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Abstract The paper presents deep learning models for
tweet classification. Our approach is based on the Long
Short-Term Memory (LSTM) recurrent neural network
and hence expects to be able to capture long-term de-
pendencies among words. We first focus on binary clas-
sification task. The basic model, called LSTM-TC, takes
word embeddings as inputs, uses LSTM to derive the
semantic tweet representation, and applies logistic re-
gression to predict the tweet label. The basic LSTM-
TC model, like other deep learning models, requires a
large amount of well-labeled training data to achieve
good performance. To address this challenge, we fur-
ther develop an improved model, called LSTM-TC*,
that incorporates a large amount of weakly-labeled data
for classifying tweets. Finally, we extend the models,
called LSTM-Multi-TC and LSTM-Multi-TC*, to mul-
ticlass classification task. We present two approaches of
constructing the weakly-labeled data. One is based on
hashtag information and the other is based on the pre-
diction output of a traditional classifier that does not
need a large amount of well-labeled training data. Our
LSTM-TC* and LSTM-Multi-TC* models first learn
tweet representation based on the weakly-labeled data,
and then train the classifiers based on the small amount
of well-labeled data. Experimental results show that:
(1) the proposed methods can be successfully used for
tweet classification and outperform existing state-of-
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the-art methods; (2) pre-training tweet representations,
which utilizes weakly-labeled tweets, can significantly
improve the accuracy of tweet classification.
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1 Introduction

In recent years, online social network sites such as Twit-
ter become important and influential as users actively
share their stories and express their emotions or opin-
ions there. The text classification in analyzing user-
generated content (UGC) in social networks has be-
come a hot research topic in the natural language pro-
cessing area. Various types of classification tasks like
sentiment analysis, sarcasm detection or political ideol-
ogy detection have been investigated (ILyyer et al, 2014;
Joshi et al, 2017; Tang et al, 2014). Recent work in nat-
ural language processing has shown that deep neural
networks (Bengio et al, 2013; LeCun et al, 2015) can
learn meaningful representations (or features) of text
and use them to achieve high prediction accuracy in ap-
plications like sentiment analysis (Gambhir and Gupta,
2017; Irsoy and Cardie, 2014; Zhang et al, 2015). Deep
learning models avoid hand-designed text features and
learn text representations automatically by training on
a large amount of well-labeled data. In reality, it is often
difficult to obtain such a large amount of well-labeled
data because manually labeling tweets is tedious for
users. These deep learning approaches tend to face the
problem of poor prediction accuracy when only an in-
sufficient amount of well-labeled data is available. In
this paper, we tackle this challenge by effectively incor-
porating weakly-labeled data in deep learning to im-
prove the classification results.
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Our basic tweet classification models, called LSTM-
TC and LSTM-Multi-TC, are based on the Long Short-
Term Memory (LSTM) recurrent neural network. LSTM
has been proved to be able to capture long-term de-
pendencies among words. Our LSTM-TC and LSTM-
Multi-TC models sequentially take each word in a tweet
as input, extract its salient information, and embed
each word into a semantic vector. When the models
reach the last word, the hidden layers of the LSTM
networks provide semantic representations of the whole
tweets. On top of the tweet representation, the LSTM-
TC applies a logistic regression classifier to identify
tweet class. Meanwhile, the LSTM-Multi-TC adopts a
softmax classifier to predict the class of each tweet.

The basic LSTM-TC and LSTM-Multi-TC models,
like other deep learning models, still require a large
amount of training data to achieve good performance.
We further develop improved models, called LSTM-
TC* and LSTM-Multi-TC*, that incorporate a large
amount of weakly-labeled tweets that are either avail-
able or can be easily constructed. Our LSTM-TC* and
LSTM-Multi-TC* first learn the tweet representations
based on a large amount of weakly-labeled data in the
pre-training phase, and then train the classifier (logis-
tic regression or softmax) based on the small amount of
well-labeled data in the second phase. In general, given
a weakly-labeled dataset with K classes, the tweets that
are weakly-labeled as class k are more likely to be the
truly class k than those weakly-labeled tweets belonging
to other classes. For example, in the binary classifica-
tion task, the tweets that are weakly-labeled as positive
are more likely to be truly positive than those weakly-
labeled negative tweets. Note that in binary classifica-
tion, the weakly-labeled tweets are similar to one class
of tweets and far from the other class of tweets. How-
ever, in multiclass classification, the weakly-labeled one
class of tweets are far from the rest classes of tweets.
Hence, we propose different strategies in LSTM-TC*
and LSTM-Multi-TC* to evaluate the similarity be-
tween the weakly-labeled tweets and well-labeled tweets.
The pre-training phase of LSTM-TC* or LSTM-Multi-
TC* expects to learn better tweet representations by
utilizing the similarity between the weakly-labeled tweets

and well-labeled tweets, and hence LSTM-TC* and LSTM-

Multi-TC* can achieve better performance.

We show two approaches to construct the weakly-
labeled data for tweet classification. The first approach
is based on hashtag information. In Twitter, users often
add hashtags, which mark keywords or topics, in their
tweets. We consider tweets containing specific hash-
tags which are related to the classification task are
weakly-labeled positive tweets and tweets which do not
contain specific hashtags are weakly-labeled negative

tweets. For example, in research on sarcasm detection,
the tweets containing hashtags #sarcasm or #sarcas-
tic were marked as positive data (Bamman and Smith,
2015; Rajadesingan et al, 2015). However, those tweets
are actually weakly-labeled positive because those hash-
tags may not exactly indicate the sarcasm of the under-
lying tweet. For example, the tweet “#sarcasm is an
important research in languages’ is not sarcastic. The
second approach is based on the prediction results of
a traditional classifier (e.g., Naive Bayes) that is first
trained over the small amount of well-labeled data and
then is used to predict a large amount of unlabeled
data. Note that although the traditional classifier can-
not achieve high prediction accuracy, it rarely requires a
large amount of training data. There are some other ap-
proaches to construct the weakly-labeled data. We can
adopt domain-specific lexicons to build weakly-labeled
datasets. For example, in sentiment analysis area, the
sentence with words in positive sentiment lexicon can
be labeled as weakly-positive. We can also adopt the
topic model to extract topic words from documents.
The topic words can be used as a domain-specific lex-
icon. Meanwhile, the documents with the same topic
distribution calculated by the topic model can be also
considered in the same class.

To evaluate our proposed models, we focus on one
case study — identifying discrimination-related tweets.
Firstly, we label a small number of tweets as the golden
dataset. Then, to compose the weakly-labeled dataset
based on hashtags, we consider tweets containing hash-
tags like #sexism or #racism are weakly-labeled posi-
tive tweets and these tweets likely contain discrimination-
related information. We consider tweets only contain-
ing hashtags like #news or #breaking as weakly-labeled
negative tweets. Meanwhile, we also adopt the classi-
fication results of well-trained Naive Bayes on tweets
as weakly-labeled data. We conduct a series of experi-
ments over our crawled data and compare with tradi-
tional classifiers such as SVM, logistic regression, and
Naive Bayes as well as the recurrent neural network. Ex-
perimental results show that: (1) the proposed methods
can be successfully used for tweet classification and sig-
nificantly outperform existing methods; (2) pre-training
text representations, which utilizes weakly-labeled tweets,
can improve classification accuracy; and (3) the quan-
tity and quality of weakly-labeled tweets affect the pre-
diction performance of LSTM-TC* and LSTM-Multi-
TC*.

