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ABSTRACT the fairness constraints into the classic classification models (e.g.,

In this paper, we study the fairness-aware classification problem
by formulating it as a constrained optimization problem. Several
limitations exist in previous works due to the lack of a theoreti-
cal framework for guiding the formulation. We propose a general
fairness-aware framework to address previous limitations. Our
framework provides: (1) various fairness metrics that can be incor-
porated into classic classification models as constraints; (2) the con-
vex constrained optimization problem that can be solved efficiently;
and (3) the lower and upper bounds of real-world fairness measures
that are established using surrogate functions, providing a fairness
guarantee for constrained classifiers. Within the framework, we
propose a constraint-free criterion under which any learned classi-
fier is guaranteed to be fair in terms of the specified fairness metric.
If the constraint-free criterion fails to satisfy, we further develop the
method based on the bounds for constructing fair classifiers. The
experiments using real-world datasets demonstrate our theoretical
results and show the effectiveness of the proposed framework.
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1 INTRODUCTION

Fairness-aware classification is receiving increasing attention in
the machine learning fields. Since the classification models seek to
maximize the predictive accuracy, individuals may get unwanted
digital bias when the models are deployed for making predictions.
As fairness becomes a more and more important requirement in
machine learning, it is imperative to ensure that the learned clas-
sification models can strike a balance between accurate and fair
predictions. Previous works on this topic can be mainly categorized
into two groups: the in-processing methods which incorporate
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[5,7,8,17,18]), and the pre/post-processing methods which modify
the training data and/or derive fair predictions based on the poten-
tially unfair predictions made by the classifier (e.g., [4, 6, 20—22]).
In this work, we focus on the in-processing methods.

Very recently, several works have been proposed for formulat-
ing the fairness-aware classification as constrained optimization
problems [5, 7, 8, 10, 16—18]. Generally, they aim to minimize a loss
function subject to certain fairness constraints, e.g., demographic
parity (i.e., the difference of the positive predictions between the
sensitive group and non-sensitive group) is less than some threshold.
However, most quantitative fairness metrics such as demographic
parity [13], mistreatment parity [17], etc., are non-convex due to
the use of the indicator function, thus making the optimization
problem intractable. A widely-used strategy to achieve convexity in
optimization is to adopt surrogate functions for both loss function
and constraints. In [18], the authors applied the linear surrogate
functions to non-convex risk difference as the decision boundary
fairness for margin-based classifiers. Similarly in [5], a convex con-
straint is derived from the risk difference. One challenge is that,
when surrogate functions are used to convert non-convex functions
to convex functions, estimation errors must exist due to the differ-
ence between the surrogate function and the original non-convex
function. Thus, achieving the fairness constraints represented by
surrogate functions does not necessarily guarantee achieving the
real fairness criterion. Hence, how to achieve fairness-aware classi-
fication via constrained optimization still remains an open problem.

In this paper, we propose a general framework for fairness-aware
classification which addresses the gap incurred by the estimation
errors due to the surrogate function. The framework can formulate
various commonly-used fairness metrics (risk difference [12], risk
ratio [12], equal odds [6], etc.) as convex constraints that are then
directly incorporated into classic classification models. Within the
framework, we first present a constraint-free criterion (derived from
the training data) which ensures that any classifier learned from
the data will guarantee to be fair in terms of the specified fairness
metric. Thus, when the criterion is satisfied, there is no need to add
any fairness constraint into optimization for learning fair classifiers.
When the criterion is not satisfied, we need to learn fair classifiers
by solving the constrained optimization problems. To connect the
surrogated fairness constraints to the original non-convex fairness
metric, we further derive the lower and upper bounds of the real
fairness measure based on the surrogate function, and develop
the refined fairness constraints. This means that, if the refined
constraints are satisfied, then it is guaranteed that the real fairness
measure is also bounded within the given interval. The bounds
work for any surrogate function that is convex and differentiable
at zero with the derivative larger than zero. In the experiments, we
evaluate our method and compare with existing works using the
real-world datasets. The results demonstrate the correctness of the
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constraint-free criterion and the superiority of our method over
existing ones in terms of achieving fairness and retaining prediction
accuracy.

