In and out of the nucleus: CNN based segmentation of cell
nuclei from images of a translocating sensor
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Figure 1: Cells expressing a translocating fluorescent biosensor of CDK2 activity (red) annotated with the outlines of their nuclear
regions (blue).

ABSTRACT

This study demonstrates application of convolutional neural
networks (CNNs) for the analysis of a unique image analysis
problem in fluorescence microscopy. We employed the U-Net
CNN architecture and trained a model to segment nuclear regions
in images of a translocating biosensor—which alternates between
the nucleus and cytoplasm—without the need for a constant nuclear
marker. The model provided high-quality segmentation results that
allowed us to accurately quantify the extent of cyclin-dependent
kinase activity in a population of cells. We envision that the
development of this kind of analysis tools will enable biologists to
design live-cell fluorescence imaging experiments without the need
for providing a constant marker for a subcellular region of interest.
As a consequence, they will be free to increase the number of
biosensors measured in single cells or reduce the phototoxicity of
cellular imaging.
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1. INTRODUCTION

With recent advancements in the automation of microscopy
experiments, huge quantities of imaging data can be gathered faster
than ever before [2]. However, a severe bottleneck has emerged in
the difficulty of processing this increasing amount of data. The
problem is due to a lack of automated image analysis algorithms
providing high quality results in tasks such as image classification,
segmentation or object tracking. Recently, deep learning-based
image analysis algorithms have emerged as promising new tools to
facilitate both automation and extraction of information that is not
available to other methods. The strength of this approach lies in the
automated extraction of optimal features for each specific image
analysis problem, therefore promising a fully customized solution
without a need for feature design by experts [8].

Functional imaging of single cells is one of the fast developing
bioimaging fields. With the development of new genetically-
encoded fluorescent biosensors, one can investigate an increasing
number of cellular processes simultaneously in the same cell. One
class of functional biosensors contain reporters that provide
information on the activity of proteins of interest by localizing to
different subcellular compartments. This group is referred to as
translocation biosensors [4]. Translocation biosensors often report
on the activity of cellular kinases, enzymes responsible for the
phosphorylation of other proteins. They play a crucial role in the
regulation of cellular signal processing [5]. When a cell is
perturbed, functional information such as stimulus intensity and
frequency can be encoded in a temporal kinase activation pattern,
making kinases a crucial point of research in modern biology [6].

Progression through the cell cycle—one of the most fundamental
processes in cell biology—is driven by cyclin-dependent kinases
(CDKs). For example, increased activity of Cyclin Dependent
Kinase 2 (CDK2) correlates with a cell approaching a new round
of DNA replication. Conversely, low CDK2 activity indicates that
a cell will withdraw, at least temporarily, from cycles of replication



and division and instead transition to a quiescent state [9]. The
CDK2 translocation biosensor is based on a fragment of one of the
cellular targets of CDK2, DNA Helicase B, fused to a fluorescent
protein tag. When CDK2 is not active, the sensor remains
unphosphorylated and localizes to the nucleus. However, when
CDK2 becomes active, the sensor translocates to the cytoplasm [9].
Therefore, the cytoplasmic-to-nuclear ratio (Cyt/Nucl) of the
sensor fluorescence signal correlates with the activity level of
CDK2.

In order to accurately quantify Cyt/Nucl ratio of CDK2 sensor, the
nuclear region of each cell must be properly segmented. For the
boundary of the nucleus to be delineated correctly, a constant
presence of an additional nuclear marker is normally required.
However, the presence of an additional nuclear marker in many
experiments, especially involving live-cell imaging, can be
problematic. The additional marker may increase phototoxicity in
an experiment or simply prevent measurements of additional
cellular signals by blocking one of the fluorescence channels,
which are typically limited to no more than four or five.

However, visual inspection reveals that the CDK2 signal alone
should provide enough information to segment nuclei without the
use of an additional marker. In cells with low CDK2 activity, the
sensor directly marks nuclei. However, as the activity of CDK2
increases, the sensor localizes to the cytoplasm and provides
enough contrast to delineate nuclei as elliptical regions devoid of
fluorescent signal. We set to employ a deep learning image analysis
approach to train a model to segment nuclear regions based solely
on the localization signal of the translocating CDK2 biosensor.

Convolutional Neural Networks (CNNs) have proven to be
especially apt at image classification and segmentation tasks.
Convolution filters are ideal for recognizing localized spatial
features and have the added benefit of limiting the number of
trainable parameters, reducing computational times to allow for
longer training. The U-Net architecture, developed in 2015 for
biomedical image segmentation, has been particularly successful in
the wide range of image segmentation tasks due to its uniquely
symmetric encoding and decoding channels [7].