2 Tweet Classification

Using deep neural networks for text classification is usu-
ally formed by first training the latent representation
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of text by non-linear transformations and then train-
ing the classifier based on text representations as in-
puts. In our experiments, we use LSTM to model the
tweet representations and apply a classifier for predic-
tion. We first revisit the LSTM in Section 2.1 and then
present the basic LSTM-TC model for binary classifi-
cation in Section 2.2. In Section 2.3, we then present
our improved LSTM-TC* model that uses the weakly-
labeled tweets to train LSTM for learning tweet repre-
sentations and uses the well-labeled data to train the
classifier and fine-tune the whole model. Finally, we ex-
tend our LSTM-TC and LSTM-TC* models to LSTM-
Multi-TC and LSTM-Multi-TC* for multiclass classifi-
cation in Section 2.4.

2.1 Long Shot-Term Memory Network Revisited

Recurrent Neural Networks (RNNs) are a class of deep
neural networks and have been used extensively in time
sequence modeling (Graves, 2013; Tomas et al, 2010).
RNN, when used for sentence embedding, can find a
dense and low dimensional semantic representation of
a sentence by sequentially and recurrently processing
each word and mapping it into a semantic vector. How-
ever, standard RNNs are difficult to train over long se-
quences of text because of gradient vanishing and ex-
ploding (Bengio et al, 1997). Long Shot-Term Memory
(LSTM) network (Hochreiter and Schmidhuber, 1997)
was proposed to model temporal sequences and capture
their long-range dependencies more accurately than the
standard RNNs.

Xt ht—l Xt ht*l

Input Gate

Qutput Gate Ot

Cell
ht—l L
r
Xt -
Forget Gate @
X hey

Fig. 1 Long short-term memory cell

LSTM contains special units called memory blocks
in the recurrent hidden layer. Each memory block con-
tains self-connected internal memory cells and special
multiplicative units called gates to control the flow of
information. Each memory block has an input gate that
controls the flow of input activations into the memory

cell, an output gate that controls the output of cell ac-
tivations into the rest of the network, and a forget gate
that allows the cells to forget or reset the cell’s memory.
These gates are used to control the flow of information
through the internal states and allow the cell in LSTM
memory block to store information over long time du-
rations, thus avoiding the vanishing gradient problem.
LSTM has various modifications. In our work, we adopt
a widely used LSTM model (Gers et al, 1999). Figure
1 illustrates a single LSTM memory cell used in our
work. The LSTM computes the hidden state hy € R
by Equation 1,

¢; = tanh(Wexy + Uch_1) + be)
iy = o(Wix; + Ush,_1) + by)

f; = o(Wex; + Ugh;_1) + by)

o; = 0(Wox; + Ugh(y_1) + bo)
c=40¢+HOc

h; = o; ® tanh(c;)

where x; € R% is the representation of the t-th word; &
is the sigmoid activation function; ® represents element-
wise product; iy, f;, 0s, ¢; indicate the input gate, forget
gate, output gate, and cell activation vector; h is the
hidden vector. We denote all parameters in LSTM as
01 = [Wi, U, by, We, Ug, be, Wy, Ug, bo, W, Ue, be].
Unlike the feed-forward multi-layer neural network, at
time step ¢, the current hidden layer h; gets feedback
information from the previous hidden state h;_; and
new information from input x; by using some nonlin-
ear activation functions.

2.2 Basic LSTM-TC Model for Binary Classification

Tweet Representation. To use deep neural networks,
we map each word w in a tweet to a d,-dimensional
real-valued semantic vector space x € R% . These word
vectors are trained in an unsupervised way on a large
text corpus and several approaches have been proposed
to train the word embeddings (Bengio et al, 2003; Mikolov
et al, 2013; Shen et al, 2015). Once the word vectors
are well-trained, they can capture the hidden seman-
tic and grammatical features of words. We model the
tweet representation based on the semantic composition
idea (Blacoe and Lapata, 2012; Mitchell and Lapata,
2010; Socher et al, 2012). The semantic composition
aims to understand phrases and sentences by compos-
ing the meaning of each word through a composition
function.

LSTM is able to model tweets with varied length by
sequentially processing each word to a fixed length hid-
den state. For a tweet that contains n words, (w1, -+, wy),
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given the t-th word w; of a tweet, the hidden state
h, € R% is computed by Equation 1 using the cur-
rent word representation x; and the previous hidden
state hy_; as input. The LSTM computes a sequence of
hidden vectors h = (h;, hy,---  h,) by using the word
vectors X = (X1,Xa, "+ ,Xy,) in the tweet as inputs one
by one. We consider these hidden vectors capture the
hidden semantic features of the tweet. At time step ¢,
the hidden vector captures the semantic feature of the
tweet until the ¢-th word. Finally, the model combines
the hidden vector sequence by mean pooling operation
to form the representation of the tweet r € R%:

r:%Zhi. )

Tweet Classification. We stack the logistic regression
layer on top of the LSTM layer to classify tweets. The
logistic regression layer takes the tweet representation
of the i-th well-labeled tweet in the training dataset as
input and predicts the label of tweet ;. The logistic
regression function is:

1

P (s, w, by) = T4 om Gl

3)
where r; is the representation of the i-th tweet, and
uy, b; are the parameters of logistic regression. The ar-
chitecture of the model is described in Figure 2. The
model aims to minimize the cross entropy as loss func-
tion to optimize the model. The loss function is defined
as:

N
Lu(5:02) =~ D0 1og(P(30))+ (1) log(1=P(30).

(4)

where N is the number of tweets in the training dataset,
and 0 = [uy, b] U 6y is the parameters in LSTM and
logistic regression.

Algorithm 1 shows the complete training method
for tweet classification. We iterate our algorithm Epoch
times. In each running, we first compute tweet repre-
sentation r; (Line 4), fit the logistic regression model
(Lines 5-6), and update 62 (Line 7). The parameter 6
is optimized by Adadelta using back-propagation algo-
rithm. Adadelta (Zeiler, 2012) is an advanced gradient-
based approach, which provides a per-dimension learn-
ing rate. Adadelta can speed up the convergence rate
compared to the traditional stochastic gradient descent
(SGD) approach. We use dropout (Srivastava et al,
2014) as model regularizer. Dropout is an effective way
to prevent neural networks from over-fitting by ran-
domly dropping a portion of hidden units at the lo-
gistic regression layer during the training period. We

y
Logistic
Regression
Tweet o

0000
Q000

Representation L J .
f Mean Pooling

(@ (@ (o 0

o o |o _Je

LSTM O—>O—>O—> ®
(] @ @ @

e - A v

D R 1=
[ (@] (@ (o o |
Word L@ @ @ o !
Embeddings [ ) () ) ] i
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Fig. 2 LSTM-TC model for tweet binary classification

also adopt mini-batch training (LeCun et al, 2012) to
accelerate the training procedure.

