INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING
https://doi.org/10.1080/0951192X.2019.1690680

Taylor & Francis
Taylor &Francis Group

ARTICLE

W) Check for updates

Automatic generation of assembly hierarchies for products with complex liaison
relations

Zhenggian Jiang and Hui Wang

Department of Industrial & Manufacturing Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee,
FL, USA

ABSTRACT

The assembly hierarchy for a product design determines the subassembly module formation, assembly
tasks for the modules and serial-parallel material flow among these tasks. Automatic generation of the
candidate assembly hierarchies by computer algorithms is a critical step to exploring potential design
space for the assembly system design, and existing research on assembly sequence generation and
subassembly identification has limitations in dealing with this challenge. This paper proposes to use
assembly hierarchy instead of assembly sequence to generate the design space for assembly system
design and optimisation. Based on liaison graphs, this paper first characterises the assembly hierarchy
by developing a unique representation model to capture the hierarchical relationship among the
assembly operations. A recursive algorithm is then developed to search the candidate design space and
facilitate the computer implementation of assembly system configuration design. Two case studies
including a real-world laptop assembly demonstrate the effectiveness of the proposed algorithm in the
reduction of repetitive exploration of design space and avoidance of missing scenarios for assembly
system configuration design by comparing with state-of-the-art assembly sequence generation algo-
rithms. The method can lead to an automated tool to evaluate the manufacturability of product designs
and optimise assembly system configuration design.

ARTICLE HISTORY
Received 21 December 2018
Accepted 4 November 2019

KEYWORDS

Assembly system design;
assembly planning; assembly
hierarchy; automatic
generation algorithm

1. Introduction components are denoted by capital letters in the string,
while assembly operations and their hierarchies are
characterised by enclosing adjacent components using
a set of parentheses (Li et al. 2011). For example, Table 1

shows the enumeration of all possible assembly hierar-

Most industrial products are assembled from a plurality
of basic components. These components can be con-
nected to each other following certain patterns or struc-
tural relationship to form different subassembly

modules. The subassemblies can be further combined
with basic components or other subassemblies to form
subassemblies at higher levels of assembly hierarchy.
The final product can be created by a combination of
multi-level subassemblies defined as an assembly hier-
archy which determines all assembly operations and the
material flow relations among them. Assembly opera-
tions can be implemented sequentially or parallelly
according to their material flow relations.

Different assembly hierarchies can be adopted to
form the same product. Before an assembly system
can be generated, it is essential to explore all the possi-
ble assembly hierarchies given a product assembly
design. For a serially linked product shown in Figure 1,
the assembly hierarchy can be enumerated based on
a string-parenthesis representation whereby product

chies for the four-component product ABCD in Figure 1.
The notation (ABCD) represents an assembly operation,
by which four components A-D are joined simulta-
neously (e.g., multi-layer metal sheet joining) while
(((AB)C)D) represents a sequential way of assembling
AB, C, and D incrementally.

It should be noted that one key difference from the
conventional assembly sequence generation problem is
whether or not parallel assembly operations are consid-
ered. As shown in Figure 2, the notation ((AB)(CD))
depicts two assembly operations, i.e, (AB) and (CD),
which can be performed parallelly and the assembly
sequence between (AB) and (CD) does not impact
assembly system. As such, two enumerations ((AB)(CD))
and ((CD)(AB)) are identical in assembly hierarchy
whereas they are different in the assembly sequence.

CONTACT Hui Wang 8 hwang10@fsu.edu @ Department of Industrial and Manufacturing Engineering, Florida A&M University-Florida State University

College of Engineering, 2525 Pottsdamer St., Tallahassee, Florida, 32310, USA

Submitted to International Journal of Computer Integrated Manufacturing

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2019.1690680&domain=pdf&date_stamp=2019-11-16

2 (&) Z.JIANG AND H. WANG

Figure 1. A serially linked assembly design.

Table 1. Possible hierarchy for product ABCD.

Case Assembly hierarchies

—_ =0 oOoONOULh_WN=

- O

Figure 2. Hierarchy for case 3 of TABLE I, ((AB)(CD)).

Enumeration of the assembly hierarchies is of great
significance to assembly system design including deter-
mination of assembly operations, assignment of assem-
bly operations to machines, material flow among
machines, and machine quantities.

The generation of assembly hierarchies proposed in
this paper is motivated by manufacturers’ needs for
optimising the design of assembly system configuration,
which is the topological arrangement of machines or
workstations with defined logical material flow among
them. The assembly system configuration is significantly
affected by (1) the hierarchy of assembly tasks (assembly
hierarchies) based on topological designs of products
and (2) possible/feasible assembly tasks in such hierarchy
that can be performed by the same machine/worksta-
tion. The design of the assembly system configuration
consists of a two-level decision-making problem (Li et al.
2011). The first-level design determines candidate
assembly tasks and material flow relationship among

these tasks (i.e., assembly hierarchy selection), and
the second-level design assigns the tasks to worksta-
tions/machines for workload balancing or cost reduction
given the first-level design. Therefore, the generation of
all possible assembly hierarchies is the first key step for
assembly system configuration design by exploring all
feasible solution space (Li et al. 2011; Hu et al. 2011).

Exploration of all the feasible assembly system
designs usually includes generation of system config-
urations, generation of assembly sequences, and match-
ing of sequences with configurations and appropriate
operation assignments (Webbink and Hu 2005). By con-
sidering the parallel assembly operations, assembly hier-
archy determines the assembly sequence (hierarchical
structure of assembly tasks), the initial set-up for system
configuration (material flows) and also potential assem-
bly sequences, as shown in Figure 3. The assembly
hierarchy contains rich information on the system con-
figurations and the assembly sequence. An appropriate
assembly hierarchy needs to be selected among all
feasible assembly hierarchies at the very early stage of
assembly system design. To select the assembly hierar-
chy, a computer-implementable algorithm for exploring
the design space of assembly hierarchies for given product
design is of great importance.