2 FAIRNESS-AWARE CLASSIFICATION

In this section we present our fairness-aware classification frame-
work. We first introduce the unconstrained optimization formu-
lation for the classic classification models as proposed in [2], and
then present our constrained optimization formulation for fairness-
aware classification. Throughout the paper, we use the vector X € X
to denote the features used in classification,and Y € Y = {-1,1}
to denote the binary label. We denote the sensitive attribute by S,
assuming that it is associated with two values: sensitive group s~
and non-sensitive group s*. The training data D = {(x;, s;, yi)}f\il
is a sample drawn from a unknown but fixed distribution.

2.1 Classification Problem

The learning goal of classification is to find a classifier: f: X +—
Y that minimizes the average of the classification loss (a.k.a the
empirical loss), given by

L(f) = Bx, vy [Lfx)#yls (1)

where 1[ is an indicator function. The classification problem can
then be formulated as an optimization problem:

min L(f) = min E 1 .

feF f feF x vl f(x)#y]
Directly solving this optimization problem is intractable since the
objective function is non-convex [2]. For efficient computation,
another predictive function h is adopted which is performed in
real number domain R, i.e, h: X = R. By letting f = sign(h), the
empirical loss can be reformulated as

L(f) = L(h) = Bx v |1 B)

sign(h(x))#y]
= Bx[Pr(Y = 1) Lpgg <o + Pr(Y = =110 Lh0)-

If we replace the indicator function (a.k.a 0-1 loss function) with
a convex surrogate function ¢, the empirical loss can be rewritten
as

Ly (h) = Ex[Pr(Y = 11x)$(h(x)) + (1= Pr(Y = 11x))¢( - h(x))].

which is known as the ¢-loss, and the optimization problem is
reformulated as miny,c¢ L (h). In the past decades, a number of
surrogate loss functions have been proposed and well studied, such
as the hinges loss, the square loss, the logistic loss, the exponential
loss, etc..

2.2 Fairness-aware Classification Problem

The fairness-aware classification aims to find a classifier that mini-
mizes the empirical loss while satisfying certain fairness constraints.
Several fairness notions or definitions are proposed in the literature,
such as demographic parity [13], mistreatment parity [17], etc..
Demographic parity is the most widely-used fairness notion in
the fairness-aware learning field. It requires the decision made by
the classifier is independent to the sensitive attribute, such as sex
or race. Usually, demographic parity is quantified with regard to
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risk difference [12], i.e., the difference of the positive predictions be-
tween the sensitive group and non-sensitive group. For example, in
the context of hiring, risk difference can be given by the probability
difference of being predicted to be hired between male applicants
and female applicants. Using the same language as that in the pre-
vious subsection, the risk difference produced by a classifier f is
expressed as

RD(f) = Exs=s+[1fx)=1] = Ex|s=s-[Lfx)=1]- ®3)

As a quantitative metric, we say that classifier f is considered as fair
if |IRD(f)| < 7, where 7 is the user-defined threshold. For instance,
the 1975 British legislation for sex discrimination sets 7 = 0.05.
By directly incorporating the risk difference into the optimization
problem, we formulate the fair classification problem as follows.

PROBLEM FORMULATION 1. The goal of the fairness-aware clas-
sification is to find a classifier f that minimizes the loss L(f) while
satisfying fairness constraint |RD(f)| < z. It can be approached by
solving the following constrained optimization problem

j;neigr; L(f) (4)
subjectto RD(f) <7, -RD(f) <,
where L(f) and RD(f) are defined in Eq. (1) and Eq. (3).

Obviously, solving the above problem is computationally in-
tractable, since both L(f) and RD(f) contain indicator functions.