Algorithm 1: LSTM-TC: Basic Model for

Tweet Classification
: Training dataset T'

Maximum training epoch Epoch
Outputs: Trained Tweet Classification Model
J <+ 0;
while j < Epoch do

for each tweet i in T do
compute r; by Eq. 1,2 on T
compute g; by Eq. 3 based on r;;
compute L1 (g;;02) by Eq. 4;
update 02 with Adadelta;

end

Jj i+

end

Inputs

© O N 0o oA~ W N =

o
(=}

2.3 Improved LSTM-TC* Model for Binary
Classification

In general, training a deep neural network requires a
large amount of training data. The basic LSTM-TC
may not be applicable due to lacking a large amount of
well-labeled training data in tweet classification tasks.
Because the key to success of deep learning models is
representation learning, we propose to train the tweet
representation using the weakly-labeled data in our im-
proved LSTM-TC* model. Algorithm 2 shows our LSTM-
TC* model, which contains the pre-training phase (Lines
2-12) and the basic model training phase (Lines 13-22).
In each phase, we iterate our algorithm with a fixed
number of running. Similar to Algorithm 1, we optimize
the parameters by Adadelta using back-propagation al-
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gorithm and adopt dropout as model regularizer to pre-
vent over-fitting and improve performance.

Formally, our training data has four parts: 77 con-
taining well-labeled positive tweets, 7'~ containing well-
labeled negative tweets, T+ containing weakly-labeled
positive tweets, and T- weakly-labeled negative tweets.

Algorithm 2: LSTM-TC*: Improved Model
for Binary Classification

: Well-labeled dataset 71,7~
Weakly-labeled dataset T+ T~
Maximum pre-training epoch preEpoch
Maximum training epoch trainEpoch

Outputs: Trained Classification Model

7,m <+ 0;

compute qT, q~ by Eq. 1,2,5 on T+, T—;

while j < preEpoch do

for each tweet i in 7~“+,7~“* do

compute ¥}, by Eq. 1,2 on T+, T ;

Inputs

a oA W ON R

compute L2(d;601) by Eq. 9 on f‘j,q*,q*;
update 01 by Adadelta;
compute L2(d;61) by Eq. 9 on ¥; ,qt,q7;
update 61 by Adadelta;

N o

10 end

11 j+—J+1

12 end

18 T = shuffle(TT,T7);

14 while m < trainEpoch do

15 for each tweet ¢ in T do

16 compute r; by Eq. 1,2 on T}

17 compute g; by Eq. 3 based on r;;
18 compute Li(g;;02) by Eq. 4;

19 update 02 by Adadelta;

20 end

21 m < m-+1;

22 end

2.3.1 Pre-training Phase

In the pre-training phase, we train the LSTM to learn
the semantic tweet representation based on the similar-
ity between the weakly-labeled tweets and well-labeled
tweets. As discussed in the introduction, the weakly-
labeled positive tweets are likely to be truly positive
than those weakly-labeled negative tweets. Therefore,
the representation of a weakly-labeled positive tweet is
similar to the representation of positive class and far to
the representation of negative class.

We first use the LSTM to build q© the represen-
tation of positive class and q~ the representation of
negative class by using 77 and 7~ as inputs, respec-
tively.

For the i-th tweet in T, we first compute the tweet
representation r; using Equations 1 and 2 and then

%

compute the representation of positive class:

i (5)

where [T"| is the number of tweets in 7. Similarly, we
compute the representation of negative class q~ on T~
q™ and q~ are centroids of representations of tweets in
T+ and T~ respectively.
We use cosine function to measure the similarity be-
tween the weakly-labeled positive tweet representation
+

~ " . +
r;” and positive representation q.

.ot
. ~+ 4\ r.-q
sim(E],q") = = (6)
' I e
where || - || denotes the L2 norm. The similarity score

between the weakly-labeled positive tweet representa-
tion fj’ and negative representation q~ is denoted as
sim(¥;,q~). Because the model computes the similar-
ity pairwisely, we adopt the pairwise learning loss func-
tion proposed by (Yih et al, 2011) to train the model.

For the weakly-labeled positive tweet representation

f‘i*, we define
§ = sim(¥;,q") — sim(¥F,q7). (7)

In contrast, for the weakly-labeled negative tweet rep-
resentation T, , we define
6 = sim(E7, q) — sim(E,qt). (8)

Then, we use logistic loss function over ¢ to train the
parameters:

L5(6;61) = log(1 + exp(—v9)) 9)

where 6; is the parameters of LSTM. By updating 6,
based on Equations 7 and 8 for f‘;r and T; respectively,
we let the weakly-labeled positive tweet representation
] close to the q* and far away from the q~ and the
weakly-labeled negative tweet representation r; close
to the g~ and far away from the q™.

Because the similarity function is the cosine func-
tion, & € [—2,2]. In order to have a larger range and
penalize more on Equation 9, we use 7 as a scaling func-
tion. Once the LSTM is pre-trained by weakly-labeled
data (Lines 2-12), we can get semantic representations
of tweets. We can further use the basic model to de-
tect the labels of tweets (Lines 13-22). At this time, the
small set of well-labeled data is used for training the

classifier and fine-tuning the whole model.
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2.4 LSTM-Multi-TC and LSTM-Multi-T'C* Models
for Multiclass Classification

In Section 2.2 and 2.3, we focus on the task of tweets
binary classification based on LSTM with well-labeled
and weakly-labeled data. In reality, multiclass classifica-
tion task is more common than the binary classification
task. In this section, we extend our existing models to
tweet multiclass classification models (LSTM-Multi-TC
and LSTM-Multi-TC*). The task is to predict the class
label of a tweet given a well-labeled training dataset
with K classes T = {T1,..., Tk} and the correspond-
ing weakly-labeled dataset T’ = {Tl, e TK}.

LSTM-Multi-TC Model. We first extend the LSTM-
TC model to LSTM-Multi-TC model. We build the
tweet representation based on Equation 1 and 2. Then,
we replace the logistic function with softmax function:

exp(wgri + bi)
K ’
SR exp(whri + by)

P(3ilri, W,b) = (10)

where r; is the representation of the i-th tweet, and W,
b are the parameters of softmax. We adopt the cross
entropy as the loss function to train LSTM-Multi-TC:

K
Ly(9:05) = = > > yi = k}log P(jilr;, W, b),
=1 k=1
(11)

where N is the number of tweets, K is the number of
classes, and 63 = [W,b] U 6, is parameters in LSTM
and softmax.

LSTM-Multi-TC* Model. We further extend the
LSTM-TC* model to LSTM-Multi-TC* model, which
adopts the weakly-labeled data to pre-train the LSTM
model.

