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Abstract—Anti-discrimination is an increasingly important task in data science. In this paper, we investigate the problem of discovering both
direct and indirect discrimination from the historical data, and removing the discriminatory effects before the data are used for predictive
analysis (e.g., building classifiers). The main drawback of existing methods is that they cannot distinguish the part of influence that is really
caused by discrimination from all correlated influences. In our approach, we make use of the causal graph to capture the causal structure of
the data. Then we model direct and indirect discrimination as the path-specific effects, which accurately identify the two types of discrimination
as the causal effects transmitted along different paths in the graph. For certain situations where indirect discrimination cannot be exactly
measured due to the unidentifiability of some path-specific effects, we develop an upper bound and a lower bound to the effect of indirect
discrimination. Based on the theoretical results, we propose effective algorithms for discovering direct and indirect discrimination, as well as
algorithms for precisely removing both types of discrimination while retaining good data utility. Experiments using the real dataset show the
effectiveness of our approaches.
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1 Introduction

D iscrimination refers to unjustified distinctions in decisions
against individuals based on their membership in a certain

group. Laws and regulations (e.g., the Equal Credit Opportunity
Act of 1974) have been established to prohibit discrimination on
several grounds, such as gender, age, sexual orientation, race,
religion, and disability, which are referred to as the protected
attributes. Nowadays various predictive models have been built
around the collection and use of historical data to make important
decisions like employment, credit and insurance. If the historical
data contain discrimination, the predictive models are likely to
learn the discriminatory relationship present in the historical
data and apply it when making new decisions. Therefore, it is
imperative to ensure that the data go into the predictive models
and the decisions made are not subject to discrimination.

In the legal field, discrimination is divided into direct and indi-
rect discrimination. Direct discrimination occurs when individuals
receive less favorable treatment explicitly based on the protected
attributes. An example would be rejecting a qualified female
applicant in applying to a university just because of her gender.
Indirect discrimination refers to the situation where the treatment
is based on apparently neutral non-protected attributes but still
results in unjustified distinctions against individuals from the
protected group. A well-known example of indirect discrimination
is redlining, where the residential zip code of the individual is used
for making decisions such as granting a loan. Although zip code
is apparently a neutral attribute, it correlates with race due to the
racial composition of residential areas. Thus, the use of zip code
may indirectly lead to racial discrimination.

Discrimination discovery and removal from historical data
have received increasing attention over the past few years in data
science [1], [2], [3], [4], [5]. Many approaches have been proposed
to deal with both direct and indirect discrimination but significant
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issues exist. For discrimination discovery, the difference in deci-
sions across the protected and non-protected groups is a combined
(not necessarily linear) effect of direct discrimination, indirect
discrimination, and explainable effect that should not be consid-
ered as discrimination (e.g., the difference in average income of
females and males caused by their different working hours per
week). However, existing methods cannot explicitly and correctly
identify the three different effects when measuring discrimination.
For example, the classic metrics risk difference, risk ratio, relative
chance, odds ratio, etc. [4] treat all the difference in decisions
as discrimination. [6] realized the explainable effect but failed to
correctly measure it. They also failed to distinguish the effects of
direct and indirect discrimination. For discrimination removal, a
general requirement is to preserve the data utility, i.e., how the
distorted data is close to the original one, while achieving non-
discrimination. As we shall show in the experiments, a crude
method that totally removes all connections between the protected
attribute and decision (e.g., in [5]) can eliminate discrimination but
may suffer significant utility loss. To maximize the data utility, it
is necessary to first accurately measure the discriminatory effects.

The causal modeling-based discrimination detection has been
proposed most recently [7], [8], [9] for improving the correlation
based approaches. However, these work also do not tackle indirect
discrimination. In this paper, we develop a framework for discov-
ering and removing both direct and indirect discrimination based
on the causal model. A causal model [10] is a structural equation-
based mathematical object that describes the causal mechanisms
of a system. Each causal model is associated with a causal graph
for friendly causal inference, where causal effects are carried by
the causal paths that trace arrows pointing from the cause to the
effect. Using the causal model, direct and indirect discrimination
can be respectively captured by the causal effects of the protected
attribute on the decision transmitted along different causal paths.
To be specific, direct discrimination is modeled as the causal effect
transmitted along the direct path from the protected attribute to the
decision. Indirect discrimination, on the other hand, is modeled as
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Fig. 1: The toy model.

the causal effect transmitted along other causal paths that contain
any unjustified attribute.

For example, consider a toy model of a loan application system
shown in Figure 1. Assume that we treat Race as the protected
attribute, Loan as the decision, and ZipCode as the unjustified
attribute that triggers redlining. Direct discrimination is then
transmitted along path Race → Loan, and indirect discrimination
is transmitted along path Race→ ZipCode→ Loan. Assume that
the use of Income can be objectively justified as it is reasonable
to deny a loan if the applicant has low income. In this case, path
Race → Income → Loan is explainable, which means that part
of the difference in loan issuance across different race groups can
be explained by the fact that some race groups in the dataset tend
to be under-paid.

As shown above, measuring discrimination based on the causal
graph requires to measure the causal effect transmitted along cer-
tain causal paths. To this end, we employ the technique of the path-
specific effect [11], [12]. We define direct/indirect discrimination
as different path-specific effects, and attempt to compute them
using the observational data. In theory, the path-specific effect is
not always able to be computed from the observational data. This
situation is referred to as the unidentifiability of the path-specific
effect. We show that direct discrimination is always identifiable,
but indirect discrimination is not identifiable in some cases. For
the unidentifiable situation, we provide an upper bound and a
lower bound to the effect of indirect discrimination, which is
achieved by representing the unidentifiable effect as the expression
of counterfactual statements and then scaling up and down specific
components of the expression. Based on the theoretical results, we
propose effective algorithms that can deal with both identifiable
and unidentifiable situations, including algorithms for discovering
direct/indirect discrimination, as well as algorithms for precisely
removing both types of discrimination while retaining good data
utility. The experiments using real datasets show that our ap-
proaches are effective in discovering and removing discrimination,
ensuring that all types of discrimination are removed while only
small utility loss is incurred.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 proposes the criteria and
algorithms for discovering and removing both direct and indirect
discrimination based on the path-specific effect. Section 4 deals
with the situation where the indirect discrimination cannot be
exactly measured from the observational data according to the
unidentifiability of the path-specific effect. Section 5 discusses the
assumption relaxation and extensions of the proposed methods to
several realistic scenarios. The experimental setup and results are
discussed in Section 6. Finally, Section 7 concludes the paper.

2 RelatedWork
How to discover discrimination from data has been widely studied
and many techniques have been proposed in the literature. Among
them a widely adopted concept is called the statistical parity,
which means that the demographics of the set of individuals

receiving positive (or negative) decisions are identical to the
demographics of the population as a whole. Based on statistical
parity, the classic statistical metrics of discrimination consider the
difference between the proportion of having positive decision for
the non-protected group (p1), that for the protected group p2, and
that for the whole population (p). According to how the difference
is measured, these metrics can be distinguished into p1− p2 (a.k.a.
risk difference), p1

p2
(a.k.a. risk ratio), 1−p1

1−p2
(a.k.a. relative chance),

p1(1−p2)
p2(1−p1) (a.k.a. odds ratio), p1 − p (a.k.a. extended risk difference),
p1
p (a.k.a. extended risk ratio), 1−p1

1−p (a.k.a. extended change), etc.
Data mining techniques have also been proposed. Pedreschi et
al. proposed to extract from the dataset classification rules which
represent certain discrimination patterns [3], [13], [14]. If the
presence of the protective attribute increases the confidence of
a classification rule, it indicates possible discrimination in the data
set. Based on that, [15] further proposed to use Bayesian networks
to compute the confidence of the classification rules for detecting
discrimination. The authors in [16] exploited the idea of situation
testing to discover individual discrimination. For each member of
the protected group with a negative decision outcome, testers with
similar characteristics are searched from a historical dataset. When
there are significantly different decision outcomes between the
testers of the protected group and the testers of the non-protected
group, the negative decision can be considered as discrimination.
Conditional discrimination, i.e., part of discrimination may be
explained by other legally grounded attributes, was studied in
[6]. The task was to evaluate to which extent the discrimination
apparent for a group is explainable on a legal ground. The metric
is still based on the difference of the positive decision proportions
for the protected and non-protected groups.

Proposed methods for discrimination removal are either based
on data preprocessing or algorithm tweaking. Data preprocessing
methods [2], [5], [6], [17] modify the historical data to remove
discriminatory patterns. For example, [2], [6] proposed several
methods for modifying data, including Massaging, which changes
the labels of some individuals in the dataset to remove discrimina-
tion, Reweighting, which assigns weights to individuals to balance
the dataset, and Sampling, which changes the sample sizes of dif-
ferent subgroups to make the dataset discrimination-free. Another
work [5] studied how to remove indirect discrimination from data.
The authors modify all the non-protected attributes to ensure that
C cannot be predicted from the non-protected attributes. As a
result, indirect discrimination is removed since the decision E,
which is determined by the non-protected attributes, cannot be
used to predict C. In [17], the authors proposed the use of loglinear
modeling to capture and measure discrimination, and developed
a method for discrimination prevention by modifying significant
coefficients of the fitted loglinear model and generate unbiased
datasets. On the other hand, algorithm tweaking methods remove
discrimination by modifying the model including the decision tree
[18], naive Bayes classifier [19], and logistic regression [20]. For
example, in [18], the authors developed a strategy for relabeling
the leaf nodes of a decision tree to make it discrimination-
free. In [21], the authors added the measure of fairness into the
classification learning formulation as the constraints so that the
classifier learned satisfies the fairness requirement. In [22], the
authors addressed the problem of constructing a predictive model
that achieves both statistical parity and individual fairness, i.e.,
similar individuals should be treated similarly.