The process of the assembly sequence generation is
usually based on a certain representation of an
assembled product. Several representation methods
are available based on the existing research work.
A common method is bill-of-material (BOM) which
has a tree-graph or tabular structure with hierarchical
levels (Mather 1987) to list all parts, subassemblies, and
materials. Another common representation is the
graph or mathematical description of components
and their physical connections such as liaison graph
(De Fazio and Whitney 1987), adjacency matrix (Dini
and Santochi 1992) and ontology-based representation
(Kim, Manley, and Yang 2006). A review of assembly
sequence representation methods was reviewed by
Bahubalendruni, Biswal, and Khanolkar (2015). Based
on the assembly sequence representation, several enu-
meration/generation algorithms were proposed. De
Fazio and Whitney (1987) adopted the concept of liai-
son graph (Bourjault 1984) for generating assembly
sequences. Park et al. (2013) developed a new type of
parts liaison graph to generate the assembly
sequences via analysed information such as the com-
mon area between parts, related ratio, and the number

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 3

Figure 3. Information included in the assembly hierarchy.

of connected parts. AND/OR graph representation was
also used to develop an algorithm which could gener-
ate all feasible assembly sequences (Mello and
Sanderson 1990, 1991a). Mello and Sanderson (1991b)
reviewed five types of representations for assembly
sequences and established the mapping of one repre-
sentation into the others. Bonneville, Henrioud, and
Bourjault (1995) proposed a method for the assembly
sequence generation considering ternary operations
that allow three parts to assemble simultaneously.
This method is an extension of the traditional assembly
sequences planners. Pan, Smith, and Smith (2006) pro-
posed a fully automated assembly sequence planner
which directly extracts geometrical information from
a CAD file and finds assembly sequences. Other
approaches to the generation of assembly sequences
include the computer-aided process planning (Ben-
Arieh and Kramer 1994; Suszynski and Zurek 2015)
and ant colony algorithm (Wang, Liu, and Zhong
2005). All these generated feasible configurations
were used for recommending a good sequence of
assembly operations in the second-level design (Choi
et al. 1998). An automated initial population generator
for genetic assembly planning was proposed by Smith
and Smith (2003). Based on hypergraphs and directed
graphs, Suszynski and Zurek (2015) proposed
a computer programme Msassembly to generate
assembly sequences for parts and machinery sets.
Recent research of assembly sequence generation uti-
lised heuristic methods and metaheuristic algorithms
(Chen and Liu 2001; Akglindiiz and Tunal 2010; Kumar

Initial System Configuration
1 >
2
Material Flow
Such as:

Component A: 134
Component B: 234

Assembly Sequences
1234 or 2134

et al. 2011; Xing and Wang 2012; Ibrahim et al. 2015;
Huang and Xu 2017). A detailed review on various
methods of assembly sequence generation methods,
their applications and limitations is presented and well
discussed by Bahubalendruni and Biswal (2015).

Huang and Lin (2009) proposed a combinatorial way
to calculate the total number of the candidate system
configuration. Webbink and Hu (2005) enumerated
system configurations by using parentheses to group
a string of ‘1’ characters. Similar approaches were
employed to create the groups of product components
or subassemblies in a study on the supply chain con-
figuration by Wang et al. (2010). Massive research has
been conducted on assembly sequence and system
configurations. State-of-the-art approaches mostly
deal with assembly sequence generations or subas-
sembly module decomposition by studying mechan-
ical interface. These methods have limitations in
dealing with the research challenges/gaps for assem-
bly system configuration design including:

¢ A lack of methods exploring the design space with-
out repetition. Generation of the multiple assem-
bly sequences based on the same assembly
hierarchies can lead to repetitive search in the
same design space. For example, the assembly
sequence generation distinguishes the order of
independent operations that can be implemen-
ted in parallel. The enumerated assembly
sequences are repetitive for the same assembly
hierarchy, reducing the search efficiency. There is

4 e Z. JIANG AND H. WANG

an essential need to develop a way of thoroughly
exploring the design space without repetition.

e Design space not sufficiently explored. Parallel or
independent assembly operations have not been
well explored to improve assembly sequence
generation and system design (Li et al. 2011; Hu
et al. 2011). Bonneville, Henrioud, and Bourjault
(1995) considered ternary operations in assembly
sequence generation. However, simultaneous
assembly of multiple components (more than 3)
that can be performed by one single assembly
operation is not considered and therefore, the
design space is not sufficiently explored.

¢ A lack of understanding of the relationship between
complex product design and assembly hierarchy gen-
eration. The enumeration of assembly hierarchies
encounters challenges when the liaisons in
a product assembly exhibit complex topology
with loops and branches as shown in Figure 4,
where the numbers represent liaisons between
components. An appropriate logical representation
should also be necessary to efficiently characterise
the assembly hierarchy for complex product
designs.

To address the challenges in assembly hierarchy
generation for a product with complex liaisons, this
paper proposes an approach to automatically gener-
ating assembly hierarchies. A representation using
parentheses and numerical coding is adopted to char-
acterise assembly hierarchy. Based on this representa-
tion, a tree-structured hierarchy model is proposed to
recursively enumerate all assembly hierarchies with-
out redundancy. This algorithm can be used not only

for the products with serially linked liaisons but also
for complex liaison with loops and branches.

The paper is organised as follows. Section 2 intro-
duces the assembly hierarchy model and representa-
tions. The algorithm that realises the automatic
assembly hierarchy generation is presented in
Section 3. Section 4 presents case studies to verify and
demonstrate the algorithm. Section 5 summarises the

paper.

2. Assembly hierarchy model

This section proposes a new method of representing
assembly hierarchy. Similar to De Fazio and Whitney
(1987), the representation in this paper is developed
based on liaison graphs. Each connection arc among
nodes (components) in Figure 4 represents one basic
assembly operation combining the two components.
All the liaisons are numerically labelled. The spatial
connection patterns among these labelled liaisons
and assembly hierarchies can be represented by a -
matrix M where each entry indicates whether two
liaisons connect to the same component.

1, if liaison i and j connect to the
same component, Vi#j (1)
0, otherwise

m,-‘j:

2.1 Subassembly representation by liaison
grouping

An assembly hierarchy is expressed by grouping the
numbered liaisons using parentheses. The liaison
numbers correspond to different basic assembly
operations, and a pair of parentheses represents one

Figure 4. Liaison graph for a general product design.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 5

step of assembly procedures yielding one subassem-
bly. Based on the parenthesis and basic assembly
operation numbers, the following representation
rules on grouping liaisons are developed to charac-
terise the assembly hierarchy.

Rule 1: One pair of parentheses generates only
one subassembly.

