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Abstract—Short-term household electricity load forecasting is
important for utility companies to ensure reliable power supplies.
Traditional methods for load forecasting relied on historical
records from one single data source and have limitations with
insufficient or missing data. Recently, an emerging family of ma-
chine learning algorithms, multi-task learning (MTL), have been
developed and have the potential for load forecasting. By MTL,
the electricity consumption data from multiple communities can
be fused to improve forecasting accuracy. However, appropriate
modeling of the relatedness to enable the between-community
knowledge transfer remains a challenge. This paper proposes
an improved MTL algorithm for a Bayesian spatiotemporal
Gaussian process model (BSGP) to characterize the relatedness
among the different residential communities. It hypothesizes on
the similar impacts of environmental and traffic conditions on
electricity consumption in improving short-term load forecasting.
Furthermore, the paper proposes a low ranked dirty model
(LRDM) along with an iterative algorithm to improve the learn-
ing of model parameters under an MTL framework. This paper
used a real-world case study from two residential communities
in Tallahassee, Florida, to demonstrate the method effectiveness.
The proposed method significantly outperforms state-of-the-art
forecasting methods and effectively capture the relatedness to
provide between-community knowledge transfer compared with
other MTL methods.

Index Terms—Gaussian Process, Low Ranked Model, Multi-
task Learning, Electric Load Forecasting, Power Distribution,

Transportation Network.
NOMENCLATURE

ABBREVIATIONS

BSGP Bayesian spatiotemporal Gaussian Process

GP Gaussian Process

LRDM Low ranked dirty model

MT-BSGP Multi-task Bayesian spatiotemporal Gaussian Pro-
cess

MTL Multi-task learning

STL  Single-task learning

LIST OF VARIABLES

B Basis vectors

P Group sparse component

Q Low-rank component

B Coefficients of input variables for all communities
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Correlated stochastic process
Coefficients of the norms
Mean shift or trending patterns
Decay parameter at each time stamp
Variance of the noise
p  House-invariant common variance at each time stamp
Number of time points
Humidity
Index for the community
M Number of houses
Time lags
Solar radiation
Temperature
T Traffic counts near the residential community
Number of communities
Noise
Coefficients of input variables
Electricity consumption
Index for houses
Time
Input variables
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I. INTRODUCTION

OAD forecasting is essential for balancing the power

supply and demand to avoid instabilities in the grid.
The short-term load forecasting focuses on forecasting the
electrical load for one hour to one week can guide utility com-
pany and power plants to regulate the electricity generation
to meet market demands by producing as-needed energy. For
example, it was reported that a 1% reduction in forecasting
error reduced 10 million pounds in the operating cost per year
for one utility in the U.K. [1]. The forecasting also allows
the utilities to adopt dynamic pricing schemes in electricity
markets. However, load forecasting is still challenging due
to the complexity of the electric grid and uncertainty in the
electricity consumption [1]. Improving the load forecasting
has been possible due to the implementation of advanced
data acquisition systems such as smart meters along with
the development of new data analytic techniques. Recently,
machine learning-based methods achieve more attention in the
load forecasting. For example, the autoregressive integrated
moving average (ARIMA) models are among the most used
techniques, as shown in [2]-[3]. Literature shows that the mul-
tilinear and Gaussian Process regression are proper approaches
for load forecasting [4]. Some researchers utilized fuzzy logic
for the short-term load forecasting [5]. In the field of machine
learning, support vector regression (SVR) [6], artificial neural
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networks (ANN) [7]-[8], and deep neural networks (DNN) [9]
are highly used methods of load forecasting.

It is worthwhile mentioning that the majority of available
machine learning based load forecasting works including the
ones that are mentioned so far fall under the category of
single-task learning (STL) methods, in which one model is
trained over one data source. Usually, in the STL methods,
the forecasting performance is affected by missing data or
erroneous measurements over a certain period or the low
measurement resolution.

Recently, a new opportunity emerges to improve the load
forecasting by fusing the electricity consumption data from
multiple data sources in the multi-task learning (MTL) frame-
work, in which multiple models are jointly learned over
multiple data sources. There exist a small number of papers
using the MTL framework for load forecasting. Zhang et al.
[10] focused on the utility-level load forecasting using multi-
task Gaussian Process. More recently, Fiot and Dinuzzo [11]
used a kernel-based MTL method called Low-Rank Output
Kernel Learning (LR-OKL) for mid-term load forecasting
at the distribution substation level. In the field of machine
learning, a regularization-based strategy is commonly adopted
to extract the similar knowledge or variation patterns among
multiple data sources to improve learning performance (as
called relatedness). The method introduces a certain regular-
ization term, which applies a weighted penalty term to the
learning of objective function such as the minimization of the
least square of forecasting errors [12]-[14]. MTL has also been
developed to deal with the MTL of Gaussian Process (G P)
models [15]. Although the prior research has demonstrated the
potential of the MTL methods, finding the relatedness among
the data sets from multiple tasks is still a huge challenge. A
summary of the load forecasting methods with their strengths
and weaknesses is shown in Table I.

Regarding the application point of view, a significant body
of load forecasting studies use only historical electricity con-
sumption data to perform forecasting [16]. Later on, elec-
tricity load forecasting studies went beyond the methods
that only consider historical electricity consumption data and
included weather conditions to increase the accuracy [17]-
[20]. The emergence of the system of systems and multi-
network theories plus the advent of “smart city” concept,
encouraged new studies that consider the interdependency
and interconnectivity of electricity networks to the other
infrastructure networks [21]. The model postulation in this
paper is inspired by [2] and [22] that presented a causal
inference framework to characterize the relationship between
traffic load and electricity consumption in power distribution
networks. The [2], [22], [23] performed combined electricity
and traffic load forecasting and showed that adding traffic
data and mobility information as a predictor improves the
accuracy of electricity load forecasting. Therefore, in this
paper, the combination of electricity consumption data, traffic
data, and weather parameters is adopted as the predictor for
short-term electricity load forecasting. In the context of smart
city solutions, there are some recent works on the household’s
electricity load forecasting, e.g., [24]-[25]. These methods are
under the STL framework, which is more sensitive to missing

data or measurement resolution.