All of the above works are mainly based on correlation
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or association. Recently, several studies have been devoted to
analyzing discrimination from the causal perspective. In [23], the
authors proposed a framework based on the Suppes-Bayes causal
network and developed several random-walk-based methods to
detect different types of discrimination. However, it is unclear how
the number of random walks is related to practical discrimination
metrics. In addition, the construction of the Suppes-Bayes causal
network is impractical with the large number of attribute-value
pairs. Studies in [7], [8], [9] are built on causal modeling and
the associated causal graph, but cannot deal with indirect dis-
crimination. The causal model [10] is a mathematical object that
describes the causal mechanisms of a system as a set of structural
equations. With well-established conceptual and algorithmic tools,
the causal model provides a general, formal, yet friendly calculus
of causal effects. In this paper, we adopt the causal model for
the quantitative measuring of both direct/indirect discrimination.
Specifically, we focus on the technique of path-specific effect [11]
that measures the causal effect that is transmitted along certain
paths in the causal graph. A recent work [24] proposes similar
discrimination criteria that also consider indirect discrimination.
However, they are more simplified in order to avoid the complexity
in measuring path-specific effects. In addition, [24] suffers inher-
ent limitations: (1) its proposed discrimination criteria can only
qualitatively determine the existence of the discrimination, but
cannot quantitatively measure the amount of discriminatory effects
as we do; (2) its proposed algorithms for avoiding discrimination
proposed only work under the linearity assumptions about the
underlying causal model while our methods make no assumption.

For the unidentifiability of the path-specific effect, a recent
work [25] proposes three principled approaches: (1) obtaining the
data on exogenous variables U; (2) considering a identifiable path-
specific effect that includes the paths of interest and some other
paths; and (3) deriving bounds for unidentifiable path-specific
effects, which is claimed to be an open problem in general. In
this paper, we deal with this issue by adopting the third approach.

3 Discrimination Discovery and Removal
3.1 Preliminaries

Throughout the paper, we denote an attribute by an uppercase
alphabet, e.g., X; denote a subset of attributes by a bold uppercase
alphabet, e.g., X. We denote a domain value of attribute X by a
lowercase alphabet, e.g., x; denote a value assignment of attributes
X by a bold lowercase alphabet, e.g., x.

A causal model is formally defined as follows [10].
Definition 1 (Causal Model). A causal model is a triple M =

〈U,V,F〉 where

1) U is a set of arbitrarily distributed unobserved random
variables (called exogenous) that are determined by fac-
tors outside the model. A joint probability distribution
P(u) is defined over the variables in U.

2) V is a set of observed random variables (called endoge-
nous) {X1, · · · , Xi, · · · } that are determined by variables in
the model, namely, variables in U ∪ V.

3) F is a set of deterministic functions { f1, · · · , fi, · · · } where
each fi is a mapping from U× (V\Xi) to Xi. Symbolically,
the set of equations F can be represented by writing

xi = fi(paXi
,ui)

where paXi
is any realization of the unique minimal set

of variables PaXi in V\Xi that renders fi nontrivial. Here

variables in PaXi are referred to as the parents of Xi.
Similarly, Ui ⊂ U stands for the unique minimal set of
variables in U that renders fi nontrivial.

Each causal model M is associated with a causal graph G =

(V,A), where V is a set of nodes and A is a set of edges. Each
node in G corresponds to a variable X in V. In this paper, terms
node and variable are used interchangeably. Each edge, denoted
by an arrow →, points from each member of PaX toward X to
represent the direct causal relationship. Standard terminology in
the graph theory is used in the causal graph. For a node X, we also
use symbol PaX to denote its parents, and use ChX to denote its
children. The path that traces arrows directed from one node X to
another node Y is called the causal path from X to Y .

It is generally assumed that the causal model is a Markovian
model, which means that all exogenous variables in U are mutually
independent. An equivalent graphical expression of the Markovian
model is the local Markov condition, which means that each node
is independent of its non-descendants conditional on all its parents.
Under this assumption, the joint distribution over all attributes
P(v) can be computed using the factorization formula [26]

P(v) =
∏
V∈V

P(v | paV ), (1)

where P(v | paV ) is the conditional probability table (CPT)
associated with V .

In the causal model, measuring causal effects is facilitated with
the do-operator [10], which simulates the physical interventions
that force some variables X to take certain values x. The post-
intervention distributions, which represent the effect of the inter-
vention, can be computed from the observational data. Formally,
the intervention that sets the value of X to x is denoted by
do(X = x). The post-intervention distribution of all other variables
Y = V\X, i.e., P(Y = y | do(X = x)) or simply P(y | do(x)), can
be expressed as a truncated factorization formula [10]

P(y | do(x)) =
∏
Y∈Y

P(y | paY )δX=x, (2)

where δX=x means assigning variables in X involved in the term
ahead with the corresponding values in x. Specifically, the post-
intervention distribution of a single variable Y given an interven-
tion on a single variable X is given by

P(y | do(x)) =
∑

v′

∏
V∈V\{X}

P(v | paV )δX=x, (3)

where the summation is a marginalization that traverses all value
combinations of V′ = V\{X,Y}.

By using the do-operator, the total causal effect of X on Y is
defined in Definition 2 [10]. Note that in this definition, the effect
of the intervention is transmitted along all causal paths from the
cause X to the effect Y .
Definition 2 (Total causal effect). The total causal effect TE(x2, x1)

measures the effect of the change of X from x1 to x2 on Y = y
transmitted along all causal paths from X to Y . It is given by

TE(x2, x1) = P (y | do(x2)) − P (y | do(x1)) .

The path-specific effect is an extension to the total causal effect
in the sense that the effect of the intervention is transmitted only
along a subset of causal paths from X to Y [11]. Denote a subset of
causal paths by π. The π-specific effect considers a counterfactual
situation where the effect of X on Y with the intervention is
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Fig. 3: The recanting witness criterion satisfied.

transmitted along π, while the effect of X on Y without the
intervention is transmitted along paths not in π, i.e., π̄. We denote
by P(y | do(x2|π, x1|π̄)) the distribution of Y after an intervention
of changing X from x1 to x2 with the effect transmitted along π.
Then, the π-specific effect of X on Y is described as follows.
Definition 3 (Path-specific effect). Given a path set π, the π-

specific effect SEπ(x2, x1) measures the effect of the change
of X from x1 to x2 on Y = y transmitted along π. It is given by

SEπ(x2, x1) = P (y | do(x2|π, x1|π̄)) − P (y | do(x1)) .

The identifiability of path-specific effect SEπ(x2, x1), i.e.,
whether it can be computed from the observational data, de-
pends on the identifiability of P(y | do(x2|π, x1|π̄)). The authors
in [11] have given the necessary and sufficient condition for
P(y | do(x2|π, x1|π̄)) to be identifiable, known as the recanting
witness criterion.
Definition 4 (Recanting witness criterion). Given a path set π

pointing from X to Y , let W be a node in G such that: 1) there
exists a path from X to W which is a segment of a path in π; 2)
there exists a path from W to Y which is a segment of a path
in π; 3) there exists another path from W to Y which is not a
segment of any path in π. Then, the recanting witness criterion
for the π-specific effect is satisfied with W as a witness.

The graphical pattern of the recanting witness criterion is
known as the “kite pattern”, as shown in Figure 2. Figure 3 shows
an example where π = {(X,W,Z,Y)}. It is easy to see that the
recanting witness criterion is satisfied with W as the witness.
Theorem 1 (Identifiability). For path-specific effect SEπ(x2, x1),

P(y | do(x2|π, x1|π̄)) can be computed from the observational
data if and only if the recanting witness criterion for the π-
specific effect is not satisfied.

If the recanting witness criterion is not satisfied, P(y |
do(x2|π, x1|π̄)) can be computed as shown in Theorem 2 [12].
Theorem 2. For path-specific effect SEπ(x2, x1), if the recanting

witness criterion is not satisfied, then P(y | do(x2|π, x1|π̄)) can
be computed in following steps. Firstly, express P(y | do(x1))
as the truncated factorization formula according to Eq. (3).
Secondly, divide the children of X other than Y into two sets
Sπ and S̄π, i.e., ChX\{Y} = Sπ ∪ S̄π. Let Sπ contain X’s each
child S where edge X → S is a segment of a path in π; let
S̄π contain X’s each child S where either S is not included
in any path from C to E, or edge X → S is a segment of a
path not in π. Finally, replace values x1 with x2 for the terms
corresponding to nodes in Sπ, and keep values x1 unchanged
for the terms corresponding to nodes in S̄π.