Take Figure 4 as an example. The notation (2)
represents a subassembly (BC) and (1 2 3) generates
a subassembly (ABCD). But (1 3) violates this rule
(‘illegal’) because if basic operations 1 and 3 are fin-
ished in the first step of the assembly process, two
subassemblies are generated, i.e. (AB) and (CD).

Rule 1 can be represented by the matrix M defined
above. All the liaisons (basic assembly operations)
that are shown to be connected in matrix M can be
grouped in one pair of parenthesis, representing
a subassembly. For instance, consider a subassembly
(ABCDE) in Figure 4 which has four basic assembly
operations 1-4. The matrix M is

1
0
1
0

o =0 O

0
1
0
1

o O —= 0O

It is apparent that one basic assembly operation in
each level is legal, such as (2). Notation (1 2 3) is also
legal because according to matrix M, basic operations
1 and 2 connect to component B while basic opera-
tions 2 and 3 connect to component C, thus creating
one subassembly. Notation (1 3) is not legal because
basic operations 1 and 3 do not connect to any com-
mon component.

It should be noted that the notation (1 3) could
become ‘legal’ for certain cases. For example, if the
operation (2) has already been performed, a new sub-
assembly (BC) is generated. Then basic operations (1)
and (3) connect to the same subassembly (BC). Thus,
operation (1 3) becomes legal. The reason for this
scenario is that every time an assembly operation is
performed, the matrix M defined above will change.
In the next section, a recursive algorithm is proposed
to generate all the assembly hierarchies given
a liaison graph. In each recursive level, the connection
matrix is different, and the algorithm needs to update
matrix M. Thus, another changeable basic operation
connection matrix N(k) should be defined, which
represents whether two basic assembly operations

connect to the same component or subassembly in
the recursive level k. Each entry in this matrix is

1, if liaisons (tasks) i and j connect to
the same component or subassembly
in current recursive level k
0, otherwise

3)

Different assembly operation selection of the upper
level will generate different N(k). For the example in
Figure 4, by considering basic assembly operations 1
to 4, the corresponding matrices N(1) and N(2) after
assembly operation (2) is performed are

r0O 1 0 07
1 0 1 O | after task(2) is performed
N('I) =lo 1 o 1 — (2)
LO 0 1 0.
r0O 0 1 07
oo o0 o0
|11 0 0 1
LO 0O 1 0.

(4)

After assembly operation (2) is performed, all the
elements in row 2 and column 2 are set to zero. The
updated matrix shows the new connection relation
among the basic operations other than (2). In the
updated matrix N(2), basic operations (1) and (3) are
connected to the same subassembly. Therefore, (1 3)
becomes legal and its completion creates subassem-
bly (ABCD).

Rule 2: All the basic operation numbers in one pair
of parentheses must be in ascending order.

Unlike assembly sequence generation in De Fazio
and Whitney (1987), the assembly operations such as
(123),(132),(213),(231),(312)and (321)in this
representation are the same. To avoid the repetitive
enumeration, this paper defines that all the basic
operation numbers in one pair of parentheses (in
the same level) should be sorted in ascending order.
Thus, only (1 2 3) is legal among the six different forms
above.

2.2 Tree structure of assembly hierarchy

The hierarchical relations among subassemblies can
be represented by a multilevel tree structure. Under
this tree structure, each node represents one pair of
parentheses. Two scenarios are considered for each

6 e Z. JIANG AND H. WANG

node. One is that this node uses all or some of the
subassemblies generated by other nodes and the
other one is that it only uses the basic components.

Figure 5 shows an example of the tree structure
representing the assembly hierarchy for the liaison
graph in Figure 4. Operation (2) is defined as the
child of (1 3) because the subassembly BC generated
by (2) is used in operation (1 3). Similarly, nodes (1 3)
and (5) are the children of (4 6), and (4 6), (8) and (10
11) are the children of (7 9).

In such a tree structure, if nodes (8) and (10 11) swap
their positions, the subassembly hierarchy remains the
same. To avoid such repetitive enumerations, this
paper enforces that the children of the same node be
arranged in ascending order from left to right accord-
ing to the basic assembly operation label enclosed. The
following representation rule is proposed:

Rule 3: All the children of the same node should be
arranged in ascending order from left to right
according to the smallest basic assembly opera-
tion label of each child node.

For example, assume that (1 4) and (2 3) are two
children of one node. Due to Rule 3, (1 4)(2 3) is valid
because basic operations (1) and (2) are in ascending
order from left to right (only the smallest number in
one pair of parentheses is used to arrange the order).
An assembly hierarchy can thus be represented by
traversing the tree defined above. However, it should
also be noticed that assembly hierarchies (2)(1 3)(5)
(4 6) and (2)(5)(1 3)(4 6) are the same in Figure 5. To
avoid such a repetition, Rule 4 is enforced during the
tree traversal.

©,
9 (@) @)
) (&)
(&)

Representation of Assembly Hierarchy:
(2)(1 3)(5)(4 6)(8)(10 11)(7 9)

Figure 5. Example of a tree structure of assembly hierarchy.

Rule 4: The only legal expression of any assembly
hierarchical tree is post-order traversal.

Post-order traversal of a tree structure starts from
the root of the tree following the recursive traversal
procedure below:

(1) Traverse all the children of the node from left to
right.
(2) Visit the parent node.

Therefore, the only legal expression of the assembly
hierarchy in Figure 5 is (2)(1 3)(5)(4 6)(8)(10 11)(7 9).

2.3 Summary

After applying Rules 1 to 4, any assembly hierarchy can
be uniquely characterised by the new representation
using basic assembly operation numbers and parenth-
eses. Enumeration of all feasible assembly hierarchies
without repeating or missing any case can be realised
based on this representation. Therefore, the assembly
hierarchy generation problem is transformed into an
enumeration problem for all the legal arrangement
of the basic assembly operation numbers (i.e., grouping
these numbers using parentheses as constrained by
Rules 1 to 4).

3. Assembly hierarchy generation algorithm

The main idea of the proposed algorithm is to enumer-
ate all the feasible subassemblies recursively. Each
recursion generates only one subassembly that should
meet the requirements of Rules 1 to 4.