The real-value function h(x) and the surrogate functions have
been proposed in the recent works [1, 8, 18, 19]. For example, Zafar
et al. [19] have proposed the decision boundary covariance to quan-
tify the fairness and serve as constraints, which is equivalent to
applying the linear surrogate functions to Problem Formulation 1.
They have set the constraint thresholds as ¢ and —c, which specify
the threshold for the covariance. However, solving the optimization
problem with surrogated constraints does not necessarily result
in a fair classifier in terms of the original non-convex fairness re-
quirements, e.g., —7 < RD(f) < 7. In fact, there is no any fairness
guarantee on the produced classifier. We use an example to show
this. Consider two margin-based classifiers where the surrogate
functions are linear functions of the distance from the data point
to the decision boundary. Therefore, the risk difference is com-
puted by counting the number of data points above and below the
decision boundary, and the surrogated risk difference (a.k.a the de-
cision boundary covariance) is computed by measuring the average
signed distance from the data points to the decision boundary. In
the dataset shown in Figure 1a, we obtain that the surrogated risk
difference is 0 but the real risk difference is 0.25. This means that a
classier obtained by solving the constrained optimization problem
actually can be very unfair. In the dataset shown in Figure 1b, the
risk difference is 0 but the surrogated risk difference is 0.5, mean-
ing that some fair classifiers cannot be obtained by solving the
optimization problem with surrogated constraints.

The use of the surrogate function inevitably produces estimation
errors and leads to the mismatch between the surrogated constraints
and the original non-convex fairness constraints. Some intuitive
techniques have been introduced to tune the threshold of the sur-
rogated constraints for learning fair classifiers. For example, Zafar
et al. [19] have proposed to build an unconstrained classifier and
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(a) A classifier that meets the
surrogated RD constraint
makes unfair predictions.

(b) A classifier that doesn’t meet
the surrogated RD constraint
makes fair predictions.

Figure 1: Two classifiers and their predictions.

consider its risk difference as the initial threshold, say c¢*, then
they heuristically select a factor m € [0, 1] and let the threshold
¢ = mxc*. However, the relationship between the threshold ¢ of the
surrogated constraints and the hard threshold 7 of the original met-
rics is unclear hence users have to repeatedly conduct experiments
on the datasets.

3 CONVEX FAIRNESS CLASSIFICATION
FRAMEWORK

In this section, we propose a general framework for fairness-aware
classification which addresses the gap incurred by the estimation
error due to the use of the surrogate function. Our framework can
formulate various fairness metrics (e.g., risk difference, risk ration,
equal odds, etc.) as convex constraints and incorporate them into
classic classification model. In the following sections, we present
our framework based on the risk difference. In the appendix, we
show how our framework can be easily extended to other fairness
metrics, e.g., risk ratio, equalized odds.

We first present a constraint-free criterion that is derived from
the data. This criterion ensures that any classifier learned from
the data are fair in terms of the specified fairness metric. Then
when this criterion is satisfied, there is no need to incorporate
any fairness constraints for learning fair classification. When this
criterion is not met, we formulate the fairness-aware classification
task as a convex optimization problem. To fill the gap between the
surrogated constraints and the real fairness metrics, we derive the
upper and lower bounds for the real fairness metrics and further
develop refined convex constraints. If the refined constraints are
satisfied, it is guaranteed that the original non-convex fairness
requirements are satisfied, e.g., -7 < RD(f) < 7.

3.1 Constraint-free Criterion

We propose a constraint-free criterion to determine whether the
fairness constraints are necessary. As discussed in Section 2.1, the
unconstrained classification problem is well studied and users can
safely apply the classic methods for building a fair classifier.

We first define two special classifiers fiqax and fmin which
obtain the maximal and the minimal risk differences respectively.

DEFINITION 1. The maximal risk difference classifier fimax and the
minimal risk difference classifier fuin are defined as:

ifn(x) = p,

otherwise,

! if’](X) =P fmin(x) = -

—1  otherwise, 1

Sfmax(x) =
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where we denote P(S = s*|x) by n(x) and P(S = s*) by p.

These two classifiers provide the maximum and minimum of
risk difference among all classifiers f out of the model space ¥ :

THEOREM 1. For any classifier f, it always holds that RD™ <
RD(f) < RD*, where RD™ = RD(fmin) and RDT = RD( finax)-

The proof of Theorem 1 is included in the manuscript! on the
arXiv. From Theorem 1, we directly obtain Corollary 2.

COROLLARY 2. Given the threshold t, for a training data if we
have RD* < 7 and RD™ > —, then any classifier learned from this
dataset is fair in terms of risk difference.

