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Abstract— Consider a particular finite-time disturbance ap-
plied to a system governed by ordinary differential equa-
tions and which possesses a stable equilibrium point. The
recovery of the system from a disturbance is a function
of the system parameter values. It is an important though
challenging problem to identify the system parameter values,
called critical parameter values, for which the system is just
marginally unable to recover from a particular disturbance.
Such critical parameter values correspond to cases where the
system state, at the instant when the disturbance clears, is on the
boundary of the region of attraction of the stable equilibrium
point. The paper proposes novel algorithms for numerically
computing critical parameter values, both for one and arbitrary
dimensional parameter spaces. In the latter case, the algorithm
computes the critical parameter values that are nearest to a
given point in parameter space. The key idea underpinning the
algorithms is that on the boundary of the region of attraction,
the trajectory becomes infinitely sensitive to small changes in
parameter value. Therefore, critical parameter values are found
by varying parameters so as to maximize trajectory sensitivities.
The algorithms are demonstrated using a fourth-order power
system test case.

I. INTRODUCTION

Engineered systems experience disturbances which have
the potential to disrupt desired operation. The ability of the
system to recover from a particular finite-time disturbance,
such as a fault on a certain transmission line in a power
system, to a desired operating point depends on the system
parameters. From a systems perspective, the disturbance can
be thought of as a parameter dependent initial condition
to the post-disturbance dynamical system (which itself is
parameter dependent). It is an important and challenging
problem to determine the parameter values for which the
system is just marginally unable to recover from a particu-
lar disturbance, which we term critical parameter values.
Solving this problem is of value for many applications,
such as assessing fault vulnerability in power systems. This
paper develops novel, theoretically motivated algorithms for
efficient numerical computation of critical parameter values
in both one and arbitrary dimensional parameter space.

The setting is a parameter dependent system of ordinary
differential equations (ODEs) which possesses a parameter
dependent stable hyperbolic equilibrium point that represents
desired operation. Let p denote a set of parameters, z(p) the
post-disturbance initial condition corresponding to parameter
value p, R(p) the (post-disturbance) region of attraction of
the stable equilibrium point corresponding to parameter value
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p, and B(p) the topological boundary of R(p). For certain
parameter values p, z(p) lies inside R(p); these are the
parameter values for which the system is able to recover
from the disturbance. For other parameter values, z(p) lies
outside the closure of R(p), and the system is not able to
recover from the disturbance in these cases. The boundary
case occurs for parameter values p such that z(p) lies in
B(p); these are the parameter values for which the system
is marginally unable to recover from the disturbance, i.e. the
critical parameter values.

Prior work has sought to develop algorithms for numeri-
cally computing critical parameter values by exploiting the
topology of B(p). Classical algorithms [1]–[4] have several
limitations: they require the existence of an energy function
for the system whose sublevel sets approximate R(p) well,
the identification of a particular unstable equilibrium point
in state space with desired properties, and that the post-
disturbance dynamics are independent of the parameter p.
However, energy functions have only been developed for
simplified power system models, identification of the re-
quired equilibrium point is computationally intractable, and
almost all parameters of interest influence post-disturbance
dynamics. Therefore, the classical algorithms offer limited
benefits for practical power system models.

More recent algorithms [5], [6] for critical parameter
value computation do not require the existence of an en-
ergy function and can handle parameter dependent post-
disturbance dynamics. However, they still require identi-
fication of a particular unstable equilibrium point, which
is computationally challenging in practice. In contrast, the
algorithms developed here do not require the existence of
an energy function, can handle parameter dependent post-
disturbance dynamics, and also do not require identification
of a particular unstable equilibrium point. Therefore, they
represent practical algorithms for critical parameter value
computation.

The algorithms in this paper follow from the fact that
on B(p) the trajectory becomes infinitely sensitive to small
changes in parameter value. This is because infinitesimal dif-
ferences in parameter value determine whether the trajectory
converges back to the equilibrium point or goes elsewhere.
The key idea of the algorithms presented later is to vary
parameter values so as to maximize this trajectory sensitivity.
In doing so, z(p) will approach B(p), causing the parameter
values to approach their critical values. In practice, it turns
out to be preferable to minimize the inverse of the trajectory
sensitivities rather than to perform the direct maximization,
so this variation is implemented. As critical parameters are
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not unique, the algorithms are designed to find the nearest
critical parameter value to a given initial parameter set.