3.1 Algorithm for generating feasible subassembly
that satisfies Rules 1 and 2

At each recursive level, it is necessary to first enu-
merate all the feasible subassemblies according to
liaison graph while satisfying Rules 1 and 2.
Suppose that in level k (recursive level appeared
in Equation (3)), there are n basic operations, i.e.
1,2...n (where the numbers are sorted in ascend-
ing order). A recursive method is used to generate
all the combination of 1,2...n in ascending order
so that Rule 2 is met. For example, if there are only
three basic operations to be examined, e.g. a, b
and ¢ (@a<b<c). The candidate assembly opera-
tions to create subassemblies include (a), (b), (c),

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 7

(ab), (bc), (ac), and (abc). An algorithm is developed
to test whether each candidate assembly operation
containing more than one basic operations meets
Rule 1. The procedures involved in this algorithm
can be described as follows:

(1) Define a set A ={a,,as, ..., a,}, where a,,a, ..., a,
are the basic operation numbers of
one candidate assembly operation. Initialise
set Q={Q,} =0, where n = 123.....

(2) Initialise m = 1. Record a random basic opera-
tion number of the candidate assembly opera-
tion to be tested in set Q.

(3) Randomly pick one j € ANQ, Q denotes the
complement set of Q, let i € Q,,, according to
the matrix N(k):

If Njjk = 1

Record jin Qp1;

Find nextj € ANQ,
Else

Find nextj € ANQ,
Until all j is tested

(4) Inspect two scenarios:
If Q# A and Qn 1 =0,
This is an infeasible candidate assembly
operation. Terminate.
ElseifQ=A
This is a feasible candidate assembly
operation. Terminate.
Else
Let m =m + 1 and return to Step 3.
(5) Repeat this procedure until all the candidate
assembly operations are tested.

The flowchart for 3.1 is given as follows in Figure 6.

3.2 Elimination of illegal enumerations by
exploring tree structure (Rules 3 and 4)

In Section 3.1, the basic operation connection matrix
N(k) is used to generate those feasible subassemblies
which satisfy Rules 1 and 2. Next, the hierarchical
relationship among these subassemblies as reflected
in the tree structure needs to be identified. A string
variable P is introduced to record the parents-children

N(k), m=1

A={a,,a,,...,a,}€ L(D)
Q0=1{01,0Q;..Q:,} =0

y

Add random j € A to Q,,

l

Find random j € AN Q

A

Infeasible
Subassembly

Feasible
Subassembly

Addjto Qmy1 —

Figure 6. Flowchart of algorithm 3.1.

m=m+1

8 e Z. JIANG AND H. WANG

relationship of the tree structure. The procedures can
be stated as follows:

(1) Save one feasible subassembly identified by
the algorithm in Section 3.1 into P.

(2) Obtain the feasible subassembly in the
next recursive level. There are three scenar-
ios, i.e.,

a. The new subassembly uses all the subassem-
bly/subassemblies saved in P. Check Rule 3
to see if the smallest basic operation num-
bers of all these subassemblies are in
ascending order.

If Check pass
Delete all the previous subassembly/sub-
assemblies and replace it/them with the
new feasible subassembly in P. Go to
Step 3.

Else
Violates Rule 3, and an illegal enumera-
tion is reported. Terminate.

b. The new subassembly uses a part of the
subassembly saved in P. Rule 4 requires
that any parent node must be appended
after its rightmost child while Rule 3 is not
violated.

If Check pass
Delete the subassembly/subassembilies in
P which are used by the new subassembly
and replace it/them with the new subas-
sembly. Go to Step 3.

Else
Violates Rules 3 or 4, and an illegal enu-
meration is reported. Terminate.

¢. The new subassembly uses none of the sub-
assembly saved in P. It is considered to have
a parallel hierarchical relationship with all
the previous subassemblies. Append the
new one after all the previous subassemblies
in P. Go to Step 3.

(3) If there is no more subassembly and all the
basic operations are examined, a feasible
assembly hierarchy is obtained that satisfies
Rules 3 and 4. Otherwise, Go to Step 2.

The flowchart for 3.2 is given as follows in Figure 7.

Take the hierarchical tree in Figure 8 as an example.
Any expression other than (2)(1 3)(5)(4 6)(12)(8)(10 11)
(7 9) will be considered illegal for this tree structure.

Initialize P

A 4

Get feasible
subassembly in 3.1

Pass rule
3&4 check

Illegal
Assembly

Update P according to
scenario a,b,c

All basic
operation
checked

Legal Y
Assembly

Figure 7. Flowchart of algorithm 3.2.

For real-world products, practical constraints such
as geometry and manufacturability should be fac-
tored into the generation procedure. This paper con-
siders each of these constraints as a filter. In each
recursive level, the filter eliminates all candidate
assembly operations that violate the constraint. As
such, redundant generation for those impractical
operations will not be performed, thereby reducing
computational load.

3.3 Recursive algorithms for the enumeration

Based on the algorithms in Sections 3.1-3.2, a recursive
algorithm can be developed for enumerating all the
legal representations. Two recursive functions CandiOp
and AssemHi are developed where AssemHi (Assembly
Hierarchy Generation) is a function to generate the
lower recursive level, and CandiOp (Candidate
Operation Enumeration) is to enumerate all the candi-
date assembly operations in each recursive level. In
recursive level k, follow the five steps below:

(1) Initialise N(1) and P and call AssemHi for the
first recursive level (k = 1);

(2) In level k, call CandiOp(k) function to one can-
didate assembly operations based on the basic
operations to be examined;

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 9

Figure 8. Example of a tree structure.

(3) For the candidate assembly operation gener-
ated above, find out whether this operation
satisfies (a) Rules 1 and 2 by examining Q and
N(k) using the algorithm in Section 3.1. and (b)
Rules 3 and 4 by checking string P in level
k using the algorithm in Section 3.2.

a. If the operation obeys Rules 1 to 4 and prac-
tical constraints, proceed to Step 4.

b. Otherwise, go to Step 2 and call CandiOp(k)
function to examine the next candidate
assembly operation in level k.

(4) Record the identified legal assembly hierarchy
in level k in string variables S(k), k =12 ... n,
where n is the total the number of basic
operations;

(5) Judge whether all the basic operations are
recorded in S(1), S(2), ..., S(k).

a. If Yes: Print S(1), S(2), ..., S(k) as an assembly
hierarchy. Go to Step 2 and Call CandiOp(k)
function to examine the next candidate
assembly operation in level k.

b. If No: Update matrix N(k + 1) and string
variable P. Call AssemHi(k + 1) function at
recursive level k + 1 which call CandiOp(k
+ 1) function at Step 2 to generate the can-
didate assembly operations for level k + 1.

