribution of measured energy flux com-

ponents from an earlier study by Lenters et al. (2005)) and set to 36 W/m2 for the less accurate gridded flux

data (Experiment 3 below; this threshold is based on a comparison between gridded data and station data for

the location of Lake Mendota). The Adam stochastic gradient‐based optimization algorithm (Kingma & Ba,

2014) was used tominimize the loss function with a learning rate of 0.005, and all DL and PGDL training was

continued for 400 epochs. Additional details regarding the formulation of the network, the objective func-

tion, hyperparameter choices, example code, and links to reproducible PGDL examples can be found in

the sections S4 and S5 in the supporting information.

Water temperature predictions from the uncalibrated process‐based model were used to pretrain PGDL

models to initialize the network structure in advance of training with true observations. Layer‐wise pre-

training (e.g., Erhan et al., 2010) and network‐level pretraining (Jia et al., 2019; Lee et al., 2018) have been

shown to significantly increase the prediction accuracy and generalizability of DL models. Following Jia

et al. (2019), we performed network‐level supervised pretraining (hereafter referred to as pretraining) on

PGDL models by using depth‐resolved GLM temperature predictions as labels. These process‐based simu-

lations were configured with observable lake‐specific parameters (e.g., water clarity and lake depth) and

driven with meteorological data from 1980 to 2018, and neither the model nor any lake‐specific para-

meters were altered in response to performance relative to temperature observations (see J. S. Read

et al., 2014; Winslow et al., 2017 for details; we refer to these models in the following text as “uncali-

brated”). These pretraining models differ from the calibrated GLM models described in section 2.5, which

instead used temperature observations to inform selection of model parameters that improved prediction

in the training period. Pretraining data included all daily temperature outputs at all depths from GLM

with the exception of test periods. After training PGDL on pretraining data, the final network parameters

became the initial network parameters for the final training procedure which used true temperature

observations. Pretraining was used for all PGDLs in this study and provides a potential predictive advan-

tage to the PGDL framework that was not available to the DL models used for comparison. As such, we

clarify our intents were to use DL models (and PB models) as a baseline for comparison as opposed to

attempting to evaluate models that share the same complexity and initialization procedures (PGDL, PB,

and DL differ in both). All three model formulations used the same daily time‐varying inputs: air tem-

perature, shortwave radiation, longwave radiation, wind speed, relative humidity, and precipitation (as

rain or snow). The resulting Process‐Guided Deep Learning models included meteorological data as

inputs, an initial network structure established by pretraining, and a loss term that penalized conserva-

tion of energy violations (Figure 1 and Texts S4 and S5).
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2.5. Model Experiments

We designed experiments to evaluate the performance of different modeling approaches with data that

mimic three real‐world water temperature prediction challenges. Experiment 1 required models to make

temperature predictions for a single lake with a range of monitoring data density, spanning extremely sparse

to nearly comprehensive measurements. Experiment 2 tested model performance for two lakes when key

time periods were removed from temperature monitoring data, artificially creating scenarios where lake

monitoring would only cover certain seasons or years. Experiment 3 tested the ability of models to recon-

struct the unobserved past in many lakes using broadly available weather data. Lastly, a fourth experiment

evaluated the impact of using different pretraining data sets on the PGDL predictions in Experiments 1

and 2. These experiments did not evaluate the impact of data quality or errors inmodel inputs or observations

on prediction quality, but such an effort could add insights beyond what is presented here. We estimated the

model's overall predictive performance by calculating the root‐mean‐square error (RMSE) between predic-

tions and observations. Although useful, other error metrics such as estimates of bias or variance were not

included in the study.

The model training (or the analogous “calibration” step in process‐based modeling) and testing procedures

involved dividing observations into separate data sets based on sampling date. Calibrated process‐based

GLMmodels are hereafter referred to as “PB” to differentiate from the uncalibratedGLMmodels (these unca-

librated models are referred to below as “PB0,” signifying “0” dates were used for training) that are used to

generate labeled data for PGDL pretraining. Test data were used only to independently evaluate the accuracy

of temperature predictions after training was complete, and the test data set had no influence on the model

training or calibration phase. Experiments 1 and 2 (described below) required five iterations of test and train

data. The logic for how observation dates were assigned to train or test data sets varied based on the experi-

ments and details regarding calibration and training can be found in Texts S2–S4 and Figures S4–S14 in the

supporting information, in addition to descriptions and links to archives for reproducible code and data sets.