The paper is organized as follows. Section II introduces
notation and provides theoretical motivation. Section III
presents the algorithms, while Section IV discusses the
efficient computation of trajectory sensitivities, which are
needed for the algorithms. Section V illustrates the algo-
rithms on a test case. Concluding remarks are provided in
Section VI.

II. THEORY

We consider a system of ordinary differential equations
(ODEs):

ẏ = g(y, p)

ṗ = 0,

where g is C3, y ∈ Rn and p ∈ Rm for n,m ≥ 1. We
use ẏ to denote the time derivative of y, and similarly for p
and elsewhere in the paper. Let x = [yᵀ pᵀ]ᵀ and f(x) =
[g(y, p)ᵀ 0ᵀ]ᵀ where 0 has dimension m by 1, and where
for any matrix M , we let Mᵀ denote the transpose of M .
Then we can rewrite the dynamics as:

ẋ = f(x). (1)

Let fi denote the i-th entry of f and xj denote the j-th entry
of x. There exists a flow φ such that φ(z, t) represents the
integral of (1) from initial condition z for time t. Let x(t) =
φ(z, t) when the initial condition x(0) = z is understood,
and let φi(z, t) denote the i-th component of the flow.

Fix p0 ∈ Rm and suppose (1) possesses a stable hyperbolic
equilibrium point x0(p0). Then there exists an open neigh-
borhood J of p0 in Rm and a C1 function x0 : J → Rm+n

such that x0(p) is a stable hyperbolic equilibrium point near
x0(p0). For p ∈ J , let R(p) denote the region of attraction
of x0(p) and let B(p) denote the topological boundary of
R(p). Shrinking J if necessary, we assume (1) satisfies
Assumptions 1 – 4 of [7], which are technical assumptions
that are satisfied for a large class of ODEs. In particular,
most of those assumptions are true generically for C1 ODEs
(see [7] for a more complete discussion). Since x0(p) is a
stable hyperbolic equilibrium point, it possesses a local stable
manifold W (p) such that any trajectory which converges to
x0(p) must enter W (p) in finite time, and for any z ∈W (p)

and any t > 0, φ(z, t) ∈W (p) and
∣∣∣∣∣∣∂φ∂z (z, t)

∣∣∣∣∣∣ < 1 [8].
A finite time disturbance is modeled by z : J → Rm+n,

a C1 map such that z(p) denotes the system state at the
instant when the disturbance clears, also known as the post-
disturbance initial condition to (1). Let JR ⊂ J be {p ∈
J : z(p) ∈ R(p)} and let JB ⊂ J be {p ∈ J : z(p) ∈
B(p)}. Then JB is the set of critical parameter values. Let
χ(t, p) := ∂φ(z(p),t)

∂p and let Φ : J → [0,∞] be Φ(p) :=

supt≥0 ||χ(t, p)||2 where || · || is any matrix norm and t = 0
is defined to be the time at which the disturbance clears.
Assume the initial conditions cross the region of attraction
boundary transversely in an appropriate sense. Proof sketches
of the following Lemmas are provided for brevity.

Lemma 1. Φ is well-defined, finite, and continuous over JR.
Proof Sketch of Lemma 1. For p ∈ JR the flow of z(p)

converges to x0(p), so it enters the local stable manifold
W (p) in finite time T . For any time t > T , splitting the
orbit into the interval from 0 to T and then the interval from
T to t, using χ(t, p) = ∂φ

∂z
∂z
∂p , and by the chain rule we have

||χ(t, p)|| =
∣∣∣∣∣∣∣∣∂φ∂z (φ(z(p), T ), t− T )

∂φ

∂z
(z(p), T )

∂z

∂p
(p)

∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣∣∂φ∂z (z(p), T )
∂z

∂p
(p)

∣∣∣∣∣∣∣∣ ,
since φ(φ(z(p), T ), t − T ) ∈ W (p) and so∣∣∣∣∣∣∂φ∂z (φ(z(p), T ), t− T )

∣∣∣∣∣∣ < 1. Hence, ||χ(t, p)|| must
attain a maximum at some finite time in [0, T ]. As the same
inequality holds for p̂ near p, ||χ(t, p̂)|| will also attain a
maximum in [0, T ]. By continuity of the maximum over a
compact set, Φ(p̂) will therefore be near Φ(p). �
Lemma 2. For any p∗ ∈ JB , Φ(p∗) = ∞. Furthermore,
if {ps}∞s=1 is a sequence in JR with ps → p∗ then
lims→∞ Φ(ps) =∞.

