Super Compliant and Soft (CH₃NH₃)₃Bi₂I₉ Crystals with Ultralow Thermal Conductivity

Hao Ma¹, Chen Li¹, Yunwei Ma², Heng Wang^{3,4}, Zachary W. Rouse⁵, Zhuolei Zhang³, Carla Slebodnick⁶, Ahmet Alatas⁷, Shefford P. Baker⁵, Jeffrey J. Urban³, and Zhiting Tian^{1,2*}

¹Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

²Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA ³Molecular Foundry, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA ⁴Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA

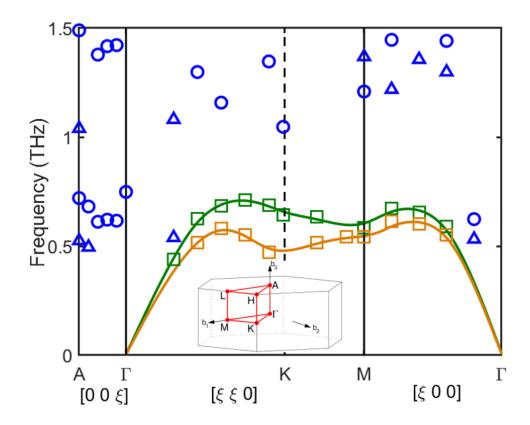
⁵Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 ⁶Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA ⁷Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 64039, USA

Abstract

In this letter, we show the phonon dispersion of (CH₃NH₃)₃Bi₂I₉ single crystals at 300 K measured by inelastic x-ray scattering. The frequencies of acoustic phonons are among the lowest of crystals. Nanoindentation measurements verified that these crystals are very compliant and considerably soft. The frequency overlap between acoustic and optical phonons results in strong acoustic-optical scattering. All these features lead to an ultralow thermal conductivity. The fundamental knowledge obtained from this study will accelerate the design of novel hybrid materials for energy applications.

^{*} Corresponding author. Email: zhiting@cornell.edu

Introduction


Organic-inorganic hybrid perovskite materials, such as methylammonium lead iodide (CH₃NH₃PbI₃), have attracted growing attention as promising materials for next-generation photovoltaics and light-emitting diodes[1,2]. The potential applications of hybrid perovskite materials in thermoelectric applications[3-5] have also been reported. On the one hand, high thermal conductivity is favorable for efficient heat dissipation to avoid adverse thermal degradation for hybrid perovskites in optoelectronic devices[6,7]. On the other hand, low thermal conductivity is beneficial for the hot-phonon bottleneck effect[8] to help achieve long-lived hot carrier photovoltaic device, and desired for thermoelectrics[4]. Fundamental understanding of phonon dynamics is essential to facilitating the optimization of thermal performance for hybrid perovskite devices.

Despite widespread interest in hybrid perovskites, the lead contained in CH₃NH₃PbI₃ can cause persistent environmental pollution. CH₃NH₃PbI₃ is also limited by its instability. The degradation of hybrid halide perovskite readily occurs under extrinsic factors such as light[9], temperature[10], humidity[11] and oxygen[12], which makes it difficult to maintain efficient charge extraction with carrier-selective contacts. Less toxic counterparts have been proposed to replace Pb, such as CH₃NH₃SnI₃[13], but its potential application is also limited by its high instability[14]. Hybrid perovskite analogues, such as methylammonium bismuth iodide (CH₃NH₃)₃Bi₂I₉, have emerged as a candidate photovoltaic material [15,16] due to its low toxicity [17] and high stability [18]. While most previous studies reported very low power conversion efficiency (0.01-0.4%)[18-20], the efficiency of (CH₃NH₃)₃Bi₂I₉ has been pushed up to 3.17% by fabricating high-quality samples.[21] high-efficiency (18.97%)and stable solar cell based Moreover, (CH₃NH₃)₃Bi₂I₉/CH₃NH₃PbI₃ heterojunction has been achieved[22]. Increasing research on (CH₃NH₃)₃Bi₂I₉ has been done on electronic property simulations[23] and UV-vis absorption spectra[24]. However, its phonon transport properties were neither studied experimentally nor theoretically, hindering the optimal selection and design of stable, non-toxic hybrid perovskite material for photovoltaic and thermoelectric applications.