Experiment 1: Effects of Data Sparsity or Abundance on Model Performance

Recognizing that rich data sets are commonly assumed to be necessary for machine‐learning‐based

approaches, we generated tests to evaluate the impact of data sparsity for the three model types. This

Figure 1. Comparison between process‐based model (PB) and process‐guided deep learning model (PGDL). Conceptual

links between the two are in pink, showing the integration of the energy balance concept (dashed pink lines) and pro-

cess‐model‐generated pretraining data (solid pink line) from PB into PGDL. Both models accept data in the form of

drivers and observations (black lines; P = predictors, Pz = normalized predictors, y = temperature). Although the models

differ greatly in their structures, they have in common that they accept the same raw inputs, use parameters and com-

putations to generate predictions (green and purple solid lines), and revise the parameters based on feedback (called

“calibration” for PB or “pretraining” and “training” for PGDL; green and purple dotted lines). PB calibration (gray box

and green dotted line) is used for calibrated PB models but is omitted for the experiments in this manuscript when

generating uncalibrated predictions (ŷPB) for use in PGDL pretraining.
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experiment used data from Lake Mendota, and divided temperature observations into data sets with 540 test

dates and 980, 500, 100, 50, 10, or 2 training dates. Each “date” included observations at multiple depths,

with most dates consisting of 23 observations between 0 and 20 m downward from the lake surface. For each

training data set (with the exception of the two‐profile data sets, which were only used to train the PGDL and

PB), DL and PB models were trained or calibrated with the training data set, while PGDL models were first

pretrained with output from an uncalibrated Lake Mendota PB0model and then trained on the temperature

profiles. All models were run continuously through the entire multiyear simulation periods at a daily time

step. This experiment is similar to Jia et al. (2019), including the use of Lake Mendota as the study lake.

We consider our design to be a refined and improved version of the original experiment that supports more

robust conclusions regarding differences between empirical and theory‐based approaches. Modifications to

the original design are as follows: higher quality locally measured meteorological data were used during test

and train periods (compared to less accurate gridded data), more comprehensive PB calibrations were per-

formed (see Text S3), shorter test and train time periods were used that included a greater number of obser-

vations from an automated measurement buoy (2009–2017 with 35,242 temperature observations versus

1980–2014 with 13,158 observations), the sparsity range was extended and spanned 46 to 22,776 observations

(2 and 980 days, respectively, compared to a range of 161 to 8,037 observations), the method used for creating

sparser training involved randomly removing full sampling dates (i.e., all observations on a given date)

instead of randomly removing individual observations, and the test periods were set based on random con-

tinuous blocks of time instead of a single fixed range (to reduce the impact of differences in the predictability

of water temperature across years).

Experiment 2: Assessing Transferability When Predicting Outside the Bounds of Training Data

In order to understand the transferability of process‐guided deep learning models to time periods on which

they were not trained, predictions for PB, PGDL and DL models were tested for conditions that were purpo-

sefully dissimilar to training data. Experiment 2 used the same temperature profiles from Lake Mendota as

Experiment 1, as well as data from Sparkling Lake, which is also outfitted with an automated buoy.

Sparkling Lake is smaller, clearer, and slightly shallower than Lake Mendota, and is located in northern

Wisconsin. Details regarding Mendota and Sparkling can be found in Table S1. The effects of data sparsity

were not considered for this experiment, and training data for each prediction challenge included 500 dates.

We defined in‐bound test and training data for comparison purposes using the same collections of 500 pro-

files from Experiment 1, and two out‐of‐bound prediction challenges that included (1) prediction of tempera-

tures in warmer years when trained on data for cooler years (referred to as years experiment in this section)

and (2) the prediction of summer temperatures when summer observations were withheld from the training

data set (referred to as seasons experiment in this section). According to annual average air temperature, the

warmest three years during the experiment period (2009–2017) were 2012, 2016, and 2017. Temperature pro-

files during these years were assigned to years experiment test data sets. For the seasons experiment, any

profiles taken between Julian dates 173 and 264 (inclusive, representing the summer period from ~ 22

June to ~r21 September) were assigned to the seasons experiment test data set. Training data sets were com-

prised of 500 profiles from the observations remaining after removing test data. Following the same process

as outlined in experiment 1, PGDL models were pretrained with PB0 (pretraining data began in 1980 and

were therefore more extensive than the training period), and PB, DL, and PGDL models were trained with

the training data sets as described above.