Note that the above computation requires Sπ∩S̄π = ∅. Theorem
1 is reflected here in the sense that: Sπ ∩ S̄π = ∅ if and only if the
recanting witness criterion for the π-specific effect is not satisfied.

3.2 Modeling Direct and Indirect Discrimination as Path-
Specific Effects

Consider a historical dataset D that contains a group of tuples,
each of which describes the profile of an individual. Each tuple
is specified by a set of attributes V, including the protected
attributes, the decision, and the non-protected attributes. Among
the non-protected attributes, assume there is a set of attributes
that cannot be objectively justified if used in the decision making
process, which we refer to as the redlining attributes denoted
by R. For ease of presentation, we assume that there is only
one protected/decision attribute with binary values. We denote
the protected attribute by C associated with two domain values
c− (e.g., female) and c+ (e.g., male); denote the decision by E
associated with two domain values e− (i.e., negative decision)
and e+ (i.e., positive decision). For simplifying representation,
we also make two reasonable assumptions: (1) C has no parent
in G; (2) E has no child in G. The first one is due to the fact
that the protected attribute is usually an inherent nature of an
individual, and second one is because that E is usually the output
of a decision making system. We will discuss the relaxation of
above assumptions in Section 5. We assume that a causal graph G
can be built to correctly represent the causal structure of dataset
D. Many algorithms have been proposed to learn the causal graph
from data [27], [28], [29], [30].

Discrimination is the causal effect of C on E. As we have
discussed, the causal effect of C on E includes direct/indirect dis-
criminatory effects and the explainable effects. To distinguish the
different effects, we model them as the causal effects transmitted
along different paths. For direct discrimination, we consider the
causal effect transmitted along the direct edge from C to E, i.e.,
C → E. Define πd as the path set that contains only C → E.
Then, the above causal effect that is caused by the change of C
from c− to c+ is given by the πd-specific effect SEπd (c+, c−). For
a better understanding, the physical meaning of SEπd (c+, c−) can
be explained as the expected change in decisions of individuals
from protected group c−, if the decision makers are told that
these individuals were from the other group c+. When applied
to the example in Figure 1, it means the expected change in
loan approval of the disadvantage group (e.g., black), if the bank
was instructed to treat these applicants as from the advantage
group (e.g., white). We can see that the πd-specific effect perfectly
follows the definition of direct discrimination in law and hence is
an appropriate measure for direct discrimination.

Similarly, for indirect discrimination, we consider the causal
effect transmitted along all the indirect paths from C to E that
contain the redlining attributes. Given the set of redlining attributes
R, we define πi as the path set that contains all the causal paths
from C to E which pass through R, i.e., each of the paths includes
at least one node in R. Thus, the above causal effect is given
by the πi-specific effect SEπi (c

+, c−). The physical meaning of
SEπi (c

+, c−) is the expected change in decisions of individuals
from protected group c−, if the values of the redlining attributes
in the profiles of these individuals were changed as if they were
from the other group c+. When applied to the example in Figure 1,
it means the expected change in loan approval of the disadvantage
group if they had the same racial makeups shown in the zip code
as the advantage group. As can be seen, the πi-specific effect also
follows the definition of indirect discrimination and is appropriate
for measuring indirect discrimination.

Therefore, we have the following claim.
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Claim 1. The effect of direct discrimination is captured by the
πd-specific effect SEπd (c+, c−), and the effect of indirect dis-
crimination is captured by the πi-specific effect SEπi (c

+, c−).

Based on the above path-specific effect metrics, we propose
the criterion for identifying direct and indirect discrimination. We
define that direct discrimination against protected group c− exists
if SEπd (c+, c−) > τ, where τ > 0 is a use-defined threshold for
discrimination depending on the law. For instance, the 1975 British
legislation for sex discrimination sets τ = 0.05, namely a 5%
difference. Similarly, given the redlining attributes R, we define
that indirect discrimination against protected group c− exists if
SEπi (c

+, c−) > τ. To avoid reverse discrimination, we do not
specify which group is the protected group. As a result, we give
the following criterion.
Theorem 3. Given the protected attribute C, decision E, and

redlining attributes R, direct discrimination exists if either
SEπd (c+, c−) > τ or SEπd (c−, c+) > τ holds, and indirect dis-
crimination exists if either SEπi (c

+, c−) > τ or SEπi (c
−, c+) > τ

holds.

The following theorem shows how to compute SEπd (c+, c−)
and SEπi (c

+, c−) from the observational data by using Theorem 2.
Theorem 4. The πd-specific effect SEπd (c+, c−) is given by

SEπd (c+, c−) =
∑

q

(
P(e+|c+,q)P(q|c−)

)
− P(e+|c−), (4)

where Q is the parents of E except C, i.e., Q = PaE\{C}.
For the πi-specific effect SEπi (c

+, c−), divide C’s children other
than E into Sπi and S̄πi whose definitions are the same as those
in Theorem 2. If Sπi ∩ S̄πi = ∅, then SEπi (c

+, c−) is given by

SEπi (c
+, c−) =

∑
v′

(
P(e+|c−,q)

∏
G∈Sπi

P(g|c+,paG\{C})∏
H∈S̄πi \{E}

P(h|c−,paH\{C})
∏

O∈V\ChC

P(o|paO)
)
− P(e+|c−),

(5)

where V′ = V\{C, E}. It can be simplified to

SEπi (c
+, c−) =

∑
q

(
P(e+|c−,q)P(q|c+)

)
− P(e+|c−), (6)

if πi contains all causal paths from C to E except direct edge
C → E.

Proof: According to the definition of SEπd (c+, c−), we have

SEπd (c+, c−) = P(e+ | do(c+|πd , c
−|π̄d )) − P(e+ | do(c−)).

Since C has no parent, it is straitforward that P(e+ | do(c−)) =

P(e+|c−). For P(e+ | do(c+|πd , c
−|π̄d )), following Theorem 2, we

express P(e+|c−) as the truncated factorization formula, given by

P(e+|c−) =
∑

v′

P(e+|c−,q)
∏
V∈V′

P(v | paV )

 , (7)

where V′ = V\{C, E}. It can be shown that
∏

V∈V′ P(v | paV ) =

P(v′|c−). In fact, if we sort all nodes in V′ according to the topo-
logical ordering as {V1, · · · ,V j, · · · }, we can see that all parents of
each node V j are before it in the ordering. In addition, since C has
no parent, it must be V j’s non-descendant; since E has no child, it
cannot be V j’s parent. Thus, based on the local Markov condition,
we have P(v j | paV j

) = P(v j | c−, v1, · · · , v j−1). According to the
chain rule we obtain P(v′|c−). Therefore, it follows that

P(e+|c−) =
∑

q

(
P(e+|c−,q)P(q|c−)

)
.

Then, we divide the children of C into Sπd and S̄πd , and replace
c− with c+ for the terms corresponding to nodes in Sπd . Note that
Sπd contains only one node E. As a result, we have

P(e+ | do(c+|πd , c
−|π̄i )) =

∑
q

(
P(e+|c+,q)P(q|c−)

)
,

which leads to Eq. (4).
For the indirect discrimination, by definition we have

SEπi (c
+, c−) = P(e+ | do(c+|πi , c

−|π̄i )) − P(e+|do(c−)).

To compute the first term, we also express P(e+|c−) as Eq. (7), and
divide the children of C into Sπi and S̄πi . Then, node set V′ can
be divided into three disjoint subsets: Sπi , S̄πi and V′\ChC . We
replace c− with c+ only for the terms corresponding to nodes in
Sπi . As a result, we obtain Eq. (5).

If πi contains all causal paths from C to E except C → E, it
means that Sπi = ChC\{E} and S̄πi = ∅. Note that∏
G∈ChC\{E}

P(g | c+,paG\{C})
∏

O∈V′\ChC

P(o | paO) =
∏
V∈V′

P(v | paV ),

which can be similarly shown to equal to P(v′|c+). As a result we
obtain Eq. (6).

Theorem 4 shows that SEπd (c+, c−) can always be computed
from the observational data but SEπi (c

+, c−) may not1. This is
because the recanting witness criterion for the πd-specific effect is
guaranteed to be not satisfied, but the recanting witness criterion
for the πi-specific effect might be satisfied. The situation where
SEπi (c

+, c−) cannot be computed is referred to as the unidentifiable
situation. How to deal with the unidentifiable situation will be
discussed later in the next section.

The following two propositions further show two properties of
the path-specific effect metrics.
Proposition 1. If path set π contains all causal paths from C to E,

then we have

SEπ(c+, c−) = TE(c+, c−) = P(e+|c+) − P(e+|c−).

The proof can be directly obtained from Definition 3, Definition
2 and Eq. (3). P(e+|c+) − P(e+|c−) is known as the risk dif-
ference [4] widely used for discrimination measurement in the
anti-discrimination literature. Therefore, the path-specific effect
metrics can be considered as a significant extension to the risk
difference for explicitly distinguishing the discriminatory effects
of direct and indirect discrimination from the total causal effect.
Proposition 2. For any path sets πd and πi, we do not necessarily

have SEπd (c+, c−) + SEπi (c
+, c−) = SEπd∪πi (c

+, c−).