In this letter, we present the phonon dispersion for $(CH_3NH_3)_3Bi_2I_9$ single crystals at room temperature using high energy resolution inelastic x-ray scattering (IXS) measurement. The acoustic modes of $(CH_3NH_3)_3Bi_2I_9$ are only up to 0.7 THz, which is among the lowest of all the reported crystals. Nanoindentation measurements confirmed that $CH_3NH_3)_3Bi_2I_9$ single crystals are very compliant with an averaged indentation modulus (E_{ind}) of 12.4 ± 0.8 GPa and considerably soft with a hardness of 471.2 ± 63.4 MPa. We observed no frequency gap between acoustic and optical branches in the phonon dispersion, which could lead to strong acoustic-optical phonon scattering. Ultralow group velocities due to low-frequency acoustic phonons and small phonon lifetimes originating from strong acoustic-optical phonon coupling were expected to give ultralow thermal conductivity, which was confirmed by measured thermal conductivity of 0.23 ± 0.02 W/(mK) for $(CH_3NH_3)_3Bi_2I_9$ polycrystals at 300 K. The knowledge gained in our work provides a deeper understanding of thermal transport properties of hybrid perovskite analogue materials and can facilitate the design of novel hybrid materials with higher energy conversion efficiency and reliability.

Results and Discussion

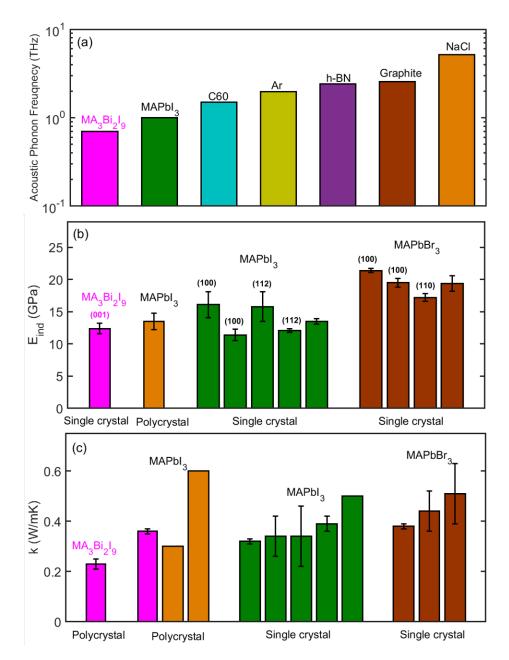

We measured the phonon dispersion of (CH₃NH₃)₃Bi₂I₉ single crystals along high symmetry lines at 300 K using high energy resolution IXS, as shown in FIG. 1. The detailed information on the crystal growth and characterization and IXS measurement could be found in the supporting information (SI). The phonon dispersion of the (CH₃NH₃)₃Bi₂I₉ single crystal using first-principles calculations is also shown in FIG. S2 in SI.

FIG. 1. Phonon dispersion of (CH₃NH₃)₃Bi₂I₉ single crystals measured by IXS at 300 K. The high symmetry points are chosen based on first Brillouin zone of hexagonal unit cell: Γ (0 0 0), A (0 0 0.5), K (0.33 0.33 0), M (0.5 0 0) in unit of ($\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$), where $\mathbf{b_1} = \left(\frac{2\pi}{a}, \frac{2\pi}{\sqrt{3}a}, 0\right)$, $\mathbf{b_2} = \left(0, 0, \frac{4\pi}{\sqrt{3}a}, 0\right)$, $\mathbf{b_3} = \left(0, 0, \frac{2\pi}{c}\right)$ in Cartesian coordinate system. The inset is the first Brillouin zone of (CH₃NH₃)₃Bi₂I₉ single crystal. Green squares, yellow squares, blue circles, and blue triangles denote LA modes, TA modes, longitudinal optical (LO) modes and transverse optical (TO) modes, respectively.

Unique features are uncovered from phonon dispersion of (CH₃NH₃)₃Bi₂I₉. **I.** The most striking result is that the acoustic modes have low frequencies only up to around 0.7 THz. To the best of our knowledge, this is the smallest frequency range for acoustic modes among all the reported crystalline materials. A comparison of acoustic phonon frequency ranges along high symmetry lines among different types of crystals is shown in FIG. 2a. Clearly, the frequencies of hybrid organic-inorganic crystals are the lowest, even lower than those of van der Waals (vdW) crystals[25-28]. This can be attributed to the weak electrostatic interactions between organic cations and inorganic units[29,30], which leads to large translational degrees of freedom for