Experiment 3: Scalability: Applying PGDL to Broad‐Scale Modeling

One potential advantage of a PGDL approach is a reduced need for site‐specific calibration of a process

model, which requires a substantial amount of additional handling time and expert judgement to keep PB

parameters within appropriate ranges and to avoid overfitting. Though such calibration can improve accu-

racy, it may be possible to apply PGDL at broad scales and achieve reasonably accurate predictions in many

lakes even without PBmodel calibration. Sixty‐eight lakes met the data requirements for model construction

and testing that we established for this experiment, including having a least 200 unique observation dates

where temperature profiles were taken at five or more depths (Table S2). Temperature data were split into

training and test data sets by using the first two thirds of the observations for training (ordered by date),

and the remainder for testing. All model formulations were also trained with three iterations of a random

selection of 10 unique observation dates from the full training data set to evaluate the impact of sparse
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data conditions across different lakes. As with the PGDL formulations

mentioned above, uncalibrated process‐based model temperature predic-

tions from PB0 were used to generate an informative pretraining data set

for initializing the DL network, followed by using the site‐specific obser-

vations from the training data sets to train each of the 68 PGDL models.

The pretraining models do not represent the best‐available GLM predic-

tions for any one lake, but they do represent what is often done as a tract-

able scaling approach to predict temperatures in hundreds or thousands of

lakes (e.g., Winslow et al., 2017). Pretraining data were generated from

GLM simulations that began in 1980 but data were truncated to remove

the entire test period (and any dates that preceded the test period). We

believe that pretraining data can include the test period in this context

without compromising the validity of predictions since the pretraining

data consists of untrained model output that is not altered in any way

by observations. However, these data were withheld here to make an

extremely clear distinction between training and test periods in this

manuscript. To allow comparison between PB, DL and PGDL models,

PB and DL models were trained or calibrated on training data with the

same approaches as above and as described in Texts S3 and S4. All models

were then evaluated based on their ability to predict water temperature

during the test period.

Experiment 4: Effects of Reduced Pretraining Data on

PGDL Performance

In order to quantify the impact of exposing PGDL to a less comprehensive

range of conditions during pretraining, the Lake Mendota sparsity and

out‐of‐bound prediction experiments were repeated a second time using

reduced pretraining data sets. We refer to these two contrasting configura-

tions of pretraining data as “limited pretraining” and “extended pretrain-

ing” (for the reduced and original data sets, respectively). Pretraining data

are products from an uncalibrated GLM, which produces continuous tem-

perature estimates at the time step of the model (daily) that were sampled

at 0.5‐m depth intervals from the water surface to generate a uniform

matrix of labeled data. The original pretraining data sets for

Experiments 1 and 2 began in April of 1980 and extended into the training

periods, with test periods masked from the pretraining process (see test

period masks in Figures S3–S8 and S10–S13). The additional limited

pretraining data sets were created by removing all data preceding the start

of the training period from these matrices (1980 to April of 2009 data were removed), greatly reducing the

data volume and variety as compared to Experiments 1 and 2. Each of the sparse and out‐of‐bound predic-

tions for Lake Mendota were then completed in the same way as the originals, with the exception being that

limited pretraining data were used instead to pretrain PGDLs. To further illustrate the contrast in data sets,

the limited pretraining data set in the out‐of‐bound season experiment (Experiment 2) was less than 20% of

the extended pretraining data set size and contained no data from any summer period (compared to the 29

summers appearing in the extended pretraining data sets from 1980 to 2008). After PGDL pretraining, the

models were refined with the same training observations from Experiments 1 and 2 and prediction accuracy

was calculated based on the differences between predictions and observations in the test period.

3. Results

3.1. Effects of Data Sparsity or Abundance on Model Performance (Experiment 1)

Process‐Guided Deep Learning predictions of Lake Mendota water temperatures were more accurate than

predictions from empirical‐only and process‐based models for all training data conditions from

Experiment 1 (Figure 2). The accuracy of all models decreased as fewer observations were used for

Figure 2. Water temperatures were estimated for LakeMendota using three

different model formulations. The Process‐Guided Deep Learning model

is a Long Short‐Term Memory (LSTM) Recurrent Neural Network with

energy conservation as a process constraint and temperature pretraining

from a process‐based model. The Deep Learning model is the same LSTM

model used in Process‐Guided Deep Learning (including the same time‐

varying predictors), but does not have process constraints or pretraining.

The Process‐Based model is a calibrated one‐dimensional Lagrangian verti-

cal layer hydrodynamic “General Lake Model” (GLM; Hipsey et al., 2019).