Proof Sketch of Lemma 2. If p∗ ∈ JB , by [7, Theorem 1]
the flow of z(p∗) converges to a hyperbolic equilibrium point
or periodic orbit in B(p∗). Therefore, the Inclination Lemma
[9] can be applied to show that limt→∞ ‖χ(t, p∗)‖ =∞. If
{ps}∞s=1 is as in the statement of the Lemma, then using that
limt→∞ ‖χ(t, p∗)‖ =∞ and continuity of χ(t, p), it follows
that lims→∞ Φ(ps) =∞. �

Let G(p) = inft≥0
1

||χ(t,p)||2F
where || · ||F is the Frobenius

matrix norm which can be expressed by ||M ||2F :=
∑
jM:,j ·

M:,j where M:,j is the j-th column of M and v·w denotes the
dot product of vectors v and w. We define G in this manner
because empirical observations from numerical experiments
have indicated that G is typically convex, so minimizing G
is easier than maximizing Φ, even though the results are
equivalent in theory.
Theorem 1. G is well-defined, strictly positive, and con-
tinuous over JR, G(p∗) = 0 for all p∗ ∈ JB , and if
{ps}∞s=1 is a sequence in JR such that ps → p∗ ∈ JB then
lims→∞G(ps) = 0.

Proof Sketch of Theorem 1. Follows immediately from
Lemmas 1 and 2. �

Theorem 1 states that p∗ is a critical parameter value if
and only if G(p∗) = 0. Furthermore, it suggests that critical
parameter values can be found by starting from some p0 ∈
JR and varying p so as to send G(p) → 0. This is the
theoretical motivation for the algorithms of Section III.

III. ALGORITHMS FOR COMPUTING CRITICAL
PARAMETER VALUES

A. One-Dimensional Parameter Space

Let p be a one-dimensional, real-valued parameter. As-
sume that the initial condition z = z(p) is a function of p.
Define

H(t, p) =
1

χ(t, p) · χ(t, p)
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G(p) = inf
t≥0

H(t, p),

where χ(t, p) ∈ R(n+m)×1 because p ∈ R1. Then by
Theorem 1, p∗ is a critical parameter value if and only if
it satisfies:

G(p∗) = 0. (2)

To find the critical parameter p∗, (2) will be solved using
Newton-Raphson, which will require the derivative dG(p)

dp .
To compute this, first note that

∂H(t, p)

∂p
= −

2∂χ(t,p)∂p · χ(t, p)

(χ(t, p) · χ(t, p))
2 .

Let t̂(p) = argmint≥0H(t, p). Then, by Theorem 1, if p is
not a critical parameter value then t̂(p) is finite so G(p) =
H(t̂(p), p). Differentiating with respect to p yields

DG(p) =
dG(p)

dp
=

∂

∂p
H(t̂(p), p)

=
∂H

∂t
(t̂(p), p)

dt̂(p)

dp
(p) +

∂H

∂p
(t̂(p), p)

=
∂H

∂p
(t̂(p), p), (3)

where the final equality follows since ∂H
∂t (t̂(p), p) = 0

because t̂(p) is the time when H(t, p) achieves a minimum
in time, and ∂H

∂t = 0 at an extremum point. Therefore, (2) is
solved iteratively by the following standard Newton-Raphson
update, where ps denotes the parameter value of the current
iteration, and ps+1 the value of the next iteration:

ps+1 = ps −DG(ps)−1G(ps).

As DG(p) = ∂H
∂p (t̂(p), p) and G(p) = H(t̂(p), p), by the

formulas for H and ∂H
∂p , computation of G and DG therefore

requires knowledge of χ(t, p) and ∂χ(t,p)
∂p . These partial

derivatives with respect to parameter, known as trajectory
sensitivities, can be efficiently computed numerically as a
byproduct of the underlying integration scheme, as discussed
in detail in Section IV. Then t̂(p) is observed from the output
of the integration, and the values of G(p) and DG(p) can
be computed. As the algorithm proceeds, G(ps) approaches
zero, causing ps to approach a critical parameter value.

