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ARTICLE INFO ABSTRACT

Keywords: Engineering design is a complex process which requires science, technology, engineering, and
Self-regulation mathematic (STEM) knowledge. Students' self-regulation plays a critical role in interdisciplinary
STEM learning tasks. However, there is limited research investigating whether and how self-regulation leads to

Learning analytics
Energy3D
Engineering design

different learning outcomes among students in engineering design. This study analyzes the en-
gineering design behaviors of 108 ninth-grade U.S. students using principal component analysis
and cluster analysis. It classifies the students into four distinct types: competent, cognitive-or-
iented, reflective-oriented, and minimally self-regulated learners. Competent self-regulated
learners perceived themselves as the most self-regulated learners and had the greatest learning
gains, although they did not perform best in the task. Cognitive-oriented self-regulated learners
perceived themselves as the least self-regulated learners although they were the second best in
both the performance of the task and learning gains. In contrast, reflective learners had the best
performance in the task. Minimally self-regulated learners did not perform well in the task and
had the lowest learning gains. The results revealed that the competent self-regulated learners had
an appropriate assessment of themselves to obtain knowledge, cognitive-oriented self-regulated
learners underestimated themselves, reflective learners focused on the results of the task, and
minimally self-regulated learners overestimated themselves and exerted the least effort. The
results also offer new insights into STEM education and self-regulated learning with emerging
learning analytics.

1. Introduction

There is an increasing call to facilitate STEM education through constructing integrated learning environments in which students
can solve complex projects (Chiu et al., 2013). Engineering design activities usually involve engineering construction, science in-
quiry, mathematical reasoning, artistic design, and technological skills (Dasgupta, Magana, & Vieira, 2019), which can be considered
as cross-discipline projects. With the infusion of engineering design into K-12 classrooms, educators recommend situating engineering
problems by “posing authentic problems” and giving students access to “authentic practice” (Strobel, Wang, Weber, & Dyehouse,
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2013). The authenticity of problems and practice can be supported by computer-based learning environments where various si-
mulation tools are available for unlimited practice. In addition to authenticity, computer-based environments make engineering
design processes visible for educators and researchers towards better instructional practice.

Engineering design consists of dynamic learning processes where designers create models, test ideas, analyze data, and construct
new knowledge to optimize design solutions (Crismond & Adams, 2012; Lewis, 2006). An engineering design activity usually involves
high-order skills such as observing, modeling, modifying, analyzing, and evaluating a project (Fan & Yu, 2017), all of which draw on
students' self-regulated learning (SRL).

SRL refers to the learning process where students actively monitor and control their learning using a variety of cognitive and
behavioral strategies (Zimmerman, 2000). Indeed, past research shows that self-regulation plays an important role in students'
efficiency and performance while completing an engineering design project (Lawanto & Johnson, 2012). For example, expert en-
gineering designers were found to be more engaged in evaluating their design than novice designers (Dixon, 2010). Accordingly, it is
very important to investigate if and how self-regulation may influence engineering design processes and consequently affect learning
outcomes.

Although a wealth of research has demonstrated the impact of self-regulation on learning performance (Sitzmann & Ely, 2011),
these studies have generally employed variable-oriented statistical approaches. These studies confirmed that SRL strategies are
positively correlated with learning outcomes measured using students' self-reports (Buric & Soric, 2012; Ozcan, 2016; Peng, Hong, &
Mason, 2014). However, how learners use self-regulated strategies and why different SRL processes may lead to different learning
outcomes have not been fully explored. In addition, few studies have used behavioral-oriented trace data to determine students' self-
regulation profiles. This is especially true for engineering design, which typically uses computer-based learning environments to
support SRL. Self-regulated cognitive processes (e.g., evaluation) interact with the changes of mental representation in the course of
navigating and solving an engineering design problem (Dixon, 2010). Furthermore, self-regulated learners can be distinguished by
their awareness of the relations between SRL strategies and regulatory processes in their own processes (Zimmerman, 1990).
Therefore, the purpose of this study is to 1) gain deeper insight into SRL in the field of STEM education by using a person-oriented
approach to classify learners according to their engineering design behavior and 2) to examine whether and how learners with
different self-regulated behavioral profiles differ in perceived engagement in metacognitive self-regulation and learning outcomes.
The significance of this study is twofold: (1) different student SRL profiles during engineering design were identified when analyzing
student design behaviors and the SRL profiles were found to be associated with their learning gains and design performance; and (2)
the results may contribute to research and practice of using analytical tools to support students with different SRL profiles in the
STEM design field, for example, providing minimally self-regulated learners who tend to overestimate themselves with prompts to
regulate their design processes.