In the pre-training phase, we train LSTM based on
the similarity between weakly-labeled tweets and well-
labeled tweets. Given a dataset with K classes, the rep-
resentation of a weakly-labeled tweet in class k is similar
to the representation of tweets in T} and far away from
the representation of tweets in T_j in the well-labeled
dataset. Thus, similar to LSTM-TC*, we define the rep-
resentation of positive class qZ’ as the representation of
class T}, and the representation of negative class q_, as
the representation of classes T .

Unlike the binary classification, the representation
of negative class in multiclass classification contains
K — 1 classes. We cannot just use mean operation in
Equation 5 to combine all the tweet representations in
different classes because not all the tweets contribute
equally to the representation of the negative class. There-
fore, we adopt the neural attention model (Bahdanau

et al, 2015; Rush et al, 2015; Yang et al, 2016) to evalu-
ate the importance of each tweet representation to the
representation of positive (negative) class. The basic
idea of attention model is to assign weight to the lower
level representation in each position when computing
the upper level representation. In this work, we aim
to learn the representation of positive (negative) class
from the representation of each tweet in that positive
(negative) class. We let the model learn which tweet
play a more important role to the meaning of positive
(negative) class with the neural attention model, not
just assigning equal weights to all tweets.

Given a weakly-labeled tweet in class T}, the corre-
sponding representation of negative class is computed
based on the neural attention model:

s; = tanh(W,r; + b,), (12)
T .
) "
2= exp(ug 5i)
[Tk
(14)

q_,. = E ;S;,
i=1

where W,, b,, u, are the parameters of the neural
attention model and |T_g| is the total number of tweets
in classes T_j.

In the attention model, we first feed each tweet rep-
resentation 7; in T to a one-layer neural network to
compute the s; as the hidden representation of r;. After
obtaining all the hidden representation {s1,...,s7_, |},
the weight of the i-th tweet to the representation of
negative class is calculated through a softmax function.
Then, we obtain the weights of tweets in the nega-
tive class {ai,...,ar_,}. Finally, the representation
of negative class g_, is computed as a weighted sum of
each tweet representation and the corresponding weight.
Figure 3 shows how to build the representation of nega-
tive class based on the neural attention model. We also
follow the same procedure to generate the representa-
tion of positive class g .

The advantage of the neural attention model is that
it can dynamically assign a weight to each tweet rep-
resentation according to its relatedness with the cor-
responding class. Especially, in our work, each tweet
can be either in positive class or negative class and the
weight of each tweet may be different in each class.
Thus, using the neural attention model, we can get a
more reasonable representation of the positive or neg-
ative class. Furthermore, because the objective of pre-
training phase is based on the similarity between weakly-
labeled tweets and well-labeled tweets, we expect the
LSTM model can be pre-trained well by providing a
good representation of the positive or negative class.
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Fig. 3 Using the neural attention model to compose the rep-
resentation of negative tweet class

The similarity scores between the representation of
weakly-labeled tweet T; in T}, and the representation of
positive and negative classes calculated by Equation 6
are denoted as sim(¥;, ¢; ) and sim(¥;, ¢_,). Then, we
use logistic loss function to train the parameters:

0 = S’Lm(f'“ qur) - Sim(fiv q:k)v
L4(0;04) = log(1 + exp(—79)),

(15)
(16)

where 64 = [W, b, u,]|U#6; is the parameters of LSTM
and the neural attention model. Algorithm 3 shows the
LSTM-Multi-TC* model. The LSTM and the neural at-
tention model are trained together by iterating through
all the classes in the weakly-labeled data (Lines 2-12).
After that, we use the basic LSTM-Multi-TC model
to predict the classes of tweets (Lines 13-22). Similar
to Algorithm 1 and 2, we optimize the parameters by
Adadelta and adopt dropout as model regularizer to
prevent over-fitting and improve performance.

3 Experiments

In this section, we evaluate our methods for tweet classi-
fication and sentiment analysis. In particular, for tweet
classification, we focus on identifying discrimination-
related tweets.

3.1 Setup

Word Embeddings and Hyperparameters. Word
embeddings are required as input in our framework.
We use the off-the-shelf pre-trained word embeddings !
provided by Mikolov (Mikolov et al, 2013). These word
embeddings are widely used and have been shown to
achieve good performance on many NLP tasks. We fur-
ther randomly initialize the words which don’t have pre-
trained word embeddings but appear at least 5 times.
The dimension of each word embedding is 300. The di-
mension of the hidden layer in LSTM is equal to the

1 https://code.google.com/archive/p/word2vec/

Algorithm 3: LSTM-Multi-TC*: improved

model for tweet multiclass classification

: Well-labeled dataset T'= {T4,..., Tk}
Weakly-labeled dataset T = {Tl,. .. j‘K}
Maximum pre-training epoch preEpoch
Maximum training epoch trainEpoch

Outputs: Trained Multiclass Classification Model

Inputs

1 j,m <+ 0;
2 while j < preEpoch do
3 for each class fk in T do
a for each tweet i in Tk do
5 compute ¥; by Eq. 1,2 on ny
6 compute g, ¢, by Eq. 12,13,14 on T},
and Ty ;
7 compute L4(6;64) by Eq. 16 on ¥, qk+,
q:k:;
8 update 64 by Adadelta;
9 end
10 end
11 j+—Jj+1
12 end

13 T = shuf fle(T1,...,Tk);
14 while m < trainEpoch do

15 for each tweet ¢ in T do

16 compute r; by Eq. 1,2 on T

17 compute g; by Eq. 10 based on r;;
18 compute L3(7;;03) by Eq. 11;

19 update 03 by Adadelta;

20 end

21 m <+ m+1;

22 end

dimension of word embeddings. The pre-training epoch
is 30 with early stopping. The training epoch is 100
with early stopping. The batch size is 30. The dropout
rate is set to 0.5. v in Equation 9 is set to 10.
Baselines. We compare our methods with the follow-
ing baselines, logistic regression (LR), support vector
machine (SVM), Naive Bayes classifier (NB), eXtreme
Gradient Boosting (XGBoost) (Chen and Guestrin,
2016), and convolutional neural network (CININ). We
follow the approach proposed in (Kim, 2014) to build
the convolutional neural network. The first four clas-
sifiers are trained on traditional N-gram features, in
particular, unigram and bigram features. CNN takes
word embeddings as inputs. We implement all deep neu-
ral networks using the Theano package (Bastien et al,
2012) and train the SVM, Naive Bayes, and logistic re-
gression models using the Scikit-learn package 2. We
adopt the XGBoost package 3 to evaluate its perfor-
mance.

Code. The complete source code and crawled data
are available at https://bitbucket.org/bookcold/
pretraining lstm.