B. Multi-Dimensional Parameter Space

Let p be a set of parameter values in Rm for m > 1. Let
j, k, l ∈ {1, ...,m}. Define χjkl := ∂3φ(z(p),t)

∂pj∂pk∂pl
, and define

χjk and χk analogously for second and first order partial
derivatives, respectively. Note that these are each vectors in
Rn. For notational convenience, the dependence on t and
p is not explicitly shown. Define fx := ∂f

∂x (φ(z(p), t)) and
fxx := ∂2f

∂x2 (φ(z(p), t)), noting that fxx is a tensor. Let

H(t, p) =
( m∑
k=1

χk · χk
)−1

G(p) = inf
t≥0

H(t, p) = H(t̂(p), p),

where again t̂(p) = argmint≥0H(t, p). Fix some p0 ∈ Rm.
As m > 1, there are many critical parameter values that
could be found by varying p. Therefore, we seek the critical
parameter value that is closest to p0, which represents the
smallest change in parameter space that could lead to failure
to recover from the disturbance. So, we wish to solve

min
p∈Rm

1

2
(p− p0)ᵀA(p− p0) (4)

s.t. G(p)− ε = 0, (5)

where A is a positive semidefinite weighting matrix (often
set to the identity matrix) and ε > 0 is small and will be
required to ensure feasibility. To solve (4)-(5), we form the
Lagrangian L(p, λ) = 1

2 (p− p0)ᵀA(p− p0) + λ(G(p)− ε).
Let F (p, λ) := DL(p, λ). Any stationary point of L(p, λ),
such as a local minimum, must satisfy:

0 = DL(p, λ) =

[
A(p− p0) + λDG(p)ᵀ

G(p)− ε

]
=: F (p, λ). (6)

Equation (6) is solved iteratively by the following standard
Newton-Raphson update, where (ps, λs) denote the corre-
sponding values at the current iteration, and (ps+1, λs+1)
the values at the next iteration:[

ps+1

λs+1

]
=

[
ps

λs

]
−DF (ps, λs)−1F (ps, λs), (7)

where F (ps, λs) = DL(p, λ) is given in (6) and DF is given
by:

DF (p, λ) =

[
A+ λD(DG(p)ᵀ) DG(p)ᵀ

DG(p) 0

]
. (8)

Computation of DG(p) and D(DG(p)ᵀ) first requires sev-
eral additional derivatives, which are obtained via repeated
differentiation of H(t, p) with respect to parameter compo-
nents and time:

∂H

∂pj
(t, p) = −

2
∑m
k=1 χjk · χk

(
∑m
k=1 χk · χk)

2 (9)

∂2H

∂pi∂pj
(t, p) = −2H2

( m∑
k=1

χijk · χk + χjk · χik
)

+ 8H3
( m∑
k=1

χik · χk
)( m∑

k=1

χjk · χk
)

(10)

∂2H

∂pj∂t
(t, p) = −2H2

( m∑
k=1

χ̇jk · χk + χjk · χ̇k
)

+ 8H3
( m∑
k=1

χ̇k · χk
)( m∑

k=1

χjk · χk
)

(11)

∂2H

∂t2
(t, p) = 8H3

( m∑
k=1

χ̇k · χk
)2

− 2H2
( m∑
k=1

fxxχkχkf + fxχ̇k · χk + χ̇k · χ̇k
)
, (12)

where H = H(t, p), fxxχkχkf = flmnχmkχlkfn in the
notation of Section IV-A, and χ̇k, χ̇jk are given by (13)-(14)
in Section IV-A. Next we compute the derivatives DG(p)
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and D(DG(p)ᵀ). First, note that (DG(p))j = ∂G(p)
∂pj

. By an
analogous argument as in the derivation of (3) for the one
dimensional parameter case in Section III-A, (DG(p))j =
∂H
∂pj

(t̂(p), p). Next, differentiating this equation with respect
to pi gives

(D(DG(p)ᵀ))ji =
∂2G(p)

∂pi∂pj

=
∂

∂pi
(DG(p)ᵀ)j =

∂

∂pi

∂H

∂pj
(t̂(p), p)

=
∂2H

∂pj∂t
(t̂(p), p)

∂t̂(p)

∂pi
+

∂2H

∂pi∂pj
(t̂(p), p).