The proof can be obtained from Definition 3 and Theorem 2. In
fact, as shown in [31], the above equality holds if all functions in
F of the causal model are linear, and πi contains all causal paths
from C to E other than C → E. Thus, Proposition 2 implies that
if the causal relationship is not linear, then a linear connection
between direct and indirect discrimination also does not exist.

3.3 Discovery Algorithm

We propose a Path-Specific based Discrimination Discovery (PSE-
DD) algorithm based on Theorem 3. It first builds the causal graph
from the historical dataset, and then computes SEπd (·) and SEπi (·)
according to Eq. (4) and (5). The procedure of the algorithm is
shown in Algorithm 1.

1. Note that Eq. (6) can still be computed from the observational data since
S̄πi = ∅ when πi contains all causal paths from C to E except C → E.
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Algorithm 1: PSE-DD
Input : Historical dataset D, protected attribute C, decision

attribute E, redlining attributes R, threshold τ.
Output: Direct/indirect discrimination judged, judgei.

1 G = buildCausalNetwork(D);
2 judged = judgei = f alse;
3 Compute SEπd (·) according to Eq. (4);
4 if SEπd (c+, c−) > τ ‖ SEπd (c−, c+) > τ then
5 judged = true;

6 Call subroutine [Sπi ,S̄πi ] = DivideChildren(G,C, E,R);
7 if Sπi ∩ S̄πi , ∅ then
8 judgei = unknown;
9 return [ judged, judgei];

10 Compute SEπi (·) according to Eq. (5);
11 if SEπi (c

+, c−) > τ ‖ SEπi (c
−, c+) > τ then

12 judgei = true;

13 return [ judged, judgei];

The complexity of line 6 depends on how to identify Sπi and
S̄πi . A straightforward method is to find all paths in πi, and for
C’s each child S check whether C → S is contained in any path
in πi. However, finding all paths between two nodes in a DAG
has an exponential complexity. In our algorithm, we examine the
existence of a path from S to E passing through R. It can be easily
observed that, a node S belongs to Sπi if and only if there exists a
path from S to E passing through R (a path from S to E passing
through R also includes the path where S itself belongs to R).
Similarly, S belongs to S̄πi if and only if there does not exist a
path from S to E passing through R. The subroutine of finding
Sπi and S̄πi is presented in Algorithm 2, which checks whether
there exists a node R ∈ R so that R is S ’s descendant and E is R’s
descendant. Since the descendants of all the nodes involved in the
algorithm can be obtained by traversing the network starting from
C within the time of O(|A|), the computational complexity of the
subroutine is given by O(|V|2 + |A|).

Algorithm 2: subroutine DivideChildren
Input : Causal graph G, protected attribute C, decision

attribute E, redlining attributes R.
Output: Sπi and S̄πi .

1 Sπi = ∅, S̄πi = ∅;
2 foreach S ∈ ChC\{E} do
3 foreach R ∈ R do
4 if R ∈ DeS ∪ {S } && E ∈ DeR then
5 Sπi = Sπi ∪ {S };
6 else
7 S̄πi = S̄πi ∪ {S };

8 return [Sπi ,S̄πi ];

The computational complexity of PSE-DD also depends on
the complexities of building the causal graph and computing the
path-specific effect according to Eq. (4) or (5). Many researches
have been devoted to improving the performance of network
construction [30], [32], [33] and probabilistic inference in causal
graphs [34], [35]. The complexity analysis can be found in these
related literature.

3.4 Removal Algorithm

When direct or indirect discrimination is discovered for a dataset,
the discriminatory effects need to be removed before the dataset is

released for predictive analysis. A naive approach would be simply
deleting the protected attribute from the dataset, which often incurs
significant utility loss. In addition, this approach can eliminate
direct discrimination, but indirect discrimination still presents.

We propose a Path-Specific Effect based Discrimination Re-
moval (PSE-DR) algorithm to remove both direct and indirect
discrimination. The general idea is to modify the causal graph
and then use it to generate a new dataset. Specifically, we modify
the CPT of E, i.e., P(e | paE), to obtain a new CPT P′(e | paE),
so that the direct and indirect discriminatory effects are below the
threshold τ. To maximize the utility of the modified dataset, we
minimize the Euclidean distance between the joint distribution
of the original causal graph (denoted by P(v)) and the joint
distribution of the modified causal graph (denoted by P′(v)). As
a result, we obtain the following quadratic programming problem
with P′(e | paE) as the variables.

minimize
∑

v

(
P′(v) − P(v)

)2

subject to SEπd (c+, c−) ≤ τ, SEπd (c−, c+) ≤ τ,

SEπi (c
+, c−) ≤ τ, SEπi (c

−, c+) ≤ τ,

∀PaE , P′(e− | paE) + P′(e+ | paE) = 1,

∀PaE , e, P′(e | paE) ≥ 0,

where P′(v) and P(v) are computed according to Eq. (1) using
P′(e | paE) and P(e | paE) respectively, and SEπd (·) and SEπi (·)
are computed according to Eq. (4) and (5) respectively using
P′(e | paE). The optimal solution is obtained by solving the
quadratic programming problem. After that, the joint distribution
of the modified causal graph is computed using Eq. (1), and
the new dataset is generated based on the joint distribution. The
procedure of PSE-DR is shown in Algorithm 3

Algorithm 3: PSE-DR
Input : Historical dataset D, protected attribute C, decision

attribute E, redlining attributes R, threshold τ.
Output: Modified dataset D∗.

1 [ judged, judgei] = PSE-DD(D,C, E,R, τ);
2 if [ judged, judgei] == [ f alse, f alse] then
3 return D;

4 G = buildCausalNetwork(D);
5 if judgei == unknown then
6 Call subroutine GraphPreprocess;

7 Obtain the modified CPT of E by solving the quadratic
programming problem;

8 Calculate P∗(v) according to Eq. (1) using the modified
CPTs;

9 Generate D∗ based on P∗(v);
10 return D∗;

As stated in Theorems 1 and 4, when the recanting witness
criterion is satisfied, the πi-specific effect cannot be estimated
from the observational data. However, the “kite pattern” implies
potential indirect discrimination as there exist causal paths from
C to E passing through the redlining attributes. Although the
indirect discriminatory effect cannot be accurately measured,
from a practical perspective, it is still meaningful to ensure
non-discrimination while preserving reasonable data utility. As a
straightforward method, we can first modify the causal graph to
remove the “kite pattern”, and then obtain the modified CPT of
E by solving the quadratic programming problem similar to the
identifiable situation. To remove the “kite pattern”, for each node
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S ∈ Sπi ∩ S̄πi , we cut off all the causal paths from S to E that
pass through R, so that S would not belong to Sπi any more. Then,
we must have Sπi ∩ S̄πi = ∅ after the modification. When cutting
off the paths, we focus on the edge from E’s each parent Q, i.e.,
Q→ E. If there exists a path from S to Q passing through R, then
edge Q → E is removed from the network. The pseudo-code of
this procedure called GraphPreprocess is shown below, which is
added as a subroutine in line 5 of PSE-DR.

Algorithm 4: subroutine GraphPreprocess
Input: Causal graph G, protected attribute C, decision

attribute E, redlining attributes R.
1 foreach S ∈ Sπi ∩ S̄πi do
2 foreach Q ∈ PaE do
3 foreach R ∈ R do
4 if R ∈ DeS && Q ∈ DeR then
5 Remove edge Q→ E from G;
6 Break;

The computational complexity of PSE-DR depends on the
complexity of solving the quadratic programming problem. It can
be easily shown that, the coefficients of the quadratic terms in
the objective function form a positive definite matrix. According
to [36], the quadratic programming can be solved in polynomial
time. Finally, it is also worth noting that our approach can be easily
extended to handle the situation where either direct or indirect
discrimination needs to be removed.

4 Dealing with Unidentifiable Situation
Under the unidentifiable situation where the recanting witness
criterion is satisfied, PSE-DD and PSE-DR provide workable but
crude solutions to the discrimination discovery and removal. In
this section, we develop the refined discrimination discovery and
removal algorithms by deriving upper and lower bounds for the
unidentifiable indirect discrimination. Compared to the presence
of the “kite pattern”, the bounds can be used as better indicators for
discovering indirect discrimination, i.e., the upper bound smaller
than τ indicates no indirect discrimination, while the lower bound
larger than τ indicates its existence. We also prove that the refined
removal algorithm is at least as good as PSE-DR in term of
preserving the data utility. We start by giving several necessary
preliminaries in addition to those presented in Section 3.1.

4.1 Preliminaries

In Section 3.1, we have shown that variables Y under an inter-
vention do(x) is still a set of random variables, whose distribution
P(y | do(x)) is different from the observational distribution of Y.
We denote Y under intervention do(x) by Yx, i.e., we define

P(yx) , P(Yx = y) , P(y | do(x)).

We can interpret Yx as a counterfactual statement, which repre-
sents “the value that Y would have obtained, had X been x”. From
the definition of the causal model we can observe that, if all the
exogenous variables U are given, then Yx are no longer random
variables but are fixed values. We denote the Yx under the context
of U = u by Yx(u). In the following we present several properties
regarding the counterfactual statement, which are proved to be
held in the context of Markovian model [10].

Property 1. For any variable Y , YPaY is independent of the
counterfactual statements of all Y’s non-descendants.

Property 2. For any variable Y , we have

P(ypaY
) = P(y | paY ).