Given a dataset, we can always build two classifiers fi4x and
fmin, then compute RD* and RD™. If Corollary 2 is satisfied, users
can safely apply any classification models to build classifiers with-
out any fairness concern.

3.2 Convex Fairness-aware Classification

When the constraint-free criterion is not satisfied, it is required to
incorporate fairness constraints when learning classifiers, e.g., solv-
ing Problem Formulation 1. To this end, we adopt two different
surrogate functions for converting the original problem into a con-
vex optimization. We firstly adopt a real-value predictive function
h and let f = sign(h), then rewrite the risk difference as

RD(f) = RD(h)
= EX|S=S+ []l [51gn(h(x)) = l]] - EX|S=$‘ []1 [SIgn(h(x)) = 1]]

= Ex|s=s+[Lnx)>0] + Ex|s=s-[Lh(x)<0] — 1
It follows that

P(S=s"|x P(S=s"|x
RD(f) = Ex [ﬁ h(x)>0+ﬁﬂh(x)<0_l]
(5)
_ n(x) 1-n(x) B
= Ex e Lpxy>o0 + Top Thxy<o 1] ,

where we denote P(S = s*|x) by n(x) and P(S = s*) by p for
simplicity, thus P(S=s7|x) =1 —n(x) and P(S=s") =1 —p.

It is intuitive that the indicator function in above formula can
be replaced with the surrogate function. The challenge here is, two
constraints RD(f) < r and —RD(f) < 7 are opposite to each other.
Thus, replacing all indicator functions with a single surrogate func-
tion will result in a convex-concave problem, where only heuristic
solutions for finding the local optima are known to exist. Therefore,
we adopt two surrogate functions, a convex one k(-) and a con-
cave one J(-), each of which replaces the indicator function for one
constraint. As a result, the formulated constrained optimization
problem is convex and can be efficiently solved. We call the risk
difference represented by «(-) and (-) as the , §-risk difference,
denoted by RDy (h) and RDg (h). Almost all commonly-used sur-
rogate functions can be adopted for x(-) and §(-), by performing
some shift or flip. Curves of some examples for x(-) and §(-) are
shown in Figure 2.

As a result, we obtain the following convex optimization formu-
lation for learning fair classifiers.

Uhttps://arxiv.org/abs/1809.04737
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Figure 2: Curves of examples for x(-) and 6(-).

PrROBLEM FORMULATION 2. The fairness-aware classification is
converted into a convex optimization problem. The optimal solution
h* can be obtained by solving

min Lg(h)
heH 4

subjectto  RDy(h) < c¢1, —RDg(h) < ca,

where k(-) is a convex surrogate function, §(-) is a concave surrogate
function, c1, cp are the thresholds of the k, §-risk difference, and

x)¢(h(x)) + (1 = Pr(Y = 11%))¢( - h(x))],

) + T 2o( = h0) - 1]

X)) + "(X)a( h(x) - 1].

After obtaining h*, we build the fair classifier by letting f* =
sign(h*) and f* is the final fair classifier. We emphasize that in
Problem Formulation 2, the constraint thresholds are rewritten as

c1 and ¢y due to the difference between the surrogated constraints
and the original non-convex constraints.

Lg(h) = Ex [Pr(y =

2 = 2 "

RD; (k) = [’I(X) (

3.3 Refined Fairness-aware Classification

In this section, we develop the upper and lower bounds of the risk
difference RID(h) with the k, §-risk difference RDy (h) and RDy (h).
Based on the bounds, we present the method to derive c1, ¢z for
RDy (h), RDg (h), which provides a fairness guarantee that the so-
lution f* = sign(h*) to Problem Formulation 2 satisfies the fairness
requirements, e.g., -7 < RD(f*) < 7. The method works for
various types of surrogate functions (e.g., hinge, square, logistic,
exponential, etc.).

We begin with defining the conditional risk difference C (h(x))
for a specific subpopulation x:

x)

1-7n(x
ct (h(X)) = (T]lh(x)>0 + —)]lh(x)<0 -1,

(
-p
where 7 is the abbreviation of 7(x).
Then, according to Eq. (5), we have RD(f) = Ex[C" (h(x))].
When surrogate function k(-) (resp. 5(-)) is adopted, we similarly
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define the conditional k-risk difference

cl (k) = '7( ) x(h0) + 1_—U;x)1<(—h(x)) -

1-—
and we have RD (h) = Ex [C,’Z (h(x))].