The flowchart of this programme is shown in
Figure 9, where L represents the total number of
the combinations of candidate assembly operations
in the same recursive level generated by the algo-
rithm in Section 3.1.

4. Examples and validation

This section shows several examples to verify and
demonstrate this proposed algorithm. When the liaison
relations of the products become increasingly complex,
the design space grows larger, and computation
becomes more expensive. Comparison with the tradi-
tional assembly sequence generation, this research
addresses the following challenges in the assembly
hierarchy generation, i.e.,

e The information based on hierarchy analysis,
such as assembly task formation and hierarchical
material flow relationship among the tasks, can
be used to filter unnecessary candidate solutions
that the assembly sequence generation cannot
eliminate from the design space.

¢ Assembly sequence generation does not consider
the case when certain basic operations may be
performed simultaneously via an assembly opera-
tion that encloses/groups multiple components at
a time. For example, multiple metal plates can be
welded simultaneously via a multi-layer joining
process.

4.1 Case study for the comparison with assembly
sequence generation

To compare the difference between assembly
sequence and assembly hierarchy, this paper uses the
ballpen assembly example in De Fazio and Whitney

10 e Z. JIANG AND H. WANG

| [=1; initialize L |

1
!
|
!
1
1
|
1
I .
1
1
I
1
1
|

l Call CandiOp(Z,L,N(k),P) |

All candidate operations in
this level k are examined,
End current call

Call CandiOp(/+1,L,N(k),P)

Call CandiOp(/+1,L,N(k),P)

Record the legal
candidate operation in S(k)

All tasks are recorded
in S(1), S(2)...S(k)

Save S(1), S(2)...S(k)as |
one assembly hierarchy

Update matrix N(k+1);
Update string variable P;
Call AssemHi(k+1,N(k+1),P)

Clear S(k);
Call CandiOp(+1,L,N(k),P)

Figure 9. Flowchart of enumeration algorithms using 3.1 and 3.2.

(1987). The liaison graph of the ballpen is given in
Figure 10. A description of precedence requires the
following liaison precedence relations: 3—4, 1—5 and
4—(1 and 2), where a—b represents that basic opera-
tion a must have been performed before basic opera-
tion b. The proposed algorithm for assembly hierarchy

generation is applied, and the results are presented in
Table 2.

Compared with De Fazio’s method, using assembly
hierarchy generation for assembly system design and
optimisation can avoid repetitive considerations of the
assembly sequences that have the same hierarchical

Figure 10. Liaison graph of a ballpen.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING ‘ 1

structures. The assembly sequence generation algo-
rithm in (De Fazio and Whitney 1987) yields 12 assem-
bly cases. Ten of these cases are the results labelled
with stars in Table 2. The remaining two results are (3)
(2)@)(1)(5) and (3)(@)(2)(1)(5), which are considered
equivalent to Result 13 = (2)(3)(4)(1)(5) from the per-
spective of assembly hierarchy. The design space with-
out simultaneous assembly is simplified from 12 to 10.
In addition, the proposed algorithm generates 15 more
assembly hierarchies considering the case when cer-
tain basic operations can be performed simultaneously
while satisfying the requirements of the liaison prece-
dence relations. These 15 scenarios are ignored by
state-of-the-art assembly sequence generation algo-
rithms. Furthermore, by analysing the tree structure
of the assembly hierarchy, more constraints can be
added during the generation procedure. For example,
the head, tube, and ink may be enclosed in a refill
module and should be produced in a subassembly
and on the tree structure; these assembly tasks will
be placed on a subassembly branch. By implementing
these constraints during generation, the resultant
design space is reduced to 5 as shown in Figure 11.

Table 2. Assembly hierarchy generation result for Figure 8.

Result 1 = (1 3)(4 5)(2) Result 14 = (3)(1 4)(2 5)
Result 2 = (1 3)(4)(2 5) Result 15 = (3)(1 4)(2)(5)
Result 3 = (1 3)(4)(2)(5) Result 16 = (3)(1 4)(5)(2)
Result 4 = (1 3)(4)(5)(2) Result 17 = (3)(1)(4 5)(2)
Result 5 = (1 3)(5)(4)(2) Result 18 = (3)(1)(4)(2 5)
Result 6 = (1)(3 5)(4)(2) * Result 19 = (3)(1)(4)(2)(5)
Result 7 = (1)(3)(4 5)(2) * Result 20 = (3)(1)(4)(5)(2)
Result 8 = (1)(3)(4)(2 5) * Result 21 = (3)(1)(5)(4)(2)
* Result 9 = (1)(3)(4)(2)(5) Result 22 = (3)(4)(1 2)(5)
* Result 10 = (1)(3)(4)(5)(2) Result 23 = (3)(4)(1)(2 5)
* Result 11 = (1)(3)(5)(4)(2) * Result 24 = (3)(4)(1)(2)(5)
* Result 12 = (1)(5)(3)(4)(2) * Result 25 = (3)(4)(1)(5)(2)
* Result 13 = (2)(3)(4)(1)(5)

% Same results in (D

-

azio and Whitney 1987)

Figure 11. Enumeration results with additional constraints for ballpen assembly.

(2)(3)(4)(1)(5)

4.2 A real-world example: laptop computer
assembly

Figure 12 shows the components for a simplified lap-
top computer example as used by Hu et al. (2011). In
the graph, the replaceable components, such as the
hard drive and the main battery, are excluded from
the computer assembly process. The corresponding
liaison graph is given in Figure 13.

The practical constraints for assembling this pro-
duct are discussed as follows. Assume that from the
manufacturability point of view, the following rela-
tions must be maintained, i.e, 1—2, 153, 14, ((8
or 6) and 7 and 9 and 10)—5, 10—7, 10—9, 7—9.
Another constraint considers the completion of cer-
tain basic operations that result in the simultaneous
completion of other basic operations. This scenario
typically occurs when several liaisons form a loop. The
liaison graph in Figure 11 shows that basic operations
2, 3 and 4 form a circle. When basic operation 2 is
completed, basic operations 3 and 4 must be per-
formed simultaneously to complete the assembly for
the liaison loop because liaisons 3 and 4 both repre-
sent the contact between subassembly (BC) and
a component D. The processing time of assembly
tasks is given in Table 3.