This paper aims to improve the short-term load forecasting
based on multi-task learning (MTL) framework, in which
one “task” refers to the learning of load forecasting model
for each residential community, and “multi-task” means that
the load forecasting models for multiple communities are
jointly learned by fusing the data from these communities.
Specifically, the training data from multiple residential com-
munities in a city under similar conditions or setups are fused
to jointly learn an inter-community relatedness by exploring
similarities in the data patterns across communities. As such,
it is feasible to utilize the relatedness concept to characterize
the similar effects of environmental and traffic conditions on
the electricity consumptions for multiple residential commu-
nities. In the mornings when residents leave for work, there
are heavier traffic counts near the residential communities,
resulting in less household electricity consumptions until
the afternoon when people return home. Furthermore, the
electricity consumptions vary with the ambient temperature
due to air conditioning loads. The effects of environmental
and traffic data on electricity consumptions share similarities
across different residential communities in a city. In addition,
there may exist some community-specific information such as
local spatiotemporal variations within a community that is not
shared across communities. The contributions of this paper
is summarized below by addressing the following research

gaps, i.e., Table I
LoAD FORECASTING METHODS

Paper || Method Type Strengths ‘Weaknesses
Solid underlying theory,
[2]-[3] ARIMA Single-task | Usable for different time- | Needs enough data
series
Multilinear . straightforward to under- pe“".""s poorly. Wth
[4] rearession Single-task stand non-linear  relationship
& and lack of data
5] Fuzzy Sinele-task Interpretability and sim- | non-robustness and arbi-
Logic © plicity trary of rules
Model non-linear decision Memory intensive. trick
[6] SVR Single-task | boundaries, have many Y ’ Y
to tune
kernels
Detect nonlinear relation- E«;I:/:JTlina;::ullt;i p:;r:]e:
[71-[9] NN Single-task | ships, easily update and . . .
adapt with new data putationally intensive to
train
Performs well with small nMoiri]}:]zi‘:ihe izl;;)l:rex?alg‘:
[10] MTL of GP | Multi-task | data, straightforward to Share N
use Gaussian (kernel)
assumption
. Dependent on the kernel,
[11] LR-OKL Multi-task ‘Il"c:"forms well with small non-separating shared and
At non-shared information

1) From the methodological point of view: (a) The tra-
ditional MTL methods, including regularization-based
methods [12]-[14] and kernel-based methods [11],[15],
do not distinguish between the general trend, which can
be commonly shared across communities, and the local
spatiotemporal variations; (b) The regularization-based
MTL methods [12]-[14] characterize the relatedness by
introducing some regularization terms in their objective
function based on either a “common set of features”
or ‘“shared low-rank” structures, which only partially
capture the relatedness among different tasks. There-
fore, this paper proposes a Low Ranked Dirty Model
(LRDM) for the Multi-Task Bayesian Spatiotemporal
Gaussian Process (MT-BSGP) to capture more inter-
community relatedness using both a “common set of
features” and a “shared low-rank structure” simulta-
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neously. Furthermore, this paper proposes an iterative
algorithm to simultaneously estimate parameters of the
trend model and Gaussian process.

2) From the application point of view, there is a lack
of research on exploring the value of using similar
effects of time-varying environmental and traffic condi-
tions on the electricity consumption to model the inter-
community relatedness for short-term load forecasting.
This paper proposes a load forecasting model solved by
MTL through characterizing such similar effects as the
inter-community relatedness.

The remainder of this paper is organized as follows. Section
IT explains the proposed MT-BSGP and learning algorithm
in detail. Section III describes a real-world case study based
on load forecasting for the City of Tallahassee. Section IV
discusses the results, and Section V concludes the paper.

II. MULTI-TASK BAYESIAN SPATIOTEMPORAL GAUSSIAN
PROCESS (MT-BSGP)

This section proposes an MT-BSGP for load forecasting.
The structure of a forecasting model fusing environmental
and traffic data for a community is presented in Section II-
A, and Section II-B further formulates a learning problem
for estimating the MT-BSGP. Section II-C overviews exist-
ing regularization-based MTL methods. In Section II-D, the
LRDM is developed to improve the learning performance
for MT-BSGP. The LRDM is implemented by an iterative
algorithm to learn the model parameters under the MTL
framework in Section II-E.

A. Overview of the Forecasting Model For a community

The electricity consumption (E) can be forecasted for a
community as follows:

E=p+n+e, (1)
where p captures the mean shift or trending patterns in
electricity consumption data and 7 characterizes a correlated
stochastic process in the data, which reflect a system-level
correlation among the data that can be used to improve the
forecasting accuracy.

There are a number of ways to expand 7. One common
method is to cluster the consumers according to their elec-
tricity consumption patterns by grouping similar or correlated
behaviors within one cluster. As such, n can be expanded as
a predictor based on the consumers’ data within the same
cluster [26]. More recently, literature have reported that 7 can
be potentially characterized by a spatially correlated process
if consumers exhibit spatially clustered patterns. The reasons
include (1) the topological layout of the electricity networks
and feeders’ laterals connectivity. The loads at nearby feeders
are likely to be more similar than those that are farther apart
[27] and (2) the demographic and topographic characteristics
of residential neighborhoods including land use, type of build-
ings, size of buildings, landscape design, the income level of
households, leading to a spatially correlated process in the
household electricity consumption patterns. For example, most
of the buildings in a neighborhood follow similar designs and
footprints, and were built by the same developer and similar
construction materials [28] that make building to have similar

insulation, building envelope, etc. which leads to similar elec-
tricity consumption. The correlation in the consumer activities
further leads to statistically correlated electricity consumption
behaviors [27] since the consumer activities as a result of
similar environments and traffic/road conditions in the adjacent
neighborhood tend to be correlated.

