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ABSTRACT
Machine learning algorithms are used to make decisions in various

applications. These algorithms rely on large amounts of sensitive

individual information to work properly. Hence, there are socio-

logical concerns about machine learning algorithms on matters

like privacy and fairness. Currently, many studies focus on only

protecting individual privacy or ensuring fairness of algorithms.

However, how to meet both privacy and fairness requirements si-

multaneously in machine learning algorithms is under exploited. In

this paper, we focus on one classic machine learning model, logistic

regression, and develop differentially private and fair logistic re-

gression models by combining functional mechanism and decision

boundary fairness in a joint form. Theoretical analysis and empir-

ical evaluations demonstrate our approaches effectively achieve

both differential privacy and fairness while preserving good utility.
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1 INTRODUCTION
Nowadays, machine learning algorithms are being widely used to

automatically make decisions, such as loan application and student

admission, based on our individual information. It is important

to address individuals’ sociological concerns such as privacy and

fairness and meet government laws and regulations (e.g., General

Data Protection and Regulation on data protection and privacy,

and Fair Credit Reporting Act or Equal Credit Opportunity Act on

fairness) in training and deploying machine learning algorithms

[2, 12].
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Differential privacy has been established as a standard privacy

model to achieve opt-out right of individuals [6]. Generally speak-

ing, differential privacy guarantees the query results or the released

model cannot be exploited by attackers to derive whether one partic-

ular record is present or absent in the underlining dataset. Various

mechanisms have been proposed to achieve differential privacy [4].

For example, the Laplace mechanism works by injecting random

noise into the released results such that the inclusion or exclusion

of a single individual record from the dataset makes no statistical

difference to the results found [6]. For prediction models, objective

perturbation [1] and functional mechanism [16], which add noise

to the objective function rather than parameters of built models,

have been shown great success.

Meanwhile, fairness-aware learning is increasingly receiving

attention in the machine learning field. Many studies have shown

that classification models have biased performance against the pro-
tected group, since the classifiers are only trained to maximize the

prediction accuracy. Current research to achieve fair classification

can be mainly categorized into two groups: in-processing methods

which incorporate fairness constraints into the classification mod-

els [11, 15], and pre/post-processing methods which modify the

training data and/or the potentially unfair predictions made by the

classifiers [5, 8, 10, 17, 18].

In this work, we focus on how to achieve both differential privacy

and fairness in logistic regression – a widely-used classification

model. It’s challenging to achieve both requirements efficiently.

The goal of differential privacy in a classification model is to make

sure the classifier output is indistinguishable whether an individual

record exists in the dataset or not. Its focus is on the individual level.

The goal of fairness-aware learning is to make sure that predictions

of the protected group are identical to those of the unprotected

group, e.g., admission rate of female (as protected group) should

be same to male (as unprotected group). Its focus is on the group

level. There are few studies on achieving both privacy protection

and fairness. Research in [5] proposed a notion of fairness that is a

generalization of differential privacy. Research in [9] developed a

pattern sanitization method that achieves k-anonymity and fairness.

Most recently, the position paper [7] argued for integrating recent

research on fairness and non-discrimination to socio-technical sys-

tems that provide privacy protection. However, there is no formal

study on how to achieve both differential privacy and fairness in

classification models.

We develop two methods to achieve differential privacy and

fairness in logistic regression. Our simple method incorporates the

decision boundary fairness constraint into the objective function

of the logistic regression as a penalty term and then applies the

functional mechanism to the whole constrained objective func-

tion to achieve differential privacy. The decision boundary fairness
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constraint of logistic regression is defined as the covariance be-

tween the users’ protected attribute and the signed distance from

the users’ unprotected attribute vectors to the decision boundary,

and can be further formulated as the signed distance between the

centroids of the protected and unprotected groups. To achieve dif-

ferential privacy, the functional mechanism brings randomness to

the polynomial coefficients of the constrained objective function by

introducing Laplace noise with zeromean. Because the penalty term

contributes to the global sensitivity of objective function, this sim-

ple approach may inject too much noise to the objective function,

which reduces the utility of the built logistic regression model. We

further develop an enhanced model that injects Laplace noise with

shifted mean to the objective function of logistic regression. Our

idea is based on the connection between ways of achieving differen-

tial privacy and fairness. We notice that both the fairness constraint

and functional mechanism perturb the polynomial coefficients of

the original objective function. Hence, we can combine them as

a single term. In fact, the decision boundary fairness constraint

of logistic regression can be treated as a shift of the polynomial

coefficients by the signed distance between the centroids of the

protected and unprotected groups. As a result, we add noise from

a Laplace distribution with non-zero mean that is derived from

the fairness constraint. In this way, the fairness constraint is not a

penalty term, so we can use privacy budget more efficiently and

add less noise.

