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Abstract—This paper proposes a Multi-task Logistic Low-
Ranked Dirty Model (MT-LLRDM) for fault detection in power
distribution networks by using the distribution Phasor Mea-
surement Unit (PMU) data. The MT-LLRDM improves the
fault detection accuracy by utilizing the similarities in the
fault data streams among multiple locations across a power
distribution network. The captured similarities supplement the
information to the task of fault detection at a location of interest,
creating a multi-task learning framework and thereby improving
the learning accuracy. The algorithm is validated with real-
time PMU streams from a hardware-in-the-loop testbed that
emulates real field communication and monitoring conditions in
distribution networks. The results showed that the MT-LLRDM
outperforms other state-of-the-art classification methods using
actual synchrophasor data achieved from a power hardware-in-
the-loop testbed.

Index Terms—TFault Detection, Power Distribution Networks,
Synchrophasors, Hardware-in-the-loop, Multi-task Learning,
low-rank structure.

I. INTRODUCTION

Electrical faults cause undesired abrupt changes in voltage
and current waveforms depending on the fault location, type,
and grid conditions [1]. It is worthwhile mentioning that the
smart grid revolution has created a paradigm shift in distri-
bution networks. For example, the advent of two-way power
flow due to distributed energy resources (DER) introduce
new challenges for traditional protection system in power
distribution networks which are designed initially for one-way
power flow [2], [3]. Moreover, the controllable loads and DERs
impose more variability at load side which makes it harder
to distinguish type of faults especially the high impedance
ones. These transformations impose different challenges on
existing distribution networks monitoring systems and promote
advanced tools such as distribution synchrophasors (D-PMU)
to better observe, understand and manage power distribution
systems[4]. The D-PMU data provide more opportunities for
solving complex problems in power systems such as fault
detection [5], [6], [7], topology detection [8], and load flow
[9] which need higher quality data. Generally speaking, D-
PMU devices are installed to support the operation of power
distribution networks in different ways. Utilizing the data from
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D-PMU for fault type detection can be an added advantage for
using such devices. Traditionally, the fault detection problem
has been addressed by using current magnitude measurements.
However, there have been previous studies remarking the use
of voltage provided by synchrophasor units in the fault detec-
tion problem such as [10]. The [3] established the advantages
of utilizing voltage measurements in conjunction with current
measurements. For further information regarding the role of D-
PMU data in advanced operation and control of the distribution
networks readers can refer to NASPI [11] and U.S. Department
of Energy reports [12].

This paper focuses on the fault type detection in distribution
network with processing the D-MU data using a novel Multi-
Task machine learning method. Using the D-PMU data for
fault type detection is with this assumption that D-PMU will be
available in distribution networks for the purpose of advanced
situational awareness and support different functions in power
distribution network operation. This paper provides an added
advantage with utilizing D-PMU for fault type detection.
Moreover, having a better knowledge of the type of fault
provides a better foundation for the Fault location, isolation,
and service restoration (FLISR) process. Additionally, having
supplementary awareness of the fault type present in the
system speeds up the fault mitigation process performed by
the utilities technical crews. It is worthwhile mentioning that
this algorithm can serve as an extra layer of intelligence in
addition to the legacy operation and protection system.

Traveling-wave and impedance-based methods are among
the most notable fault detection techniques. The disadvantage
of the impedance methods is that they rely on the knowledge
of the network components characteristics. Even with the
introduction of Geographical Information Systems (GIS) tools
into electric utilities, the components information are not
updated regularly in practice, and the GIS data logs contain
a variety of errors in spatial mapping of devices, wrong
transformer ratings, and/or incorrect physical specifications
of conductors [13]. Although Traveling-wave methods have
proved to be accurate in transmission networks, they are facing
more complexity in distribution networks due to mostly radial
topology with many short length branches. They also require
high-frequency measurements for reliable performance. Such
high-resolution measurement data is expensive and may not be
available all the time. Furthermore, with increasing complex-
ities and uncertainties in a distribution networks, wide-area
monitoring methods are proposed. These methods are usually
used in distribution systems [14], [15], [16], [17].

With the development of information science and machine
learning techniques, researchers enabled to develop advanced
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analytical approaches such as the neural network (NN) [18],
[19], [20], support vector machines (SVM) [21], and principal
component analysis (PCA) [22]. All of the machine learning
methods mentioned above fall under the category of single-
task learning (STL) methods whose classification performance
is affected by the missing data or low measurement resolution
of the training dataset.

This paper proposes a novel multi-task learning (MTL)
framework named the multi-task logistic low-ranked dirty
model (MT-LLRDM) to improve the accuracy of fault detection
in power distribution networks. In the proposed method, the
identification of the fault types at each location is based on
integrating the recorded fault events obtained from phasor
measurement units (PMUs) in multiple locations. The MTL
framework will explore the similarity of the data patterns
on voltage and current phasors induced by the faults among
multiple locations to supplement more information about the
nature of faults at another location. Although the correlation
among the PMU data and fault types are different among
multiple locations, the way how PMU data reflect the nature
of the faults exhibit some similarities. For instance, voltage
signals for a single-line-to-ground fault would indicate similar
reduction patterns no matter where the fault occurs.