2. Conceptual framework and literature review
2.1. Self-regulated learning theory

SRL is operationalized by Zimmerman (1990, 2008, 2013) as dynamic and cyclical processes that consist of three independent
phases: forethought, performance, and self-reflection. In the forethought phase, learners prepare efforts to learn by analyzing the task and
establishing a specific goal for the task. The goal developed in this phase will guide the subsequent actions and behaviors of learners.
In the performance phase, learners execute strategies to control and monitor their cognitive processes, which result in the progress or
stagnation of the task. Finally, learners evaluate and optimize personal reactions to learning outcomes in the self-reflection phase. Self-
reflection occurs when students receive internal or external feedback about the task. Self-reflection can trigger both momentum and
obstruction for further efforts in SRL. For example, learners who evaluate themselves as insufficiently performed in the task can either
react positively by committing more efforts to gain better learning outcomes or react negatively by diminishing their motivation for
the task and even motivation for learning. This also explains the iterative and cyclical nature of SRL processes. The self-reflection in
the first round may activate the start of further task analysis at the forethought phase or new strategies at performance phase in the
second round. Zimmerman's (1990, 2008, 2013) model describes how SRL happens within a task at a general level. Serving as the
primary theoretical and conceptual foundation of SRL, this model paves the way for understanding SRL in a specific domain or task
(Cleary & Callan, 2018). This highly practical and explicit model can be adapted and expanded to study domain-specific regulatory
processes that emerge from a specific learning activity.

Studying SRL at a general level is not enough to reveal the different regulatory processes associated with the different contents,
tools, and strategies involved in a task. Domains (e.g., linguistics and engineering) or tasks (e.g. a reading task and a problem solving
task) differ in terms of the nature of the subject and structure of the task, which influences the processes students may experience and
strategies they may adopt to regulate their own learning (Poitras & Lajoie, 2013). For example, students may employ the strategies of
rehearsal, selecting main ideas, and rewriting notes to prepare for a memory task (Dabbagh & Kitsantas, 2013), while they may favor
systematic questioning and uncertainty reasoning when completing an engineering design task (Dym, Agogino, Eris, Frey, & Leifer,
2005). Very few empirical studies have examined this aspect. This is why Alexander, Dinsmore, Parkinson, and Winters (2011) called
for further examination of SRL in different domains.

2.2. Self-regulated learning in engineering design

In the context of STEM education, engineering design requires particular knowledge schema and design processes. First of all,
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Fig. 1. SRL model in engineering design.

based on the design prototypes and design knowledge representation schema, researchers have generally conceived of engineering
design projects as requiring structural knowledge, functional knowledge, and behavioral knowledge (Gero, 1990; Gero & Kannengiesser,
2004). Structural knowledge represents the components of a design project, such as walls and floors, in the project to design a house.
Functional knowledge describes the technological purpose of the project. For example, the engineering design task in this study is to
design a house that produces more renewable energy than it consumes over a year. Behavioral knowledge refers to the attributes that
derive from the structural knowledge, such as the fact that windows can distribute the energy conserved in the house. Behavioral
knowledge is usually implicit and functions as the connection between explicit structural knowledge and explicit functional knowledge
(Gero & Kannengiesser, 2004). A good designer should appropriately combine the three types of knowledge. Secondly, formulation,
analysis, reformulation, and evaluation are the well-recognized design processes in the literature (Howard, Culley, & Dekoninck, 2008).
From the start to the end of a design project, designers transform their functional and structural knowledge into the components of
the project (formulation), derive functional information from the structure (analysis), change and modify the project to conform to the
intended design (reformulation), and compare the current structure and function with the intended design to assess if the design
solution is acceptable (evaluation). In summary, knowledge schema and design processes depict the unique characteristics of the
engineering design domain, which should be taken into consideration when developing a model of self-regulated learning in the
domain of engineering design.

Referencing the existing models of SRL in a basic science field (Lajoie, Poitras, Doleck, & Jarrell, 2015) and taking into account
the aforementioned knowledge schema and processes in engineering design, we developed a SRL model in engineering design (see
Fig. 1). Since behavioral knowledge is implicit and the computer-supported learning environment we used for this study does not
make it explicit, we focus on how learners use structural and functional knowledge to get through the SRL processes (i.e., fore-
thought, performance, self-reflection). As displayed in Fig. 1, learners regulate themselves through five cognitive processes: ob-
servation, formulation, reformulation, analysis, and evaluation. Specifically, learners make observations to understand the task at the
forethought phase. The performance phase is the critical phase where learners pursue the design task by formulation, reformulation,
and analysis. Finally, learners evaluate if their current design matches the intended design in the self-reflection phase. All five of these
cognitive processes are iterative and cyclical. For example, in the context of this study, students who are supposed to design an
energy-saving house may go back to the formulation and reformulation to make modifications if their designs consume too much
energy. They may even start to make further observations. Corresponding to these five cognitive processes, self-regulatory behaviors
are recorded in the computer log files of and are distinguished as function-related or structure-related behaviors. For example,
viewing the house from different angles without a specific purpose is considered to be structural observation, while specifically
viewing the sun to make a connection with the function of the house is considered to be a functional observation. The details of the
categorization of all behaviors will be described in the methods section. This comprehensive SRL model in the domain of engineering
design connects and balances the generality and domain-specificity of SRL processes, which is of great importance in illustrating how
students self-regulate their learning (Veenman, Elshout, & Meijer, 1997).