Our contributions are as follows: 1) To our best knowledge, this

is the first work to study how to achieve both differential privacy

and fairness in classification models. 2) We develop two methods

to achieve differential privacy and fairness in logistic regression. In

particular, our enhanced method, which adds Laplace noise with

non-zero mean as equivalence to fairness constraint, can reduce

the amount of added noise and hence better preserve utility. 3) We

conduct evaluation on two real-world datasets and results show

that our approaches meet both differential privacy and fairness

requirements while achieving good utility.

2 PRELIMINARY
Let D = {X, S,Y } be a dataset with n tuples t1, t2, · · · , tn , where
X = (X1,X2, · · · ,Xd ) indicates d unprotected attributes; S de-

notes the protected attribute; Y is the decision. For each tuple

ti = {xi , si ,yi }, without loss of generality, we assume xi (l ) ∈ [0, 1]
for l = (1, 2, · · · ,d ), si ∈ {0, 1}, and yi ∈ {0, 1}. Our objective is to
build a classification model ŷ = q(x;w) with parameter w from D
that achieves reasonable utility and meets both fairness and differ-

ential privacy requirements. To fit w to make accurate predictions,

we have an objective function fD (w) =
∑n
i=1 f (ti ;w) that takes

ti and w as input. The optimal model parameter w̄ is defined as:

w̄ = argmin

w

∑n
i=1 f (ti ;w).

2.1 Differential Privacy
Differential privacy guarantees the output of a query q be insen-

sitive to the presence or absence of any one individual record in

a dataset. We use D and D ′ to denote two neighboring datasets

which differ in exactly one record.

Definition 2.1. Differential Privacy [6]. A mechanismM sat-

isfies ε-differential privacy, if for all neighboring datasets D and D ′

and all subsets Z ofM’s range:

Pr(M (D) ∈ Z ) ≤ exp(ε ) · Pr(M (D ′) ∈ Z ). (1)

The parameter ε denotes the privacy budget (smaller values

indicate a stronger privacy guarantee).

Definition 2.2. Global Sensitivity [6]. Given a queryq:D → Rd ,
the global sensitivity ∆ is defined as ∆ = maxD,D′ | |q(D)−q(D

′) | |1.

The global sensitivity measures the maximum possible change

in q(D) when one record in the dataset changes. The Laplace mech-

anism is a popular method to achieve differential privacy. It adds

identical independent noise into each output value of q(D).

Definition 2.3. Laplace Mechanism [6]. Given a dataset D and

a query q, a mechanismM (D) = q(D) + η satisfies ε-differential

privacy, where η is a random vector drawn from Lap (0, ∆ε )
1
.

Functional Mechanism. Functional mechanism [16] is a differen-

tially private method designed for optimization based models. It

achieves ε-differential privacy by injecting noise into the objective

function of the model and returns privacy preserving parameter w̄
that minimizes the perturbed objective function.

Because the objective function fD (w) is a complicated function

ofw, the functional mechanism exploits the polynomial representa-

tion of fD (w). Themodel parameterw is a vector that containsd val-
uesw1,w2, · · · ,wd . Let ϕ (w) denote a product ofw1,w2, · · · ,wd ,

i.e., ϕ (w) = wc1
1
· wc2

2
· · ·w

cd
d for some c1, c2, · · · , cd ∈ N. Let

Φj (j ∈ N) denote the set of all products of w1,w2, · · · ,wd with

degree j, i.e., Φj = {w
c1
1
wc2
2
· · ·w

cd
d |

∑d
l=1 cl = j}. For example,

Φ1 = {w1,w2, · · · ,wd }, and Φ2 = {wi ·w j |i, j ∈ [1,d]}.
Based on the Stone-Weierstrass Theorem [13], any continuous

and differentiable function can be expressed in the polynomial rep-

resentation. Hence, the objective function fD (w) can be expressed

as a polynomial ofw1,w2, · · · ,wd , for some J ∈ N:

fD (w) =
n∑
i=1

J∑
j=0

∑
ϕ ∈Φj

λϕtiϕ (w), (2)

where λϕti ∈ R denotes the coefficient of ϕ (w) in the polynomial.