In the field of machine learning, finding the similarity
between datasets from multiple tasks (e.g. sources, domains,
locations) is still a significant challenge. The literature on
multi-task learning present different regularization terms to
extract shared knowledge by applying a weighted penalty term
to the objective function [23], [24]. There are MTL methods
dealing with the joint learning of Gaussian Process (GP)
models for multiple tasks where multiple kernels characterize
the between-task similarity. Therefore, the prediction at the
testing dataset can be achieved by a weighted sum of the
learned kernels [25]-[26]. However, the available studies on
improving the performance of MTL when dealing with fault
classification is still scant.

The contributions of this paper are summarized as follows:

1) From the methodology point of view, this paper proposes
a novel MT-LLRDM algorithm to distinguish similari-
ties among different tasks (datasets) by capturing both
common set of features and shared low-rank structures
in the data.

2) From the application point of view, this paper utilized
the proposed MT-LLRDM approach for improving the
fault detection performance in power distribution net-
works using D-PMU data. Furthermore, the validation
of the MT-LLRDM algorithm is performed with a real-
time hardware-in-the-loop testbed that emulates real
field conditions of a distribution network.

The remainder of this paper is organized as follows. Section
II explains the proposed MT-LLRDM. Section III describes the
hardware-in-the-loop PMU testbed used for proof-of-concept
validation, and then Section IV represents the results and
conducts comparisons with state-of-the-art MTL, and machine
learning methods to demonstrate the effectiveness of the
proposed method. Section V concludes the paper.

II. MULTI-TASK LOGISTIC LOW RANKED DIRTY MODEL

This section presents the Multi-task Logistic Low Ranked
Dirty Model (MT-LLRDM) for the fault detection problem.
The overall framework of the proposed MT-LLRDM is shown
in Fig. 1. Fault events measured by PMUs at different locations
are the input to the MT-LLRDM algorithm. In this paper,
the learning of fault classifier at each location is considered
as a “task”. The classifiers for all the tasks based on the
logistic regression loss function are jointly learned by the
proposed MT-LLRDM. Subsection II-A explains the building
process for a multi-task multiclass logistic regression model
starting from a binary logistic regression. Subsection II-B is a
review of the existing regularization-based MTL methods. In
subsection II-C, the formulation of the proposed MT-LLRDM
is presented.

Fig. 1. Overall framework of the proposed MT-LLRDM for fault detec-
tion in power distribution. Fault types: Phase-A-to-ground (AG), Phase-
B-to-ground (BG), Phase-C-to-ground (CG), Phases-A-B-to-ground (ABG),
Phases-A-C-to-ground (ACG), Phases-B-C-to-ground (BCG), three-line-to-
ground (ABCG), line-to-line-AB (AB), line-to-line-AC (AC), line-to-line-BC
(BC), three-line-to-line (ABC).

A. Multi-Task Multiclass Logistic Regression Model

The multiclass logistic regression is a statistical learning
method that is used to classify the types of faults by estimating
the probabilities of each type. This multiclass logistic regres-
sion can be turned into k binary logistic regression problems
that k£ is the number of classes. Suppose that we have k
different faults happened in one location (single-task). For
each fault type (i = 1,2, - - - , k), values of that type are turned
into positive examples (Y = 1), and the values of rest of fault
types are turned into zero (Y = 0). Then, for fault type 7, the
binary logistic regression is formulated as
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where prob(Y; = 1|X) takes a value between 0 and 1. Algo),

X = (Xl,X2,~~' ,)?p) € R™P is a set of explanatory
variables including the voltage or current phasor measure-
ments obtained from different PMUs. Moreover, W € RPis
coefficients of the explanatory variables (X). Once all the &
binary logistic regressions are trained on the training data,
they are used to predict the fault types in the testing data.
First, the probability that the testing data belongs to each
class (h;(testing data)) is computed using the trained logistic
regression classifiers. Then, we will pick the class for which
the corresponding binary logistic regression classifier outputs
the highest probability and return the class label (1,2,--- k)
as the prediction for the testing data. In short, two steps should
be considered as
e Training: Train & binary logistic regression (h;(X)) for
each fault type ¢, 1 = 1,2,--- | k,
e Testing: Select the fault type ¢ that maximizes
h;)(testing data) on a new testing data.

The fault classification obtained by a multiclass logistic
regression at a certain location can be improved by using
the recorded data from multiple locations under an MTL
framework. This subsection explains the modeling structure of
the multi-task logistic regression by exploring the similarities
in PMU data patterns associated with electrical faults across
different locations in a power network. This similarity is re-
flected by an alike relationship between the set of explanatory
variables (X) and types of the faults (Y) across different
locations in a power network. Therefore, the coefficients w
in Eq. 1 can be similarly related under the MTL framework.
Mathematical formulation of such similarity is discussed in
the next subsections.