2.3. Related empirical studies in STEM fields

Although the literature of engineering education has not intensively focused on SRL, researchers have verified its importance
among engineering students, and Vogt (2008) called on engineering programs to encourage faculty members to value the significance
of SRL. For example, Tynjild, Salminen, Sutela, Nuutinen, and Pitkdnen (2005) found engineering students who were good self-
regulated learners used deep learning strategies and had the best academic performance. Nelson, Shell, Husman, Fishman, and Soh
(2015) identified several different SRL behaviors engineering students used in their foundational engineering course (Nelson et al.,
2015). As well, Koh et al. (2010) suggested that engineering students needed SRL motivation to succeed in learning based on 3D
simulation.

Since few empirical studies were found in the literature of engineering education, we broadly expanded our review into the STEM
fields. By reviewing empirical studies in the STEM context with a specific focus on the methods these studies employed, we found the
majority of relevant studies utilized a variable-oriented approach to examine the relationship between SRL processes and perfor-
mance. Dent and Koenka (2016) synthesized empirical studies that have measured SRL processes and found that SRL processes
correlated with learning outcomes at different levels. These correlations varied depending on the specific process, academic subject,
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type of SRL measure, and type of learning outcomes. Specifically, the correlation for science was stronger (r = 0.26) than for other
subjects in the meta-analysis (Dent & Koenka, 2016). The positive relationship between SRL and learning outcomes has been well-
established in variable-oriented studies. A few studies attempted to further distinguish learners according to their SRL profile using a
person-oriented approach. For example, Ning and Downing (2015) used a person-oriented approach relying exclusively on self-
reports and identified four self-regulation profiles—“competent,” “cognitively oriented,” “behaviorally oriented,” and “minimally
self-regulated.” “Competent” self-regulated learners demonstrated the highest endorsement for SRL strategies, while “minimally” self-
regulated learners indicated the lowest endorsement for SRL strategies. Ning and Downing (2015) also found “cognitive oriented”
self-regulated learners reported high endorsement for cognitive strategies, but “behaviorally oriented” self-regulated learners had
more trust in test-taking strategies. Going beyond self-reports, Bouchet, Harley, Trevors, and Azevedo (2013) used the interactions
between students and a computer agent (e.g., note-taking, goal-setting actions) while learning biology on an intelligent tutoring
system to classify the profile of SRL learners. The current study aims to extend person-oriented SRL research in STEM fields to an
engineering design environment, investigating the following research questions:

(1) What homogenous behavioral clusters of students emerge when engaging in engineering design and what self-regulated char-
acteristics do these clusters display?

(2) Do the behavioral profiles of self-regulated learners differ in terms of perceived engagement in metacognitive self-regulation?

(3) Do the behavioral profiles of self-regulated learners differ in terms of task performance and learning gains, and if so, how?

3. Method

In this study, we adopted a mixed research method: (1) we quantitatively analyzed the design behaviors of 108 participants and
clustered them into self-regulation profiles using K-means cluster analysis; (2) we qualitatively rated students' science knowledge
before and after participating in the design activities using a rubric; and (3) we conducted one-way ANOVAs to investigate the
relationships between metacognitive self-regulation, performance difference, and the learning gains difference among different
profiles of students. The sample, learning environment, measures, and data analysis are elaborated in the following.

3.1. Sample

The participants were 111 ninth-grade students from a suburban high school in the northeastern United States. This study was
conducted with the approval of the institutional review board to protect the rights of human research subjects and all of the students
who participated in this research completed consent firms. Three students' files were incomplete, leaving a sample of 108. Among
them, fifty-five (50.9%) were female. The participants were enrolled in five physical science honors classes taught by a male teacher
who had over 17 years' experience teaching physical sciences and 5 years' experience mentoring engineering design projects.
According to the information provided by the school (as shown in Table 1), the majority of the school planned to attend 4-year
colleges and were White.