Functional mechanism perturbs the objective function fD (w)
by injecting Laplace noise into its polynomial coefficients

¯λϕ =∑n
i=1 λϕti +Lap (0,

∆
ε ), where ∆ = 2max

t

∑J
j=1

∑
ϕ ∈Φj | |λϕt | |1. Then

the model parameter w̄ is derived to minimize the perturbed func-

tion
¯fD (w).

Applying Functional Mechanism on Logistic Regression. A
logistic regression on D returns a function which predicts ŷi = 1

with probability:

ŷi = q(xi ;w) = exp(xTi w)/(1 + exp(xTi w)). (3)

The objective function of logistic regression is defined as:

fD (w) =
n∑
i=1

[
log(1 + exp(xTi w)) − yixTi w

]
. (4)

As the polynomial form of fD (w) in Equation 4 contains terms with

unbounded degrees, to apply the functional mechanism, Equation

1
The Laplace distribution Lap (η |µ, b ) with mean µ and scale b has probability

density function Lap (η |µ, b ) = 1

2b exp(
|x−µ |
b ). Its variance is 2b2

.

595



4 is rewritten as the approximate polynomial representation based

on Taylor expansion [16]:

fD (w) =
( n∑
i=1

2∑
j=0

f
(j )
1

(0)

j!

(
xTi w

) j )
−

( n∑
i=1

yixTi
)
w, (5)

where f1 (·) = log(1 + exp(·)).
When rewriting Equation 5 in the form of Equation 2, we have

{λϕti }ϕ ∈Φ1
=: λ1ti =

( f (1)
1

(0)
1!

xi
)
−

(
yixi

)
, (6)

{λϕti }ϕ ∈Φ2
=: λ2ti =

f (2)
1

(0)
2!

(xi )2 . (7)

The global sensitivity of fD (w) is:

∆f = 2max

t

(����( f
(1)
1

(0)

1!

− y
) d∑
l=1

x (l )
���� +

����
f
(2)
1

(0)

2!

d∑
l,m

x (l )x (m)
����

)
≤ 2(

d

2

+
d2

8

) =
d2

4

+ d .

(8)

Thus, to achieve ε-differential privacy, the functional mechanism

adds Lap (0,
∆f
ε ) noise to the polynomial coefficients of the objective

function.

2.2 Classification Fairness
There aremany definitions or requirements of classification fairness.

A common notion of group fairness is demographic parity, which

requires that a decision Y is independent of the protected attribute

S .

Definition 2.4. Demographic Parity [10]. A classificationmodel

ŷ = q(x;w) satisfies demographic parity if Pr(Ŷ = 1|S = 1) =
Pr(Ŷ = 1|S = 0).

The discrimination of the model can be quantified by risk differ-

ence (RD):

RD = | Pr(Ŷ = 1|S = 1) − Pr(Ŷ = 1|S = 0) |. (9)

To achieve classification fairness, the in-processing approaches are

to find parameter w that minimizes the objective function under a

fairness constraint:

minimize fD (w)

subject to дD (w) ≤ τ , дD (w) ≥ −τ ,
(10)

where дD (w) is the constraint term; τ ∈ R+ is the threshold of

constraint. For example, in [15], the fairness constraint is defined

as the covariance between the users’ protected attribute and the

signed distance from the users’ unprotected attribute vectors to the

decision boundary {dw (xi )}ni=1,

дD (w) = E[(s − s̄ )dw (x)] − E[(s − s̄ )]dw (x) ∝
n∑
i=1

(si − s̄ )dw (xi ),

(11)

where s̄ is the mean value of the protected attribute; E[(s − s̄ )] = 0.

For linear classification models, like logistic regression or linear

SVMs, the decision boundary is simply the hyperplane defined by

xTw = 0. Then, Equation 11 reduces to дD (w) =
∑n
i=1 (si − s̄ )x

T
i w.

The decision boundary fairness is proven to be a notion of fairness

that minimizes the surrogate risk difference [14].

3 DIFFERENTIALLY PRIVATE AND FAIR
LOGISTIC REGRESSION

In this section, we first present a simple approach (PFLR) to achieve

differentially private and fair logistic regression. Then we show it

leads to an enhanced approach (PFLR*) that achieves the same level

of differential privacy and fairness with more flexibility and less

noise.

3.1 PFLR: A Simple Approach
One straightforward approach to achieve both differential privacy

and fairness is to apply the functional mechanism to the objective

function with fairness constraint
˜fD (w). We consider the fairness

constraint as a penalty term to the objective function. Then, the

objective function ends up as:

˜fD (w) = fD (w) + α |дD (w) − τ |, (12)

where α is a hyper-parameter to balance the trade-off between

utility and fairness. We set α = 1,τ = 0 for ease of discussion. The

theoretical analysis still holds if α and τ are set to other values.