The proposed MT-LLRDM is estimated by learning the
logistic regression classifiers from different locations (I =
1,---, L) as shown in Fig. 1. The objective of MT-LLRDM

is to estimate the W = [Wl,WQ, e ,WL] simultaneously
given the data X for each fault location as well as the
assumed similarity between Wy, Wy, - - -, W It is noteworthy

that the similarity comes from the W in different locations
not between the X and Y. Mathematically, the learning
objective is to jointly estimate W /| {(X1,71),-- (X1, Y1)}
The methods to model the similarity are discussed next.

B. Review of Regularization Methods for Characterizing Sim-
ilarity

This subsection reviews the formulation of the
regularization-based MTL methods to capture between-task
similarity. The two widely used perspectives to characterize
the similarity between different tasks (here different fault
locations) are summarized below:

1) Common Set of Features: The general formulation of
“common set of features” perspective is to solve the following
problem:

n‘}‘i/n LUW) + AW

1,005 )

3

where W = [Wy,--- , W] € RP*L is a group of coefficients
for all different tasks, and A is a regularizer coefficient. Also,
[I[Wl1,00 is defined as

[Wilioo =D maz(Wil,--, [Wil), 3)

j
where Wy, is the the j** row and k' column of W € RP*L.
This norm penalizes the sum of the maximum absolute values
of each row to encourage each row of W to have zero
elements. Therefore, this regularizer can find a common set
of input variables that have an effect on the fault classification
among different locations. Also, (W) denotes a least square
loss function for the different tasks. By assuming the logistic

regression loss function, /(W) forms as follows:
L n

(W) =33 log(1 + eap(~Yi (WTX0y)), @)
=1 j=1
where n; is the nurjnber of events for fault location ! and X ;
is the j observation of X in location I. W is the coefficients
for task . A good example of using this perspective is Multi-
Task Joint Feature Learning (MT-JFL) [27].
2) Shared Low-Rank Structure: The general formulation of
the MT-LR is to solve the following problem, i.e.,
min (W) +A[W]., (5)

where the W, £(W) and ) are the same as Eq. 2. A trace norm
regularizer (||[W||.) is usually defined as a sum of singular

values of W, i.e.,
rank(W)

”W”* = Z Ui(W)v (6)
i=1

where o;’s are singular values of the matrix W obtained by
a singular value decomposition. A good example of using
this perspective is Multi-Task Logistic trace-norm Regression
(MT-LR) [28]. The |W||.. provides a low-rank structure that
includes common basis vectors shared across different faults
happened in multiple locations. Suppose that rank(W) = v.
The component W can then be represented on a basis vector
multiplied with a coefficient matrix as W = BC” where
B-= [b},.-. b, € RP¥V and € = [ey;] i =1, , L and
7 = 1,--- ,v. The basis vectors B span a low-dimensional
subspace of matrix W and capture the similarities among
different faults happened in different locations. The coefficient
matrix C can be different for different locations. The two
perspectives defined above capture the similarity from two
different norms. Inspired by these two perspectives, this paper
develops an improved method to capture the similarity in the
next subsection.

C. The Proposed MT-LLRDM Formulation

As proposed by Jalali et al. [23], the variables coefficients
(W) can be decomposed into a group sparse component
(named as P) and a sparse component (named as @) in a
Dirty Model as oL L

Wi=F+Q, P,Q €R”, @)

where Wl, 131, and le are I*" column of the W, P and
Q respectively. The group sparse component is assumed to
capture the between-task similarity.

Based on the two norms explained above, this paper further
develops a low-rank structure for the matrix Ql to incorporate

1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2938989, IEEE

Transactions on Smart Grid

more inter-location similarities that could not be captured by
the group sparse component, leading to a logistic low-ranked
version of Dirty model (MT-LLRDM). The objective of the
MT-LLRDM is proposed as follows:

min (W) + M [Pl +XlQl @)
where each column of P and @Q corresponds to a fault location
(task), ie., P = []31, ,Pl] and Q = [Q},--- ,Q_‘L], and
W = P+ Q. Moreover, \; and A\, are the coefficients of the
norms.

ALGORITHM 1: 10-fold Cross Validation for finding the best
values of A1 and A2
1) Initialize: Trr = {X,Y} : Training data;
A= [, Ay A2 = [Aar, 0 Aol
2) Find an equal random partition of [p1,--- , p1o] of all
observations in T'rr,
3) For i =1 :m (number of suggested values for A; and \2)
a) 10-fold cross validation:
For k € {1,---,10}
e Define Sy = {SX,Sy} where Si = Trr \ px,
e n= length(ps),
o W™ = MTLLRDM Fit(\],, \};; Sx, Sv).
o pred’™ = predict MT-LLRDM (W, "™ pp).
e [r; = Miss-classification error,
b) End For
c) Compute Er = average(Ery),
k
4) End For _ _ ~
5) Obtain A{,. and Aj,. by i*/ = argmin {Er},

The norm regularization term ! », penalizes the sum of the
maximum absolute values of each row that encourages entire
rows of the matrix to have zero elements. This regularizer
introduces the group-sparse structure that encourages feature-
selection by identifying the most appropriate features in any of
the [ tasks. Also, the trace-norm regularizer helps generate the
low-rank structure in Q. Moreover, A; and A, are coefficients
of these two norms, and ¢(W') denotes a least square loss
function for task [ as defined in Eq. 4.