2 http://scikit-learn.org/stable/
3 http://xgboost.readthedocs.io/en/latest/
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3.2 Tweet Classification
8.2.1 Tweet Binary Classification

We first evaluate our LSTM-TC and LSTM-TC* mod-
els to identify discrimination related tweets and non-
discrimination related tweets.
Dataset. Because there is no benchmark dataset used
for discrimination discovery, we built our dataset by
crawling all tweets containing hashtags such as #every-
daysexism, #blackoncampus, #sexism, #racism, #racist,
and #news during the period from Nov 12 to Dec 31,
2015. We also crawled two specific web sites 4 which
provide instances of discrimination stories. To build the
training dataset T, we manually labeled and included
those tweets truly describing the discriminatory phe-
nomenon or sharing discriminatory stories in the pos-
itive golden dataset T from tweets containing hash-
tags #blackoncampus or #everydayserism. The nega-
tive golden dataset T~ contains (1) tweets that are
not discrimination-related (although containing hash-
tags like #blackoncampus), and (2) tweets containing
hashtag #news. The golden training dataset 1" contains
600 well-labeled tweets, | 7| = 300 and |7~ | = 300.

To evaluate the performance of LSTM-TC* model,
we build two datasets, Tl and T 5, as weakly-labeled
training data. The dataset Tl is based on the hashtags
of tweets. We consider tweets containing hashtags like
#sexism or #racism are weakly-labeled discrimination
tweets and these tweets likely contain discrimination-
related information. One example is “Why are female
cabinet members suspect but male ones are not? #bias
#sexism”. However, we would emphasize again that
not all tweets containing such hashtags can be consid-
ered as discrimination-related. For instance, the tweet
“I study #sexism in my behavior research project” is not
discrimination-related. We select top 5000 with high-
est favorite counts as ;™. A tweet with a high favorite
count number usually indicates high quality. Similarly,
we collect tweets having #news hashtag and select top
5000 with the highest favorite counts as T} . The dataset
T, is based on the classification results of the Naive
Bayes classifier. We first use T to train the Naive Bayes
classifier and then apply it to predict each tweet in
T, as either positive or negative. The positive (nega-
tive) tweets predicted by the Naive Bayes classifier are
then treated as weakly-labeled discrimination tweets
T (1)

In our dataset, we only keep the tweets which con-
tain at least five words. We tokenize each tweet by
TweetNLP ® and remove all the tokens beginning with

4 http://everydaysexism.com/, http://stemfeminist.com/
5 http://www.cs.cmu.edu/~ark/TweetNLP/

@ symbol and urls. We also remove special hashtags
such as #everydaysexism and #blackoncampus from each
tweet as those hashtags may provide hints about the
tweet’s class.

Results. All the baseline classifiers and our LSTM-TC
require only the well-labeled data T as input. In ad-
dition to 7', our LSTM-TC* also has a weakly-labeled
dataset T in its input. In particular, LSTM-TC* (hash-
tags) uses the weakly-labeled data Ty based on hash-
tag information and LSTM-TC* (NB) uses the weakly-
labeled data T, based on the output of Naive Bayes.
To evaluate the performance of different sizes of train-
ing data, we split T into training part and test part
with different ratios. In particular, we set the size of
training part as 120, 240, 360, and 480, and accord-
ingly the size of test part as 480, 360, 240, and 120. We
use b-fold cross-validation to evaluate the classification
performance and adopt accuracy as evaluation metrics
in all our experiments.

Table 1 shows experimental comparisons of our pro-
posed methods and baselines. We have the following
observations. First, deep learning models shown in the
last four rows significantly outperform those traditional
classifiers that use hand-design features (N-grams). This
improvement could be due to the use of word embed-
dings and the power of deep learning models. Second,
two LSTM-TC* models are better than the basic model
LSTM-TC, which demonstrates the incorporation of
weakly-labeled data in the pre-training phase of LSTM
does improve the prediction accuracy. Third, the LSTM-
TC* (NB) achieves noticeable better performance than
the LSTM-TC* (hashtags), which shows the quality of
weakly-labeled data makes difference.

Table 1 Experimental results on discrimination related
tweets detection as a binary classification task

Number of well-labeled data
Method 120 | 240 | 360 [ 450
LR (unigrams) 0.762 | 0.780 | 0.791 | 0.823
LR (bigrams) 0.722 | 0.774 | 0.794 | 0.840
SVM (unigrams) 0.520 | 0.521 | 0.725 | 0.713
SVM (bigrams) 0.659 | 0.736 | 0.756 | 0.765
NB (unigrams) 0.764 | 0.827 | 0.839 | 0.860
NB (bigrams) 0.770 | 0.852 | 0.875 | 0.870
XGBoost (unigrams) 0.843 | 0.841 | 0.825 | 0.833
XGBoost (bigrams) 0.850 | 0.827 | 0.817 | 0.817
CNN 0.862 | 0.871 | 0.884 | 0.895
LSTM-TC 0.860 | 0.873 | 0.878 | 0.900
LSTM-TC* (hashtags) | 0.864 | 0.889 | 0.892 | 0.902
LSTM-TC* (NB) 0.906 | 0.918 | 0.928 | 0.933

Effect of the size of the weakly-labeled dataset.
We use different sizes of the weakly-labeled dataset to
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analyze their effect on the accuracy of discrimination
prediction. We reduce the number of weakly-labeled
tweets to 8000, 6000, 4000 and 2000. In each dataset,
the number of the weakly-labeled discrimination-related
tweets equals to the weakly-labeled non-discrimination-
related tweets. The size of the well-labeled training data
is 240 and that of the well-labeled test data is 360. Fig-
ure 4 shows how prediction accuracy changes with the
size of the weakly-labeled data for both LSTM-TC*
(hashtags) and LSTM-TC* (NB). One observation is
that the decrease of the weakly-labeled data reduces the
prediction accuracy of both methods, which is expected.
One surprising result is that the LSTM-TC* (NB) even
with the size as 2000 achieves better prediction accu-
racy than the LSTM-TC* (hashtags) with the size as
8000. It indicates the importance of the quality of the
weakly-labeled data. In our future work, we will study
how to construct the high-quality weakly-labeled data
by combining multiple classifiers or better using hash-
tag information. We will also study whether the truly
large number of weakly-labeled tweets can increase the
prediction accuracy when we crawl more tweets for our
experiments.

092

091+

0390

089

0.88

Accuracy

087 .
.

& |STM-TC* (NB)
® & |STM-TC* (hashtags)

084
2000 4000 E000 8000 10000

Number of Weakly-Labeled Data

Fig. 4 Effect of the size of the weakly-labeled dataset

Model Analysis. We investigate how the pre-training
on the weakly-labeled dataset affects the final predic-
tion results. We compare our pre-trained LSTM with
the random initialization LSTM for modeling the rep-
resentations of tweets in the golden dataset. Figures 5
and 6 show the visualization of tweets representations
in the training dataset computed by random initializa-
tion LSTM and our pre-trained LSTM in LSTM-TC*
(NB) with 10000 weakly-labeled data. The vertical axis
is the index number of each tweet in the golden train-
ing dataset (T in left figures and T~ in right figures)
and the horizontal axis shows each dimension of tweet
representation. Each row then corresponds to a 300-
dimension vector value of one particular tweet’s repre-
sentation. We use color to describe the value of tweet
representation. We can see that the colors shown in Fig-
ure 5 (a) and Figure 5 (b) are very close. It means that

the representations of discrimination-related and non-
discrimination related tweets computed by the random
initialized LSTM are similar. In contrast, the colors
shown in Figure 6 (a) and Figure 6 (b) are significantly
different. It demonstrates that our LSTM pre-training
can map different classes of tweets to different regions
in the projected multi-dimensional feature space.