The aforementioned reasons reflect system-level causes in
the human-power system contributing to the spatial dependen-
cies, which can be characterized by a combination of global
trend, a spatially correlated process (usually by Gaussian
process), and independent variation [29]. Thus, the model
above can be simplified into

E=u+GP +e, 2)
which is a Bayesian spatiotemporal Gaussian Process (BSGP)
model. One motivation for adopting this formulation is that
we may have to forecast the electricity load for a household
(location) with limited historical data or even without data to
predict. Most of the forecasting methods in the literature need
a certain number of historical recordings for the household
(location) of interest. BSGP model can perform forecasting for
the household without sufficient historical data by leveraging
the information from its neighborhood.

The mean p is commonly assumed as a linear model of vari-
ables that are correlated to the electricity consumption. Denote
s as the index for the location of each house and ¢ for time
then, the 11 can be expanded by: u(s,t) = >, > . X;;(s,t)5;.
The model postulation in this paper is also inspired by
the cause and effect relationship between transportation and
electricity networks provided in [2] and [22] by using these
two variables for load forecasting. Therefore, in this paper, X
can include the electricity consumption data, traffic near the
residential community (7'r), and weather parameters such as
temperature ("), humidity (H), and solar radiation (.5).

Furthermore, the socio-economic factors such as the number
of households and income level can also play an influential
role in load forecasting and can be potentially included in
the forecasting model. When such input data can become
available, they can be included in the model as a linear
term. Furthermore, the living standards can have an effect
on the average power consumption as well as the temporal
fluctuations in power consumption patterns. Thus, the average
living standard can also be included in the model postulation.
However, the living standards for all the households in the
communities in the short-term horizons are relatively constant
over time. Therefore, it does not affect the performance of the
proposed load forecasting method.

The vector E includes the coefficients of input variables. For
example, if there are M houses and 7 different time points,
the 14 can be expanded as follows, i.e.,

b)) =3 [(f}ﬁjms,t ) + BTt

i—1 L\ =1
+BpraHi(s,t) + Bpy3Si(s,t) + BpraTri(s, t)] ,

821,2,"',M, t:]-aQa"'vTv (3)
where n is the number of observations; the time lag p in the
time series model in Eq. 3 is determined by the Autocorre-
lation Function (ACF), and Partial Autocorrelation Function
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(PACF) to find how many previous observations are needed in
the model; and p + 4 is the number of variables. Moreover,
in Eq. 3, ﬁ = [51, e ,Bp+4] reflects the impacts of input
variables on electricity consumption.

The term “GP” in Eq. 2 is normally distributed with
a zero mean and variance-covariance matrix of Xgp as
Yap = (0gplt)exp(—(o[t)||si — s;|[*), ¢ > 0, where Xgp
is characterized by a house-invariant common variance at
each time stamp (02 p5|t) and a spatial correlation function
(k(si,s5:¢)). A squared exponentially correlated function
is usually chosen for k(s;,s;;¢), which includes a decay
parameter at each time stamp (¢|t) and the squared distance
between two houses (||s; — s;||?). For more details, please
refer to [30]. Furthermore, the term € in Eq. 1 is noise, which
is independent and identically distributed (i.i.d.) of a normal
distribution with a zero mean and a variance of o2.

In summary, the model postulation utilized the existing
conclusion from prior research [2], [22]. This paper focuses on
formulating a multi-task learning problem for load forecasting
based on this model and developing an effective algorithm to
solve the problem with improved accuracy as explained in the
following subsections.

Based on the model postulation, the overall framework of
the proposed MT-BSGP is illustrated in Fig.1. The MT-BSGP
includes the proposed LRDM for estimating overall mean
shift or trending patterns that are similar across communities,
a Gaussian Process that is community-specific and captures
the local variation and spatial dependency, and an iterative
estimation procedure between the LRDM and GP as indicated
by the circular arrow. The following three subsections describe
the procedures in more details.

Fig. 1. Schematic overview of the proposed MT-BSGP

B. The Proposed Multi-Task BSGP Structure

The estimation of BSGP can be improved by fusing the
data from multiple communities under an MTL framework.
This subsection presents a modeling structure of the MT-BSGP
by exploring the relatedness across different communities.
The inter-community relatedness is reflected by the similar
relationships between environmental factors/ traffic counts and
electricity consumptions (5). Therefore, the coefficients ﬁ in
the BSGP (in p) for different communities can be “similarly
related” under the MTL framework. Mathematical characteri-
zation of such relatedness will be presented in Section C. Also,
the G P term captures the spatiotemporal dependencies among
household electricity consumption data that are community-
specific. To characterize the spatial dependency, Gaussian

Process has been employed by prior research [31] for load
forecasting, and it provides an example platform to develop
the algorithm to solve multi-task learning for load forecasting
problems.

Assume that there are Z communities, and for community
I, 1 = 1,2,...Z, the proposed MT-BSGP has the following

model structure:  gimilarly related

~~
Ey =X o + GP1 + ey,

4)
EZ:XZ ﬂ} + GP2+€Z.