Models were trained using subsets of temperature profiles from Lake

Mendota, and predictive performance (as measured by root‐mean‐square

error (RMSE)) was calculated for temperature observations from separate

test periods. Vertical lines represent the range of RMSE from five iterations

of the train/test experiment and markers are the mean.
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training, although the impact on model accuracy was different for each of the three model types. Empirical‐

only (basic RNN as Deep Learning) performance suffered the most and the hybrid approach (Process‐Guided

Deep Learning) performance was impacted the least as the amount of training data was artificially reduced

(Figure 2). Although the PGDL and DLmodels had similar performance when trained with a high volume of

temperature observations, the performance of the two models quickly diverged when data were

increasingly sparse.

When sufficient observed temperature data existed, the empirical‐only and hybrid models (DL and PGDL)

outperformed the calibrated process‐based (PB) model (based on RMSE; Figure 2; see 980 profiles).

Training (or calibrating) each model on 980 days of observations of Lake Mendota water temperatures

and evaluating performance on 540 independent days (referred to above as “test”) resulted in mean

RMSEs (means calculated as average of RMSEs from the five data set iterations) of 0.92, 1.07, and 1.56 °C

for the PGDL, DL, and PBmodels, respectively. The differences between training and test errors was greatest

for the DL model (average train RMSE: 0.75 °C, average test RMSE: 1.07 °C), followed by PGDL (0.74 versus

0.92 °C), with the smallest differences occurring for PB simulations (1.5 versus 1.56 °C).

The relative performance of DL versus PB depended on the amount of training data. The accuracy of Lake

Mendota temperature predictions from the DL was better than PB when trained on 500 profiles (1.28 and

1.49 °C, respectively) or more, but worse than PB when training was reduced to 100 profiles (1.73 and

1.64 °C, respectively) or fewer. The PGDL prediction accuracy was more robust compared to PB when only

two profiles were provided for training (1.77 and 3.03 °C, respectively). As an indication of how common

these different monitoring regimes are in practice, the multilake data set contained 2 lakes with at least

980 profiles (Mendota and Sparkling Lakes), 9 lakes with at least 500 profiles, 267 with 100, 558 with 50,

1,736 with 10, and 3,602 lakes with at least two temperature profiles (see Figure S2).

3.2. Assessing Transferability When Predicting Outside the Bounds of Training Data

(Experiment 2)

The accuracy of predictions from the PGDL model was superior in most cases to the performance of the

empirical‐only (DL) and process‐based (PB) models when applied to conditions outside the bounds of train-

ing data (Figures 3b and 3c). The exception to this result was that PB models outperformed PGDL models in

Sparkling lake for the years experiment, when the three warmest years were withheld from model

Figure 3. Water temperatures predicted using three model formulations for Lake Mendota (“M”) and Sparkling Lake

(“S”) with contrasting periods for test and training data sets. The vertical lines and markers represent the range and

the mean of five iterations, respectively. In (a), the test and training data sets were chosen randomly to represent similar

periods following Figure 2. In (b), test data were from the warmest years (2012, 2016, and 2017), and training data

were randomly sampled from the remaining years (2009–2011 and 2013–2015). In (c), test data were from the summer

period (day of year 173 to 264) for all years (2009–2017) and training data were randomly sampled from the

remaining dates.
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construction (1.37 and 1.52 °C RMSE for PB and PDGL, respectively). In‐

bound predictions (Figure 3a) were generally more accurate for all three

modeling approaches compared to out‐of‐bound predictions (Figures 3b

and 3c), with both exceptions appearing in the years predictions. Lake

Mendota's PGDL years predictions were approximately the same accuracy

as the in‐bound prediction mean (1.71 and 1.49 °C), while Sparkling

Lake's PB years predictions were an improvement over in‐bounds (1.37

and 1.6 °C). Process‐based models were more accurate in their out‐of‐

bound predictions than DL models except for Lake Mendota in the years

experiment (1.71 °C for PB and 1.48 °C for DL; see also Figures S14–S17).

Sparkling Lake predictions were less accurate than Lake Mendota predic-

tions for six of the nine combinations of model type and prediction

challenge evaluate, with the three exceptions being PB years, PB seasons,

and DL seasons. Near‐surface summertime water temperature predictions

from DL seasons (Figure 3c) for both lakes were biased cold, while PGDL

and PB predictions at the same depths were more accurate (Figures S16

and S17).