Note that computation of D(DG(p)ᵀ) requires ∂t̂(p)
∂pi

. We
derive this as follows. Since t̂(p) = argmint≥0H(t, p),
∂
∂tH(t̂(p), p) = 0. Hence, as this function of p is identically
zero, differentiating with respect to pi gives:

0 =
∂

∂pi

∂

∂t
H(t̂(p), p) =

∂

∂t

∂

∂pi
H(t̂(p), p)

=
∂

∂t

(
∂H

∂t
(t̂(p), p)

∂t̂(p)

∂pi
+
∂H

∂pi
(t̂(p), p)

)
=
∂2H

∂t2
(t̂(p), p)

∂t̂(p)

∂pi
+

∂2H

∂pi∂t
(t̂(p), p).

Hence, solving for ∂t̂(p)
∂pi

yields

∂t̂(p)

∂pi
= − ∂2H

∂pi∂t
(t̂(p), p)

(
∂2H

∂t2
(t̂(p), p)

)−1
.

Substituting this back into the expression for D(DG(p)ᵀ)ji,
we obtain

(DG(p))j =
∂H

∂pj
(t̂(p), p)

(D(DG(p)ᵀ))ji =
∂2H

∂pi∂pj
(t̂(p), p)

− ∂2H

∂pj∂t
(t̂(p), p)

∂2H

∂pi∂t
(t̂(p), p)

(
∂2H

∂t2
(t̂(p), p)

)−1
,

which can be computed from (9)-(12). In turn, the expres-
sions for DG(p) and D(DG(p)ᵀ) given here can be used to
compute F and DF in (8) and (6), respectively. Finally, F
and DF are used to perform the Newton-Raphson updates
of (7), which drive ps towards one of the (possibly many
locally) closest critical parameter values to p0.

IV. TRAJECTORY SENSITIVITIES

Trajectory sensitivities are partial derivatives of the flow
φ(z, t) with respect to components of the initial condition
z. Note that trajectory sensitivities are therefore functions
of time t and initial condition z. The order of a trajectory
sensitivity is the number of partial derivatives of the flow
that it involves. For a subset of components of the initial
condition z that are parameters, trajectory sensitivity com-
putations for (1) yield the partial derivatives of the flow
with respect to those parameters. The algorithms described in
Section III require the first-, second-, and third-order partial

derivatives of the flow with respect to parameters. Therefore,
first-, second-, and third-order trajectory sensitivities must
be used to compute the necessary partial derivatives with
respect to parameters. Computation of these sensitivities is
described below. Note that despite vector field discontinuities
introduced by the disturbance, continuity of the states implies
continuity of the trajectory sensitivities.

A. Time Derivatives

Trajectory sensitivities are computed in practice through
numerical integration, as discussed in Section IV-B. To
perform the integration, the variational equations describing
their evolution are required. This section is devoted to their
derivation. The first- and second-order sensitivity variational
equations have been derived previously [10], [11]. Derivation
of the third-order sensitivity variational equations follows.

Let i, j, k, l ∈ {1, ...,m + n}. We define the following
notation:

fij(x) :=
∂fi(x)

∂xj
, χij(t) :=

∂φi(z, t)

∂zj

fijk(x) :=
∂2fi(x)

∂xj∂xk
, χijk(t) :=

∂2φi(z, t)

∂zj∂zk

fijkl(x) :=
∂3fi(x)

∂xj∂xk∂xl
, χijkl(t) :=

∂3φi(z, t)

∂zj∂zk∂zl
.

Note that χij(t), χijk(t), and χijkl(t) for all i, j, k, l repre-
sent the first-, second-, and third-order trajectory sensitivities,
respectively, as functions of time.

Next we will present the time derivatives of the trajectory
sensitivities. For clarity and brevity, we use Einstein sum-
mation notation, which holds that if an index appears on
the right hand side of an equation but not the left, then the
index should be summed over on the right hand side. For
example, the equation ai = bij + cijk in Einstein summation
notation means ai =

∑
j bij+

∑
j,k cijk. The time derivatives

are obtained by repeated differentiation with respect to
components of the initial condition, and application of the
chain rule, starting with (1):

χ̇ij(t)= fim(x(t))χmj(t) (13)
χ̇ijk(t)= film(x(t))χmk(t)χlj(t) + fin(x(t))χnjk(t) (14)
χ̇ijkl(t) = finmo(x(t))χol(t)χmk(t)χnj(t)

+ finm(x(t))χmkl(t)χnj(t) + finm(x(t))χmk(t)χnjl(t)

+ fino(x(t))χol(t)χnjk(t) + fin(x(t))χnjkl(t). (15)

Note that once x(t) has been obtained by numerical inte-
gration, the time derivatives of the trajectory sensitivities are
multilinear functions of the sensitivities. We will see below
that this significantly simplifies their numerical integration.