3.2. The learning environment and learning task

Energy3D is a simulated environment for engineering design, and it supports designing, constructing, and analyzing green
buildings that use solar energy (Xie, Schimpf, Chao, Nourian, & Massicotte, 2018). Energy3D (see Fig. 2) provides students with 3D
modeling tools such as walls, windows, roofs, solar panels, and trees that enable students to quickly design and modify buildings (i.e.,
formulation and reformulation). It also provides simulations such as showing shadow, showing heliodon, and animating sun to help
students understand the solar environment in which their houses would be built (i.e., observation). Moreover, Energy3D includes
plenty of tools for quantitative analysis (e.g., compute energy and solar energy, and energy annual analysis) that help users evaluate
the energy performance of their buildings and make relevant revisions to meet the net energy requirement (Xing, Wadholm, &
Goggins, 2014). Finally, embedded prompts such as “describe your design ideas and explain why you think they are good ideas”

Table 1
Demographic information of students at the school.
Demographic categories Sub-categories Percentage
Gender Female 50.9%
Male 49.1%
Expected future pathways 4-year colleges 87%
2-year college 8%
Work or are unsure 5%
Ethnicity White 76.7%
Hispanic 4.6%
African American 4.2%
Multi-race 3.4%
Native American 0.2%
Native Hawaiian/Pacific Islander 0.2%
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Fig. 3. A cape cod style house.

guided users through reflection during the learning process. All actions of users on can be recorded in Energy3D with a timeline, and
the actions can indicate design processes of students and help reconstruct their self-regulation profiles.

In this study, the participants spent 50-80 min each day during a science course in which they were required to individually
design an energy-plus house in Energy3D using a Cape Cod style (see Fig. 3). An energy-plus house must produce more renewable
energy than it consumes over a period of 1 year. Participants were asked to complete the Cap Cord design project in two consecutive
days. Furthermore, the Cape Cod house should meet the following requirements: demonstrate curb appeal; have a ratio of the total
area of windows to the floor area between 0.05 and 0.15; tree trunks must be at least 2m away from the walls of the house; roof
overhang must be less than 50 cm wide. The budget for the house is $200,000. The area of the house needs to be between 100 and
150 m?, and the height needs to be between 7 and 9 m.

Participants were given a pre-test to measure their green building science knowledge the day before the design activity. With the
guidance of two researchers on the first day, students familiarized themselves with the Energy 3D platform on how to construct
buildings, use embedded simulations, and perform energy analysis. Before designing the house, the students were given a two-page
print instruction which specified the design requirements, listed design instructions, and important notes, and contained an en-
gineering design cycle to guide students' design, as shown in Fig. 4. They were asked to learn the design requirements first and were
encouraged to discuss their ideas with their classmates before constructing a house in Energy3D. Once the construction was done, the
students could analyze the energy performance of their building using built-in analysis and revise the building to improve the energy
efficiency of the houses based on the analysis results. Apart from the printed instructions, the students received minimal explicit
guidance. After completing the task, the students received the same green building science knowledge test as the post-test, the
metacognitive self-regulation questionnaire to measure their perceived engagement in self-regulation, and a demographic survey to
identify their gender and ethnicity.

3.3. Measures

3.3.1. Learning gains of science knowledge

A green building science test was developed to assess the scientific knowledge of students in this study. This 18-question test was
drawn from green building science textbooks (Hens, 2011; Montoya, 2010) and was selected based on learning opportunities pro-
vided by Energy-Plus Home design. A panel of green building science experts, high school science teachers, engineering design
professors, and learning scientists reviewed the items to ensure they were appropriate and valid. The questions were related to
concepts of four target domains: sun path and insolation, spatial and geometric, and heat transfer and representations. For each
question, the participants were required to make a choice among design alternatives of given situations and to explain why they chose

[ Plan ]-{ConstructH Test H Revise ]
A A

Understand
Specs

i

Start

Design Cycle

Complete

Fig. 4. The design cycle provided to the participants to guide their design.
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a certain answer.

The explanations students gave for each question on the science knowledge test were scored using a 5-level scoring rubric. First,
the ideas in students' responses were identified and categorized into normative, alternative, and irrelevant. Normative refers to ideas
that are both scientifically correct and contribute to the ideal response. Alternative refers to ideas that are either scientifically
incorrect or do not contribute to the ideal response. Irrelevant ideas include vague statements, misunderstanding of the questions,
and so forth. Second, based on the numbers of normative, alternative, and irrelevant ideas, responses were categorized into five
levels: Level 4 responses contain three or more connected normative ideas without any alternative ideas; Level 3 responses include
two connected normative ideas and no more than one alternative idea; Level 2 responses contain one normative idea and no more
than two alternative ideas; Level 1 responses only include relevant ideas and no alternative ideas; and Level O responses only consist
of irrelevant ideas or no answers at all. For each response, the corresponding score was assigned, with a level 4 response assigned 4
points and a level O response zero point. Three researchers independently scored 20% of the responses to establish a substantial inter-
rater reliability ranging from 0.94 to 1. The internal consistency has also been confirmed in our previous work: Cronbach's alpha was
0.82 for the pretest and 0.83 for the post-test (Chao et al., 2017). Individual learning gains of science knowledge was calculated by
subtracting each participant's pretest score from the post-test score.