The MT-BSGP is estimated by two learning objectives
including (1) MTL of the “x” and (2) learning of the “GP”
separately within each community. The objective of MTL for
the p is to estimate the @, e ,5} simultaneously given the
data X on the environment, traffic, and historical electricity
consumption from each community as well as the assumed

relatedness between Bi, e ,6}. The objective for the GP is
to estimate the G P parameters given the data in each commu-
nity and the associated (;, [ = 1,---,Z, which is estimated

by the MTL. The learning objectives are summarized in Eq.
5, where a hat is placed on the top of each variable to be
estimated from data.

Obj. 1 (): To Jointly Estimate By, -+, Bz|(X1, -+, Xz)

Community 1: 6%p,, é1l(X1,61)

Obj. 2 (GP): To Estimate
a—éPZ7$Z|(XZ> ﬁ})
C. Review of Regularization-based MTL methods o)

This subsection reviews the formulation of the
regularization-based MTL methods for a linear regression
model such as p and summarizes two common norms as the
regularization terms in the learning objective. The general
formulation of the regularization-based MTL is to solve the
following problem, i.e.,

min (X8, ) + A(norm(3)). ©)
where 3 = [f1,- -, 6}] e RP+9XZ js a group of coefficients
in the p model for all communities, and A is a regularizer

coefficient. Also, ¢ denotes a least square loss function over
all the communities as follows:

Z mny
_ L oixig _ iy

UXB,p) = ;; 7, (X B — w')”, (7
where n; is the number of observations for community [
and Xj is the j'" observation of X in community /. The
norm(3) in Eq. 6 is introduced to capture the relatedness
of © model among all communities. State-of-the-art research
presented different norms to characterize the relatedness from

the following two perspectives:
1) Common Set of Features for All Communities: The
norm(8) = ||B||1,00 (which is called I o) is introduced as

Community Z:

1Bll1.00 = > maz(1Bial, -+, 185z]), (8)

J
where 3;}, is the the 5" row and k*" column of B € RPT4)xZ,
The [y o regularizer introduces a group-sparse structure to
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conduct variable selection for the ;» model among all commu-
nities. It penalizes the sum of the maximum absolute values of
each row to encourage each row of 3 to have zero elements.
Therefore, the {1 , regularizer can find a common set of input
variables that have an effect on the electricity consumption
data among different communities.

2) Shared Low-Rank Structure d‘or All Communities: fu f

rank(B)
1Bl = > i), ©)
i=1
where o;’s are singular values of the matrix 3 obtained by a
singular value decomposition.

The two types of norms capture the information on the inter-
community relatedness from two different perspectives. By
combining the two types of relatedness information, this paper
develops a new method to improve the MT-BSGP modeling
in the next subsection.

D. The Proposed LRDM for Capturing Relatedness

More recently, Jalali et.al. [12] proposed a Dirty model by
decomposing the variables coefficients (ﬁl in Eq. 4) into a
group sparse component (Pl) and a sparse component (Ql)

as: - - - - = 14
Bl:B+le -PvaleRp ;

by which the penalization using the sparse component @l deals
with community-specific variations while that using the group
sparse component ]31 aims to capture the relatedness among
the model estimations for different communities.

Inspired by the “Dirty” model and two types of norms to
capture the relatedness information, this paper further develops
a low-rank structure for the matrix Q} to incorporate more
inter-community relatedness information that could not be
captured by the group sparse component, leading to a low-
ranked version of dirty model (LRDM). The objective of the
LRDM is proposed as follows:

X(P+Q), ) + Ml P10 + X2|Qll,

(10)

min (11)
where each column of P and Q corres_ponds to a community,
ie, P = [Pl, PZ] and Q = [Q1, - ,QZ] and 8 =
P +@Q. Moreover, A and \; are the coefficients of the norms.

The structure of 3 in the proposed LRDM can be illustrated
in Fig. 2. The l; o norm of the group sparse component
P attempts to find those input variables that have similar
effects on the electricity consumptions across communities by
encouraging the entire rows of those variables that do not have
the similar effects on the electricity consumption to have zero
elements. Thus, the group sparse component is to constrain all
models to share a common set of features (input variables).

The [, norm of component @ provides a low-rank structure
that has common basis vectors shared across multiple commu-
nities. Suppose that rank(3) = v. The component Q can then
be represented on a basis vector multiplied with a coefficient
matrix as Q = BC7T where B = [b} e ,b_,;} e Rp+4xv
and C = [¢;5],i=1,---,Z and j = 1,--- ,v. The basis
vectors B span a low-dimensional subspace of matrix Q
and capture the inter-community relatedness. The coefficient
matrix C' can be different for different communities.

Therefore, the proposed LRDM aims to combine the two
types of norms as described above. Specifically, we propose
that integrating of [ o and [, norms can increase the chance
of capturing more shared information among multiple commu-
nities and can outperform the existing MTL methods which
only utilizing either {; o, or I, for capturing the relatedness.
A real-world case study will be conducted in Section III, and
the results in Section IV-C will validate the effectiveness of
combining both norm structures in improving load forecasting
accuracy.

Fig. 2. Structure of the model coefficients 3 in the proposed LRDM

The proposed LRDM in Eq. 11 is an unconstrained convex
optimization problem whose function is non-smooth. This non-
smoothness exists in the [, and [; , creating a challenge
in solving the LRDM problem in Eq. 11. One method is to
use the Accelerated Proximal Method (APM) [14] due to its
optimal convergence rate and its capability to deal with large-
scale non-smooth optimization problems [33]. For more details
on the APM procedures, please refer to [14] and [33].
Accuracy of the LRDM: This section also briefly estimates
a theoretical boundary for characterizing the accuracy of the
LRDM. Consider the optimization problem of the Eq. 11 for
l > 2and n > 1 and the same sizes of training data for all
the tasks. Also define the following parameters, i.e.,

(p+4)+t (12)