If the algorithm is implemented without any practi-
cal constraints, it becomes a complete enumeration of
all possible assembly hierarchies. The algorithm may
take hours to generate 19,224,300 different assembly
hierarchies. However, in reality, there are different prac-
tical constraints mentioned above. With these practical
constraints, the algorithm results in 2156 legal assem-
bly hierarchies within 10 seconds, as summarised in
Figure 14. Among these feasible assembly hierarchies,
376 of them are the assembly hierarchies without the

(3)(4)(1)(2)(5)

(3)(4)(1)(2 5)

(3)(4)(1)(5)(2)

(3)(4)(1 2)(5)

12 (&) Z.JIANG AND H. WANG

Fan

Microprocessor
Thermal-cooling

Speakers

- A Display Assembly

Hinge Cover
Keyboard
Palm rest

System Board
Optical Drive
Main Battery

Computer Base

Hard Drive

Source: www.support.dell.com

Figure 12. Components of a laptop computer.

Figure 13. Liaison graph for a laptop computer.

Table 3. Processing time of assembly tasks (min).
Tasks 1 2 3 4 5 6 7 8 9 10 11
Time 22 13 17 11 32 37 42 31 20 50 25

consideration of simultaneous assembly (unless
required by the constraints). If the assembly sequence
generation is adopted, the size of the candidate design
space will become 12,096 while many sequences are
representing the same hierarchies. By using assembly

hierarchy, the size of the design space is reduced from
12,096 to 376. Scenarios with simultaneous assembly
are also considered without the limitation to three
parts assembly proposed by Bonneville, Henrioud,
and Bourjault (1995). When the simultaneous assembly
(not limited to ternary operation) is considered, the
design space extended to 2156 with 5, 6, 7, 8, and 9
operations. Thus, the proposed algorithm recovers
2156-376 = 1780 scenarios that were ignored by the
traditional assembly sequence generation problem.
Some examples are illustrated in Figure 15. The nodes
represent the assembly tasks or groups of assembly
tasks that create/co-create one subassembly, and the
arcs represent their precedence relations. By assuming
that each node is assigned to an individual machine,
the Gantt charts and makespans are listed on the right
side of the examples, where the makespan represents
the time difference between the start and finish of
a sequence of assembly tasks. It can be seen that the
8-stage assembly planning leads to the minimal make-
span among the examples as listed and can be poten-
tially chosen for assembly system configuration design.
The makespans in Figure 15 can be further optimised
by assigning multiple machines to one node or group-
ing several nodes into one machine.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 13

900
800
700
600
500
400
0 22
200
100 5 ~
0 S _

u5 ue

Quantity of assembly hierarchies

854

376

u7 m8 9

Number of stages to assemble one product

Figure 14. Summary of the assembly hierarchy generation for the laptop.

Selected examples of enumerated results

° @ Makespan: 27.8 min
1
(7) 10 11 i
7 !
@ [8 T91] |
[2]3 4] 5 [6 |
5-Stage assembly: :
(1)(1011)(7)(8 9)(234 56) Time i
i Makespan: 23.7 min
8 i
213 |4 '
7 T117] i
[9] i
5 6
6-Stage assembly: :
(1)(2 3 4)(8 10)(7 11)(9)(5 6) Time ’
o @ 4'1 Makespan: 23.0 min
(&) @9 10 :
(711) 7 111 |
9] i
(10) 5 [8 | -
7-Stage assembly: ‘L[LI
(1)(20)(7 11)(9)(4 6)(5 8)(2 3) Time '
@o oo Makespan: 20.0 min
1
®» @O @ -
8-Stage assembly: 5 [8 l
(1)(4)(2 3)(6)(10 11)(7)(9)(5 8) Time

Figure 15. Examples of enumerated results including hierarchical configurations, mathematical representations, and corresponding

Gantt charts showing the makespans of completing the assembly.

The assembly sequence must distinguish the strict
sequence between assembly operations of different
assembly liaisons and as such, the sequence for those
parallel/independent assembly operations must be
identified. By contrast, the assembly hierarchy only

focuses on the hierarchical structure/relationship
among the material flows for different assembly
operations and does not distinguish between the
assembly sequence for those parallel/independent
operations. When dealing with the problem of

14 e Z. JIANG AND H. WANG

assembly system configuration design, which con-
cerns with the topological arrangement of machines
or workstations with defined logical material flow
among them, the assembly hierarchy has a clear
advantage in exploring the hierarchical relations in
the assembly operations without repetitive search in
the same design space.A comparison of the design
space between the proposed algorithm using assem-
bly hierarchy and the traditional assembly sequence
generation is given in Table 4. The numerical results
demonstrate that the proposed algorithm can avoid
repetitive design space search while not missing sce-
narios when simultaneous assembly operations are
involved in comparison with the assembly sequence
generation .

4.3 Discussion

This research provides a maths-based tool implementa-
ble by computers for engineers to evaluate the product
design manufacturability. Given a product design, the
algorithm can generate the entire feasible design space
considering all kinds of constraints including the
designers’ preferences. The algorithm output can be
further used as the input for assembly system config-
uration optimisation. For example, Li et al. (2011) pro-
posed an optimisation framework for designing
assembly systems with complex configurations by
jointly considering product design hierarchy, line balan-
cing, and equipment selection. Such a configuration of
assembly systems reflects the topological arrangement
of workstations/machines and material flows among
them. A two-stage optimisation algorithm has been
developed to explore all the possible solutions to the
assembly system configuration based on an initial con-
figuration as shown in Figure 16, where a circle repre-
sents the assembly tasks, the dashed boxes represent
machines. The initial configuration is directly derived
from each assembly hierarchy by assigning one task to
each machine, and it is evolved/updated by exploring
feasible ways of task-machine assignments to evaluate
various serial, parallel, and hybrid configurations. This

research provides a computer-aided generation algo-
rithm for the assembly hierarchy, which can be directly
fed to the optimisation outlined by Li et al. (2011) as the
initial configurations. The first version of this tool is
being used by the Research and Development Centre
of one major automotive manufacturer in the USA to
evaluate their electric vehicle battery designs. If the
initial configuration in Li et al. (2011) were created
based on the traditional assembly sequence method,
the computation would be less efficient for a large-
sized problem since the optimisation has to explore
a large number of unnecessary assembly sequences
that, however, correspond to the same assembly
hierarchy.