3.3.2. Energy performance

Students' energy performance was measured using the net annual energy of the Cape Cod they ultimately built. The net annual
energy of a house equals its annual consumption energy minus its annual production energy. A negative value indicates an energy-
plus house. The lower the net energy value, the more energy efficient the house.

3.3.3. Metacognitive self-regulation

The metacognitive self-regulation questionnaire was adapted from the motivated learning strategies questionnaire (MSLQ,
Pintrich, Smith, Garcia, & McKeachie, 1993) to measure students' perceived engagement in self-regulation. The questionnaire consists
of eight 5-point Likert items (e.g., “When designing my buildings, I make up questions to help focus on my designing”) in which 1
indicates “strongly disagree,” 3 is “neutral,” and 5 indicates “strongly agree.” The Cronbach coefficient alpha for the metacognitive
self-regulation is 0.73.

3.4. Data analysis

The actions recorded in computer log files were categorized and grouped based on the domain-specific SRL model (Fig. 1). For
example, students can use general view, spin view, top view, and show axes to view the structure of their design. These actions were
grouped and coded as observation applying structural knowledge. Showing heliodon, showing window, animating sun, and showing
annotation are the actions students may use to observe the energy-related factors, which were coded as observations applying
functional knowledge.

To answer the first research question, we performed K-means cluster analysis to profile different self-regulated behavioral patterns
engaging in computer-based STEM learning. The aim of cluster analysis is to identify groups of objects that have similar properties
and characteristics (Hair, Black, Babin, Anderson, & Tatham, 1998). The identified cluster should exhibit high within-group
homogeneity and high between-group heterogeneity (Xing, Wadholm, Petakovic, & Goggins, 2015). Based on this technique, it is
possible to profile the different self-regulated behavioral patterns. An important step of clustering is to define the cluster elements. In
this study, the cluster elements are the various actions in the log data (e.g., spin, showing annotation, animating sun, etc.) As a result,
the data matrix has a very high dimension (108 students x 95 dimensions) for analysis. However, the K-means cluster is very
sensitive to high-dimensional data, which can significantly compromise the clustering performance (McCallum, Nigam, & Ungar,
2000). Therefore, before conducting clustering analysis, principle component analysis (PCA) is performed to reduce dimensionality.
PCA is a classical linear technique to reduce high dimension in the machine learning field (Hinton & Salakhutdinov, 2006). In
essence, PCA performs a linear mapping of the high dimensional data to a lower dimensional space where the variance of the data in
the low-dimensional representation is maximized (Wang, Xing, & Laffey, 2018).

In addition, as an unsupervised machine learning algorithm, K-means requires defining the preferred number of clusters in
advance. In order to determine the optimal number of clusters used in this research, we computed the Ball statistic (Milligan &
Cooper, 1985). The Ball statistic is a classic measure to compute the best number of clusters. It is used to gauge the dispersion of the
data points within a cluster and between the clusters so that the data have the largest difference between clusters and smallest
difference within clusters (Milligan & Cooper, 1985). Clustering analysis has the best performance when cluster K is set at the largest
value of the successive difference of the Ball index values.

In sum, PCA was first used for high dimension reduction, and then the Ball statistic was calculated to determine the optimum
number of clusters, and finally a K-means clustering algorithm was implemented. As cluster elements are grouped based on their
similarities or the distance between them, Squared Euclidean distance (Dorling, Davies, & Pierce, 1992) was used in our study to
calculate the distance between clusters.

To respond to the second research question, we conducted a one-way ANOVA to examine the relationship between various
behavioral self-regulation groups and students' perceived engagement of metacognitive regulation. Similarly, regarding the third
research question, we conducted a one-way ANOVA to investigate the performance difference and the learning gains difference
among different profiles of students, separately. The final design products were also selected to enrich our analysis results.
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4. Results

4.1. Self-regulated behavioral profiles

The optimal number of clusters was chosen based on the following steps. Firstly, the principle component analysis was performed
to reduce the high dimensionality. The result indicates that the first two components alone can explain more than 99% of the variance
in the dataset as shown in Fig. 5(a). Based on these components, the Ball statistic was then calculated to identify an optimal number
of clusters. The result of the Ball statistic (see Fig. 5(b)) shows that the K-means clustering has the best performance if the number of
clusters is set to four. Accordingly, the result of four clusters was generated using the K-means clustering algorithm.