ﬁ. . -
where ¢ > 0 is a universal constant. Then, with a probability of
at least 1 — ? exp(—é(t— (p+4)log(1+ ﬁ))) for a global
minimizer Q and P in Eq. 11 and any P, Q € RPtH*Z; 3
theoretical boundary can be derived as:

zZ zZ

1 .
ZEHXz PHrQl)*MHF 1+ me Z*HXZT(PHLQI) pull
=1 "

G+ 27(3 i, )
X0 "R )

Z TP , _(13)
where > " || Xi" (P + Q) — m|| is the loss function of
the estimated model and inf 5 5 SO AIXT(P+ Q) -
i ||% reflects the performance of the theoretically best n;odel

1y2(_ 21
2 1+ 3 (Gt +
%) is an adjustment term with a constant v > 0 and
rank(Q) < r and |C(P)| < c. Also, C(P) is defined as
the set of indices corresponding to the non-zero rows of the
matrix P, and |C/| denotes the number of elements in C. The
parameters k1 (c) and ko(2r) are defined as:

(by infimum of the loss function) and
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ALGORITHM 1: 10-fold Cross Validation for finding the best
values of A1 and A2

1) Imput Trr = {X, Y} : Training data; T'ss = {XS, K} : Testing data;
A= [A11, 0, Aims A2 = [Aar, o, Ao
2) Find an equal partition of [Trry,--- ,Trrio] of all
observations in Trr
3) For i = 1:m (number of suggested values for A\; and X»)
10-fold cross validation:
a) For k € {1,--- ,10}

e Define 5, = {SX,SY} where Sy, = Trr \ Trry,
e n = length(Trrk),
o BUM) — LRDMFit(A1;, A2i; Sx, Sy),
o pred™ = predict LRDM (81", Trry),
o Bri =\/(X0, (pred™ (2) — Trr(2))?) /m,
b) End For
o) Compute Er'® = a'ue:age(Em),

4) End For
5) Obtain Ay« and Ay« by i* = argmin {E_r(i)},

e o X(P-Pr@-Q)Ir
(P-P),(Q-Q)cR(re) VZn|(P — P)opylico
) ) (14)

|X(P-P)+(Q—-Q))lr

. min
(P—P),(Q-Q)ER(2r,0)

/*62(27“) =

)

VZn|Q - Qll-

where X € RZ(P+4)x2n j5 3 block-diagonal matrix with its

l;, block formed by X; € RP+9X7 and the set R(2r,c) is

defined as:

R2r.c) = {V(P ~P)&(Q - Q) RV (P P)#0,(Q - Q) # o.,}
rank((Q — Q)) <2r, |C((P - P))| <ec.

. o . (16)
The proof the theoretical boundary is similar to a derivation

procedure in [14]. Due to the page limitation, the details
are omitted. Please refer to [12] and [14]. The numerical
estimation of the accuracy boundary is presented in Fig. 8§,
Section IV.C

E. Iterative Algorithm to Estimate Parameters of the MT-
BSGP

For establishing the MT-BSGP model, two types of pa-
rameters should be estimated for each community including
ﬁ_} in the p; and aé P and ¢; at each time stamp in GP,.
The challenge for the learning is that ﬁ_} should be jointly
estimated by the data from all communities under the MTL
framework, whereas the G P, is community-specific and should
be estimated from the data from community /. Any change in
the y; estimation directly impacts the G P, and vice versa. This
paper develops an iterative algorithm to jointly estimate all the
parameters in Eq. 5 for all communities.

The flowchart of MT-BSGP is summarized in Fig. 3, where
the superscript shows the number of iterations. According to
Fig. 3, in the initialization step, the parameters of GP and @
at the first iteration are assigned with zero values. Moreover,
a big number is specified for the conv at first iteration, and
a threshold for the conv is determined depending on the
desired accuracy. Also, some initial values are specified for

the A; (coefficient of the group sparse component) and A,
(coefficient of the low-rank component). In the training stage,
after partitioning the training data (7'rr) into ten equal subsets
(Trri,k = 1,---,10) and for any given A; and Ay pair
values, a 10-fold cross validation is performed. The 10-fold
cross validation is explained in Algorithm 1. According to
that, the LRDM is trained on nine subsets and then is tested
on the tenth subset. The error Ery is estimated by the root
mean square error (RMSE) for each value of A\; and Ay and
for each of those ten parts. The B s the average errors of
the E'rj; over those ten parts (iterations) which is the average
error of the LRDM with the chosen A\; and A,. This process
is implemented for all the m suggested values of A; and As.
Finally, the minimum Er(l) is selected, and it determines the
best values for the A\; and As.

The iterative procedure for learning the model parameters
begins after determining the A; and A, in the training part.
In iteration j, the p model is updated by subtracting the
Gaussian Process obtained in iteration j—1 from the electricity
consumption data, and the coefficients ,@’s are estimated by
using the proposed LRDM. A convergence test is then run to
check the convergence of the u. The convergence is judged
based on whether the changes of the coefficient vectors are
within a predefined threshold (e¢). Otherwise, the algorithm
updates G P by subtracting the estimated p at iteration j from
the electricity consumption data (Y;) before proceeding to the
next iteration. This process is run until the convergence test
is passed. Finally, the error is obtained by comparing the
forecasted electricity consumption with true values.