The /.. norm of component @ provides a low-rank structure
that has common basis vectors shared across multiple fault
locations. Suppose that rank(W') = v. The component Q
can then be represented on a basis vector multiplied with a
coefficient matrix as Q = BCT where B = {b_i, e ,b_,:} €
RP*¥ and C = [¢;],i =1,---,Land j = 1,---,v. The
basis vectors B span a low-dimensional subspace of matrix @
and capture the similarities between different fault locations.
The coefficient matrix C' can be different for different fault
locations.

In summary, the proposed MT-LLRDM introduces a novel
way to capture the similarities inspired by the shared low-
rank and common set of features perspectives as described in
Subsection II-B. The difference between the proposed MT-
LLRDM and the state-of-the-art regularization-based MTL
methods is shown in Table I. This method proposes the
following hypothesis: If some similarly related information
cannot be characterized by the common set of features, then it
is likely to be captured by the shared low-rank structure, hence

4
Table 1
DIFFERENCE BETWEEN THE PROPOSED MT-LLRDM AND OTHER MTL
METHODS
Methods Perspective Norms Application

MT-JFL [27], Dirty Common Set of Features

model [23] U100 Data dimensionality is large

MT-LR [28], SLR
[24], and Robust
[29]

Shared Low-Rank L. Number of tasks is large

Common Set of Features
and Shared Low-Rank

‘When both data dimensionality
and number of tasks are large

Proposed MT-
LLRDM

Performing 10-fold Cross
Validation: For finding the best
values for 4| and 1, Start

I I

Training = Trr = {X, Y};

& Testing=Tss={X\,Y\};
W) A=A, - i |5

Using the proposed MT-LLRDM I = [lﬂ o

Vji=1,..., class = b ; )
b el e class = length(unique(Y));

of y variables
A

o]
£
£

&
=
«

<
S
=
©
N
=
S
X
£
=

—
J 3) Testing
S P=maxind(¥') P Confusion Matrix
Predu:t Wi on X — where maxind gives the index within
Vi=1,..., class (7') where the max value occurs A

v

Fig. 2. Flowchart of the proposed MT-LLRDM End

increasing the chance of capturing more similarities among
multiple locations. Real-field data scenarios will be conducted
in Section III to validate the effectiveness of this hypothesis.

The proposed method in Eq. 8 is an unconstrained convex
optimization problem, whose function is non-smooth. This
non-smoothness exists in the [, and {1 ~,, posing a challenge
to solve the problem and run the algorithm several times.
For solving the non-convex Eq. 8, one way is to use the
Accelerated Proximal Method (APM) [24]. Because of its
optimal convergence rate and its capability in dealing with
large-scale non-smooth optimization problems, it has gained
more attention in recent years [30]-[31]. The APM consists
of two main components including Proximal Operator and
Proximal Operator Computation. Please refer to [31] for
detailed procedures about the APM.

The proposed MT-LLRDM algorithm is summarized in Fig.
2. The first step is initializing the parameters including A\; and
Ao. After initializing, we train the MT-LLRDM on the training
data for each class (fault type) and then, we test the trained
MT-LLRDM on new test data. As explained in Section II-
A, by using the one-vs-all method, we pick the class ¢ that
maximizes the classifier’s output on the test data. Also, before
training the MT-LLRDM in the training step, we run a 10-
fold cross validation for finding the best values of A\; and As.
This 10-fold cross validation is explained in the Algorithm 1
in details. After finding the best values for A\; and Ay, we train
the MT-LLRDM by those best values and then, test the trained
algorithm on the test data. After that, we choose a class that
has the highest probability (h;) for each fault event.

Finally, the confusion matrix is calculated by comparing the
predicted and true classes. The confusion matrix is a square
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matrix that consists of columns and rows listing the number of
instances as “predicted class” vs. “actual class” respectively.
After obtaining the confusion matrix, misdetection and false
alarm rate error can be obtained. The misdetection error is
equivalent to the False Negative (FN) error, which is the total
number of entries above the main diagonal in the confusion
matrix. On the other hand, false alarm rate error, which is
equivalent to the False Positive (FP) error and is equal to the
total number of entries below the main diagonal in the confu-
sion matrix, can be estimated. Moreover, the misclassification
rate, which is a summation of the misdetection and false alarm
rate error, is calculated.