Note that the values of C" (h(x)) and C! (h(x)) depend on 5(x)
and h(x), which are determined by the subpopulation of the data
specified by x, as well as predictive function A. In order to study the
general situations for any specific subpopulation and any possible
predictive function, we denote h(x) as @ and define the generic
conditional risk difference C" () and the generic conditional k-risk
difference C Z (a):

-
k(-a)-1,
p

Ui I-7 n
Ca) = p]1“>°+1 p1“<° 1, Cla)= ;x( -
for any 5 € [0,1] and @ € R. Then, the minimal conditional risk
difference H™ (n) and the minimal conditional k-risk difference
H, (n) for any arbitrary subpopulation and any possible predictive
function are given by

_ . i n
H™(n) = minC"(a) = “lgs0+ —Lg<o— 1,
(1) = min C" (@) mlg[ a0 5 La<o ]

a€R'p 1-

e m 1-
He(n) = min Ci(a) = min [p x(a) +

- px( a)-1]. ()

It is straightforward that the minimal risk difference RD™ is equiva-
lent to the expectation of H™ ((x)) since for any possible x, H™ (r(x))
provides the minimal conditional risk difference. Similarly, the min-
imal k-risk difference achieved by any predictive function (denoted

by RDy) is the expectation of H, ((x)), as given by

RDj, = Bx [Hy ().

Finally, we define the minimal conditional x-risk difference within
interval @ s.t. a(n —p) = 0:
Hi(p)= min Cl(a). 7)
a:a(n-p)=0

We similarly define H* (1) the maximal conditional risk differ-
ence, Hy (1) the maximal conditional §-risk difference, RDY the
maximal §-risk difference, as well as H; (n) the minimal conditional
d-risk difference within interval « s.t. a(n — p) > 0.

Now, we are able to present our results, which are given in The-
orem 3 and Corollary 4. The proof can be found in the manuscript?
on the arXiv.

THEOREM 3. Ifk(-) is convex and differentiable at zero with k' (0) >
0, 8(-) is concave and differentiable at zero with 6’(0) > 0, then for
any predictive function h, we have

Y (RD(h) — RD™) < RDy (h) — RDy, ®)
¥5(RD* —RD(h)) < RD — RDjs (h),

where
Y () = He (p(1 = p)pt +p)
Ys(u) = HE (p(1 = p)p +p) - H

— Hy (p(1 = p)u +p),
5(p(1=p)p+p).

Zhttps://arxiv.org/abs/1809.04737



In Theorem 3, ¥y (1) and ¢5(p) are directly derived from the
surrogate function x and §. Some commonly-used surrogate func-
tions k, § and their corresponding ¥, s functions are listed in
Table 1. The inequalities in Theorem 3 bound the difference be-
tween RD(h) and RD*,RD™ by the differences RDy (h) — RDj and
RDY ~RD; (). Since RD™, RD*, RD;, RD can be computed from
the dataset, we connect the original non-convex constraints and
the surrogated convex constraints.

We reformulate Theorem 3 and explicitly give the upper and
lower bounds of RD(h) in Corollary 4.

COROLLARY 4. For any predictive function h, let classifier f =
sign(h), if k(-) is convex and differentiable at zero with k’(0) > 0,
8(-) is concave and differentiable at zero with §’(0) > 0, then risk
difference RD(f) is bounded by following inequalities:

RD(f) < RD™ + " (RDx (k) - RD),
RD(f) = RD* — y/s ™' (RD} - RD;s(h)).

Based on the upper and lower bounds of RD(f), we can derive
the thresholds c1, ¢z for the surrogated constraints in Problem For-
mulation 2. For example, if we aim to obtain a classifier f such that
—7 < RD(f) < 7, we only require the upper bound of RD(f) is
smaller than 7 and the lower bound is larger than —z. That is:

RD™ + " (RDx (h) - RDy) < 7,
RD* - y5! (RD} - RDs(h) 2 -7

Thus, we obtain the refined constraints and if the refined constraints
are satisfied, the original risk difference requirements are guaran-
teed to be satisfied.