The final 4-cluster solution is displayed in Table 2. Following the guidelines established by Wormington and Linnenbrink-Garcia
(2017) for characterizing and labeling profiles in a person-oriented approach, we identified four unique self-regulated behavioral
profiles based on the most salient features and extreme low or high variables in each profile. These four profiles are: “competent self-
regulated learners,” “minimally self-regulated learners,” “cognitive-oriented self-regulated learners,” and “reflective-oriented self-
regulated learners.”

As shown in Table 2, the first and second profiles contain extreme high and low variables. In the first profile (n = 13, 12.15%),
students demonstrated the greatest effort in the process of formulation and reformulation, especially while using functional
knowledge to achieve the goal of building an energy-plus house. For example, they displayed the highest level of adding trees, adding
energy, editing door, wall, window, floor, and external factors among all the students of the four clusters, indicating their competence
in constructing and refining their houses. Compared with students in other profiles, they appropriately distribute their efforts across
all SRL activities. They focused on constructing and modifying their house but did not spend much of their effort on the process of
observation and analysis. Thus, we label this group the “competent self-regulated learners” to reflect their competency in allocating

” «

Table 2
The four clusters categorized based on behavioral actions and their mapping with self-regulation types.
SRL Indicators Clusters
Competent (n = 13) Minimally (n = 43) Cognitive-oriented Reflective-oriented
(n=19) (n = 33)
Observation Structural (e.g., spin view, top view) 1157.46 413.98 1487.47 787.03
Functional (e.g., show shadow, show 20.00 5.09 24.16 9.76
heliodon)
Formulation Structural (e.g., add wall, add roof) 15.31 10.47 20.32 12.45
Functional (e.g., add energy, add trees) 127.46 53.37 98.05 76.42
Reformulation ~ Structural (e.g., edit wall, edit floor) 54.62 27.21 43.79 35.03
Functional (e.g., edit energy, edit trees) 351.08 91.19 292.21 206.48
Analysis Analysis (e.g., compute energy) 104.31 29.74 134.21 83.00
Evaluation Evaluation (e.g., make notes) 321.69 50.74 196.58 444.00
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efforts in SRL. In contrast with the first profile, the second profile (n = 42, 39.25%) had the lowest frequency on all activities,
suggesting that they minimally regulated their design. For this reason, the students in the second profile were labeled “minimally self-
regulated learners.”

The third and fourth profiles have more moderate variables. The students in the third profile (n = 19, 17.76%) shared some
commonalities with “competent self-regulated learners”: they spent numerous efforts on formulation and reformulation to construct
and refine their design. However, in contrast to the “competent self-regulated learners,” the students in the third profile conducted
the highest level of observation and analysis among the four profiles, indicating their focus on the function of their design and their
efforts in understanding and analyzing their work during the process of design. They tended to maximize their cognition on the task
by taking full advantage of the observation and analysis tools supported by the learning environment. This profile was considered as
“cognitive-oriented self-regulated learners” to reflect their emphasis on cognition throughout the design process. The students in the
fourth profile demonstrated comparatively less effort in the process of observation, formulation, reformulation, and analysis than
“competent self-regulated learners” and “cognitive-oriented self-regulated learners,” but more efforts than “minimally self-regulated
learners.” More interestingly, students in this group spent the most time reflecting on and evaluating their design. Accordingly, we
label this group as “reflective-oriented self-regulated learners.”

4.2. Perceived self-regulation differences among self-regulated behavioral profiles

An ANOVA was performed with cluster membership as the independent variable and perceived self-regulation level as the de-
pendent variable. To ensure statistical power, we first conducted a power analysis using medium- to large—effect size 0.35. For a four-
group one-way ANOVA, only 96 subjects are required. Therefore, in our study, 108 students should provide a large enough sample
size to generate reliable findings. The results of ANOVA show a significant difference with about medium effect size according to
Miles and Shevlin (2001) among these four self-regulated behavioral groups in terms of perceived self-regulation (F = 4.10,
p = .046 < 0.05, n*> = 0.05). As shown in Table 3, the competent self-regulated learners showed the highest level of perceived self-
regulation (M = 38.23), which is not surprising. The competent self-regulated group not only exhibited the highest level of self-
regulated actions, but they also were aware of their high self-regulation behavior. Surprisingly, the minimally self-regulated group
perceived their self-regulation (M = 35.90), as second only to the competent self-regulated group. That is, it was higher than that of
the cognitive-oriented self-regulated (M = 32.95) and the reflective-oriented regulated groups (M = 33.79). Among the four groups,
the cognitive-oriented self-regulated group perceived they had the lowest level of meta-cognitive self-regulation.