3.3. Scalability: Applying PGDL to Broad‐Scale Modeling

(Experiment 3)

Predictions from PGDL models applied to 68 lakes were more accurate or

as accurate (within ±0.05 °C RMSE) as all but five of the calibrated PB

models and five of the DL models (Figure 4 (see PGDL, PB, and DL) and

Figure S18 for detailed lake‐specific results; all RMSE values reported here

correspond to model performance in the test period). The median RMSE

(across all lakes) was 1.65 °C for PGDL, 1.78 °C for DL, and 2.03 °C for

PB. The range of prediction accuracy for PGDL models was 0.91 to 2.66

°C, 0.97 to 2.95 °C for DL, and 1.46 to 3.63 °C for PB. The PB0 predictions

(which were used to pretrain PGDL) had a median RMSE of 2.78 °C, with

a range of 1.55 to 4.95 °C (see Process‐Baseduncal in Figure 4). The

improvements in accuracy of PGDL compared to the PB0 predictions used

for pretraining were variable across lakes, with 11 lakes improving RMSE

by over 2° compared to pretrainer RMSEs, 55 lakes improving by smaller

amounts, and 2 lakes with PGDL prediction accuracy that was approxi-

mately equal to the pretrainer accuracy in the test period (within ±0.05 °C RMSE). When comparing perfor-

mance of predictions on individual lakes, the difference in RMSE between PB and PGDL ranged from −0.23

to 2.01 °C and −0.28 to 1.15 °C for DL to PGDL (positive values indicate better performance by PGDL; see

also Figure S18). When observations were artificially removed to leave only 10 dates for training, predictions

from PGDL models were more accurate or as accurate as 50 of the calibrated PB models (73.5% of total) and

more accurate than all DL models (Figure S18; see PGDL10, PB10, and DL10, respectively).

3.4. Effects of Reduced Pretraining Data on PGDL Performance (Experiment 4)

When observations were sparse or environmental conditions differed between the training and test periods,

models pretrained with more comprehensive synthetic temperature data were substantially more accurate

than models with smaller pretraining data sets (Figure 5; sim2, sim10, sim50, sim100, year500, and seas500).

However, the impact of reduced pretraining data on PGDL accuracy was minimal when training data were

plentiful and training periods were similar to the test periods (Figure 5; sim980 and sim500). The two largest

differences in prediction accuracy between the extended and limited pretraining data sets were when only

two profiles were used for training (1.77 versus 2.67 °C RMSE; Figure 5; sim2) and whenmodels were trained

using data from colder seasons and used to predict summer temperatures (1.19 versus 1.98 °C RMSE;

Figure 5; seas500). Excluding summer data from pretraining decreased PGDL performance and resulted in

worse temperature estimates than the calibrated PB model (as measured by RMSE; 1.98 versus 1.91 °C,

respectively; Figure 3c; Process‐Based “M” versus gray filled marker in Figure 5; seas500). When models were

trained on colder years and used to predict warmer years, the additional complete years included in the

Figure 4. Kernel density plots for accuracy of historical water temperature

predictions as measured by RMSE in 68 lakes with difference model for-

mulations, including Process‐Based (PB), Deep Learning (DL), and Process‐

Guided Deep Learning (PGDL). Process‐Baseduncal models were not cali-

brated with any observations (these models are source of uncalibrated pro-

cess‐based model output used in pretraining PGDL models) and all other

models were trained from the most recent two thirds of each lake's obser-

vation data set (varied from a minimum of 133 to a maximum of 1,788

unique training dates). The prediction accuracy of individual lakes is shown

as short black dashes and the median of all lakes is shown as a longer

and thicker horizontal black line. Accuracy was calculated as root‐mean‐

square error between the model predictions and the observations in the test

period (test period was the earliest one‐third of each lake's observation

data set).
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extended pretraining data set were likely responsible for the 0.17 °C RMSE improvement over predictions

from the limited case (0.99 versus 1.16 °C, respectively; Figure 5; year500), and for reducing the difference

in accuracy between similar and years prediction challenges for Lake Mendota from 0.16 °C to a

negligible difference (difference between gray filled diamonds for similar500 (0.95 °C) and year500 (0.99 °

C) versus differences between open diamonds for the same in Figure 5). The difference in prediction

accuracy between limited and extended pretraining PGDL models monotonically decreased as data

became more plentiful (Figure 5, left to right for sim{n}).