The Fig. 2 provides a way of integrating the fault event data
at multiple locations to improve fault detection at a location
of interest. Great care should be exercised for the selection of
fault data locations to be included in the algorithm. It is not
always better to include all the fault locations. Those locations
where faults and PMU data exhibit very different correlations
due to certain undiscovered reasons may negatively impact
the learning accuracy. Therefore, it is necessary to conduct a
location (or task) selection based on different combinations of
locations. If there are L locations in a power network, there are
NG
i=1
detection at a certain location of interest. The combination of
the locations leading to the smallest classification errors will
be reported as the optimal results.

) combinations of locations as inputs for the fault

ITI. CASE STUDY AND DATA DESCRIPTION

In order to validate the proposed MT-LLRDM algorithm,
we have developed two different test frameworks with mul-
tiple virtual and physical PMUs in a real-time power sys-
tems hardware-in-the-loop environment. We performed fault
classification on the actual data set from the PMU streams
obtained during fault conditions. This section describes the
technical specifications and features of the mentioned testbeds.
The comprehensive description regarding our developed PMU
hardware-in-the-loop testbed is available in [32] by the au-
thors. The first test feeder, IEEE 37-nodes, has largely unbal-
anced loads with uncommon connection configuration which
is challenging for fault detection. The second test feeder, IEEE
123-node, is more common and it is widely used in previous
studies [33].
A. IEEE 37-nodes Test Feeder

The first use case in this paper is the IEEE 37-nodes test
feeder which is an actual feeder with a delta configuration,
very unbalanced at 4.8 kV @ 60 Hz rated voltage and
frequency with a substation transformer with 2% resistance
and 8% reactance. The test feeder data sheet and specifications
such as load parameters and line segment lengths can be found
in [34]. The IEEE 37-nodes test feeder was selected as it is a
challenging case for fault detection due to its unusual phase
unbalance. The PMU streams were utilized to capture the
fault events in a data repository utilized for machine learning
algorithms.

The overall architecture of the PMU HIL testbed is il-
lustrated in Fig. 3. The system consists of the IEEE 37-
node test feeder model described above with virtual PMUs

( N\
OPAL-RT TARGET

POWER
SYSTEM
MODEL

GPS
Receiver
A
FPGA I/O
4
PMU REAL PMU
treams
MT-LLRDM
GPS
Receiver

Fig. 3. PMU HIL setup for the IEEE 37-nodes test feeder that is used for
fault detection application.

Fig. 4. Implemented HIL setup for fault detection: (a) PMU and Opal-RT
Target; (b) PMU GPS Antenna.

measurements streams simulated inside the Opal-RT® Digital
Real-Time Simulator (defined as Target from now on) and two
actual commercial Class A (complying Standard IEC 61000-
4-30) PMUs. To achieve measurements from the grid, the
commercial PMUs are connected to the Opal-RT® target’s
Field-Programmable Gate Array (FPGA) output consoles. The
phasor measurement method has a rating of 512 samples per
nominal 60 Hz cycle with a streaming output of 120 frames
per second. The PMU measurements are streamed to the open-
source phasor data concentrator (OpenPDC) in compliance
with the IEEE C37.118 standard with their respective GPS-
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synchronized timestamp. The advantage of this HIL setup is
the capability to validate scenarios with multiple actual and/or
virtual PMUs. Fig. 4 depicts the physical testbed configuration.
For further details, please refer to the paper [32] by the authors.

The data collected from the PMU streams are utilized to
perform fault classification. The PMUs provide three-phase
magnitudes and angles from their respective node location
in real-time. Different types of fault events were created on
the IEEE 37 bus model at the locations shown in Fig. 3.
The fault impedance in each fault events was changed from
0.01 to 50 Ohms and was chosen in accordance with [35].
In our experiments with HIL testbed, 99 fault events were
created for each of the following fault types: (i) single-line-
to-ground (AG), (ii) line-to-line (AB), and (iii) three-line-to-
ground (ABCG). Moreover, we have simulated the faults in
three different line segments to validate our algorithm. Table
IT shows a summary of the monitored nodes on the IEEE 37-
nodes test feeder.

Fig. 5 illustrates the fault data produced in this study by
showing a scatter plot for magnitude vs. angle measurements
of one phase at node 728 of the IEEE 37-node test feeder.
This figure displays all the combinations of fault types and
fault locations for a total of 891 fault events.

B. IEEE 123-nodes Test Feeder

Fig. 5. Scatterplot for voltage magnitude vs. phase angle measurements from
all 891 fault events simulated at the IEEE 37-nodes test feeder. Measurements
as seen from node 701.

In order to further validate the proposed MT-LLDRM algo-
rithm, a second testbed was developed in a similar setup as
discussed in section III-A. The IEEE 123-nodes test feeder was
modeled in the multicore Opal-RT® real-time simulator. The
IEEE 123-nodes test feeder has a rated voltage of 4.16 kV @
60 Hz. It has both overhead and underground lines, unbalanced
loading and multiple switching configurations which is a more
typical use case. This test feeder has been used in other
PMU-based fault detection studies such as [33]. The test
feeder specifications such as loads, line lengths, transformer
ratings, etc. can be found in [34]. In this study, we have
used the default switching configuration. As with the first test
feeder, the IEEE 123-nodes test feeder was selected due to
the unbalanced characteristics that are challenging for fault
detection.