4.3. Task performance and learning gains differences among self-regulated behavioral profiles

A one-way ANOVA was performed with cluster membership as the independent variable and net energy performance as the
dependent variable. Results indicated that there is a significant difference with medium effect size in the net annual energy of the
houses built by students of the four self-regulated groups (F = 6.40, p = .01 < .05, n2 = 0.06). As shown in Table 3, the reflective-
oriented self-regulated group performed best in terms of energy efficiency. As aforementioned, this group of students spent most
efforts on reflection and evaluation processes by adopting embedded prompts to guide design. Therefore, it is not surprising that they
performed best in terms of net energy of the houses they built. Similarly, the average net energy of the houses built by the cognitive-
oriented self-regulated group was negative, which met the energy requirement of the design task. As described above, the students in
the cognitive-oriented self-regulated group conducted the energy analysis most frequently when designing. Moreover, the minimally
self-regulated learners, not surprisingly, performed worst. Their average energy value was farthest away from the net energy re-
quirement among the four groups of students. However, contrary to our expectations, the competent self-regulated learners did not
meet the energy-plus goal.

Similarly, a one-way ANOVA was performed with science knowledge learning gains as the dependent variable. No significant
difference was found among the four groups. However, the descriptive statistics showed that the competent self-regulated learners
had the greatest learning gains and the minimally self-regulated learners had the least learning gains.

Examples were further drawn from the four profiles to illustrate their differences in terms of final products. The final products not
only reveal students' application of functional knowledge as indicated in net energy value, but also reflect their utilization of
structural knowledge. As displayed in Fig. 6, one of the minimally self-regulated learners (e.g., E14) obviously was not engaged in
SRL, and as a result basic structures (e.g., windows, doors) were missing in his design and net energy value was positive (Net
value = 46200). In contrast, the reflective learner (e.g., F02) had clearly focused on the energy-plus function in his design. This is

Table 3
Differences among four clusters on perceived metacognitive self-regulation and net energy performance on science knowledge learning gains.
Dependent variable Competent Cluster Mean
Minimally Cognitive-oriented Reflective-oriented ANOVA F value
Perceived metacognitive self-regulation 38.23 35.9 32.95 33.79 4.10*
Net energy performance 1361.35 2955.2 —575.73 —1732.84 6.40*
Learning gains of science knowledge 20.46 16.52 17.63 18.21 0.002
*p < .05.



J. Zheng, et al. Computers & Education 143 (2020) 103669

E14 (minimally self-regulated learner)

D17 (cognitive-oriented self-regulated learner)  F02 (reflective-oriented self-regulated learner)

Fig. 6. Sample product of students in four profiles.

why he put a lot of solar panels on the roof even though half of them were not producing energy. As for the competent (e.g., C06) and
cognitive-oriented self-regulated learner (e.g., D17), they both paid attention to the structure of the house and intentionally arranged
the solar panel towards one direction. But the competent learner was more determined in his design, while the cognitive-oriented
learner relied more on the observation and analysis supported by the learning environment. The competent learner added trees to
block every window, but the cognitive-oriented learner only put trees based on her observation of the sun. Thus, it is not surprising
that the competent self-regulated learner did not achieve a good net energy value (Net Value = 161). To sum up, these four examples
partly support the aforementioned findings on the task performance and learning gains, which will be further discussed in the
following section.

5. Discussion

This study contributes to the advancement of SRL theories in STEM education. We identified four behavioral self-regulation
profiles: competent, minimal, cognitive-oriented, and reflective self-regulated learners. On one hand, these findings further confirm
the existence of two extreme self-regulated learners identified by prior researchers (e.g., Barnard-Brak, Lan, & Paton, 2010; Ning &
Downing, 2015): competent self-regulated learners who represent the highest SRL and minimally self-regulated learners who re-
present the lowest SRL. On the other hand, these four profiles provide a complement to Ning's et al. (2015) research findings, wherein
a profile is characterized by self-reported SRL strategies. Specifically, the identification of competent, cognitive-oriented, and re-
flective-oriented learners further extends SRL theory in the STEM field, providing empirical support for the assessment of SRL in
engineering design. Self-regulated learners exhibit distinct SRL behaviors (Barnard-Brak et al., 2010), and the current study shows
that these behaviors are closely related to SRL processes. SRL processes in engineering design (i.e., observation, formulation, re-
formulation, analysis, and evaluation) emerged as factors that quantitatively differentiate SRL profiles. Moreover, cognitive-oriented
learners were more engaged in observation and analysis (i.e., application of functional knowledge) than competent self-regulated
learners. This small difference indicates that some learners tend to devote themselves to the function of their design (Carlsen, 1998),
which implies educators should assess both the functional and structural knowledge of students. More notably, the identification of a
reflective-oriented self-regulated learner adds to existing evidence that experienced designers constantly engage in reflection to
evaluate the design product (Adams, Turns, & Atman, 2003). As discussed above, students display different self-regulated behavioral
profiles in engineering design, and the characteristics of each profile can be more salient when computer log files are used in a person-
oriented approach.