For logistic regression, fD (w) is the objective function shown

in Equation 4, and дD (w) indicates the decision boundary fairness

constraint shown in Equation 11. We then rewrite
˜fD (w) in the

polynomial form based on Taylor expansion.

˜fD (w) =

( n∑
i=1

2∑
j=0

f (j )
1

(0)

j !

(
xTi w

) j )
−

( n∑
i=1

yixTi

)
w +

�����

n∑
i=1

(si − s̄ )xTi w
�����
. (13)

By transforming
˜fD (w) in the form of Equation 2, we have

˜λ1ti =

λ1ti + |(si − s̄ )xi | and ˜λ2ti = λ2ti , where λ1ti and λ2ti are defined
in Equations 6 and 7, respectively.

The global sensitivity of
˜fD (w) is:

∆ ˜f = 2max

t

(����( f
(1)
1

(0)

1!

− y + |s − s̄ |
) d∑
l=1

x (l )
���� +

�����
f (2)
1

(0)

2!

d∑
l,m

x (l )x (m )
����

)
≤ 2(

3d
2

+
d2

8

) =
d2

4

+ 3d .

(14)

The derived w̄ satisfies ε-differential privacy by applyingAlgorithm
1. Since the objective function contains the fairness constraint as a

penalty term, the classification model also achieves fairness.

Algorithm 1 PFLR (Dataset D, objective function fD (w), fairness
constraint дD (w), privacy budget ε)

1: Set
˜fD (w) by Equation 12

2: Compute λ1ti and λ2ti by Equations 6 and 7

3: Set
˜λ1ti = λ1ti + |(si − s̄ )xi | and ˜λ2ti = λ2ti

4: Set ∆ by Equation 14

5: Set
¯λ1 =

( ∑n
i=1

˜λ1ti
)
+ Lap (0,

∆ ˜f
ε )

6: Set
¯λ2 =

( ∑n
i=1

˜λ2ti
)
+ Lap (0,

∆ ˜f
ε )

7: Let
¯fD (w) = ¯λT

1
Φ1 + ¯λT

2
Φ2

8: Compute w̄ = argmin

w
¯fD (w)

9: Return w̄

Theorem 3.1. Algorithm 1 satisfies ε-differential privacy.
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Proof. Assume D and D ′ are two neighbouring datasets. With-

out loss of generality,D andD ′ differ in row tr and t
′
r .∆ is calculated

by Equation 14.
¯f (w) is the output of Line 7. We have

Pr{ ¯f (w) |D}

Pr{ ¯f (w) |D ′}
=

2∏
j=1

∏
ϕ ∈Φj

exp

( ε ������∑ti ∈D
˜λϕti −

¯λϕ
���
���1

∆ ˜f

)
2∏
j=1

∏
ϕ ∈Φj

exp

( ε ������∑t ′i ∈D
′
˜λϕt ′i
− ¯λϕ

���
���1

∆ ˜f

)

≤

2∏
j=1

∏
ϕ ∈Φj

exp

( ε

∆
˜f
·
����
����
∑
ti ∈D

˜λϕti −
∑
t ′i ∈D

′

˜λϕt ′i
����
����1

)

=

2∏
j=1

∏
ϕ ∈Φj

exp

( ε

∆
˜f
·
���
���
˜λϕtr −

˜λϕt ′r
���
���1
)

= exp

( ε

∆
˜f
·

2∑
j=1

∑
ϕ ∈Φj

���
���
˜λϕtr −

˜λϕt ′r
���
���1
)

≤ exp

( ε

∆
˜f
· 2max

t

2∑
j=1

∑
ϕ ∈Φj

| | ˜λϕt | |1

)
= exp(ε ).

(15)

□

3.2 PFLR*: An Enhanced Approach
We further enhance the simple approach by incorporating the fair-

ness constraint into the Laplace noise.

In Equation 13, the fairness constraint дD (w) =
∑n
i=1 (si − s̄ )x

T
i w

can be considered as shifting the first degree polynomial coefficients

ofΦ1 in the objective function by

∑n
i=1 (si−s̄ )xi . Since

∑n
i=1 (si−s̄ )xi

is the signed distance between the centroids of the protected and

unprotected groups, the derived w̄ based on the shifted coefficients

ensures that the centroids of the protected and unprotected groups

have the same distance to the decision boundary. Thus, the decision

boundary fairness is achieved.