We modify Problem Formulation 2 to obtain Problem Formula-
tion 3 with refined fairness constraints which guarantee the real
non-convex fairness requirement.

PROBLEM FORMULATION 3. A classifier f* = sign(h™) that achieves
fairness guarantee —t < RD(f) < 7 can be obtained by solving the
following constrained optimization

in Lg(h 9
min ¢ (h) 9
subject to RDy(h) < Y (r —RD™) + RD,,

~RDg(h) < Y/s(~7 + RD*) + RD%.

Note that the right-hand sides of above two inequalities are con-
stants for a given dataset. Therefore, the constrained optimization
problem is still convex. We can optimally solve this problem and the
solution f* = sign(h*) is guaranteed to satisfy - < RD(f*) < 7.

Table 1: Some common surrogate functions for k-5 and the
corresponding ¢, (1) and s (u).

Name of k-8 | k(a) for @ € | §(a) fora € | i (u) or Ys(p) for p €
R R (0, 1/p]

Hinge max{a +1,0} | min{a, 1} H

Square (o +1)? 1-(1-a)? 12

Exponential | exp(a) 1-exp(-a) | (A =p)u+1-y1T—ppu)?
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4 EXPERIMENTS
4.1 Experimental Setup

Dataset. In the experiments we use two datasets: Adult and Dutch.
The Adult dataset [9] contains a total of 48,842 instances, each of
which is characterized by 14 attributes (e.g., sex, age, work_class,
education, income, etc.). We consider sex as the sensitive attribute
with two values, male and female. Then, we consider income as
the class label. The Dutch dataset [23] contains a total of 60,420
instances, each of which is characterized by 12 attributes. Similarly,
we use sex as the sensitive attribute, and occupation as the class
label.

Baseline. We compare our method with two related works, re-
ferred to as Zafar-1 [18] and Zafar-2 [17], both of which formu-
late the fairness-aware classification problem as constrained opti-
mization problems. In [18], the authors quantify fairness using the
covariance between the users’ sensitive attribute and the signed
distance from the feature vectors to the decision boundary. The
fairness constraint is formulated as covariance < m X c¢*, where
c¢* is the measured fairness of the unconstrained optimal classifier
and m is a multiplication factor € [0, 1]. In [17], the fairness is
quantified similarly with the distance function being replaced with
a convex non-linear function. As a result, the obtained problem is
a convex-concave optimization problem. In the experiments, we
adopt the Disciplined Convex-Concave Programming (DCCP) [15]
as proposed in [17] for solving the convex-concave optimization
problem. For our method and Zafar-1, the convex optimization prob-
lem is solved using CVXPY [3]. The datasets and implementation
are available at http://tiny.cc/fair-classification.

4.2 Constraint-free Criterion of Ensuring
Fairness

To demonstrate the sufficiency criterion of learning fair classifiers,
we build the maximal/minimal risk difference classifiers fiin, fmax
for both Adult and Dutch datasets, and measure the risk differences
they produce, i.e., RD™ and RD™". The results are shown in the
first two rows in Table 2. As can be seen, in both datasets we have
large maximal and minimal risk differences. In order to evaluate
a situation with small a risk difference, we also create a variant of
Adult, referred to as Adult*, where all attributes are binarized and
the sensitive attribute sex is shuffled to incur a small risk difference.
Then, we build a number of classifiers including Linear Regression
(LR), Support Vector Machine (SVM) with linear kernel, Decision
Tree (DT), and Naive Bayes (NB), using the three datasets as the
training data with with 5-fold cross-validation. After that, their
risk differences are quantified on the testing data, as shown in the
last four rows in Table 2. We can see that all values are within
RD~,RD* which are consistent with our constraint-free criterion.

4.3 Learning Fair Classifiers

We build our fair classifiers on both Adult and Dutch datasets by
solving the optimization problem defined in Problem Formulation 2.
For surrogate functions, we use the logistic function for ¢(-), and
the hinge function for k(-) and §(-). We also compare our methods
with Zafar-1 and Zafar-2. The results are shown in Figure 3, which
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Figure 3: Comparison of fair classifiers.