Property 3. For any set of endogenous variables Y and any set of
endogenous variables X disjoint of {Y,PaY}, we have

P(ypaY,x) = P(ypaY ).

Property 4. For any three sets of endogenous variables X,Y,Z,

Zx(u) = z =⇒ Yx(u) = Yx,z(u).

Property 1 reflects the local Markov condition. Property 2
renders every parent set PaY exogenous relative to its child Y .
Property 3 reflects the insensitivity of Y to any intervention once
its direct causes are held constant. Property 4 states that, if we
know the values that Z would have in certain situation, then the
values of any other variables Y are equivalent to that if we perform
an intervention to force Z to z.

Next, we introduce an essential concept regarding to the
unidentifiability of the path-specific effect by using the notion of
counterfactual statement. Straightforwardly, by Yx(u) and P(u),
we can represent P(yx) as

P(yx) =
∑

u:Yx(u)=y

P(u). (8)

In the same way, we can define the joint distribution of multiple
counterfactual statements (which cannot be defined by using the
do-operator), i.e., P(Yx = y,Yx′ = y′) or P(yx, y′x′ ), which
represents the probability to “Y would be y if X = x and Y would
be y′ if X = x′”, given as

P(yx, y′x′ ) =
∑

{u:Yx(u)=y,Yx′ (u)=y′}

P(u).

When x , x′, Yx and Yx′ cannot be measured simultaneously.
In fact, it is known that P(yx, y′x′ ) is unidentifiable from the
observational data even in the Markovian model [37]. We will
show that the unidentifiability of the P(yx, y′x′ ) is the source of the
unidentifiability of the path-specific effect satisfying the recanting
witness criterion. However, P(yx, y′x′ ) is certainly bounded by the
following condition: ∑

y′
P(yx, y′x′ ) = P(yx). (9)

4.2 Bounding Indirect Discrimination

Recalling the definition of the path-specific effect (Definition 3),
in the πi-specific effect, P(e+ | do(c+|πi , c

−|π̄i )) represents the
probability of E = e+ after the intervention of changing C from
c− to c+ with the effect transmitted along πi. By using the notation
of the counterfactual statement, we can similarly denote the value
of E after the intervention by Ec+ . However, keep in mind that
different from the original counterfactual statement, here for Ec+

the effect of the intervention on C is transmitted only along πi.
For any variable Y other than C, E, we can also denote their

values that would be obtained after the intervention as counter-
factual statement Yc+ . Similar to E, the value of Yc+ depends on
whether it belongs to a path in πi. If Y belongs to any path in
πi, then the value of Yc+ will be affected by the intervention. If Y
does not belong to any path in πi, then the value of Yc+ will not
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be affected by the intervention and remain the same as if C = c−.
Based on the causal effect transmission, to obtain Yc+ , we need to
know the value of Y’s each ancestor W affected by the intervention
if there exists a path from W to Y that is a segment of a path in πi;
or we need to know the value of W not affected by the intervention
if there exists a path from W to Y that is not a segment of any
path in πi. As can be seen, if W has two emanating edges where
one belongs to a path in πi and the other one does not belong to
any path in πi, we need to simultaneously know the value of W
affected by the intervention as well as the one not affected by the
intervention. To distinguish these two counterfactual situations,
we denote the former by Wc+ and the latter by Wc− . According to
the definition of the recanting witness criterion (Definition 4), it
can be easily shown that W is a node where both Wc+ and Wc−

are needed if and only if W is a witness for the recanting witness
criterion. Here we call such node W a witness variable/node.

The above analysis shows that, for each witness variable W,
we need to consider two sets of realizations, one obtained by Wc+

(denoted as w+), and the other obtained by Wc− (denoted as w−).
For each variable Y that is not a witness variable, we only consider
one set of realizations obtained by Yc+ .

In the following, we derive a general expression of SEπi (c
+, c−)

and then develop its upper and lower bounds when subject to
the recanting witness criterion. We first provide a property and a
proposition that are needed for the derivation.

Similar to Property 4, in the path-specific effect, if we know
the two realizations that witness variables W would have in both
counterfactual situations, then the values of any other variable Y
are equivalent to that if we perform an intervention to force W to
these realizations. Thus, we obtain the following property that is
directly extended from Property 4.
Property 5. For endogenous variables X,Y,W, assume that W is a

witness variable, x, x′ are two realizations of X, and w,w′ are
two realizations of W. For any π-specific effect of X we have

Wx(u) = w, Wx′ (u) = w′ =⇒ Yx(u) = Yx,w∗ (u),

where w∗ means that its value is specified by w if there exists a
path from W to Y that is a segment of a path in π, and specified
by w′ otherwise.

Based on Properties 3, 4 and 5, we can prove the following
proposition.
Proposition 3. In πi-specific effect SEπi (c

+, c−), for any endoge-
nous variable Y , use pa+

Y to denote the realization of Y’s
parents meaning that if PaY contains any witness node W or
C, its value is specified by w+ or c+ if edge W → Y belongs to
a path in πi, and specified by w− or c− otherwise; and use pa−Y
to denote the realization of Y’s parents meaning that if PaY

contains any witness node W or C, its value is specified by w−

or c−. If Y is not a witness variable, we have

P(yc+ , · · · ) =

P(ypa+
Y
, · · · ) if Y belongs to any path in πi,

P(ypa−Y , · · · ) otherwise,
(10)

and if Y is a witness variable, we have

P(yc+ , · · · ) = P(ypa+
Y
, · · · ) and P(yc− , · · · ) = P(ypa−Y , · · · ), (11)

where · · · represents all other variables.

Please refer to the appendix for the proof.
For ease of representation, we divide all nodes on the causal

paths from C to E (except C and E) into three disjoint subsets:

C W E

A1

B

A2

πi = {(C,A2, E),
Wc+

Wc−
(C,W,A1, E)}

Fig. 4: πi-specific effect satisfying recanting witness criterion.

the subset of witness nodes (denoted by W), the subset of nodes
not in W that belong to paths in πi (denoted by A), and the subset
of nodes not in W that do not belong to any path in πi (denoted
by B)2. An example is shown in Figure 4 where W = {W}, A =

{A1, A2}, and B = {B}. The notations on the edges represent the
specification of the values of each node’s parents.

In Theorem 5 we give the general expression of SEπi (c
+, c−).

Since by definition we have SEπi (c
+, c−) = P(e+ | do(c+|πi , c

−|π̄i ))−
P(e+|c−) where the second term is trivial, we focus on the general
expression of P(e+ | do(c+|πi , c

−|π̄i )).
Theorem 5. When subject to the recanting witness criterion, P(e+ |

do(c+|πi , c
−|π̄i )) is given by

P(e+ | do(c+|πi , c
−|π̄i )) =∑

a,b,w+ ,w−
P(e+|c−,q)

∏
A∈A

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w+
pa+

W
,w−pa−W

).

(12)

Proof: For simplicity and without loss of generality, as-
sume that all nodes are along the causal paths from C to E. We
can re-write distribution P(e+ | do(c+|πi , c

−|π̄i )) as the sum of the
joint distribution as follows.

P(e+ | do(c+|πi , c
−|π̄i )) , P(Ec+ = e+)

=
∑

a,b,w+,w−
P(Ec+ = e+,Ac+ = a,Bc+ = b,Wc+ = w+,Wc− = w−)

,
∑

a,b,w+,w−
P(e+

c+ , ac+ , · · ·︸ ︷︷ ︸
A∈A

, bc+ , · · ·︸ ︷︷ ︸
B∈B

,w+
c+ ,w−c− , · · ·︸        ︷︷        ︸

W∈W

).

By using Proposition 3, it follows that

P(e+|do(c+|πi , c
−|π̄i )) =∑

a,b,w+,w−
P(e+

c−,q, apa+
A
, · · ·︸   ︷︷   ︸

A∈A

, bpa−B , · · ·︸   ︷︷   ︸
B∈B

,w+
pa+

W
,w−pa−W

, · · ·︸            ︷︷            ︸
W∈W

).

According to Property 1, the counterfactual statement of each
variable is independent of all its non-descendants. Thus, we have

P(e+ | do(c+|πi , c
−|π̄i ))

=
∑

a,b,w+,w−
P(e+

c−,q)
∏
A∈A

P(apa+
A
)
∏
B∈B

P(bpa−B )
∏

W∈W

P(w+
pa+

W
,w−pa−W

).

According to Property 2, it follows that

P(e+ | do(c+|πi , c
−|π̄i ))

=
∑

a,b,w+ ,w−
P(e+|c−,q)

∏
A∈A

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w+
pa+

W
,w−pa−W

).

(13)

Hence the theorem is proven.
We can see that Eq. (13) contains the joint distribution of

counterfactual statements P(w+
pa+

W
,w−pa−W

) which is unidentifiable

2. Redlining attributes can be contained in W and A but cannot be contained
in B.
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from the observational data, making P(e+ | do(c+|πi , c
−|π̄i )) and

hence the πi-specific effect SEπi (c
+, c−) unidentifiable.