inorganic unit vibrations as the acoustic modes of hybrid organic-inorganic compounds are comprised of motions by the inorganic component. Notably, compared with the most popular hybrid perovskite CH₃NH₃PbI₃[31-34], (CH₃NH₃)₃Bi₂I₉ has even smaller acoustic frequencies, which can be attributed to the discontinuity of Bi₂I₉³- units[30]. The Bi₂I₉³- units are isolated dimers of face-sharing octahedra that are separated by CH₃NH₃⁺ in all three directions ([001], [100] and [110]), while in CH₃NH₃PbI₃ the inorganic component of corner-sharing PbI₆ octahedra forms a three-dimensional framework, with CH₃NH₃⁺ in the framework cages. Please refer to their crystal structures in FIG. S3 for more details. Therefore, interactions between the inorganic units are weaker in (CH₃NH₃)₃Bi₂I₉, leading to the overall lower frequency in phonon modes. II. The ultralow frequencies of acoustic phonons give exceptionally low average phonon group velocities - 1187 m/s in [100] direction, and 400 m/s in [110] direction that is even comparable to the speed of sound in air (Table SIII in SI). Compared to tetragonal CH₃NH₃PbI₃ single crystals (Table SIV in SI), the overall phonon group velocities of (CH₃NH₃)₃Bi₂I₉ single crystals are even smaller. III. Both calculated and experimental phonon dispersion curves show a considerable frequency overlap between acoustic and optical branches. Specifically, both acoustic and optical phonon modes show up between 0.4 THz and 0.7 THz in the experimental dispersion. This overlap between acoustic and optical branches could result in the strong coupling between them and significantly reduce the phonon lifetimes, as demonstrated in other materials[35,36]. This was further validated by that measured phonon lifetimes of acoustic phonon modes are mainly in a range of 1-30 ps in FIG. S4 in SI. We attribute the overlap between acoustic and optical modes to the coupling of CH₃NH₃⁺ modes to stretching of the Bi-I bonds and breathing of the Bi₂I₉³⁻ units, which is similar to CH₃NH₃PbI₃[37]. Based on all the features above, we anticipate (CH₃NH₃)₃Bi₂I₉ to have an ultralow thermal conductivity.

acoustic phonon frequencies of different materials measured FIG. 2. (a) Comparison of experimentally: MA₃Bi₂I₉ single crystals, tetragonal MAPbI₃ single crystals[33] (MA denotes CH₃NH₃⁺), C60 (FCC)[25], argon (Ar) (FCC)[26], h-BN[27] and graphite[28] (cross-plane acoustic modes only), NaCl[38]. MA₃Bi₂I₉ and MAPbI₃ are hybrid organic-inorganic single crystals; C60, argon, h-BN and graphite are vdW crystals; NaCl is the ionic crystal. (b) Comparison of indentation modulus of different materials measured experimentally: MA₃Bi₂I₉ single crystals, MAPbI₃ polycrystals[39], tetragonal MAPbI₃ single crystals[40-42], MAPbBr₃ single crystals[40-42]. Round brackets denote the orientation of the indented crystals. (c) Comparison of thermal conductivity of different materials measured experimentally at 300 K: MA₃Bi₂I₉ polycrystals, MAPbI₃ polycrystals[43,44], MAPbI₃ single crystals[42,43,45-47], MAPbBr₃ single crystals[45,46] [42]. Pink denotes the experimental results of this work.

The small phonon group velocities indicate low elastic modulus based on $v_s = \sqrt{\frac{E}{\rho}}$, where v_s , E and ρ are the speed of sound, elastic modulus, and the density, respectively [48]. To confirm the low elastic modulus, we performed nanoindentation measurements to obtain the indentation modulus of (CH₃NH₃)₃Bi₂I₉ single crystals and more details could be found in the SI. $(CH_3NH_3)_3Bi_2I_9$ single crystals are very compliant with an averaged indentation modulus (E_{ind}) of 12.4 ± 0.8 GPa. We did not convert it to Young's modulus for the following reasons: Extracting Young's modulus (E_{smp}) requires the assumption that the material is isotropic with a single invariant value for Poisson ratio (v_{smp}). v_{smp} of (CH₃NH₃)₃Bi₂I₉ single crystals remains unknown. Moreover, E_{ind} is the basic quantity obtained from a nanoindentation experiment, which can be directly compared. By contrast, Young's modulus is only meaningful for a uniaxial test. In order to compare the E_{ind} values of $(CH_3NH_3)_3Bi_2I_9$ to other similar crystals, for studies that reported E_{smp} rather than E_{ind} , the values of E_{ind} were calculated using v_{smp} specified in their work. Moduli derived from indentation tests were plotted in FIG. 2b and tabulated in Table SV. We found that indentation modulus of (CH₃NH₃)₃Bi₂I₉ single crystals is slightly smaller than that of CH₃NH₃PbI₃ crystals but much lower than that of CH₃NH₃PbBr₃ single crystals, indicating their super compliant feature. The hardness of $(CH_3NH_3)_3Bi_2I_9$ single crystals was found to be 471.2 ± 63.4 MPa, which is lower than the reported hardness of CH₃NH₃PbI₃ single crystals: 570 MPa for (100) face and 550 MPa for (112) face [40]. It demonstrates that (CH₃NH₃)₃Bi₂I₉ single crystals are softer than CH₃NH₃PbI₃ single crystals. In brief, (CH₃NH₃)₃Bi₂I₉ single crystals are super compliant and soft.