Conclusion

Automatic generation of assembly hierarchies plays
an essential role in assembly system design as it
determines the assembly operations and the hierarch-
ical material flows. The assembly hierarchy contains
the information useful for optimising the assembly
configuration and the assembly sequence. State-of-
the-art research mostly dealt with assembly sequence
generation and subassembly module formation con-
sidering mechanical interface designs. Research gaps
still exist in the development of an assembly hierarchy
generation algorithm including (1) an efficient repre-
sentation of assembly hierarchy for complex product
designs and (2) the consideration of parallel assembly
tasks and simultaneous completion of multiple
assembly tasks.

This paper proposed a computer-aided algorithm
to generate assembly hierarchies for product designs
with complex liaison relations. A new assembly hier-
archy representation with four rules was proposed.
Based on the new representation, a recursive algo-
rithm was developed to automatically generate all
the feasible assembly hierarchies. Using string repre-
sentation and the connection matrix of liaison graph,
this algorithm can generate assembly hierarchies not
only for serially linked assemblies but also for

Table 4. Comparison between assembly hierarchy and assembly sequence in case studies.

Design space without considering simultaneous operations

Assembly sequence Assembly hierarchy

Design space reduction

Additional design space considering simultaneous

Scenarios method method % operations
Case study 1 12 10 16.67% 15
Case study 2 12,096 376 96.89% 1780

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 15

050

Assembly Hierarchy
(Initial configuration)

Configuration 1

Configuration 2

Configuration 3

O Assembly task

| -_-_-i Machine

Figure 16. Assignment of tasks to machines based on one initial configuration.

assemblies with branches and loops in their liaison
graphs. This generation algorithm is a recursive pro-
cedure, and in each recursive level, all ‘illegal’ results
that violate the four rules and/or some practical
constraints are not explored, thus greatly improving
the computational efficiency. Case studies were con-
ducted for a ballpen liaison graph and a real-world
product (laptop) to demonstrate the procedure.
A comparison was made to illustrate the difference
between assembly hierarchy generation and con-
ventional assembly sequence generation problem.
The advantages of the proposed method (innova-
tions) are twofold including (1) reduction of the
assembly sequences corresponding to the same
assembly hierarchy, thus reducing the repetitive
exploration/search of the same design space for sol-
ving the assembly system configuration design pro-
blems and (2) consideration of simultaneous
assembly operations, which are usually ignored by
assembly sequence generation algorithm. Therefore,
the proposed algorithm has its advantage in improv-
ing the search efficiency of design space for assem-
bly hierarchy selection in the assembly system
configuration design problem.

The realisation of the automatic assembly hierarchy
generation provides a computer-aided tool for optimisa-
tion algorithms to select appropriate system configura-
tions, thereby leading to a computer-aided tool for
engineers to evaluate the manufacturability of product
designs.

Acknowledgments

This research is partially supported by an NSF grant HRD-
1646897 and has been conducted at the FAMU-FSU College
of Engineering. The authors also thank Prof. S. Jack Hu at the
University of Michigan and Dr. Yhu-tin Lin from the GM
Technical Center for providing industry backgrounds that
motivate this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Science Foundation
Grants CMMI-1901109 and HRD-1646897.

References

Akglindliz, O. S., and S. Tunali. 2010. “An Adaptive Genetic
Algorithm Approach for the Mixed-model Assembly Line
Sequencing Problem.” International Journal of Production
Research 48: 5157-5179. doi:10.1080/00207540903117857.

Bahubalendruni, M., B. B. Biswal, and G. R. Khanolkar. 2015.
“A Review on Graphical Assembly Sequence Representation
Methods and Their Advancements.” Journal of Mechatronics
and Automation 1: 16-26.

Bahubalendruni, M. R., and B. B. Biswal. 2015. “A Review on
Assembly Sequence Generation and Its Automation.”
Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science 230:
824-838. d0i:10.1177/0954406215584633.

https://doi.org/10.1080/00207540903117857

16 e Z. JIANG AND H. WANG

Ben-Arieh, D., and B. Kramer. 1994. “Computer-aided Process
Planning for Assembly: Generation of Assembly Operations
Sequence.” The International Journal of Production Research
32: 643-656. doi:10.1080/00207549408956957.

Bonneville, F., J. M. Henrioud, and A. Bourjault. 1995. “Generation
of Assembly Sequences with Ternary Operations.” In
Proceedings. IEEE International Symposium on Assembly and
Task Planning, 245-249. doi:10.1002/bip.360360211

Bourjault, A. 1984. “Contribution to a Methodological
Approach of Automated Assembly: Automatic Generation
of Assembly Sequence”. University de Franche-Comte.

Chen, S.-F., and Y.J. Liu. 2001. “An Adaptive Genetic
Assembly-sequence Planner.” International Journal of
Computer Integrated Manufacturing 14: 489-500.
doi:10.1080/09511920110034987.

Choi, C. K, X. F. Zha, T. L. Ng, and W. S. Lau. 1998. “On the
Automatic Generation of Product Assembly Sequences.”
International Journal of Production Research 36: 617-633.
doi:10.1080/002075498193606.

De Fazio, T. L., and D. E. Whitney. 1987. “Simplified Generation
of All Mechanical Assembly Sequences.” Robotics and
Automation, IEEE Journal Of 3: 640-658. doi:10.1109/
JRA.1987.1087132.

Dini, G., and M. Santochi. 1992. “Automated Sequencing and
Subassembly Detection in Assembly Planning.” CIRP Annals -
Manufacturing Technology 41: 1-4. doi:10.1016/50007-
8506(07)61140-8.

Hu, S. J, J. Ko, L. Weyand, H. EIMaraghy, T. Lien, Y. Koren,
H. Bley, G. Chryssolouris, N. Nasr, and M. Shpitalni. 2011.
“Assembly System Design and Operations for Product
Variety.” CIRP Annals-Manufacturing Technology 60:
715-733. doi:10.1016/j.cirp.2011.05.004.

Huang, N., and Y.-T. Lin. 2009. “Chaining Set Partitions with
Applications in Manufacturing System Configuration
Planning.” International Journal of Operational Research 6:
380-404. doi:10.1504/1JOR.2009.026939.

Huang, W, and Q. Xu. 2017. “Automatic Generation and
Optimization of Stable Assembly Sequence Based on ACO
Algorithm.” In 2017 IEEE International Conference on
Mechatronics and Automation (ICMA), 2057-2062.
Takamatsu, Japan, August.