The goal of this work is to apply U-Net architecture and train a
model to segment cellular nuclei in images of CDK2 translocating
biosensor without the use a separate nuclear marker.

2. DATA AND METHODS

2.1 Microscopy

RPE-hTert cells expressing CDK2 sensor [9] were cultured on
glass-bottom  plates (Cellvis, #1.5), fixed with 4%
paraformaldehyde for 15 minutes at room temperature and stained
with DAPI. Imaging was performed using a Nikon Ti Eclipse
inverted microscope using Plan Apochromat dry objective 20x (NA
0.75). Images were recorded using an Andor Zyla 4.2 sCMOS
detector with 12-bit resolution and converted to 8-bit before the
analysis. All filter sets were from Chroma: DAPI - 395/25 nm; 425
nm; 460/50 nm (excitation; beam splitter; emission filter), mCherry
- 560/40 nm; 585 nm; 630/75 nm.

2.2 Dataset

There were 272 CDK?2 sensor and DAPI image pairs collected. To
create ground truth segmentation masks, the DAPI images were
segmented and processed through morphological operations
(opening and watersheding) using the SciKit-Image (Skimage)
image processing package, version 0.13.1 in Python 3.6. The masks
were inspected and corrected manually to avoid erroneously
merged objects. To facilitate training, the images were divided into

four tiles (1024x1024 px each). The images were divided equally
into training and test sets. The training set was then supplemented
through data augmentation with 320 additional images.
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Figure 2: Loss function changes during training.

2.3 Model and training

The convolution neural network architecture U-Net was
implemented using the PyTorch machine learning library in Python
3.6. The implementation was adapted from the code from GitHub
users jvanvugt [3] and bvezilic [1]. Edge padding was used to
eliminate border loss and maintain outputs that match the
dimensions of input images. All training and testing was done on a
Google Cloud VM instance using an NVIDIA Tesla P100 16GB. A
training batch size of two was used and trained over 20 epochs with
a learning rate of 0.001 using Adam Optimizer. The binary cross
entropy loss function was used to score the model output during
training. The changes in the loss function during training using the
original and the augmented dataset are shown in Figure 2.

2.4 Evaluation and segmentation

The Jaccard index was calculated for each pair of objects in the
ground truth and test images. Jaccard index values were compared
with increasing thresholds (in the range from 0.5 to 0.95 with 0.05
increment) to label the objects as true positive (TP), false positive
(FP) or false negative (FN). Recall (TP/(TP+FN)) and precision
(TP/(TP+FP)) parameters were calculated for each Jaccard index
threshold value. In the analysis of recall and precision, the objects
were stratified based on CDK2 sensor ratio values defined for true
positive objects (in ground truth mask for recall analysis and in
model output mask for precision analysis).

Ratios of cytoplasmic to nuclear CDK2 sensor signal were
calculated for both the ground truth and model output masks. The
cytoplasmic CDK2 sensor level is measured within a 5 pixel-wide
ring-shaped region around the nucleus. The distributions of CDK2
sensor ratio values calculated for ground truth and model output
masks are plotted in the form of histograms and compared using the
2-sample, 2-sided Kolmogorov-Smirnov test. Scatterplots of CDK2
sensor ratio vs. total DAPI signal within nuclear regions were
plotted to compare results obtained using ground truth and model
output segmentation masks.



3. RESULTS
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Figure 3:Two examples of fluorescent images (DAPI and CDK sensor) together with the comparison of ground truth segmentation
masks and model output for the same fields of view. Scale bar = 50 pm.

Example segmentation results are presented in Figure 3. Visual
inspection of the results suggests that the majority of cell nuclei
were detected and segmented correctly. However, one can also spot
some typical errors of segmentation — missing or misshaped objects
and spurious detections.
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Figure 4: Precision and recall rates calculated based on
increasing Jaccard Index threshold values for cells with low,
medium, and high CDK2 activity levels.

To quantitatively evaluate the performance of the segmentation, we
calculated recall and precision rates of object detection. Positive
detection was defined as a pair of objects, whose Jaccard index
exceeds a defined threshold value. However, as a single precision
and recall score at the specified threshold do not adequately
describe the behavior of the model, we repeated the calculation for
a range of Jaccard index values. Additionally, we stratified this
analysis for groups of cells with different CDK2 sensor cytoplasm
over nucleus ratio levels. In the analysis of recall, we used CDK2
ratio values calculated based on ground truth masks. However, in
the analysis of precision we had to stratify cells based on CDK2
ratio values calculated based on predicted regions. The results of
this analysis are shown in Figure 4. As expected, both recall and
precision of detection decrease when a higher value of overlap
between the pair of objects is required. Interestingly, both groups
of cells with high and low CDK2 ratio levels were detected
significantly better than cells with a medium level of CDK2
activity. This result suggests, not surprisingly, that the contrast