8.2.2 Tweet Multiclass Classification

We evaluate our LSTM-Multi-TC and LSTM-Multi-
TC* models for tweet multiclass classification. We train
the models to detect the sexism-related, racism-related
and non-discrimination tweets.

Dataset. We adopt the similar strategy to build the
dataset for multiclass classification. The golden train-
ing dataset T contains sexism-related tweets |Ts| = 300,
racism-related tweets |T;.| = 300, and non-discrimination
related tweets |T,,| = 300. We only build one weakly-
labeled dataset T based on the classification results of
the Naive Bayes classifier on the tweets containing hash-
tags #sexism, #racism, and #news. This is because the
LSTM-TC* (NB) achieves much better results than the
LSTM-TC* (hashtags) for tweets binary classification.
For each class in the weakly-labeled dataset, the num-
ber of tweets is 4000.

Result. We evaluate the performance of different mod-
els on different sizes of training data. We adopt the same
splitting ratio as the previous experiment to split the
golden dataset T into training part and test part and
use 5-fold cross-validation to evaluate the classification
performance.

Table 2 shows experimental results of our proposed
models and baselines. The overall results are similar to
the results of binary tweet classification. LSTM-Multi-
TC* outperform the baselines. Meanwhile, LSTM-Multi-
TC* (NB) achieves noticeable better performance than
the basic LSTM-Multi-TC, which shows the incorpora-
tion of weakly-labeled data in the pre-training phase of
LSTM with the neural attention model for multiclass
classification does improve the prediction accuracy.

3.3 Sentiment Analysis
3.8.1 Binary Sentiment Analysis

Dataset. We adopt the Stanford Sentiment Treebank
(SST) dataset with binary labels (positive and neg-
ative). SST is a movie review dataset and provides
train/dev/test splits. The average length of sentences
in the dataset is 19. In experiments, we adopt a subset
of training data as golden training dataset 7" and use the
rest of training data to build the weakly-labeled dataset
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Fig. 6 Visualization of the tweet representation computed by our pre-trained LSTM

Table 2 Experimental results on discrimination related
tweets detection as a multiclass classification task

Number of well-labeled data

Method 180 360 540 720

LR (unigrams) 0.7617 0.8070 0.8250 0.8400
LR (bigrams) 0.7425 0.8078 0.8250 0.8170
SVM (unigrams) 0.7589 0.8067 0.8266 0.8355
SVM (bigrams) 0.7400 0.8089 0.8283 0.8170
NB (unigrams) 0.7503 0.8092 0.8405 0.8400
NB (bigrams) 0.7483 0.8081 0.8289 0.8420
XGBoost (unigrams) 0.8000 | 0.8259 | 0.8511 | 0.8722
XGBoost (bigrams) 0.8000 | 0.8222 | 0.8538 | 0.8879
CNN 0.8069 0.8296 0.8111 0.8511
LSTM-Multi-TC 0.8042 0.8226 0.8495 0.8500
LTSM-Multi-TC* (NB) 0.8508 | 0.8652 | 0.8800 | 0.8956

T. In particular, the weakly-labeled positive (negative)
dataset contains 80% of positive (negative) data and
20% of negative (positive) data. We report the aver-
age accuracy and F1 score after evaluating on the test
dataset with 5 runs. For each deep learning model, we
report the mean and standard deviation of accuracy
and F1 score after 5 runs. Since the standard devia-
tions of traditional classifiers are extremely small, we
omit the results for clarity.

Results. We first evaluate the performance of LSTM-
TC* on different sizes of golden training data. Table 3
shows the accuracies and F1 scores of LSTM-TC* and

baselines for binary sentiment analysis. We can observe
that the deep learning based approaches (CNN, LSTM-
TC and LSTM-TC*) achieve much better performance
than the traditional classifiers like SVM, Naive Bayes,
logistic regression, and XGBoost. Meanwhile, both LSTM-
TC and LSTM-TC* achieve higher accuracies and F1
scores than those of CNN. Furthermore, LSTM-TC*
achieves higher accuracies and F1 scores than those of
LSTM-TC, which shows the advantage of the incorpo-
ration of weakly-labeled data in the pre-training phase
of LSTM.

We then evaluate the effect of the size of the weakly-
labeled dataset. We use different sizes of weakly-labeled
datasets to analyze the effects on binary sentiment anal-
ysis. From Figure 7, we can observe that using weakly-
labeled dataset can improve the performance of binary
classification when the well-labeled data is limited. Mean-
while, increasing the size of the weakly-labeled dataset
can improve the classification performance. In particu-
lar, when the number of weakly-labeled data increases
from 200 to 800, both accuracies and F1 scores have
significantly increased.

Traditional classifiers with word embeddings as
inputs. The deep neural networks take the word em-
beddings as inputs and compose the text representa-
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Table 3 Experimental results on binary sentiment analysis with various sizes of golden training datasets

Accuracy F1
Method Number of well-labeled data Number of well-labeled data
200 500 800 1000 200 500 800 1000
LR (unigrams) 0.5002 0.5024 0.5041 0.5058 0.6657 0.6647 0.6657 0.6669
LR (bigrams) 0.4997 0.4981 0.4986 0.4986 0.6661 0.6649 0.6649 0.6652
SVM (unigrams) 0.4997 0.5019 0.5024 0.5047 0.6663 0.6646 0.6649 0.6661
SVM (bigrams) 0.4997 0.4975 0.4991 0.4997 0.6666 0.6644 0.6649 0.6656
NB (unigrams) 0.4986 0.5030 0.5118 0.5173 0.6654 0.6667 0.6689 0.6716
NB (bigrams) 0.5002 0.5123 0.5277 0.5354 0.6659 0.6681 0.6735 0.6756
XGBoost (unigrams) 0.5326 0.5733 0.5738 0.5727 0.5999 0.4324 0.6832 0.6602
XGBoost (bigrams) 0.5310 0.5755 0.5277 0.5804 0.5890 0.4850 0.6449 0.6327
CNN 0.5853 £ 0.0155 | 0.6484 +-0.0129 | 0.6846 +0.0014 | 0.6863 = 0.0078 | 0.5933 +0.0364 | 0.6488 £ 0.0305 | 0.6943 + 0.03150 | 0.6938 & 0.0251
I LSTM-TC [ 0.7092 +0.0054 | 0.7594 £ 0.0067 | 0.7692 +0.0074 | 0.7754 £ 0.0038 | 0.7049 & 0.0178 | 0.7636+ 0.0097 | 0.7716 +0.0076 | 0.7759 +0.0082 |
| LSTM-TC* | 0.754240.0174 | 0.7661+0.0196 | 0.7771+0.0035 | 0.7808+0.0049 | 0.7549+0.0168 | 0.7604+0.0125 | 0.7730+0.0186 | 0.7789+0.0071 |