B. Numerical Integration

Earlier work has shown that, using a trapezoidal integra-
tion scheme to numerically integrate the underlying dynam-
ics of (1), the first [10] and second [11] order trajectory
sensitivities can be efficiently computed as a byproduct of
this underlying integration. Here, this efficient computation
is extended to third order trajectory sensitivities. Let s denote
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the current time step of numerical integration. Given the
trajectory sensitivities at s, we will compute their values at
s + 1. Let χsij , χ

s
ijk, and χsijkl denote the values of χij(t),

χijk(t), and χijkl(t), respectively, where time t corresponds
to time-step s. Similarly, let fsij , f

s
ijk, and fsijkl denote

the values of fij(x), fijk(x), and fijkl(x) at the value
of x at time step s. Let h be the integration step size.
For convenience, let Ms+1

im =
(
h
2 f

s+1
im − Iim

)
. We proceed

by integrating (13)-(15) of Section IV-A using trapezoidal
integration:

Ms+1
im χs+1

mj = −χsij −
h

2
fsimχ

s
mj

Ms+1
im χs+1

mjk = −χsijk −
h

2
fs+1
ilm χs+1

mk χ
s+1
lj

− h

2

[
fsilmχ

s
mkχ

s
lj + fsilχ

s
ljk

]
Ms+1
im χs+1

mjkl = −χsijkl −
h

2
fs+1
inmoχ

s+1
ol χs+1

mk χ
s+1
nj

− h

2

[
fs+1
inmχ

s+1
mklχ

s+1
nj + fs+1

inmχ
s+1
mk χ

s+1
njl + fs+1

ino χ
s+1
ol χs+1

njk

]
− h

2

[
fsinmoχ

s
olχ

s
mkχ

s
njf

s
inmχ

s
mklχ

s
nj + fsinmχ

s
mkχ

s
njl

]
− h

2

[
fsinoχ

s
olχ

s
njk + fsinχ

s
njkl

]
.

Note that these equations require multiplication of tensors
(which are multilinear maps and can be thought of as
higher dimensional matrices). The methods used for this
multiplication will be discussed in Section V. Numerical
integration proceeds by alternating between integrating the
underlying dynamical system one time step, and solving the
above systems of linear and multilinear equations using a
linear equation solver to integrate the trajectory sensitivities
one time step. To perform the integration, it is necessary to
establish proper initial conditions.

C. Initial Conditions

The system considered in Section V is initially at a stable
equilibrium point before being subjected to a large distur-
bance. We assume that z = x0(p) is an equilibrium point
and C1 function of parameter, so that f(z) = f(x0(p)) = 0.
Initial conditions for trajectory sensitivities of parameters are
trivial. We will obtain the remaining trajectory sensitivity
initial conditions by repeated differentiation of the equation
f(x0(p)) = 0 with respect to components of the parameter
portion of the initial condition, so for j, k, l, o > n, and
rearranging the terms:

fil(z)χlj(0) = 0

fil(z)χljk(0) = −film(z)χmk(0)χlj(0)

fin(z)χnjkl(0) = −finmo(z)χol(0)χmk(0)χnj(0)

− finm(z)χmkl(0)χnj(0)− finm(z)χmk(0)χnjl(0)

− fino(z)χol(0)χnjk(0).

Initialization is carried out by first numerically solving
f(x0(p)) = 0 for the initial equilibrium point x0(p), and
then solving the linear and multilinear equations above using

P2 P3 V2 V3 D2 D3 H2 H3 X12 X23

1 0.5 1 0.9 0.3 0.2 0.3 0.2 0.4 0.5

TABLE I
TEST CASE PARAMETER VALUES.

Fig. 1. Power system model used as the test case in Section V. An infinite
bus, which is held at constant voltage and can draw arbitrarily high power,
is connected to two synchronous generators.

a linear equation solver to obtain the trajectory sensitivity
initial conditions.