To demonstrate the ultralow thermal conductivity, we measured thermal conductivity of both (CH₃NH₃)₃Bi₂I₉ and CH₃NH₃PbI₃ polycrystals using the laser flash method to have a direct comparison and details could be found in SI[49]. We found that thermal conductivity of CH₃NH₃PbI₃ polycrystals is 0.36±0.01 W/(mK) at 300 K, which falls into the range of previous reported values (0.3 W/(mK)[43], 0.6 W/(mK)[44]). Thermal conductivity of (CH₃NH₃)₃Bi₂I₉ polycrystals is 0.23±0.02 W/(mK) at 300 K, which is significantly lower than that of CH₃NH₃PbI₃ polycrystals under the same measurement conditions and lower than the reported thermal conductivity values of all the hybrid perovskites as shown in FIG. 2c and Table SVI in SI. Note that the grain sizes of (CH₃NH₃)₃Bi₂I₉ and CH₃NH₃PbI₃ polycrystals in this study are larger than 2 µm; therefore the grain boundaries have little impact on thermal conductivity.[49] This claim is further supported by the comparable thermal conductivity of our measured CH₃NH₃PbI₃ polycrystals and previous reported CH₃NH₃PbI₃ single crystals in FIG. 2c. Nevertheless, despite the well-defined crystal structure, the thermal conductivity of (CH₃NH₃)₃Bi₂I₉ is ultralow and comparable to thermal conductivity of most amorphous polymers.

Conclusions

In summary, we measured the phonon dispersion of hybrid perovskite analogue (CH₃NH₃)₃Bi₂I₉ to provide the first dataset of intrinsic phonon properties of (CH₃NH₃)₃Bi₂I₉. Remarkably, we observed its acoustic frequency range is the smallest among reported crystalline materials, to the best of our knowledge. The ultralow-frequency acoustic phonon modes may result from the weak electrostatic force between organic and inorganic units and the discontinuous inorganic units in

[001], [100] and [110] directions. Based on the low frequencies of phonon modes, the ultralow group velocities were expected and then supported by nanoindentation measurements. It reveals that CH₃NH₃)₃Bi₂I₉ single crystals are super compliant and considerably soft. The phonon dispersion also shows a considerable acoustic-optical overlap, which could lead to strong acoustic-optical coupling and thus small phonon lifetimes. The thermal conductivity of (CH₃NH₃)₃Bi₂I₉ polycrystals was expected to be ultralow due to these unique features and was validated by the laser flash measurements. This work provided valuable benchmark data of thermal transport properties of (CH₃NH₃)₃Bi₂I₉ for future studies and identified unique phonon properties for the design of ultralow thermal conductivity materials.

Acknowledgements

This work was funded by Z.T.'s NSF CAREER Award (CBET-1839384). This work was supported by the Molecular Foundry at Lawrence Berkeley National Laboratory, a user facility supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

References

- [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. **131**, 6050 (2009).
- [2] Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im, and T. W. J. A. m. Lee, **27**, 1248 (2015).
- [3] C. Lee, J. Hong, A. Stroppa, M.-H. Whangbo, and J. H. Shim, Rsc Advances 5, 78701 (2015).
- [4] Y. He and G. Galli, Chemistry of Materials **26**, 5394 (2014).
- [5] X. Mettan et al., The Journal of Physical Chemistry C 119, 11506 (2015).
- [6] S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. J. A. O. M. Xiong, 2, 838 (2014).
- [7] Y. Zhao and K. J. C. S. R. Zhu, 45, 655 (2016).
- [8] J. Yang *et al.*, Nature communications **8**, 14120 (2017).
- [9] Y. Li, X. Xu, C. Wang, B. Ecker, J. Yang, J. Huang, and Y. Gao, The Journal of Physical Chemistry C 121, 3904 (2017).
- [10] R. K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, and E. A. Katz, The Journal of Physical Chemistry Letters **6**, 326 (2015).
- [11] J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, ACS nano 9, 1955 (2015).
- [12] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S. A. Haque, **54**, 8208 (2015).
- [13] N. K. Noel et al., Energy & Environmental Science 7, 3061 (2014).
- [14] T. Fujihara, S. Terakawa, T. Matsushima, C. Qin, M. Yahiro, and C. Adachi, Journal of Materials Chemistry C 5, 1121 (2017).
- [15] B. W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. Johansson, Advanced Materials **27**, 6806 (2015).
- [16] M. Lyu et al., Nano Research 9, 692 (2016).
- [17] T. Okano and Y. Suzuki, Materials Letters **191**, 77 (2017).
- [18] C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, and X. Hou, The journal of physical chemistry letters **8**, 394 (2017).