Table 5 Experimental results of training traditional classi-

0.78
077 ;//,4—-—.__&__‘
1 T Ir
076
075
074 —&— accuracy
F1
200 400 800 1600 6000

Fig. 7 Effect of the size of the weakly-labeled dataset

Table 4 Experimental results of traditional classifiers with

fiers with weakly-labeled data

Accuracy F1
LR (bigrams) 0.6364 0.6478
SVM (bigrams) 0.6801 | 0.6834
NB (bigrams) 0.6935 | 0.6977
XBGoost (bigrams) 0.6342 0.6989
[ LSTM-TC* | 0.7808 [ 0.7789 |

lines, the accuracies and F1 scores are still lower than

the LSTM-TC*.

word embeddings as inputs

Accuracy F1
LR 0.5013 0.6664
SVM 0.492 0.6659
XBGoost 0.4997 0.6656
[ LSTM-TC [ 0.7754 [ 0.7759 ]

tions. The output layers of deep neural networks adopt
text representations for classification. Since the tradi-
tional classifiers cannot compose the text representa-
tions, we simply average the word embeddings over the
text as the text representations. Table 4 shows the clas-
sification results of traditional classifiers and LSTM-
TC. All the models are trained on 1000 well-labeled
data. We can observe that LSTM-TC significantly out-
performs the traditional classifiers. It indicates that the
text representations computed by the neural network
can improve the performance of classification, and sim-
ply averaging the word embeddings cannot get good
text representations.

Training traditional classifiers with weakly-labeled

data. We further evaluate the performance of tradi-
tional classifiers with using both well-labeled and weakly-
labeled data. We simply combine the 1000 well-labeled
and all the weakly-labeled data as a whole training
dataset to train the traditional classifiers. Table 5 com-

pares the performance of traditional classifiers and LSTM-

TC* in terms of accuracy and F1. It shows that even
combining all the weakly-labeled data to train the base-

Evaluation on an unbalanced dataset. We further
evaluate LSTM-TC and LSTM-TC* on an unbalanced
dataset. The ratio of positive and negative samples in
the well-labeled dataset and testing dataset is 1:5. For
weakly-labeled dataset, the number of weakly-labeled
positive and weakly-labeled negative samples is equal.
We use AUC instead of accuracy to evaluate the per-
formance. Figure 8 shows the ROC curve of LSTM-TC
and LSTM-TC* on the unbalanced dataset. We can
observe that LSTM-TC* has higher AUC than LSTM-
TC, which indicates using weakly-labeled data can im-
prove the classification performance on the unbalanced
dataset.
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Fig. 8 ROC curve of LSTM-TC and LSTM-TC* on an un-
balanced dataset

Effect of v in Equation 9. v is a scaling parameter
that controls the scale of loss in Equation 9. We further
evaluate how v affects the classification performance
(shown in Figure 9). Overall, the performance of LSTM-
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TC* keep steady while changing the ~ from 1 to 20.
Hence, the performance of LSTM-TC* is not sensitive
to the scaling parameter.
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Fig. 9 Effect of v for binary sentiment analysis

3.8.2 Multiclass Sentiment Analysis

Dataset. We adopt the Stanford Sentiment Treebank
(SST) dataset with five classes (very positive, positive,
neutral, negative, very negative). Similar to the binary
sentiment analysis task, we adopt a subset of training
data as golden training dataset T" and use the rest of
training data as the weakly-labeled dataset T. Each
class of weakly-labeled data contains 80% of correct la-
beled data and 20% incorrect labeled data.

Results. We compare LSTM-Multi-TC* with baselines
for multiclass sentiment analysis. In this experiment,
we evaluate two various LSTM-Multi-TC* models. One
adopts the mean operation (Equation 5) to compose
the representation of each class, called LSTM-Multi-
TC* (mean). The other adopts the neural attention
model (Equations 12-14) to compose the representa-
tion of each class, called LSTM-Multi-TC* (attention).
Table 6 shows accuracies and F1 scores of our proposed
models and baselines with various sizes of golden train-
ing datasets. The overall results are similar to the re-
sults of binary sentiment analysis. The traditional clas-
sifiers have poor performance, which indicates the tra-
ditional classifiers cannot be well trained with limited
well-labeled data. LSTM-Multi-TC* (attention) achieves
better performance than the basic LSTM-Multi-TC,
which shows the incorporation of weakly-labeled data in
the pre-training phase of LSTM with the neural atten-
tion model for multiclass classification does improve the
prediction accuracy. Meanwhile, compared with LSTM-
Multi-TC* (mean), LSTM-Multi-TC* (attention) has
higher accuracies and F1 scores on different sizes of
golden training datasets. This is because, for a mul-
ticlass sentiment analysis task, a weakly-labeled “very
positive sample” should be closer to positive samples
than negative samples. Given a weakly-labeled “very

positive” sample, the attention model can assign high
weights to positive samples and low weights to negative
samples. However, using the mean operation, all the
positive and negative samples have the same weights.

4 Related Work

Deep neural networks have achieved promising results
in sentence modeling and understanding for the pur-
pose of classification, like sentiment analysis. The fun-
damental of applying deep neural networks for sentence
classification is word embeddings (Bengio et al, 2003;
Mikolov et al, 2013) and semantic composition (Blacoe
and Lapata, 2012; Mitchell and Lapata, 2010; Turney,
2014; Zhu and Grefenstette, 2017).

Word embeddings map each word to a real-valued
semantic vector. These word vectors are usually trained
in an unsupervised way on a large text corpus. There
are two types of approaches to train the word embed-
dings. The first one is based on neural probabilistic lan-
guage model (Bengio et al, 2003). For example, Mikolov
et al. (Mikolov et al, 2013) proposed the skip-gram
model and continuous bag-of-words (CBOW) model.
The skip-gram model trains the word embeddings by
predicting the context words given the center word,
while the CBOW model predicts the center word given
the surrounding words. The second type is based on
matrix factorization. For example, Lebret et al. (Le-
bret and Collobert, 2014) proposed a Helinger PCA to
learn word representations by projecting the original
word co-occurrence space to a dense subspace. Glove
(Pennington et al, 2014) developed a method of find-
ing the linear substructures of word co-occurrence ma-
trix by a log-bilinear regression model. If the word em-
beddings are further fine-tuned based on a supervised
training task, the vectors can encode the specific task
information (Tang et al, 2014). Once the word vectors
are well-trained, they can capture the hidden seman-
tic and grammatical features of words. Thus, word em-
beddings can improve the accuracy of natural language
processing tasks (Collobert et al, 2011).