For the IEEE 123-nodes test feeder, the simulation setup
is similar to the one used in the IEEE 37-nodes test feeder.
It was simulated in an HIL framework in Opal-RT with
communication and protocol IEEE C37.118 and IEC 61850
standards compliance. These PMU streams are collected by
OpenPDC and serve as a data repository of recorded fault
events. In essence, we have expanded the framework shown

Fault

g Location
Virtual
PMU

Fig. 6. PMU and fault locations in the IEEE 123-nodes test feeder.

in Fig. 3 with the IEEE 123-nodes test feeder shown in Fig.
6 as the simulated network.

The network of virtual PMUSs monitors normal conditions
prior to setting different fault types (balanced and unbal-
anced) to obtain random fault scenarios for detection and
classification testing purposes. Table II and Fig. 6 show the
locations of the physical and virtual PMUs inside the IEEE
123-nodes test feeder. Fault sequences of different types, fault
locations, and random fault impedances have been simulated
to generate a dataset which is used to train and validate the
fault classification algorithm. Fourteen fault locations have
been placed on different line segments with seven fault line-
to-ground fault types: AG, BG, CG, ABG, BCG, ACG, and
ABCG. Additionally, the fault impedances have been assigned
from a uniform random distribution that ranges from 0.01 to
50 Ohms. Fourteen locations have been chosen (see Table II)
according to the voltage drop and distance from the main
feeder. Faults have been placed generating 100 events with
changing fault impedances giving a total of 9,702 unique fault
events for this testbed. As an example, a fault sequence is
depicted in 7a, showing the measurements from node 95 for
three phases. Additionally, Fig. 7b shows one of the phases
for different PMU location (i.e., nodes 149, 95, and 197). As
expected, it can be observed that faults vary in magnitude with
different locations and faulted phases.

Table III provides a brief comparison for the two case stud-

ies used to validate the proposed MT-LLRDM methodology.
Table II
TEST FEEDERS” PMU AND FAULT LOCATIONS

IEEE 37-node test feeder IEEE 123-node test feeder
Nodes Fault Fault Nodes Fault Fault
with T Location with T Location
PMU YPES | (Lines) | PMU ypes (Lines)
701 18 149
702 66 47
703 AG 702-703 05 AG, BG, CG 60
11 AB 703-727 197 AB, BC, AC 94
ABCG 710-736 ABCG 97
724 151 80
728 250 100

IV. RESULTS AND DISCUSSIONS

In this section, we validate our method using the fault
events data produced by the hardware-in-the-loop framework
described in section II. Two different test feeders have been
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(a)

(b)

Fig. 7. Voltage measurements from the IEEE 123-nodes test feeder: (a) Three-phase measurements from node 149; (b) Phase A measurements from nodes

149, 95 & 197.

Table IIT
COMPARISON OF THE TEST FEEDERS MODELING

Feature Case Study #1

IEEE 37-nodes
Opal-RT/RT-Lab

Case Study #2

IEEE 123-nodes
Opal-RT/RT-Lab

Test feeder
Simulation tool

Number of nodes 37 123

Fault locations 3 7

Types of faults 3 7

Real PMUs 1 -

Virtual PMUs 6 6

Synchronization GPS / PTP DRTS system clock
Measurements V and I phasors V and I phasors
Communication C37.118 C37.118

Fault Events 891 9,702

used, the IEEE 37-nodes and the IEEE 123-nodes test feeders,
where we analyze over 10,000 events. The main goal is to
perform fault detection and accurately classify each observed
fault into its true fault type.

Table IV

experiments to reflect the fact that some feeders may not have
both measurements. Therefore, we validate our approach with
voltage and current measurements separately.

By knowing that the magnitude and phase angle measure-
ments from the same fault type will have a similar signal
profile, MT-LLRDM attempts to capture the similarity among
different locations in a power system network. MT-LLRDM
extracts the similarity of the fault data occurring in different
locations by finding those variables that have the same effects
on types of the faults (common set of features) in conjunction
with a low-dimensional subspace (in @), which has the shared
information among different locations (Figure 1). In total,
we classify each testing event by fault type, i.e. single-line-
to-ground (AG), line-to-line (AB) and three-line-to-ground
(ABCQG). Table V

MEAN MISCLASSIFICATION RATE FOR ALL FAULT LOCATIONS OF
37-NODE TEST FEEDER AND DIFFERENT METHODS (%)

DATASET SPECIFICATIONS Phasor Measurements I STL [ MTL
[ SVM | NN | MT-JFL | MT-LR | MT-LLRDM
Feature IEEE 37-nodes IEEE 123-nodes Vollage H 79 ‘ 5.65 ‘ 275 ‘ 2.68 ‘ 1.05
Number of Tasks (Fault locations) 3 7 Current [ 728 [ 529 | 360 | 332 | 1.76
Training per Task (20%) 60 140
Testing per Task (80%) 240 560