4. Discussion

We show here that Process‐Guided Deep Learning can be used to address important prediction problems in

aquatic science and has the potential to accelerate knowledge discovery by explicitly combining empiricism

and theory. Many in the environmental sciences have called on the community to embrace machine learn-

ing as a powerful predictive tool (Hampton et al., 2013; Mosavi et al., 2018; Olden et al., 2008), and build

theoretical knowledge directly into these models (Karpatne et al., 2017; Shen et al., 2018). Indeed, Shen

et al. (2018) suggest the first step in pursuit of deep learning‐powered scientific advances for hydrology is

to “integrate physical knowledge, process‐based models, and DL models.” The hybrid modeling approach

highlighted in this study combines process‐based and deep learning models and has great relevance to dis-

ciplines historically dominated by the development and application of process‐based models, such as physi-

cal limnology and hydrology.

Several components were responsible for the PGDL's superior predictive accuracy, including temporal recur-

rence, process constraints, and pretraining (Figure 1). The choice of an LSTM to be the underlying predictive

engine for PGDL helped the models recognize critical time series patterns and relationships that led to

improved predictions, evidenced by the LSTM's ability to estimate temperatures when trained on adequate

data (seeDeep Learning in Figure 2 and Figure 4). Most process‐basedmodels have core formulae or encoded

physical laws that ground simulations to reality, and energy conservation is the law at the heart of thermo-

dynamic models. By adding energy conservation as a process‐based loss term in the PGDL's objective

Figure 5. Effect of pretraining data volume and variety on accuracy of temperature predictions from Process‐Guided Deep

Learning (PGDL) models as measured by root‐mean‐square error (RMSE) for Lake Mendota. Different amounts and time

periods of synthetic data were generated from a process‐based model to pretrain PGDL models for the experiments pre-

sented in Figures 2 and 3. RMSE values for each prediction as aligned along the x axis and labeled with shorthand for the

experiment and a subscript for the number of training profiles used. “sim” is shorthand for similar, where training and

test periods in Figure 2 were designed to have similar conditions. “Year” and “seas” are shorthand for the warm year and

warm season (summer) test periods shown in Figure 3. The “extended pretraining” (open diamonds) included pretraining

data that began in April of 1980 and excluded test periods, and is identical to the Lake Mendota results presented in

Figures 2 and 3. “Limited pretraining” (gray‐filled diamonds) included pretraining data only from the training period (also

excluding the test period). The vertical bars show the range of prediction accuracy for five iterations of training data splits

and the markers are the mean.
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function, the model was able to learn physically valid responses to meteorological drivers, likely advanta-

geous when asked to predict out of bounds from the conditions of training data (Figures 3b and 3c).

Tracking energy flow required an augmentation to the standard LSTM architecture (see Jia et al., 2019 for

details) in order to expose each flux component to the loss term as a calculation frommodel inputs or a com-

bination of inputs and PGDL‐predicted surface water temperatures. Pretraining DL models with synthetic

data can be used to overcome conditions when environmental observations would otherwise be too sparse

or not representative enough of test periods to support advanced machine learning techniques such as

LSTMs. In Figure 4, we showed that PGDL improvements over the accuracy of the trainer can be substantial

and that this framework can be scaled to many lakes, while the results from Figure 5 suggest that adequate

volume and variety of pretraining data can help compensate for limited training data.

Despite the data deluge from new types of environmental data, many present‐day modeling challenges will

require accurate predictions where data are scarce. Even with the growth of new sensing technologies, the

majority of lakes and streams are unmonitored or have only a few observations. Direct environmental mea-

surements have continued to accumulate, but the exponential data growth that has made DL methods more

tractable has happened elsewhere. Large‐scale model outputs (e.g., multiple configurations of MODFLOW,

Fienen et al., 2018; the National Water Model, Hooper et al., 2017; climate models, Scher, 2018), remote sen-

sing data (e.g., Karpatne et al., 2016; Schaeffer et al., 2018), and hybrid modeled/observed gridded data sets

(e.g., NLDAS, Mitchell, 2004) are the “big data” foundation for water resources (Y. Chen & Han, 2016), and

the volume of direct in situ observations is small by comparison. Even the “richest” case of observations used

in the study presented here included hundreds (not thousands or millions) of daily profiles for training

(Figure 2). As such, approaches that combine existing models or theory with new ways to utilize data are

needed (Fang et al., 2017; Karpatne et al., 2017). We have shown here that the greatest gains of PGDL tem-

perature modeling (when compared to process‐based models or more traditional formulations of DL) were

when observations were relatively scarce (Figure 2). Even a small number of water temperature sampling

dates (e.g., 2–100) can be used to train a PGDL model that results in substantial improvements over

empirical‐only and process‐based approaches (Figure 2). At the scale of tens to thousands of lakes, the tradi-

tional option has been to accept reduced model performance of an uncalibrated process‐based model or sub-

stantially increase the required handling time and expert knowledge to calibrate process‐based models for

individual lakes. PGDL therefore represents a promising method for scaling prediction to the scale of envir-

onmental problems, and these models performed well across a diverse set of lakes (Figure 4). This finding is

important for future hybrid modeling efforts since temperature is one of the most widely measured variables

in water resources (E. K. Read et al., 2017) and data scarcity challenges are likely greater for other applica-

tions in water quality modeling.