between the nucleus and the cytoplasm is crucial in proper
segmentation of nuclear regions. It is also interesting to note that
the cells with high cytoplasm presence of CDK2 sensor were the
best performing group over the whole tested range of Jaccard index
values.
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Figure 5: a. Comparison of CDK2 ratio distributions based on
ground truth and model output masks. b, c. Total DAPI signal
vs. CDK2 ratio for ground truth (b) and predicted nuclear
regions (c). Vertical lines indicate arbitrary threshold (at the
level of 0.8) between cells positioned early or late in the cell
cycle.

Importantly, the segmentation of CDK2 biosensor images allows
us to get a quantitative information of the proliferation status of cell
colonies. We compared CDK2 activity values calculated based on
correct ground truth nuclear region and based on regions detected



by our trained algorithm. The results of this comparison are
presented in Figure 5. We do not detect any significant differences
in the distribution of CDK2 activity values between the two
calculation methods (Kolmogorov-Smirnov test, p=0.46). The
percentage of cells with low CDK2 activity value (below threshold
level of 0.8) based on ground truth segmentation is 49%. In
comparison, the trained algorithm-based segmentation predicted
48% of cells to show CDK2 activity below this threshold level
(Figure 5 b and c). This comparison suggests that the quality of
segmentation performed by our trained model is sufficient to
extract biologically relevant information about the proliferation
status of cell colonies.

4. DISCUSSION

In this study we have shown that a U-Net type neural network can
be trained to successfully segment nuclear regions based on images
of a translocating biosensor. Most notably, the achieved quality of
segmentation enables us to calculate the correct distribution of
CDK2 activity among cells in a heterogeneous population. This
success may be attributed to the fact that the majority of
segmentation errors occurs in the population of cells with the
intermediate CDK?2 activity levels. In these cells, the biosensor is
equally distributed between the nucleus and the cytoplasm,
providing little contrast for the proper segmentation. Yet
consequently, the lack of contrast in this population also results in
a limited measurement error of the CDK2 activity, even in case of
significant segmentation errors.

There are several possible improvements that may further enhance
the segmentation of this class of images. Firstly, by looking at the
obtained segmentation results, we observed that one of the most
common segmentation errors is detection of two adjacent nuclei as
a single object, also known as merging. These errors persisted even
after applying an additional watershed segmentation step on the
network output. In order to encourage a network to find the missing
thin boundaries, the training could be performed using masks with
differentially weighted pixels. In such prepared masks, boundaries
of close objects should be assigned higher weights than the interior
pixels of objects, as implemented in the original U-Net report [7].
Moreover, weighted masks could also be utilized to specifically
improve the segmentation of the nuclei of cells with intermediate
CDK2 activity and little contrast. Assigning larger weights to pixels
belonging to regions with little contrast would effectively force the
network to learn how to better segment those regions.

During the analysis of the network results we also noticed that our
ground truth segmentation masks contain unexpected errors.
Occasionally, cells that were clearly visible in the CDK2 sensor
image were entirely missing nuclear signal in the DAPI image.
Since the ground truth segmentation was created based on the DAPI
images, this led to the overestimation of the number of false
positive detections. The lack of consistent DAPI staining may have
originated from an unusual error in sample preparation. In the
future, a more thorough vetting of the ground truth segmentation
images is necessary to avoid this kind of errors compromising the
training and confounding the interpretation of the results. Another
direction for future improvement of the segmentation results is fine
tuning and estimation of hyperparameters in neural network
training, for example annealing of the learning rate during training
or testing different loss functions. Finally, we were successful in
improving the performance of the network by using data
augmentation and adding transformed images to our training set.
This approach could be exploited further and multiple
transformations could be added to the training set.

In future work, we plan to test and fine tune our model in
segmentation of live cell time lapse imaging data which require
fully automated high throughput analysis methods. We will also
address the question of robustness by testing how transferable the
trained model is between images collected with slightly different
experimental settings and between images of different kinds of
cells expressing the same translocating biosensor.

5. CONCLUSIONS

In this paper, we present a successful application of deep learning
for segmentation of images of cells expressing the CDK2 activity
biosensor, which translocates between the nucleus and cytoplasm.
Using the U-Net CNN architecture, we showed that cellular nuclei
can be segmented from CDK2 biosensor images alone without use
of any additional biological reporters. This research serves as a
proof of concept for the application of deep learning methods in the
analysis of microscopy images of cells missing fluorescent marker
directly localizing to the organelles of interest.
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