. 5
Performing 10-fold Cross Training Training = { X,V }; |3,
Validation: For finding the best Testing= { X, Y, }; |§&
7 =
values for 4 and 2 A= (1 oo 5 o
l Jo=dot, o dom | | B
3 o= 3 8| |\&
- q j=i+1 =1.1;
T={X.) }; = szl;
1.2, cony = 1000;
!
A
)
Estimate ﬁi,m: Trend= _ o
i =XB, " prediction of 7 —| Prediction of
Using the proposed LRDM et ! 'X A GP) on X,
¥ GP/, gn2%
Obtain: P—
4 =
conv =3B - Final = Trend + GP
; 7
No | GPi=vi—fi, a
conyv < € j S'
(]
viel,....Z
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Fig. 3. Flowchart of the proposed MT-BSGP
III. CASE STUDY

The proposed MT-BSGP model is validated by the real-
world data from two residential communities in the City of
Tallahassee, Florida. The electricity consumption data (kWh)
were measured remotely every half an hour and stored by
the Meter Data Management System (MDMS) of the City
of Tallahassee Ultilities. Traffic data were obtained from the
Florida Department of Transportation (FDOT) and the City of
Tallahassee. The FDOT has six different Telemetered Traffic
Monitoring Sites (TTMS) in the city storing traffic counts
every half an hour continuously, and the City of Tallahas-
see collects traffic data on local roadways only for specific
locations and days. Also, the environmental data including
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temperature, humidity, and solar radiation [35] are available
through public records for the selected communities.

For the sake of data anonymity and privacy protection,
the two selected residential communities in Tallahassee is
referred to as the Northeast community and Southeast com-
munity in this paper. The measurements in the Northeast and
Southeast community include the electricity consumption and
environmental data that were collected every half an hour
during October, November, and December of 2015 for 50
houses. Also, traffic counts sampled every hour was collected
from the same area and used as a predictor variable. The
Northeast community has a relatively less amount of data
that were collected only at locations with traffic detectors
on certain days of 2015. The Northeast only has the data
for 18 weekdays in October, November, and December of
2015 for ten houses. Furthermore, all the available data for
the Southeast community (50 housesx92 daysx48 half-hour
increments = 220800 observations) and 17 weekdays for
the Northeast community (10 housesx 17 daysx48 half-hour
increments = 8160 observations) are chosen as the training
data. The last remaining weekday (the 18th day which is
Monday 14th Dec. 2015) for the Northeast community (10
housesx 1 day x48 half-hour increments = 480 observations)
is chosen as the testing data, which is outside the training data.

Fig. 4 shows the two communities chosen for the case study.
It should be pointed out that the type of loads in both selected
communities are townhouses with air-conditioning which is
the majority of the residential loads category in the State of
Florida.

Fig. 4. Two selected communities in the city of Tallahassee, FL. Note that
the Northeast community has less measurement locations (red dots) compared
with the Southeast community

IV. RESULTS AND DISCUSSIONS

This section discusses the short-term load forecasting results
obtained from the proposed MT-BSGP. First, to validate the
spatial correlation of the electricity consumption in the North-
east community, we have calculated two statistics of Moran’s
I [36] and Geary’s C [37]. The Moran’s I p-value for the
Northeast community is 0.04007 and the Geary’s C p-value is
0.04607. These results ensure that a spatial dependency exists
at a 5% significance level in the electrical consumption data
in the case study. Furthermore, after clustering the electrical
consumption at the household level based on customer’s
consumption behaviors, the results show that there still exists

spatial dependency within some clusters, thus demonstrating
the effectiveness of adopting a Gaussian process model.

The model inputs for this case study are historical electric-
ity consumptions, temperature, humidity, solar radiation, and
traffic counts. A time lag two (p = 2) was determined for the
time series modeling by examining ACF and PACF plots at a
5% significance level. In our case study, after performing the
10-fold cross validation, Ay = 100 and Ay = 300 are selected.
Moreover, the iterative algorithm is converged after 6 itera-
tions. In this paper, we use the root mean square error (RMSE),
and symmetric mean absolute percentage error (SMAPE) for

VES ) - 6P,
SMAPE = 100% 5~0 | %, where y(7) is the obser-

vation, §(¢) is the forecasted value, and n is the total number
of observations. It should be highlighted that the RMSE and
SMAPE reported in this paper are obtained by aggregating
the forecasting errors for all the houses in the Northeast
community.

error indexes as follows: RMSE =

A. Multi-task Learning vs. Single-Task Learning

This subsection first compares the MT-BSGP with the BSGP
that only relies on the data from one community, i.e., single-
task learning. Moreover, this subsection further compares the
proposed MT-BSGP with state-of-the-art electricity forecast-
ing methods including the autoregressive integrated moving
average with explanatory variable (ARIMAX) [2]-[3], support
vector machine (SVM) [6], random forest (RF) [38], and
neural network (NN) Regression [7]-[8]. All these methods
were implemented only in the Northeast community using
the same input data including electricity, weather, and traffic
counts. By contrast, the MT-BSGP explores the similar data
patterns from the Southeast community to supplement more
information to forecast electricity in the Northeast community.
RMSE and SMAPE obtained from these methods are shown
in Table II. Results show that the MT-BSGP reduced the
error by 34% compared with ARIMAX, 22% compared with
BSGP in single task structure, 20% compared with SVM,
17% compared with RF, and 15% compared with the neural
network. It should be noted that these improvements are not
only attributed to a combination of multiple data sources. Next
section will discuss this issue.

In this comparison, all the methods were tuned, and the
best parameters were selected for them. For example, for ARI-
MAX, the best model was selected by searching for possible
models in the auto function in the forecast package in R
programming language. For the SVM, the radial basis function
kernel was used, and the best parameters were obtained after
parameter tuning with 10-fold cross-validation. RF was imple-
mented in the randomForest package in the R programming
language after tuning the parameters. For the NN, a multilayer
perceptron approach (backpropagation) was used, and the best
initial values were determined after parameter tuning for the
hidden layers, the number of neurons in each hidden layer, and
the threshold for the partial derivatives of the error function
as stopping criteria. The best NN with three neurons in a
hidden layer, with a threshold equal to 0.01, and 1 x 107 as
the maximum number of steps is chosen.
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Table II
COMPARING LOAD FORECASTING ERROR (RMSE AND SMAPE) FOR
DIFFERENT SINGLE-TASK LEARNING METHODS

Method || Type [ RMSE [ SMAPE
ARIMAX || STL 0.6050 1.8553
SVM STL 0.4998 1.1613
RF STL 0.4815 13163
BSGP STL 0.5106 1.1438
NN STL 0.4697 1.2844
MTBSGP || MIL 0.3996 1.0772

For visualization, Fig. 5 compares the forecasted load
profiles for a house on a weekday by using MT-BSGP. The
key finding of this figure is that the MT-BSGP can effectively
capture trends of the load profiles of the households even for
some sudden jump in the load profile.