Next, we show how to bound P(e+ | do(c+|πi , c
−|π̄i )) by scaling

up and down certain terms in Eq. (13) and then eliminating
P(w+

pa+
W
,w−pa−W

) using Eq. (9). For ease of representation, we further
divide A into two disjoint subsets: (1) the set of nodes that are
involved in the “kite pattern”, i.e., it is contained in a path in
πi that also contains any node in W, denoted by A1; (2) the
complementary set, i.e., those not involved in the “kite pattern”,
denoted by A2. Then, we give the upper and lower bounds of
P(e+ | do(c+|πi , c

−|π̄i )) as shown in Theorem 6.
Theorem 6. The upper bound of P(e+ | do(c+|πi , c

−|π̄i )) is given by∑
a2,b,w−

max
a1 ,w+
{P(e+|c−,q)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w−|pa−W ),

(14)

and the lower bound of P(e+ | do(c+|πi , c
−|π̄i )) is given by∑

a2,b,w−
min
a1,w+
{P(e+|c−,q)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w−|pa−W ).

(15)

Proof: It is straightforward that

P(e+|c−,q) ≤ max
a1,w+
{P(e+|c−,q)}.

Thus, from Eq. (12) we have

P(e+ | do(c+|πi , c
−|π̄i )) ≤

∑
a1 ,a2,b,w+,w−

max
a1,w+
{P(e+|c−,q)}

∏
A∈A1

P(a|pa+
A)∏

A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w+
pa+

W
,w−pa−W

).

We can identify three properties for any node A ∈ A1: (1) A
cannot be the parent of any node A′ in A2. If not so, we have
a path that contains C, A, A′, E and any node W ∈ W. This path
must belong to πi, otherwise A is contained in both a path in πi

and a path not in π1, making A a witness node. Thus, A′ is also
involved in the “kite pattern”. (2) A cannot be the parent of any
node in B. Otherwise, A belongs to a path in πi and also a path
not in πi, making A a witness node. (3) A cannot be the parent of
any node in W, otherwise A also becomes a witness node. Based
on the three properties, the RHS of above inequality equals to∑

a2,b,w+ ,w−
max
a1,w+
{P(e+|c−,q)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)∏
W∈W

P(w+
pa+

W
,w−pa−W

)
∑
a1

∏
A∈A1

P(a|pa+
A)

=
∑

a2,b,w+,w−
max
a1,w+
{P(e+|c−,q)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)∏
W∈W

P(w+
pa+

W
,w−pa−W

).

Then, we can similarly identify two properties for any node
W ∈ W and its realization w+: (1) w+ cannot be involved in pa+

A
for any A ∈ A2, otherwise there exists a path in πi that contains
W, A, making A be involved in the “kite pattern”; (2) w+ cannot
be involved in pa−B for any B ∈ B, which is by the definition of B.
Thus, the above expression further becomes∑
a2,b,w−

max
a1,w+
{P(e+|c−,q)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)∑
w+

∏
W∈W

P(w+
pa+

W
,w−pa−W

)

=
∑

a2,b,w−
max
a1 ,w+
{P(e+|c−,q)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w−|pa−W ).

By using P(e+|c−,q) ≥ mina1,w+ {P(e+|c−,q)}, similarly we can
prove the lower bound.

From Theorem 6 we can directly obtain the upper bound
ub(SEπi (c

+, c−)) and lower bound lb(SEπi (c
+, c−)) of SEπi (c

+, c−).

4.3 Algorithms for Unidentifiable Situation

Based on the derived bounds of the indirect discrimination, we
can refine the proposed discovery algorithm PSE-DD to better deal
with the unidentifiable situation, as shown in PSE-DD∗ (Algorithm
5). On the other hand, we can also refine the proposed removal
algorithm PSE-DR by replacing SEπi (c

+, c−) and SEπi (c
−, c+) in

the constraints of the quadratic programming with ub(SEπi (c
+, c−))

and ub(SEπi (c
−, c+)). We refer to this new quadratic programming

as the adjusted quadratic programming problem. The refined
removal Algorithm PSE-DR∗ is shown in Algorithm 6.

Algorithm 5: PSE-DD∗

Input : Historical dataset D, protected attribute C, decision
attribute E, redlining attributes R, threshold τ.

Output: Direct/indirect discrimination judged, judgei.
1 G = buildCausalNetwork(D);
2 judged = judgei = f alse;
3 Compute SEπd (·) according to Eq. (4);
4 if SEπd (c+, c−) > τ ‖ SEπd (c−, c+) > τ then
5 judged = true;

6 Call subroutine [Sπi ,S̄πi ] = DivideChildren(G,C, E,R);
7 if Sπi ∩ S̄πi , ∅ then
8 Compute ub(SEπi (c

+, c−)), lb(SEπi (c
+, c−)),

lb(SEπi (c
−, c+)), ub(SEπi (c

−, c+)) according to Eq. (14),
(15);

9 if ub(SEπi (c
+, c−)) ≤ τ & ub(SEπi (c

−, c+)) ≤ τ then
10 judgei = f alse;
11 else if lb(SEπi (c

+, c−)) > τ ‖ lb(SEπi (c
−, c+)) > τ then

12 judgei = true;
13 else
14 judgei = unknown;

15 return [ judged, judgei];

16 Compute SEπi (·) according to Eq. (5);
17 if SEπi (c

+, c−) > τ ‖ SEπi (c
−, c+) > τ then

18 judgei = true;

19 return [ judged, judgei];

Algorithm 6: PSE-DR∗

Input : Historical dataset D, protected attribute C, decision
attribute E, redlining attributes R, threshold τ.

Output: Modified dataset D∗.
1 [ judged, judgei] = PSE-DD∗(D,C, E,R, τ);
2 if [ judged, judgei] == [ f alse, f alse] then
3 return D;

4 G = buildCausalNetwork(D);
5 if judgei == unkonwn then
6 Obtain the modified CPT of E by solving the adjusted

quadratic programming problem;
7 else
8 Obtain the modified CPT of E by solving the original

quadratic programming problem;

9 Calculate P∗(v) using the modified CPTs and generate D∗;
10 return D∗;

The following proposition shows that, the adjusted quadratic
programming will at least produce an equivalently good solu-
tion as the quadratic programming after performing subroutine
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GraphPreprocess. This implies that PSE-DR∗ performs at least
as good as PSE-DR in term of the data utility preserving. Our
experiments in Section 6 show that PSE-DR∗ outperforms PSE-
DR in the practical situations.
Proposition 4. The modified CPT of E obtained from the quadratic

programming after performing GraphPreprocess is a feasible
solution of the adjusted quadratic programming problem.

Proof: Firstly consider algorithm PSE-DR. Denote by G′

the causal graph obtained after the GraphPreprocess subroutine,
denote by Q∗ (Q∗ ⊆ Q) the parents of E in G′, and denote
by P∗(e|c,q∗) the modified CPT of E obtained by solving the
quadratic programming problem. Note that in G′, based on the lo-
cal Markov condition, P∗(e|c,q∗) = P∗(e|c,q) for all q that q∗ ⊆ q.
According to the constraints in the quadratic programming, the
indirect discrimination based on the modified CPT of E is bounded
by τ.

Now consider the original causal graph G with E’s CPT
P∗(e|c,q) = P∗(e|c,q∗) for all q that q∗ ⊆ q. We can see that
causal graph G is actually equivalent to causal graph G′, hence the
indirect discrimination measured should also be the same3. In the
following, we show that the indirect discrimination measured in G
based on P∗(e|c,q) equals to its upper bound given in Theorem 6,
which means that P∗(e|c,q) satisfies the constraints of the adjusted
quadratic programming, and hence is a feasible solution of the
adjusted quadratic programming problem.

As shown in Theorem 5, the first term in Eq. (12) is given by∑
a,b,w+,w−

(
P∗(e+|c−,q)

∏
A∈A

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w+
pa+

W
,w−pa−W

)
)

=
∑

a,b,w+,w−

(
P∗(e+|c−,q∗)

∏
A∈A

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w+
pa+

W
,w−pa−W

)
)
.

Similar to Theorem 6, set A can be divided into two subsets
A1 and A2. In addition to the properties shown in the proof of
Theorem 6, we further identify two properties that appear after
executing GraphPreprocess: (1) any node A ∈ A1 cannot belong
to Q∗, otherwise the “kite pattern” still exists, contradicting to
that GraphPreprocess removes the “kite pattern”; (2) for similar
reason w+ of any W ∈ W cannot be involved in q∗. Thus, the
above expression becomes∑

a2,b,w−
P∗(e+|c−,q∗)

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w−|pa−W ).

(16)
Now back to the upper bound. Consider the first term of Eq.

(14), which is given by∑
a2,b,w−

max
a1,w+
{P(e+|c−,q∗)}

∏
A∈A2

P(a|pa+
A)

∏
B∈B

P(b|pa−B)
∏

W∈W

P(w−|pa−W ).

(17)
As stated, a1 and w+ cannot be involved in q∗. Thus, the maxi-
mization operation on P(e+|c−,q∗) has no effect, making Eq. (16)
and (17) equivalent. Hence, the the proposition is proved.