With regard to the perceived self-regulation differences among the four identified profiles, we found competent self-regulated
learners had a good self-awareness of their SRL and perceived themselves as the best SRL learners. However, cognitive-oriented self-
regulated learners underestimate themselves, and minimally self-regulated learners overestimate themselves. These findings suggest
that students have different levels of self-awareness of their SRL (Zimmerman, 2002). Self-awareness is inversely associated with self-
regulation failure. As such, strategies such as asking students to self-record their learning process and then review the process can be
taken into account to increase students' awareness of their SRL (Hadwin & Oshige, 2011). In addition, visualizations or a dashboard of
students' behavioral profiles established in computer-based learning environments may also help students improve their self-
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awareness.

Results from our third research question reveal that task performance is not always consistent with learning gains in terms of the
differences among four profiles. Competent self-regulated learners had the greatest learning gains, but they did not perform best in
the task. Reflective-oriented learners surprisingly performed best in the task. A further examination of the final design product of one
reflective-oriented self-regulated learner suggests that he is more concerned about the functional aspect of his design. It is possible
that students in this group constantly reflect and evaluate their functional design to achieve best results in the task. However,
competent self-regulated learners are more engaged in regulating their learning and acquiring knowledge, which may at times harm
their task performance. This is why students in this profile have the most learning gains. Similar to prior studies that examine the
correlation between SRL and learning outcomes (Dent & Koenka, 2016), this study provides evidence that the relationship between
SRL and learning outcomes varies depending on the task and the assessment of learning outcomes. Therefore, a more comprehensive
assessment of student learning may yield changes in students' SRL processes.

6. Conclusions and implications for STEM education

This study highlights the importance of analyzing SRL processes within the STEM field and sets a good example for employing a
person-oriented approach on behaviors recorded in computer log files. Four distinct SRL behavioral profiles are identified and
examined and they are related to students' perceived self-regulation, task performance, and learning gains. The findings in this study
lend empirical to support the self-regulation framework, and they reveal the importance of self-regulation to student performance in
STEM learning. In addition, the computer trace data that was used in the learning analysis could be used to provide learners with
individualized prompts or feedback in response to their self-regulation profiles. However, this study is also limited in generalizability
as it is based on the learning environment (Energy 3D) specifically developed for engineering design.

The findings of this study have various implications for STEM teaching and learning. First of all, teachers and computer programs
need to provide individualized scaffolding and instructions to students with various SRL characteristics. For example, prompts or
strategies can be developed to motivate students who spend the least effort and minimally regulate themselves. Extra interventions,
such as helping them set up personal goals, would enhance their engagement in learning integrated STEM concepts and master STEM
skills accordingly. Effort can be made to guide the cognitive-oriented self-regulated learners towards competent self-regulated
learners through highlighting the importance of comprehensive knowledge in STEM projects. Furthermore, we strongly recommend
that educators design learning environments that can improve students' self-awareness of SRL since students sometimes under-
estimate or overestimate themselves. As suggested by a previous researcher, students may go through a calibration process before
having an accurate estimation of their SRL (Stone, 2000). Thus, dynamic visualizations or learning analytics dashboards may help
students with their calibration by increasing their self-awareness of their learning processes. Finally, it is of great importance to
leverage different STEM concepts in the evaluation of STEM learning, considering students performed differently in different STEM
components. For example, we find that students who had the largest learning gains of science knowledge (the science component) did
not perform best in saving energy (the engineering component) in their house design. Therefore, we should evaluate students from
different perspectives to ensure all the STEM components are taken into consideration. This is especially true in STEM projects where
cross-disciplinary knowledge is needed to teach and learn integrated STEM concepts.

7. Limitations and future directions

This study has several limitations. First, even though we have a large enough sample size for the research based on the power
analysis, most subjects were white grade 9 students and all attended a single school in the northeastern United States, which limits
the generalizability of the results. Second, for K-means clustering analysis, the initial seeds selection has a strong impact on the final
clustering results. The scaling of the data sets can also influence the clustering results. Therefore, future research might try various
initial seeds and scaling methods with different data sets to ensure the consistency of the findings.

Future research can build on this study by taking cultural backgrounds, gender, ages, socio-economic backgrounds, and other
demographic factors into consideration. More participants can be recruited and our findings could be tested using tasks designed to
teach other STEM fields. In addition, instead of conducting post-analysis of students' self-regulation, it would be interesting to embed
this analysis in the learning environment to provide real-time feedback to students to examine how making them aware of their
behavior may influence their self-regulation. Finally, the relationship between individual design performance and students' science
knowledge assessment performance and how these two competencies can strengthen one another can be better understood to en-
hance student performance in both design and cognitive understanding.
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