Table 2: RD*, RD™ and risk differences of Linear Regression (LR),
Support Vector Machine (SVM), Decision Tree (DT), and Naive
Bayes (NB).

RD(-) | Adult | Dutch | Adult*
RD* 0.967 | 0.516 0.046
RD~ | -0.967 | -0.516 | -0.046
LR 0.371 | 0.185 | 0.000
SVM 0.434 | 0.156 | 0.001
DT 0.316 | 0.184 | 0.001
NB 0.447 | 0.144 | 0.001

depict the relationship between the obtained risk difference and em-
pirical loss. For our method, different risk differences are obtained
by adjusting relax terms c; and c2, while for Zafar-1 and Zafar-2 dif-
ferent risk differences are obtained by adjusting the multiplication
factor m. As can be seen, our method can achieve much smaller risk
difference than Zafar-1 and Zafar-2. This may be because Zafar-1
linear functions to formulate the fairness constraints, which may
incur large estimation errors; while Zafar-2 formulates a convex-
concave optimization problem, where only the local optima can
be reached. For the same reason, we can observe that our method
produces better empirical loss than Zafar-2 given any same risk
difference.

5 CONCLUSIONS

In this paper, we studied the fairness-aware classification problem
and formulated it as the constrained optimization problem. We
proposed a general framework which addresses all limitations of
previous works in terms of: (1) various fairness metrics can be
incorporated into classic classification models as constraints; (2)
the formulated constrained optimization problem is convex and
can be solved efficiently; and (3) the lower and upper bounds of
real fairness measures are established using surrogate functions,
which provide a fairness guarantee for our framework. Within the
framework, we proposed a constraint-free criterion under which
the learned classifier is guaranteed to be fair in terms of the specified
fairness metric, as well as developed the method for learning fair
classifiers if the constraint-free criterion fails to satisfy. The results
demonstrate the correctness of the constraint-free criterion and the
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superiority of our method over existing ones in terms of achieving
fairness and retaining prediction accuracy.
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A OTHER FAIRNESS NOTIONS

Risk ratio is a common fairness notion [11, 14]. It also requires
the decision is independent with the protected attribute. Different
with the risk difference, the unfairness is quantified by the ratio of
the positive decisions between the non-protected group and the
protected group. Let’s formalize the risk ratio RR(h) of classifier h:
Exjs=s+ | Lhx)>0
RR(h) = | 5[ (x) ]

Ex|s=s- [1 h(x)>0]

The fairness constraints with regards to risk ratio could be ex-
pressed as

Ex|s=s* | Lh(x)>0
RR(h) = M <
Ex|s=s- []lh(x)>o]
Similar to Eq. (5), we express the constraints as

Ex gnh(x>>0 +Tl+g‘)]1 (10)
Equalized odds and equalized opportunity are proposed by
Hardt et al. [6]. Equalized odds requires the protected attribute and
the predicted label are independent conditional on the truth label.
To quantify the strength of equalized odds, we simply propose the
prediction difference between two groups conditional on the truth
label. So, the equalized odds is

h(x)>0] -7<0.

EO(h) = Ex|s=s+, v [Lh(x)>0] = Ex|s=s-, v [Lrx)>0l-
Similarly, a classifier & is considered as fair with regard to equalized
odds if EO(h) < 7.

Let’s reformulate the equalized odds constraints:
EO(h) = Ex|s=s+, Y [Lhx)>0] + Ex|s=s-, v [Lnx)<o] — 1
P(S =stx,y) 1-P(S =s%x,y)

:E —_— —_—mm
XY 7P(s =5y 1-P(S=sy)

h(x)<o| —1

(11)

h(x)>0 T

<r.



Equalized opportunity is a relaxation of equalized odds where
only the positive group ( Y = 1) is taken into account:
PS=stxY=1),

PS=stY =1) hx>0
1-P(S=sTx,Y=1)
1-P(S=sTY=1)

By simply replacing the indicator functions with surrogate func-
tions, we can readily extend our framework to the constraints (10),
(11), (12) with regard to the three notions. Our criterion and bounds
are also extensible to the three notions.

EOQP(h) = Ex|y=1

]lh(x)<0 -1<r. (12)
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