5 Extensions to Realistic Scenarios
5.1 Dealing with Multiple Protected Attributes and Domain
Values

For simplicity, in this paper we assume a single protected at-
tribute with binary values. However, in realistic scenarios we

3. In fact, it can be easily shown that the indirect discrimination measured
in G′ based on Eq. (5) is equivalent to the indirect discrimination measured in
G based on Eq. (13).

may encounter multiple domain values or even multiple protected
attributes. For example, in a university admission system, the
protected attributes may include the applicant’s gender, race and
age, and each protected attribute can have multiple values, such
as white/black/asian for race. In this case, one may need to
ensure that there is no discrimination against each of the protected
attribute in term of any domain value. In this subsection, we show
how our approach can easily extend to multiple protected attributes
and domain values.

Suppose that we have a protected attribute C with n domain
values c1, · · · , cn, where each value can be specified to denote the
protected group. Without loss of generality, we assume c1 is the
protected group, and our objective is to discover whether there is
discrimination against c1 in terms of all other groups, and then
remove all the biases that are discovered. For discovery, we can
compute SEπd (c j, c1) and SEπi (c

j, c1) for each non-protected group
j. If any one is larger than τ, then it indicates discrimination. For
removal, the challenge here is that the modification in term of
one non-protected group may change the discriminatory effect in
term of another non-protected group. This means that, suppose
that we have removed the discrimination based on SEπd (c j, c1) and
SEπi (c

j, c1) for group c j, this discrimination may reappear if we
continue to remove the discrimination based on SEπd (c j′ , c1) and
SEπi (c

j′ , c1) for another group c j′ . The solution here is including
the discrimination constraints into the quadratic programming
problem in terms of all non-protected groups for removing all
biases at once. The quadratic programming problem is guaranteed
to be solvable, since there exists a trivial solution such that letting
P∗(e|c,q) = P(e).

When there are multiple protected attributes C1, · · · ,Cm (as-
sume that the protected groups are c1

1, · · · , c
1
m respectively),

two similar methods can be applied. First, we can consider
discrimination SEπd (c jk

k , c
1
k) and SEπi (c

jk
k , c

1
k) for each protected

attributed Ck and its non-protected group c jk
k as different con-

straints, i.e., we require that ∀k, jk, SEπd (c jk
k , c

1
k) ≤ τ and

SEπi (c
jk
k , c

1
k) ≤ τ. On the other hand, we can consider the combi-

nation of all protected attributes, i.e., we require that ∀ j1, · · · , jm,
SEπd (c j1

1 · · · c
jm
m , c1

1 · · · c
1
m) ≤ τ and SEπi (c

j1
1 · · · c

jm
m , c1

1 · · · c
1
m) ≤ τ.

We leave the comparison of the two methods to the future work.

5.2 Dealing with Numerical Decision

In some scenarios instead of the categorical decision, we may
encounter numerical decisions. For example, in the loan ap-
plication, the decision can be the amount of loan granted to
the applicant. In this case, although we can discretize the nu-
merical decision and turn it into a categorical attribute with
multiple domain values, in fact our framework can be naturally
extended to deal with numerical decisions directly. If we change
the definition of the total causal effect (Definition 2) from the
difference of probabilities to the different of expectations, i.e.,
TE(x2, x1) = E[Y |do(x2)] − E[Y |do(x1)], then we can measure the
total causal effect of X on Y even if Y is numerical. Similarly, we
can change the definition of the path-specific effect (Definition 3)
to SEπ(x2, x1) = E[Y | do(x2|π, x1|π̄)] − E[Y | do(x1)] to handle the
numerical Y .

The challenge here is how to represent the conditional proba-
bility of the numerical decision in the causal graph. A possible way
is to employ the Conditional Linear Gaussian (CLG) distribution
which is used in the Bayesian network to deal with the mixture of
discrete and numerical variables [38]. We denote the conditional
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distribution of decision E given its parents C,Q, i.e., P(e|c,q),
by a Gaussian distribution N(µc,q, σ

2
c,q) where µc,q and σ2

c,q are
the mean and variance depending on E’s parents. Then, we
can calculate TE(x2, x1) and SEπ(x2, x1) based on the truncated
factorization formula and Theorem 2.

5.3 Relaxing Assumptions of Protected Attribute and De-
cision

In Section 3.2 we have made two assumptions: C has no parent
and E has no child. Based on the two assumptions, the causal
graph is simplified as there cannot be any confounder between C
and E, so that we can obtain the concise formulas for computing
the discriminatory effects as shown in Theorem 4. In the general
situation where confounders exist, the computation of the causal
effect including the total effect and the path-specific effect is
facilitated by the well-known graphical test called the back-door
criterion [10]. It has been proved that if a set of nodes S satisfies
the back-door criterion relative to X,Y , then the causal effect of X
on Y can be computed under the adjustment for S. For example,
let S satisfy the back-door criterion relative to C, E. Then, the
πd-specific effect SEπd (c+, c−) is given by

SEπd (c+, c−) =
∑
q,s

P(e+|c+,q, s)P(q|c−, s)P(s)−
∑

s
P(e+|c−, s)P(s).

When S = ∅, the above equation becomes Eq. (4) in Theorem 4.
Similarly, we can obtain the adjusted formulas for the πi-specific
effect as well as its upper and lower bounds. In the Markovian
model, it is guaranteed that we can find a set of nodes satisfying
the back-door criterion relative to any two nodes.

6 Experiments
In this section, we conduct experiments using two real datasets: the
Adult dataset [39] and the Dutch census of 2001 [40]. We evaluate
our discovery and removal algorithms under both identifiable
and unidentifiable situations. For comparison, we involve the
local massaging (LMSG) and local preferential sampling (LPS)
algorithms proposed in [6] and disparate impact removal algorithm
(DI) proposed in [5], [41]. The causal graphs are constructed
and presented by utilizing an open-source software TETRAD
[42]. We employ the original PC algorithm [27] and set the
significance threshold 0.01 for conditional independence testing in
causal graph construction. The quadratic programming is solved
using CVXOPT [43]. All experiments were conducted with a PC
workstation with 16GB RAM and Intel Core i7-4770 CPU. By
default, the discrimination threshold τ is set as 0.05.

6.1 Discrimination Discovery

The Adult dataset consists of 48,842 tuples with 11 at-
tributes including age, education, sex, occupation, income,
marital status etc. Due to the sparse data issue and the
convention in collecting features by social-platforms [44], we
binarize each attribute’s domain values into two classes to reduce
the domain sizes. We use three tiers in the partial order for
temporal priority: sex, age, native country, race are defined
in the first tier, edu level and marital status are defined
in the second tier, and all other attributes are defined in the
third tier. The constructed causal graph is shown in Figure 5a.
We treat sex as the protected attribute, income as the decision,
and marital status as the redlining attribute. Then set πd

TABLE 1: Discrimination in the modified data (τ = 0.05), and
comparison of utility with varied τ values for Adult dataset.

Remove Algorithm τ
PSE-DR DI LMSG LPS 0.025 0.05 0.075 0.1

Direct 0.013 0.001 -0.142 -0.142 0.008 0.012 0.019 0.024
Indirect 0.049 0.050 0.288 0.174 0.024 0.049 0.074 0.100
χ2(×104) 1.038 4.964 1.924 1.292 1.247 1.038 1.029 0.819

contains the edge pointing from sex to income, and set πi

contains all the causal paths from sex to income that pass through
marital status. As can be seen, the πi-specific effect does
not satisfy the recanting witness criterion. By computing the
path-specific effects, we obtain that SEπd (c+, c−) = 0.025 and
SEπi (c

+, c−) = 0.175. By setting τ = 0.05, the results indicate no
direct discrimination but significant indirect discrimination against
females according to our criterion. In [6], it has been shown that
each of the attributes relationship, age and working hours
can explain some of the discrimination. However, no conclusion
regarding direct/indirect discrimination is drawn.

The Dutch census consists of 60,421 tuples with 12 attributes.
Similarly, we binarize the domain values of attribute age due to
its large domain size. Three tiers are used in the partial order
for temporal priority: sex, age, country birth are in the first
tire, edu is in the second tire, and all other attributes are in the
third tire. The constructed causal graph is shown in Figure 5b. We
treat sex as the protected attribute, occupation as the decision,
and marital status as the redlining attribute. In this case, the
recanting witness criterion is also not satisfied. For this dataset, we
obtain SEπd (c+, c−) = 0.220 and SEπi (c

+, c−) = 0.001, indicating
significant direct discrimination but no indirect discrimination
against females.

6.2 Discrimination Removal

We run the removal algorithm PSE-DR to remove discrimination
from both datasets, and then run the discovery algorithm PSE-DD
to further examine whether discrimination is truly removed in the
modified dataset. For comparison, we include removal algorithms
from previous works: LMSG, LPS and DI. The discriminatory
effects of the modified dataset are shown in Table 1 (left) for
the Adult dataset, and in Table 2 (left) for the Dutch census. As
can be seen, our method PSE-DR completely removes direct and
indirect discrimination from both datasets. In addition, PSE-DR
produces relatively small data utility loss in term of χ2. For LMSG
and LPS, indirect discrimination is not removed from the Adult
dataset, and in both datasets direct discrimination seems to be over
removed. The DI algorithm provides a parameter λ to indicate the
amount of discrimination to be removed, where λ = 0 represents
no modification and λ = 1 represents full discrimination removal.
However, λ has no direct connection with the threshold τ. In our
experiments, we execute DI multiple times with different λs and
report the one that is closest to achieve τ = 0.05. Although DI
indeed removes direct and indirect discrimination, its data utility
is far more worse than PSE-DR, implying that it removes many
information unrelated to discrimination.