5
[~MT-BSGP~True Values|
4
3
S
2
1
0
0 10 20 30 40 50

Time (Half an Hour)
Fig. 5. Forecasted load profile of a weekday (14 Dec. 2015) for a random
house in the Northeast community

B. Multi-task Learning vs. Learning Based on Merged Data

The MTL is not as simple as combining the data from
multiple communities. Simply merging the multi-community
data ignores the community-unique information and between-
community difference, thus introducing the information that
may negatively affect the model learning process. The MTL,
however, explores the similar pattern in the data and dis-
tinguishes the shared information across communities from
community-specific information, thereby improving the learn-
ing accuracy. When two datasets share a certain amount of
similarities but also present significant dissimilarities, merging
those datasets in a single-task learning framework usually can
perform worse than treating them separately in a multi-task
learning framework [39]. This result was also reported by [40]
and [41] based on human activity and vehicle sensor datasets.

Fig. 6 compares the proposed MT-BSGP with the load
forecasting methods based on the merged data from two
communities. It can be seen that the MT-BSGP significantly
outperforms the competitive methods including SVM, REF,
and NN applied to the merged data. It is also noticed that
the learning by using the merged data did not significantly
reduce RMSE by comparing Table II and Fig. 6. The results
demonstrate the values of the MTL in exploring the inter-
community relatedness and knowledge transfer among differ-
ent communities to improve the forecasting accuracy.

C. MT-BSGP vs. State-of-the-Art MTL Methods

The proposed MT-BSGP learned by the LRDM and the iter-
ative algorithm was compared with three regularization-based
MTL methods including dirty model (Dirty) [12], sparse-low
rank (SLR) [13], and robust MTL (Robust) [14], and a kernel-
based MTL method called low-rank output kernel learning
(LR-OKL) [11]. The difference between the proposed LRDM

SVM RF NN  MT-BSGP
Different Methods
Fig. 6. Comparing the MT-BSGP with state-of-the-art forecasting methods
using the merged data from two communities (number of samples: 480)

and the aforementioned regularization-based MTL methods is
shown in Table III. Also, the results obtained by using the
aforementioned MTL methods for the case with and without
GP are presented in Table IV. It is observed that adding the
G P to the regularization-based MTL methods can significantly
improve the forecasting accuracy i.e., MT-BSGP reduced the
RMSE by 22% compared with SLR+G P. Comparing the Dirty
model vs. the proposed LRDM shows that LRDM outperforms
the Dirty model by 11%. This improvement implies that
adding the shared low-rank structure (l,) to the Dirty model
can significantly improve the accuracy, thus demonstrating
the contribution from the low-rank structure in improving
the forecasting accuracy. On the other hand, the comparisons
between the proposed LRDM and SLR/Robust methods, which
lead to 24% and 10% reductions in RMSE error, respectively,
indicate the significant contribution from the sparse structure.

Table III
DIFFERENCE BETWEEN THE PROPOSED LRDM AND COMPARED METHODS

Methods | Perspective | Norms

Dirty Model Common Set of Features 1,00

SLR and Robust Shared Low-Rank Iy

Proposed LRDM || Common Set of Features and Shared Low-Rank | /1 o, and [,
Table IV

COMPARING LOAD FORECASTING ERROR (RMSE AND SMAPE) FOR
DIFFERENT MULTI-TASK LEARNING METHODS

Method [ Type | RMSE | SMAPE
SLR MTL 2.077 29513
Dirty MTL 1.7635 2.7432
Robust MTL 1.7523 2.6819
LRDM MTL 1.5783 2.2364
SLR+GP MTL 0.5127 1.3384
Dirty+GP MTL 0.4728 1.1747
Robust+GP MTL 0.4635 1.1414
MT-BSGP (LRDM+GP) || MTL 0.3996 1.0772

Fig. 7 compares the forecasted load profiles of a randomly
selected house on a weekday by using MT-BSGP, BSGP,
with LR-OKL. Although LR-OKL demonstrates its significant
reduction of error compared with other methods as shown in
Table IV, the proposed MT-BSGP further reduces the RMSE
by 14% and better captures the temporal data variations.
Given the same data sources for MTL, the proposed MT-
BSGP also takes the advantages of the model structure, which
is decomposed into a p that captures the shared temporal
correlations among communities and a GP that models the
community-specific local variations. The model based on the
decomposition (¢ — GP) outperforms the integrated kernel
method adopted by LR-OKL to capture the spatiotemporal
correlations among different tasks since it is more challenging
to select a proper format for the kernel function in the LR-OKL
method. The comparison also shows that the highest error
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occurred in the peak hour (33rd half an hour). This result is
not surprising since the peak load is a relatively rare event that
happens once a day with a short duration time. Therefore, load
forecasting usually has more errors for the peak load compared
to non-peak loads. Fig. 7 also shows that MT-BSGP overall
performance is better than other methods throughout the day.
Even for the peak load, the MT-BSGP forecasting (blue line or
V style) is the closest to the true peak load curve (black line
or o style) compared with the other methods. Fig. 8 further
compared the standard deviation of the proposed MT-BSGP
vs. other MTL methods. It can be seen that MT-BSGP has the
smallest mean RMSE and standard deviation.