V. TEST CASE

The test case considered is a simple model of a power
system which consists of two synchronous generators con-
nected to two buses arranged radially, with an infinite bus
at the head of the feeder, as shown in Fig. 1. The infinite
bus is held at constant voltage of 1 per unit (p.u.) and can
draw arbitrarily high power to match the power production
of the two generators. Bus 1 is the infinite bus, generator 2
is connected to bus 2, and generator 3 to bus 3. The rotor
angle and angular velocity for generator 2 are given by δ2
and ω2, respectively, and δ3 and ω3 similarly for generator 3.
Let y = [δ2 ω2 δ3 ω3]ᵀ be the vector of state variables.
Let P2, D2, H2, and V2 be the mechanical power, damping
coefficient, moment of inertia, and voltage magnitude at
generator 2, and define P3, D3, H3, and V3 analogously for
generator 3. Let Xij denote the impedance on the line from
bus i to bus j. Parameter values used are given in Table I.
Let p = [P2 P3 V2 V3 D2 D3 H2 H3]ᵀ be the vector of
chosen parameters, and let x = [yᵀ pᵀ]ᵀ. Then the dynamics
of this system are given by:

ẋ1 = x2

H2ẋ2 = P2 −D2x2 − sin(x1)
V2
X12

− (sin(x1) cos(x3)− cos(x1) sin(x3))
V2V3
X23

ẋ3 = x4

H3ẋ4 = P3 −D3x4

− (sin(x3) cos(x1)− cos(x3) sin(x1))
V2V3
X23

,

which can be written more succinctly as

ẋ = f(x). (16)

Let p0 be the parameter values given in Table I. There
exists a stable equilibrium point of (16) at y0(p0) =
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Fig. 2. For the test case of Section V, x3 = δ3 is shown as a function
of time for (a) the initial value P3 = 0.5 (green), (b) the critical value
P3 = 0.73 (blue), and (c) just over the critical value at P3 = 0.74 (red).
Disturbance occurs at t = 0 and stars indicate when it is cleared.

[0.6435 0 0.9250 0]ᵀ. For p reasonably near p0 there exists
a stable equilibrium point y0(p) of (16) close to y0(p0)
which can be found, for example, by solving f(y0(p)) = 0
using Newton-Raphson with initial condition p0. The system
is initially at the stable equilibrium point x0(p), then the
line between buses 1 and 2 trips out of service for a
duration of 0.8 s. The disturbance is modeled by setting
the term sin(x1) V2

X12
to zero in equation f2, leaving the

other components of f unchanged. Before and after the
disturbance, the system dynamics are given by (16).

Fig. 2(a) shows x3 = δ3 as a function of time for p =
p0. Note that the system is initially at a stable equilibrium
point. Then the disturbance occurs and the angle δ3 deviates
far from equilibrium. After 0.8 s the disturbance is cleared,
normal system dynamics are restored, and the system evolves
until δ3 returns to its prior equilibrium value. This picture is
typical for cases in which the system is able to recover from
the fault.

In order to apply the algorithms of Section III, numerical
computation of the trajectory sensitivities as described in
Section IV is necessary. This computation required ten-
sor multiplication operations and solutions of multilinear
systems of equations. These were performed by reshaping
higher dimensional tensors into matrices, performing matrix
multiplication or solving a linear system of equations, and
then reshaping back into higher dimensions. Such techniques
work due to multilinearity of tensors.

A. One-Dimensional Parameter Space

For each pi ∈ p, the algorithm detailed in Section III-
A was applied to find the nearest critical parameter value
of pi. There were some parameters, namely H2, H3, and
D3, where varying just one at a time was not sufficient to
cause the system to fail to recover from the fault (for positive
values of the parameters, as is required physically). In these
cases, the algorithm attempted to send the parameter values
towards zero or negative, so it was quickly clear that they
were unable to induce system non-recovery.

0.5 0.55 0.6 0.65 0.7 0.75
P3

0

0.01

0.02

0.03

0.04

0.05

G
(P

3)

Fig. 3. Computation of critical parameter value for P3 using the one-
dimensional parameter space algorithm of Section III-A. Iterations begin in
the top left and proceed towards the bottom right. Rapid convergence to the
critical parameter value is observed.

Among the remaining parameters, p = P3 is representative
of the observed behavior of the algorithm. Fig. 3 shows
the convergence of the one-dimensional parameter space
algorithm for p = P3. Although the critical value of P3

is about 50% larger than its initial value, convergence to its
critical value is rapid and monotonic. At the final iterate,
G(P3) < 10−5. Fig. 2 shows that the trajectory correspond-
ing to the critical parameter value of P3 = 0.73 p.u. is
in fact marginally stable. More generally, for each pi ∈ p
(other than those mentioned above which could not drive the
system to non-recovery), rapid, monotonic convergence to
the corresponding critical value was observed. Each iteration
of the algorithm took approximately 2 s, and the algorithm
converged in 6 – 10 iterations for each case, for a total
runtime of 12 – 20 s.