We then examine how the data utility in term of χ2 varies with
different thresholds τ for PSE-DR. We change the value of τ from
0.025 to 0.1. From Tables 1 and 2 (right) we can see that less utility
loss is incurred when larger τ value is used. This observation is
consistent with our analysis since the larger the value of τ, the
more relaxed the constraints in PSE-DR.
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(a) Adult (b) Dutch census

Fig. 5: Constructed causal graphs: the blue octagon node represents the protected attribute, the green double-octagon node represents
the decision, and the red rectangle nodes represent represent the (potential) redlining attributes.

TABLE 2: Discrimination in the modified data (τ = 0.05), and
comparison of utility with varied τ values for Dutch census.

Remove Algorithm τ
PSE-DR DI LMSG LPS 0.025 0.05 0.075 0.1

Direct 0.049 0.000 -0.081 -0.100 0.022 0.049 0.073 0.099
Indirect 0.001 -0.001 0.001 0.001 0.001 0.001 0.001 0.001
χ2(×104) 1.104 4.604 4.084 1.742 1.279 1.104 1.099 0.934

TABLE 3: Discrimination in prediction for Adult dataset.

LR DT RF SVM
Direct 0.045 0.023 0.022 0.023

Indirect 0.047 0.042 0.050 0.041

Accuracy(%) Original 81.70 81.77 81.81 81.78
Modified 81.30 80.55 80.56 80.54

We also examine whether the predictive models built from
the data modified by PSE-DR incur discrimination in decision
making. We divide the original dataset into the training and testing
datasets, and remove discrimination from the training dataset to
obtain the modified training dataset. Then, we build the predictive
models from the modified training dataset, and use them to make
predictive decisions over the testing data. Four classifiers, logistic
regression (LR), decision tree (DT), random forest (RF) and SVM,
are used for prediction with five-fold cross-validation. Finally, we
run PSE-DD to examine whether the predictions for the testing
data contain discrimination. The prediction accuracy using both
original and modified training dataset are reported as well. The
results are shown in Tables 3 and 4. As can be seen, for the Adult
dataset, the predictions of all classifiers do not incur direct or
indirect discrimination, with the accuracy only slightly decreased.
However, for the Dutch census, the predictions contain direct
discrimination, which is smaller than that in the original data yet
significant. Some recent works imply that, even if discrimination is
removed from the training data, it can still appear in the predictions
of classifiers [45], [46]. How to ensure non-discrimination in the
prediction is a future direction of our work.

6.3 Unidentifiable Situation

In this subsection, we examine the proposed methods for handling
the unidentifiable situation when measuring and removing the
indirect discrimination. We consider each of attribute other than
marital status that is on the causal paths from the protected

TABLE 4: Discrimination in prediction for Dutch census.

LR DT RF SVM
Direct 0.059 0.103 0.098 0.099

Indirect 0.001 0.001 0.001 0.001

Accuracy(%) Original 83.45 82.46 83.12 83.70
Modified 81.93 81.36 81.57 82.10

TABLE 5: Discrimination measured and bounded under unidenti-
fiable situation for Adult dataset.

edu occupation hours workclass relationship
Direct 0.025

Indirect lb -0.114 -0.069 -0.027 -0.014 -0.086
ub 0.361 0.039 0.072 0.016 0.015

attribute to the decision as the redlining attribute and see whether
the recanting witness criterion is satisfied, i.e., πi forms the
“kite pattern”. For the Adult dataset, these attributes include
edu level, occupation, hours per week, workclass and
relationship, each of which creates the “kite pattern” if it
is treated as the redlining attribute. For the Dutch census, only
edu level is on the causal paths from the protected attribute to
the decision, and treating it as the redlining attribute will not create
the “kite pattern”. Thus, the remaining of this subsection focus on
the Adult dataset.

Upon selecting the redlining attribute, we execute algo-
rithm PSE-DD∗ to compute the πd-specific effect SEπd (c+, c−)
as well as the upper and lower bounds of the πi-specific effect
ub(SEπi (c

+, c−)) and lb(SEπi (c
+, c−)). The results are shown in

Table 5. As can be seen, for all attributes the πd-specific effect
is the same. This is reasonable since treating different attribute as
the redlining attribute should not affect the direct discrimination.
On the other hand, the upper and lower bounds imply that
we can ensure no indirect discrimination if either occupation,
workclass or relationship onsidered as the redlining attribute,
and we are uncertain about indirect discrimination if either treating
edu level or hours per week as the redlining attribute.

We use edu level as an example to show the results of
discrimination removal. The subgraph shown in Figure 6 presents
the “kite pattern” formed when treating edu leve as the redlining
attribute. The πi-specific effect satisfies the recanting witness
criterion with marital status as the witness. We evaluate the
two removal algorithms: PSD-DR and PSD-DR∗. For PSD-DR,
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sex

edu level
occupation

hours per week

workclass

relationship
marital status income

Fig. 6: The “kite pattern” when treating edu leve as redlining.
Red dashed edges are to be deleted by GraphPreprocess.

TABLE 6: Discrimination in the modified data when treating
edu level as redlining.

PSE-DR PSE-DR∗

Direct 0.038 0.033
Indirect (ub) 0 0.050
χ2(×104) 1.499 1.106

subroutine GraphPreprocess needs to cut off all causal paths
passing through the redlining attribute in order to remove the
“kite pattern”, which means that it should delete all the edges
highlighted by the red dashed edges. The discrimination in the
modified data is shown in Table 6. As can be seen, both algo-
rithms guarantee no direct discrimination as well as no indirect
discrimination based on its upper bound. However, the utility
of the modified data produced by PSE-DR∗ is better than that
produced PSE-DR, which is consistent with our theoretical result.
A more straightforward explanation for this example can be that,
since all the causal paths in πi are involved in the “kite pattern”,
GraphPreprocess must cut off all these paths, resulting a total
elimination of all indirect discriminatory effect. However, PSE-
DR∗ can utilize the threshold τ = 0.05, achieving a better balance
between non-discrimination and utility preserving.

7 Conclusions and FutureWork
In this paper, we studied the problem of discovering both di-
rect/indirect discrimination from historical data, and removing
them before performing predictive analysis. We made use of the
causal graph to capture the causal structure of the data, and mod-
eled direct and indirect discrimination as different path-specific
effects. Based on that, we proposed the discovery algorithm PSE-
DD to discover both direct and indirect discrimination, and the
removal algorithm PSE-DR to remove them. For the situation
where indirect discrimination cannot be exactly measured due
to the unidentifiability of the path-specific effects, we derived
the upper and lower bounds for the unidentifiable indirect dis-
crimination, and developed the refined discovery algorithm PSE-
DD∗ and removal algorithm PSE-DR∗. The experiments using the
real dataset show that, our approach can ensure that the modified
data dose not contain any type of discrimination while incurring
small utility loss. Under the unidentifiable situation, the refined
algorithms PSE-DR∗ produced smaller utility loss than PSE-DR
that directly deletes edges to remove the unidentifiability.

In the future work, we will extend our work from acquir-
ing discrimination-free dataset to constructing discrimination-free
predictive models. Recent works [45], [46] show that, even if
the discrimination in the training data is completely removed,

the discrimination in prediction can still exist due to the bias
in the classifier. Several notions of fair classifiers have been
proposed, such as equal opportunity/equal odds [45], and error
bias [46], in terms of the balance in the miss-classification rates
between protected and non-protected groups. We will study how
our discrimination removing technique can be combined with
these notions to achieve non-discrimination in the prediction.

Appendix
Proof of Proposition 3

Proof: To prove Eq. (10), denote Y’s parents by Z, i.e.,
X = PaY . Assume that X contains no witness node or C. Then
P(yc+ , · · · ) can be written as P(yc+ , xc+ , · · · ). According to Eq. (8),
we have

P(yc+ , xc+ , · · · ) =
∑

{u:Yc+ (u)=y,Xc+ (u)=x,··· }

P(u).

Based on Property 4, we have

Xc+ (u) = x =⇒ Yc+ (u) = Yc+,x(u).

Since X = PaY , according to Property 3 we have

Yc+,x(u) = Yx(u).

Therefore, it follows that

P(yc+ , xc+ , · · · ) =
∑

{u:Yx(u)=y,Xc+ (u)=x,··· }

P(u) = P(yx, xc+ , · · · ),

which can be re-written as P(ypa+
Y
, · · · ) according to the definition

of pa+
Y .

Assume that X contains any witness node W or C. Then by ap-
plying Property 5, we can similarly obtain P(yc+ , · · · ) = P(yx∗ , · · · ),
where x∗ means that if any witness node W or C connects Y with
a segment of a path in πi then its value is specified by w+ or c+,
and specified by w− or c− otherwise. According to the definition
of pa+

Y and pa−Y , P(yx∗ , · · · ) can be re-written as P(ypa+
Y
, · · · ) if Y

belongs to any path in πi, and P(ypa−Y , · · · ) otherwise.
If Y is a witness node, then the first case and second case of

Eq. (11) can be proved similarly to the first case and second case
of Eq. (10) respectively.
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