As a first case study, we perform fault detection on the
IEEE 37-nodes test feeder testbed and compare our results
with state-of-the-art multitask learning (MTL) and single-task
(STL) learning methods. The dataset specifications are shown
in Table IV. For this usecase, the number of tasks is three
which is the number of pre-recorded fault locations. In the
MT-LLRDM, the fault detection at each location is considered
as a different task where different fault events have been
recorded. As shown previously in Fig. 1, the fault classification
is performed with meaningful information from other fault
locations. In other words, we use the fault data from three
different locations as three different tasks from which all three
locations are used as a training data set. Each task has all
available information from the seven PMUs used in this case
study.

We specify our training set as 20% of the total observed fault
events. The remaining 80% is used for testing purposes. We
divided our experiments by type of measurement (e.g., voltage
and current) utilizing the magnitude and phase angle values
from seven PMUs as mentioned in section III for training
the proposed machine learning algorithm. We separate our

In order to validate the results of MT-LLRDM in the fault
detection process, we utilize the misclassification rate which
measures the percentage-wise ratio of wrong detected faults
over the total number of faults in that location. Let C; be the
class (i.e. fault type) of any given fault (single-line-to-ground,
line-to-line or three-line-to-ground) and C; the class prediction
for the ith observation or event under fault conditions. Then,
the misclassification rate in percentage (MR) is calculated as
follows:

MR = % Z 1(C; # Cy) % 100% )

where n is total number of observations (or faults). As an
example, if out of a total of 100 fault events, 10 were classified
incorrectly (not accurately assigned a fault type), then the
total misclassification rate is 10%. In Table V, we show the
mean misclassification error using voltage and current phasor
values for over three different locations. We compare the
proposed method with state-of-the-art single-task and multi-
task learning algorithms for fault detection in power systems.
For the single-task learning algorithms, we choose SVM and
NN, which have been most widely used for fault detection.
In this paper, we have tried to obtain the best possible results
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of SVM and NN methods for this data set by optimizing the
hyperparameters and kernel automatically using “fitcecoc” and
“patternnet” functions in the MATLAB® by minimizing five-
fold cross-validation loss. The MT-LLRDM outperforms both
SVM and NN by a relative error decrease of 86% and 81%
respectively. Among multi-task learning algorithms, we chose
MT-LR and MTL-JFL as two methods that are using just one
of the “common set of features* or the “shared low-rank*
strutures as explained in Section II-C.

Our MT-LLRDM using voltage phasor measurements out-
performs the MT-LR and MT-JFL by a relative error decrease
of 61% and 62%, respectively. This accuracy improvement
shows that using the proposed MT-LLRDM can extract more
similarities in fault events data from different locations. Fault
detection based on current phasor measurements follows a
similar trend showing a relative error decrease of 75% and
67% for MT-LLRDM in comparison to SVM and NN re-
spectively. Moreover, the MT-LLRDM outperforms the MT-
LR and MT-JFL by a relative error decrease of 47% and 51%
respectively. One interesting observation is that using PMU
voltage measurements with MT-LLRDM provides slightly
better results for fault detection in comparison to using current

phasor values.

SVM NN MT-JFL MT-LR MT-LLRDM

Fig. 8. Fault detection error using different classification methods for the
IEEE 37-Nodes Test Feeder.

3 False Positive
[ False Negative
B Total Error

Error [%]
O RRRNWERWLMO

We also compare the false-positive and false-negative errors
as shown in Fig. 8. The proposed MT-LLRDM shows an
improvement of 75% and 36% compared with SVM and NN
in false positive error and improvement of 85% and 83% in
false negative error. The same trend of accuracy improvement
can be observed when comparing the MT-LLRDM with the
MTL methods. The proposed MT-LLRDM outperforms the
MT-LR and MT-JFL by 22% and 25% in false positive error
and 65% and 66% in false negative error.

We further validate our MT-LLRDM with a second dataset
simulated in a similar hardware-in-the-loop setup as with the
IEEE 37-nodes test feeder. For this testbed, we utilize the IEEE
123-nodes test feeder where we simulated a larger number
of fault events at more different locations as described in
section III-B. In this case study, we have seven different
fault locations that represent the total number of tasks for
our MT-LLRDM. Similarly to the previous case, we use
20% of the total number of recorded fault events as training
data and 80% for testing purposes. The dataset is provided
by 6 PMUs streams (see Fig. 6) where we have recorded
7 different fault types: phase-A-to-ground (AG), phase-B-to-
ground (BG), phase-C-to-ground (CG), phases-A-B-to-ground
(ABG), phases-A-C-to-ground (ACG), phase-B-C-to-ground
(BCG) and three-phase-to-ground (ABCG).