3 T
~MT-BSGP
LR-OKL
ol [TBSGP
~True Values
=
X

0 10 20 30 40 50
Time (Half an Hour)

Fig. 7. Foretasted load profile of a weekday (14 Dec. 2015) for a random
house in the Northeast community

|_

RME)E
HLLE
HLLE

Dirty Robust LRDM MT-BSGP
Different MTL Methods

Fig. 8. RMSE obtained from different MTL methods after 15 repetitions

SLR

D. MT-BSGP vs. Clustering-based Method

In this subsection, in order to exhibit the superiority of
the proposed MT-BSGP over clustering-based methods, we
compare the BSGP and MT-BSGP with one of the most recent
paper [26] in the clustering-based load forecasting models.
According to [26], the method is run for different k (e.g.,
varying from k£ =1 to 10) and the best % is chosen based on
the least error obtained. After applying K-means clustering
for a given k, LS-SVM will be utilized to each cluster.
The forecasting result for each cluster is then obtained and
combined to obtain the final estimation result. The k value that
gives the highest accuracy should be selected to determine the
number of classes.

The above procedure is run for both Southeast and Northeast
communities. The houses in the training data (50 houses for
the Southeast community and 10 houses for the Northeast
community) are clustered by the k-means algorithm based
on their load consumption patterns for different specified “k”
ranging from 1 to 10. As such, for each “k” specified, all
houses are clustered to k clusters. Then, for each cluster, LS-
SVM is trained and is tested for the next-day forecasting and
the RMSE is recorded. Finally, the overall error is aggregated
for each “k” and the “k” that leads to a minimum error
(obtained by LS-SVM) is selected. Based on this procedure
similar to [26], k = 5 is selected for the Southeast community

and k£ = 4 is selected for the Northeast community. Then,
we have checked the spatial dependencies of all the clusters
obtained from the Southeast and Northeast communities by
Moran’s I and Geary’s C. The results show that some clusters
including clusters 4 and 5 in the Southeast and clusters 1 and
3 in the Northeast community did exhibit spatial dependency
within the clusters. Therefore, for those clusters that have the
spatial dependency in the Southeast and Northeast communi-
ties, we compare the k-means based LS-SVM with the BSGP
and our proposed MT-BSGP in Table V.
Table V

ERRORS OBTAINED FROM THE BSGP AND MT-BSGP WITH THE
K-MEANS BASED LS-SVM

Community| Clusters K-means Based LS-SVM BSGP MT-BSGP
RMSE SMAPE RMSE | SMAPE| RMSE | SMAPE

Southeast 4 0.5137 0.2618 0.5076 | 0.2033 | N/A N/A

5 0.3359 0.2525 0.3312 | 0.2021 | N/A N/A
Northeast 1 0.2251 0.5639 0.2119 | 0.5122 | 0.1893 | 0.4513
3 0.4764 0.8375 0.4614 | 0.7790 | 0.3335 | 0.6464

Note: N/A means not applicable since the Southeast community is the
source data source and the target of interest for forecasting is the Northeast
community with limited data.

The results shown in Table V indicate that BSGP can
improve the accuracy by 22% and 20% for clusters 4 and 5
in the Southeast community based on the SMAPE. Moreover,
according to the SMAPE, BSGP outperforms the K-means
based LS-SVM by 9% and 7% for clusters 1 and 3 in
the Northeast community. The results highlight that in some
clusters where spatial dependencies still exist, considering
the GP and spatial dependencies can improve the prediction
compared with the K-means based LS-SVM.

V. CONCLUSION

This paper proposes a multi-task Bayesian spatiotemporal
Gaussian Process (MT-BSGP) to capture the relatedness across
different residential communities in a city and the local spatial
variations between households to improve the short-term load
forecasting. To better capture the relatedness, a novel multi-
task learning approach, which is called low ranked dirty model
(LRDM) is proposed to improve the learning of the MT-
BSGP by employing the “common set of features” (/1 o norm)
and “shared low-rank” (I, norm) structures. Moreover, to
overcome the challenge in jointly estimating the parameters of
the LRDM and the Gaussian Process (local spatial variations)
an iterative algorithm is proposed. Based on the real-world
data from the City of Tallahassee, Florida, USA, the key
findings of this paper are as follows:

e The proposed MT-BSGP has a better performance than
traditional single-task learning methods including ARI-
MAX, BSGP, SVM, RF, and NN by 34%, 22%, 20%,
17%, and 15% respectively.

e The proposed MT-BSGP significantly outperforms state-
of-the-art load forecasting methods including SVM, RF,
and NN based on the merged multi-community data by
almost 20%, 18%, and 17% respectively.

e The proposed MT-BSGP outperforms the state-of-the-art
MTL methods (SLR, Dirty, and Robust) and a more re-
cently developed LR-OKL since it employs the “common
set of features” and “shared low-rank structure” simulta-
neously in the p which can be commonly shared across

0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2928275, IEEE

Transactions on Industrial Electronics

communities and by employing a u-GP decomposition
structure.

e The proposed MT-BSGP outperforms the clustering-
based methods such as K-means based LS-SVM since
the spatial dependencies may still exist in some clusters,
which only can be captured by GP in the MT-BSGP.

Future work will include the generalization of the proposed
MT-BSGP method to incorporate more environmental vari-
ables under different scenarios of multi-community related-
ness. In addition, the model-based strategy will be developed
by using the MT-BSGP to guide utility company and power
plants to regulate the electricity generation to meet market
demands by producing as-needed energy. In addition, dynamic
pricing schemes in electricity markets based on the proposed
load forecasting will be considered to improve energy utiliza-
tion and cost-effectiveness.
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