Pretraining was integrated successfully into a PGDL water temperature prediction framework by Jia et al.

(2019) and builds on other modeling concepts that continue to be relevant for future exploration, such as sta-

tistical bias correction (e.g., quantile mapping; Panofsky & Brier, 1958) and model emulators. Complex

process‐based model outputs have been successfully approximated elsewhere with deep learning (e.g.,

Scher, 2018) and other machine learning techniques (e.g., Fienen et al., 2018; Yan & Minsker, 2006).

Alternatively, the DL pretraining process (Coto‐Jimenez, 2018; Erhan et al., 2010) consider DL models

trained by synthetic data to be an intermediate (as opposed to final) product of the predictive framework.

With the pretrained DL model as a starting point, final training is completed with actual observations and

imperfections and/or biases in the source model (the “pretrainer”) can be reduced or eliminated through

the iterative training process. In this way, pretrained DL models have the opportunity to exceed the perfor-

mance of their trainer (Jia et al., 2019; Lee et al., 2018) in contrast to earlier efforts designed to emulate

physical models.

The quantity and information content of the synthetic data used to pretrain PGDLmodels was critical to pre-

diction accuracy (Figure 5). The current PGDL formulation can be thought of as a DL emulator of a process‐

based model, which is then further refined (or debiased) with observation‐based training and encouraged to

remain physically realistic via an energy conservation loss term (Figure 1). Process‐based model outputs are

used to build the emulator, and therefore, the properties of these data are an important factor in determining

how effective the pretraining process is at establishing a useful initial network state for PGDL.We contrasted

the performance of models pretrained with extended versus limited synthetic data by shortening the data

sets and removing key periods (Experiment 4; Figure 5). We found that it was critical to expose PGDL to
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pretraining data that contained similar conditions to those found in the test period, most clearly illustrated

by the difference in performance for predicting summertime temperatures when pretraining data included

prior summers versus did not (Figure 5; seas500 open versus graymarkers, respectively). Greater quantities of

pretraining data were likely responsible for improved predictions in data sparse conditions, but the differ-

ences between limited and extended pretraining data decreased as observation‐based training data increased

(Figure 5, left side). Although we did not separately test the contributions of energy conservation and pre-

training to improvements in predictive accuracy, it is likely that pretraining is responsible for the majority

of predictive gains. Jia et al. (2019) isolated the effects of the energy conservation loss term and found small

but consistent improvements in accuracy when compared to an otherwise identical LSTM (although this

finding was not tested for out‐of‐bound training data), and larger improvements when models added a pre-

training step. As such, the energy conservation penalty likely serves as a regularization term that improves

the generalizability of the model, while pretraining acts as a powerful surrogate for real observations when

comprehensive training data are limited. The evaluation of pretraining data set design performed in our

study was not comprehensive and presents new opportunities for deeper exploration, including assessing

data accuracy impacts (e.g., using calibrated instead of uncalibrated models for pretraining), understanding

pretraining volume and variety needs (e.g., pretraining with artificially elevated ranges for weather condi-

tions or using ensembles of models with a variety of formulations), exploring improvements to pretraining

routines by altering loss terms and stopping criteria (our implementation used identical parameters and pro-

cedures for both pretraining and training), and testing the utility of pretraining for predicting other environ-

mental phenomena and other process‐based model formulations.

The work presented here is a significant step forward in the pursuit of hybrid process‐based deep learning

predictions, but many opportunities exist to extend and improve the approach. Our study limited the predic-

tive challenge to a collection of lakes that were treated as independent model systems (no relationships

between lakes were used or explored to improve models) and relatively simple neural network structures

were used for DL and PGDL. Future work could rely on the high degree of physical coherence across lakes

(Benson et al., 2000; Palmer et al., 2014) to share information and improve models in data poor or unmoni-

tored lakes. Given the importance of interconnections in water resources modeling (e.g., Wagener et al.,