B. Multi-Dimensional Parameter Space

Several choices of multi-dimensional parameter spaces
were tested. The weighting matrix A was set to the identity
matrix in all cases. The initial parameter values p0 were
taken from Table I. First, the choice p = pi for each i was
made to confirm that the multi-dimensional parameter space
algorithm of Section III-B gave the same critical parameter
values as the one-dimensional parameter space algorithm of
Section III-A. Next, the following three sets of parameters
were considered:

S4 := {P2, P3, V2, V3}
S6 := {P2, P3, V2, V3, D2, D3}
S8 := {P2, P3, V2, V3, D2, D3, H2, H3}.

Note that S4 consists of all the parameter values that power
system operators can select during real-time operation, S6

consists of S4 together with the parameter values that can
be tuned by control engineers (namely, the damping that is
a result of controller design), and S8 consists of S6 together
with the remaining generator parameter values.
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Parameter Set Objective Function Value
S4 0.0075
S6 0.0062
S8 0.0053

TABLE II
VALUES OF THE OBJECTIVE FUNCTION (4) FOR THE CRITICAL

PARAMETER VALUES OBTAINED BY THE MULTI-DIMENSIONAL

OPTIMIZATION ALGORITHM FOR THE PARAMETER SETS S4 , S6 , AND S8 .
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3
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Initial Values
S4 Critical Values
S6 Critical Values
S8 Critical Values

Fig. 4. The state x3 = δ3 is shown as a function of time for (a) the
initial parameter values (green), (b) the critical values for S4 (cyan), (c) the
critical values for S6 (blue), and (d) the critical values for S8 (magenta).
Disturbance occurs at t = 0 and stars indicate when it is cleared.

We chose ε = 10−5 for the constraint (5). Then, the multi-
dimensional parameter space algorithm converged for S4 in
9 iterations, for S6 in 9 iterations, and for S8 in 8 iterations.
At about 2 s per iteration, runtimes varied over 15 – 20 s. Let
p∗4, p∗6, and p∗8 denote the critical parameter values obtained
via this algorithm for S4, S6, and S8, respectively. Then

p∗4 =
[
1.0657 0.5651 0.9198 0.8986

]ᵀ
p∗6(1 : 3) =

[
1.0555 0.5549 0.9352

]ᵀ
p∗6(4 : 6) =

[
0.8991 0.2618 0.1736

]ᵀ
p∗8(1 : 4) =

[
1.0466 0.5462 0.9489 0.8992

]ᵀ
p∗8(5 : 8) =

[
0.2648 0.1751 0.2767 0.1647

]ᵀ
.

The parameter values satisfy G(p∗4) = G(p∗6) = G(p∗8) = ε,
so they are all critical values. Furthermore, Fig. 4 shows
that the trajectories corresponding to these critical values are
marginally stable.

The goal was to obtain critical parameter values which
minimized the objection function (4). Table II shows the
values of the objective functions at p∗4, p∗6 and p∗8. As ad-
ditional parameters are introduced, more options for critical
parameter values become available, some of which may be
closer to p0 than the previous options. Consequently, the
objective function value, which measures the distance of the
chosen critical parameter value from p0, decreased from S4

to S6, and again from S6 to S8. Overall, for all the chosen
combinations of parameters, the multi-dimensional parameter

space algorithm converged rapidly to a critical parameter
value which appears to be the closest critical parameter value
to p0.

VI. CONCLUSION

Novel algorithms for efficient numerical computation of
critical parameter values have been developed. In particular,
the critical parameter values nearest to a specified set of pa-
rameters were computed for both one and arbitrary parameter
space dimensions. Unlike prior work, these algorithms do
not require the existence of energy functions, do not assume
parameter independent post-disturbance dynamics, and do
not require identification of a particular unstable equilibrium
point in state space. Consequently, they represent practical
algorithms for critical parameter value computation. Compu-
tation of third-order trajectory sensitivities was derived for
the algorithms. The algorithms were successfully validated
on a simple power system model. Future work will involve
extending the algorithms and theory to systems of differential
algebraic equations.
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