Ibrahim, I, Z. Ibrahim, H. Ahmad, M. F. M. Jusof, Z. M. Yusof,
S. W. Nawawi, and M. Mubin. 2015. “An Assembly Sequence
Planning Approach with a Rule-based Multi-state
Gravitational Search Algorithm.” The International Journal
of Advanced Manufacturing Technology 79: 1363-1376.
doi:10.1007/s00170-015-6857-0.

Kim, K.-Y., D. G. Manley, and H. Yang. 2006. “Ontology-based
Assembly Design and Information Sharing for Collaborative
Product Development.” Computer-Aided Design 38:
1233-1250. doi:10.1016/j.cad.2006.08.004.

Kumar, M. S, M. N. Islam, N. Lenin, D. Vignesh Kumar, and
D. Ravindran. 2011. “A Simple Heuristic for Linear
Sequencing of Machines in Layout Design.” International

Journal of Production Research 49: 6749-6768. doi:10.1080/
00207543.2010.535860.

Li, S, H. Wang, S. J. Hu, Y.-T. Lin, and J. A. Abell. 2011.
“Automatic Generation of Assembly System Configuration
with Equipment Selection for Automotive Battery
Manufacturing.” Journal of Manufacturing Systems 30:
188-195. doi:10.1016/j.jmsy.2011.07.009.

Mather, H. 1987. Bills of Materials. Burr Ridge, Illinois: Irwin
Professional Pub.

Mello, L. S. H. D., and A. C. Sanderson. 1990. “AND/OR Graph
Representation of Assembly Plans.” Robotics and
Automation, IEEE Transactions On 6: 188-199. doi:10.1109/
70.54734.

Mello, L. S. H. D., and A. C. Sanderson. 1991a. “A Correct and
Complete Algorithm for the Generation of Mechanical
Assembly Sequences.” IEEE Transactions on Robotics and
Automation 7: 228-240. doi:10.1109/70.75905.

Mello, L. S. H. D., and A. C. Sanderson. 1991b. “Representations
of Mechanical Assembly Sequences.” IEEE Transactions on
Robotics and Automation 7: 211-227. doi:10.1109/70.75904.

Pan, C., S. S. Smith, and G. C. Smith. 2006. “Automatic Assembly
Sequence Planning from STEP CAD Files.” International
Journal of Computer Integrated Manufacturing 19: 775-783.
doi:10.1080/09511920500399425.

Park, H.-S., J-W. Park, M-W. Park, and J-K. Kim. 2013.
“Development of Automatic Assembly Sequence
Generating System Based on the New Type of Parts Liaison
Graph.” In Product Lifecycle Management for Society. PLM
2013. IFIP Advances in Information and Communication
Technolog, edited by A. Bernard, L. Rivest, D. Dutt. vol 409.
Berlin, Heidelberg: Springer..

Smith, G., and S. Smith. 2003. “Automated Initial Population
Generation for Genetic Assembly Planning.” International
Journal of Computer Integrated Manufacturing 16: 219-228.
doi:10.1080/0951192021000039602.

Suszynski, M., and J. Zurek. 2015. “Computer Aided Assembly
Sequence Generation.” Management and Production
Engineering Review 6: 83-87. doi: 10.1515/mper-2015-0030.

Wang, H., J. Ko, X. Zhu, and S. J. Hu. 2010. “A Complexity Model
for Assembly Supply Chains and Its Application to
Configuration Design.” Journal of Manufacturing Science
and Engineering 132: 021005. doi:10.1115/1.4001082.

Wang, J., J. Liu, and Y. Zhong. 2005. “A Novel Ant Colony
Algorithm for Assembly Sequence Planning.” The
International ~ Journal ~ of Advanced = Manufacturing
Technology 25: 1137-1143. doi:10.1007/s00170-003-1952-z.

Webbink, R. F., and S. J. Hu. 2005. “Automated Generation of
Assembly System-design Solutions.” Automation Science and
Engineering, IEEE Transactions On 2: 32-39. doi:10.1109/
TASE.2004.840072.

Xing, Y., and Y. Wang. 2012. “Assembly Sequence Planning
Based on a Hybrid Particle Swarm Optimisation and Genetic
Algorithm.” International Journal of Production Research 50:
7303-7312. doi:10.1080/00207543.2011.648276.

https://doi.org/10.1080/00207549408956957
https://doi.org/10.1002/bip.360360211
https://doi.org/10.1080/09511920110034987
https://doi.org/10.1080/002075498193606
https://doi.org/10.1109/JRA.1987.1087132
https://doi.org/10.1109/JRA.1987.1087132
https://doi.org/10.1016/S0007-8506(07)61140-8
https://doi.org/10.1016/S0007-8506(07)61140-8
https://doi.org/10.1016/j.cirp.2011.05.004
https://doi.org/10.1504/IJOR.2009.026939
https://doi.org/10.1007/s00170-015-6857-0
https://doi.org/10.1016/j.cad.2006.08.004
https://doi.org/10.1080/00207543.2010.535860
https://doi.org/10.1080/00207543.2010.535860
https://doi.org/10.1016/j.jmsy.2011.07.009
https://doi.org/10.1109/70.54734
https://doi.org/10.1109/70.54734
https://doi.org/10.1109/70.75905
https://doi.org/10.1109/70.75904
https://doi.org/10.1080/09511920500399425
https://doi.org/10.1080/0951192021000039602
https://doi.org/10.1515/mper-2015-0030
https://doi.org/10.1115/1.4001082
https://doi.org/10.1007/s00170-003-1952-z
https://doi.org/10.1109/TASE.2004.840072
https://doi.org/10.1109/TASE.2004.840072
https://doi.org/10.1080/00207543.2011.648276

	Abstract
	1. Introduction
	2. Assembly hierarchy model
	2.1 Subassembly representation by liaison grouping
	2.2 Tree structure of assembly hierarchy
	2.3 Summary

	3. Assembly hierarchy generation algorithm
	3.1 Algorithm for generating feasible subassembly that satisfies Rules 1 and 2
	3.2 Elimination of illegal enumerations by exploring tree structure (Rules 3 and4)
	3.3 Recursive algorithms for the enumeration

	4. Examples and validation
	4.1 Case study for the comparison with assembly sequence generation
	4.2 A real-world example: laptop computer assembly
	4.3 Discussion

	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	References