Semantic composition constructs complex represen-
tations of phases or sentences by combining word em-
beddings. Various composition functions have been pro-
posed. The basic model is based on algebraic opera-
tions, like additive or multiplication, to build sentence
vector from word vectors (Mitchell and Lapata, 2010).
Recently, using deep neural networks to compose the
word embeddings to sentence embeddings has received
increased attention. There are different kinds of neu-
ral networks for modeling sentence, including recursive
neural networks (Socher et al, 2013), convolutional neu-
ral networks (Denil et al, 2014; Kim, 2014), recurrent
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Table 6 Experimental results on multiclass sentiment analysis with various sizes of golden training datasets

Accuracy F1
Method Number of well-labeled data Number of well-labeled data
200 500 300 1000 200 500 1000

LR (unigrams) 0.2258 0.2515 0.2484 0.2402 0.1257 0.1670 0.1739 0.1715

LR (bigrams) 0.2289 0.2402 0.2502 0.2484 0.1072 0.1335 0.1520 0.1541

SVM (unigrams) 0.2239 0.2240 0.2240 0.2366 0.1420 0.1422 0.1422 0.1737

SVM (bigrams) 0.2266 0.2425 0.2524 0.2447 0.1194 0.1467 0.1658 0.1610

NB (unigrams) 0.2171 0.2411 0.2389 0.2411 0.1287 0.1496 0.1549 0.1656

NB (bigrams) 0.2190 0.2425 0.2393 0.2434 0.1321 0.1560 0.1593 0.1768

XGBoost (unigrams) 0.2203 0.2402 0.2393 0.2402 0.1144 0.1379 0.1256 0.1302

XGBoost (bigrams) 0.2203 0.2407 0.2398 0.2396 0.1144 0.1391 0.1264 0.1290
CNN 0.2560 + 0.0243 0.2933 £ 0.0105 0.3049 + 0.0065 0.3041 + 0.0082 0.1949 + 0.0221 0.2365 £ 0.01470 | 0.2776 £ 0.0040 0.2903 + 0.0097
LSTM-Multi-TC 0.3594 4 0.0099 0.3781 £ 0.0049 0.3866 & 0.0033 0.3860 4 0.0053 0.3387 & 0.0060 0.3669 & 0.0016 0.3674 £ 0.0042 0.3746 & 0.0057
LSTM-Multi-TC* (mean) 0.3897+ 0.0154 0.3751 £ 0.0022 0.3827 £ 0.0055 0.3851 £ 0.0078 0.3462 + 0.0099 0.3680 + 0.0020 0.3686 + 0.0143 0.3752 £ 0.0109
LSTM-Multi-TC* (attention) 0.3558 £ 0.0027 0.3876+ 0.0145 | 0.3926+ 0.0177 | 0.3959+ 0.0039 0.3445 £+ 0.0024 0.3749+ 0.0072 | 0.3741+ 0.0261 | 0.3870+ 0.0065

neural networks (Graves, 2013; Tai et al, 2015). Map-
ping sentence to a semantic space based on deep neural
networks for classification tasks usually achieves better
results than the traditional approaches of representing
a sentence as a combination of hand-designed features
such as words or N-grams based on frequency.

The performance of semantic composition can be
improved by using the attention mechanism. Attention
mechanism is first proposed in sequence to sequence
models for machine translation (Vaswani et al, 2017).
With the attention mechanism, it predicts the target
token by choosing the important source tokens auto-
matically at each step. Some works adopt the atten-
tion mechanisms for semantic composition and further
aim to document classification (Yang et al, 2016), doc-
ument summarization (Paulus et al, 2018) and machine
reading (Shen et al, 2017). In these works, the atten-
tion mechanisms are proposed to choose the important
words for semantic composition.

The use of unlabeled data in deep learning has been
investigated. The approach developed in (Hinton et al,
2006; Vincent et al, 2010) was to first use unlabeled
data to pre-train the model layer by layer. As a re-
sult, the original data were projected into a low di-
mensional space. It then used labeled data to fine-tune
the whole model. In (Weston et al, 2012), the authors
proposed semi-supervised learning methods by adding
a semi-supervised regularizer to deep neural networks.
In (Socher et al, 2011), the authors used unlabeled
data to pre-train the recursive neural networks for sen-
tence modeling. However, one significant drawback of
using unlabeled data for supervised tasks training is
that they do not contain class label information. Dif-
ferent from all existing methods, our work introduces
the first use of weakly-labeled data to pre-train the deep
neural network for classification. We would like to em-
phasize that although our basic LSTM-TC and LSTM-
Multi-TC models are not novel (as LSTM and word
embeddings have been studied for text classification),
the idea of using weakly-labeled data to pre-train the
deep neural network is novel and the main contribution
of this paper.

Discrimination generally refers to an unjustified dis-
tinction of individuals based on gender, race, or religion,
and often occurs when the protected group (e.g., fe-
male) is treated less favorably than others. Discrimina-
tion discovery and prevention from historical datasets
has been an active research area recently (Bonchi et al,
2015; Feldman et al, 2015; Hajian and Domingo-Ferrer,
2013; Pedreschi et al, 2013; Romei and Ruggieri, 2014).
In this paper, we conducted the first study on identify-
ing discrimination-related tweets from social networks.
Our approach expects to be generally applicable for
identifying tweets that satisfy some user-specified prop-
erty, i.e., whether tweets contain private information.

5 Conclusions and Future Work

In this paper, we focus on tweet classification by us-
ing deep neural networks. We have developed a ba-
sic model LSTM-TC (LSTM-Multi-TC) for tweets bi-
nary (multiclass) classification. To improve the predic-
tion accuracy, we have further developed an improved
model LSTM-TC* (LSTM-Multi-TC*) that incorpo-
rates weakly-labeled data to pre-train the LSTM when
lacking of a large training dataset.

Experimental results showed that comparing with
traditional classifiers based on the hand-design features
and existing deep neural networks without pre-training,
our proposed pre-training model can significantly im-
prove the prediction accuracy. We also evaluated how
the quality and quantity of weakly-labeled data can af-
fect the prediction accuracy. Our LSTM-TC* (LSTM-
Multi-TC*) model can also be extended to other clas-
sification tasks such as sentiment analysis where large
well-labeled training data are rarely available. More-
over, the pre-training idea using weakly labeled data
can be portable to other deep neural networks (e.g.,
CNN) for training the representations of sentences. It
expects to significantly improve the prediction accuracy
of deep neural networks as semantic representations of
words and sentences are the key ingredient of deep neu-
ral networks.
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In the future, we plan to expand our work to the
following directions. First, we will build a large corpus
for tweet classification and conduct comprehensive ex-
periments to examine the effectiveness and efficiency
of the LSTM-TC* (LSTM-Multi-TC*) model. We will
examine the use of other advanced deep learning mod-
els, e.g., Tree-LSTM (Tai et al, 2015), to determine
whether better performance can be achieved. However,
advanced models usually need a substantial amount of
data. Finally, we are also interested to discover task-
related sentences or words from long documents by us-
ing the attention-based deep neural networks (Rush
et al, 2015).
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