2010), this research avenue is an important next step and has parallels with predicting streamflow in unmo-

nitored basins (e.g., Hrachowitz et al., 2013; Tongal & Booij, 2018; Worland et al., 2018). Also, although it

was clear that the uncalibrated process models used in pretraining varied in how well they represented tem-

perature dynamics (see Figures 4 and S18), evaluating the impact of pretrainer model quality on PGDL

predictions was beyond the scope of this paper (see also Shen et al., 2018 for a similar charge: “The extent

to which errors in [PB] model results affect DL outcomes remains to be explored”). Despite this, we expect

that improved pretrainer models would translate into improved PGDL predictions. Additionally, while

PGDL models clearly outperformed DL and PB predictions when the inputs and temperature observations

were carefully curated (Lake Mendota and Sparkling Lake; Figures 2 and 3), the results were nuanced when

multiple monitoring campaigns were included (most lakes other than Sparkling and Mendota had multiple

spatial sampling locations that were treated as the same) and lower quality inputs were used (gridded

weather data versus directly observed). Perhaps the substitution of less accurate gridded data for two metro-

logical inputs used in Sparkling Lake prediction was a factor in why years predictions are worse for Sparkling

than those for LakeMendota (Figures 3b and S15 versus S14, respectively). For the 68 lakes simulated, PGDL

predictions of temperature were generally an improvement over PB or DL models but were not more accu-

rate in every case (Figures 4 and S18). Future exploration of model structures could improve predictions for

PGDL and DL models, as the LSTMmodels used here were deep in time, but shallow in layers. We used this

architecture because prior domain knowledge exists that connects the output (temperature) to the inputs

(meteorology) through simple thermodynamic relationships governing temperature change. Additional

DL layers provide additional data abstraction, and deeper‐layered networks may be useful for more complex

relationships (e.g., modeling water quality, Maier et al., 2010; or stream discharge, Shortridge et al., 2016),

but are not always necessary (Ba & Caruana, 2014).

It is increasingly necessary for water scientists to make predictions for unseen time periods (including the

uncertain future and the unobserved past) using a variety of model architectures and assumptions. Our eva-

luation of out‐of‐bound predictions from empirical‐only, process‐based, and hybrid process‐guided deep

learning models showed that in an isolated case, PGDL predictions were more accurate than the tested
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alternative models (for five of six cases; Figure 3) and suffered a smaller drop in out‐of‐bound performance

when compared to other models (Figure 3). While these experiments were designed to mimic the challenge

of modeling an unseen but warmer future (Figure 3b) and a season‐ahead forecast (Figure 3b), real forecasts

are necessary to begin the cycle of learning (Dietze et al., 2018). As evidence from another domain that the

pursuit into forecasting should consider hybrid model architectures, Dueben and Bauer (2018) evaluated the

potential for making simplified forecasts of global weather with DL, concluding that while many benefits of

DL are clear (especially for short‐term forecasts), Earth systems domain knowledge is still a requirement for

developing models capable of comprehensive forecasts.

The modeling subdiscipline of “Theory Guided Data Science” (TGDS; Karpatne et al., 2017) covers a spec-

trum of modeling approaches that blend theory and data‐driven models, ranging from simple ML

approaches that predict residuals from process‐based models (e.g., Demissie et al., 2009) to proposed model

structures with tight internal coupling between ML and PB components. Our PGDL model codified process

components (theory) into LSTM loss terms, but we did not explore other hybrid architectures, such as the

integration of DL components into a process model. Future work could consider using DL components in

place of uncertain elements of PB models to allow more flexible data‐driven learning. As knowledge, predic-

tive tools, and data co‐evolve, the collection of modeling approaches under the TGDS umbrella offers

researchers the flexibility to meet science questions with models suited to purpose. Leveraging this new

modeling paradigm for water resources requires both an embrace of the role DL can play in predictions,

and deliberate efforts to design for flexibility and iteration in future model architectures.

We utilized the PGDL modeling framework to produce improved predictions of lake water temperature, a

critically important variable for improving understanding of aquatic ecosystems. PGDL predictions achieved

a 0.5 °C reduction in RMSE relative to a calibrated process‐based model (Figure 2), and we showed that this

modeling framework could be scaled up and used for predictions in many lakes while maintaining favorable

accuracy compared to calibrated process‐based and deep learning models (Figures 4 and S18). Because tem-

perature is an ecosystem “master variable” (Magnuson et al., 1979), these improvements could translate

directly into improved modeling of biota (e.g., Hansen et al., 2017; Mainali et al., 2015; Paerl & Huisman,

2008) and forecasting of ecosystem conditions and services (Dietze et al., 2018). For water temperature

and many other variables, models that explicitly combine empiricism and theory can help accelerate our

path to future knowledge discovery.
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