In table VI, we compare the misclassification rates results of
our proposed MT-LLRDM methodology with both multitask

8

Table VI
MEAN MISCLASSIFICATION RATE FOR ALL FAULT LOCATIONS OF
123-NODE TEST FEEDER AND DIFFERENT METHODS (%)

STL MTL \

Phasor Measurements ‘

[ NN | SVM [ MTJFL | MTLR | MT-LLRDM
Voltage [ 2125 [ 1471 | 1043 | 825 | 5.01
Caurrent || 17778 | 1390 | 1041 | 807 | 498

and single-task learning algorithms. For fault detection based
on voltage measurements, the MT-LLRDM outperforms the
multitask learning algorithms, MT-LR and MT-JFL, by a
relative error decrease of 39% and 52%, respectively. Further-
more, the MT-LLRDM presents a relative error decrease of
73% and 76% for SVM and NN respectively, showing that
MT-LLRDM outperforms the single-task learning methods.
A similar trend can be observed for the current-based fault
detection misclassification results.

Fig. 9 depicts the comparison of fault detection accuracy
for the IEEE 123-nodes usecase for the proposed MT-LLRDM
(Fig. 9a), MT-LR (Fig. 9b), and SVM (Fig. 9c methods. The
prediction accuracy is shown by the diagonal bars while the
positive-negative and negative-positive errors are represented
by the off-diagonal bars. It can be observed that the MT-
LLRDM outperforms the other two algorithms in detecting
each fault type.

It is worth remarking that although the misclassification rate
for the IEEE 123-nodes test feeder outperforms the state-of-
the-art methods, it is higher than the results presented for the
IEEE 37-nodes test feeder. This is due to the fact that the IEEE
37-nodes test feeder is a smaller network with a higher number
of PMUs which provides more information about the grid.
In turn, the IEEE 123-nodes has a larger number of nodes,
longer line segments and less number of PMUs, making the
fault detection more difficult.

We further record the computational time for the pro-
posed method. It should be noted that all the calculations
are conducted on a computer with an Intel Core i7-7500U
and 2.70 GHz CPU. For the IEEE 37-nodes test feeder, the
computational time for fault detection including all the training
(with 10-fold cross validation) and testing part is around
324 seconds. Also, for the IEEE 123-nodes test feeder, the
computational time is around 359 seconds.

To show the relationship between number of PMUs and
the accuracy of fault detection, a sensitivity analysis has been
done for IEEE 123 with using different number of PMUs with
following scenarios: (i) two PMUs at nodes 18 and 95, (ii)
three PMUs located at nodes 18, 95, and 197, (iii) four PMUs
at nodes 18, 95, 197, and 66, (iv) five PMUs at nodes 18,
95, 197, 66, and 151, and (v) six PMUs at nodes 18, 95,
197, 66, 151, and 250. As it is shown in Fig. 10, it can be
observed that having 5 PMUs may be the sufficient number
of PMUs in the IEEE 123-nodes test feeder and adding more
number of PMUs doesn’t lead to a massive drop in the fault
detection error. Going from 5 PMUs to 6 PMUs only reduces
the error by 1.38% and 1.58% for the voltage and current
respectively. This amount of reduction can be ignored, and 5
PMUs can be chosen for this test feeder to reduce the cost
for creating a PMU monitoring system. On the other hand, by
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(a)

(©)

Fig. 9. Confusion Matrix for different methods for the IEEE 123-nodes test feeder. Diagonal terms are correct identifications and off-diagonal ones are
misclassifications. mACC for multi-class detection accuracy: (a) MT-LLRDM; (b) MT-LR; (c) SVM distance.

considering the recent trends in PMU market, the industry is
observing a price reduction for synchrophasor devices due to
the reduction in microprocessors cost, the economy of scale
for PMU production, the advent of more PMU producers,
and availability of new open-source PMU devices such as
OpenPMU initiative [36]. The OpenPMU makes a complete
PMU unit assembled for almost $1000. Moreover, a promising
initiative is the Open-Box PMU presented by Pinte et al. [37]
with a low-cost around $250.
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Fig. 10. Mean Misclassification rate (in %) obtained by MT-LLRDM for the

IEEE 123-Nodes Test Feeder for different number of PMUs.
V. CONCLUSIONS
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The highlights of this paper can be summarized as follows:

e The novel multi-task framework, MT-LLRDM, is pro-
posed to capture similar information on fault events
across different parts of the distribution networks.

e For improving the learning performance of the MT-
LLRDM, a low-ranked structure of the dirty model is
proposed that simultaneously employs the “common set
of features” and “shared low-rank™ structures.

e Based on actual PMU streams from a PMU HIL testbed,
the proposed MT-LLRDM outperforms both state-of-the-
art STL methods including SVM, NN and MTL methods
including MT-LR and MT-JFL.

Future work will include the use of the proposed MT-LLRDM
in the fault location application. Additionally, a Hardware-in-
the-loop framework with an interface to power electronics in-
verters will be implemented to further validate the algorithm’s
performance with the presence of distributed energy resources.
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