- [19] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, **27**, 6806 (2015).
- [20] S. Öz et al., Solar Energy Materials and Solar Cells 158, 195 (2016).
- [21] S. M. Jain et al., Nano Energy 49, 614 (2018).
- [22] Y. Hu, T. Qiu, F. Bai, W. Ruan, and S. Zhang, Advance Energy Materials 8, 1703620 (2018).
- [23] A. Koliogiorgos, S. Baskoutas, and I. Galanakis, arXiv preprint arXiv:1711.04846 (2017).
- [24] X. Chen et al., Journal of Materials Chemistry A 5, 24728 (2017).
- [25] L. Pintschovius, B. Renker, F. Gompf, R. Heid, S. L. Chaplot, M. Haluska, and H. Kuzmany, Physical Review Letters **69**, 2662 (1992).
- [26] Y. Fujii, N. A. Lurie, R. Pynn, and G. Shirane, Physical Review B 10, 3647 (1974).
- [27] J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, and L. Wirtz, Physical Review Letters **98**, 095503 (2007).
- [28] R. Nicklow, N. Wakabayashi, and H. G. Smith, Physical Review B 5, 4951 (1972).
- [29] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Letters **14**, 2584 (2014).
- [30] A. Walsh, The Journal of Physical Chemistry C 119, 5755 (2015).
- [31] M. Wang and S. Lin, Advanced Functional Materials 26, 5297 (2016).
- [32] S.-Y. Yue, X. Zhang, G. Qin, J. Yang, and M. Hu, Physical Review B 94, 115427 (2016).
- [33] Hao Ma, Yunwei Ma, Heng Wang, Carla Slebodnick, Ahmet Alatas, Jeffery J. Urban, Zhiting Tian.
- [34] A. N. Beecher et al., ACS Energy Letters 1, 880 (2016).
- [35] Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Physical Review B 85, 184303 (2012).
- [36] S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nature communications 5, 3525 (2014).
- [37] F. Brivio *et al.*, Physical Review B **92**, 144308 (2015).
- [38] G. Raunio, L. Almqvist, and R. J. P. R. Stedman, 178, 1496 (1969).
- [39] M. Park, H. J. Kim, I. Jeong, J. Lee, H. Lee, H. J. Son, D.-E. Kim, and M. J. Ko, **5**, 1501406 (2015).
- [40] Y. Rakita, S. R. Cohen, N. K. Kedem, G. Hodes, and D. Cahen, MRS Communications 5, 623 (2015).
- [41] S. Sun, Y. Fang, G. Kieslich, T. J. White, and A. K. Cheetham, Journal of Materials Chemistry A 3, 18450 (2015).
- [42] G. A. Elbaz, W.-L. Ong, E. A. Doud, P. Kim, D. W. Paley, X. Roy, and J. A. Malen, Nano Letters 17, 5734 (2017).
- [43] A. Pisoni, J. Jaćimović, O. S. Barišić, M. Spina, R. Gaál, L. Forró, and E. Horváth, The Journal of Physical Chemistry Letters 5, 2488 (2014).
- [44] A. Kovalsky, L. Wang, G. T. Marek, C. Burda, and J. S. Dyck, The Journal of Physical Chemistry C 121, 3228 (2017).
- [45] C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, The Journal of Physical Chemistry C 122, 15973 (2018).
- [46] R. Heiderhoff, T. Haeger, N. Pourdavoud, T. Hu, M. Al-Khafaji, A. Mayer, Y. Chen, H.-C. Scheer, and T. Riedl, The Journal of Physical Chemistry C **121**, 28306 (2017).
- [47] T. Ye, X. Wang, X. Li, A. Q. Yan, S. Ramakrishna, and J. Xu, Journal of Materials Chemistry C 5, 1255 (2017).

- [48] W. Kim, Journal of Materials Chemistry C 3, 10336 (2015).
- [49] X. Long, Z. Pan, Z. Zhang, J. J. Urban, and H. Wang, Applied Physicsl Letters **115**, 072104 (2019).