Meanwhile, the functional mechanism adds Laplace noise to

inject randomness to the polynomial coefficients of the objective

function. Because Pr{ ¯f (w) |D} depends on the probability of the

noise distribution, the designed Laplace noise provides the property

of differential privacy.

Following this observation, instead of applying the fairness con-

straint as a penalty term to the objective function, we design a new

functional mechanism that incorporates fairness constraint into

the Laplace noise. In particular, we shift the polynomial coefficients

when adding Laplace noise. The shift is achieved by setting themean

of Laplace distribution. As дD (w) only affects Φ1, we change the

mean of Laplace distribution µ = {µ (l ) }
d
l=1 from 0 to

∑n
i=1 (si − s̄ )xi

for the coefficients related with Φ1, so it has the equivalent effect to

the fairness constraint. Formally, we have µ (l ) =
∑n
i=1 (si − s̄ )x (l )ti .

Because the fairness constraint is not a penalty term of the objective

function, PFLR* has the same objective function as the regular logis-

tic regression fD (w) (defined in Equation 5). The global sensitivity

of PFLR* is ∆f = d
2/4 + d as shown in Equation 8.

Note that, given a dataset, µ =
∑n
i=1 (si − s̄ )xi is fixed. As we also

access data when calculating µ, a small part of privacy budget εд
is used to calculate µ in a differentially private manner by Laplace

mechanism (Algorithm 2 Line 2). The sensitivity of µ is

∆д = 2max

t

����

d∑
l=1

(str − s̄ )xtr (l )
���� ≤ 2d . (16)

We formalize our new functional mechanism with fairness con-

straint as Algorithm 2. We split the total privacy budget ε into two

parts εf and εд . We first calculate the differentially private µ with

the privacy budget εд (Lines 1-2). Then, we introduce Laplace noise

Lap (µ,
∆f
εf

) to the polynomial coefficients of the objective function

with the privacy budget εf (Lines 3-7). Note that we only add the

shifted Laplace noise to coefficients with Φ1. Finally, we derive the

optimized w̄ according to
¯fD (w) (Line 8). Next we show PFLR*

achieves ε-differential privacy.

Theorem 3.2. Algorithm 2 satisfies ε-differential privacy.

Proof. Assume D and D ′ are two neighbouring datasets. With-

out loss of generality, D and D ′ differ in row tr and t ′r . ∆f is calcu-

lated by Equation 8.
¯f (w) is the output of Line 7. Adding Laplace

noise with non-zero mean to coefficients still satisfies εf -differential
privacy.

Pr{ ¯f (w) |D }
Pr{ ¯f (w) |D′ }

=

∏
ϕ∈Φ1

exp

(
εf

���
���
∑
ti ∈D λϕti −

¯λϕ −µ
���
���1

∆f

) ∏
ϕ∈Φ2

exp

(
εf

���
���
∑
ti ∈D λϕti −

¯λϕ
���
���1

∆f

)
∏

ϕ∈Φ1

exp

( εf
����
����
∑
t ′i ∈D

′ λϕt ′i
− ¯λϕ −µ

����
����1

∆f

) ∏
ϕ∈Φ2

exp

( εf
����
����
∑
t ′i ∈D

′ λϕt ′i
− ¯λϕ

����
����1

∆f

)
≤

∏
ϕ∈Φ1

exp

( εf
∆f
·
����
����
∑
ti ∈D

λϕti −
∑
t ′i ∈D

′

λϕt ′i
����
����1

)

·
∏
ϕ∈Φ2

exp

( εf
∆f
·
����
����
∑
ti ∈D

λϕti −
∑
t ′i ∈D

′

λϕt ′i
����
����1

)

=

2∏
j=1

∏
ϕ∈Φj

exp

( εf
∆f
·
���
���λϕtr − λϕt ′r

���
���1
)

= exp

( εf
∆f
·

2∑
j=1

∑
ϕ∈Φj

���
���λϕtr − λϕt ′r

���
���1
)

≤ exp

( εf
∆f
· 2max

t

J∑
j=1

∑
ϕ∈Φj

| |λϕt | |1
)
= exp(εf )

(17)

Using Laplace mechanism, Line 2 satisfies εд-differential privacy on
calculating µ. Since εf + εд = ε , Algorithm 2 satisfies ε-differential
privacy. □

Algorithm 2 PFLR* (Database D, objective function fD (w), fair-
ness constraint дD (w), privacy budget εf , εд )

1: Set ∆д by Equation 16

2: Calculate µ = {µ (l ) }
d
l=1 by µ (l ) =

∑n
i=1 (si − s̄ )x (l )ti +Lap (0,

∆д
εд )

3: Compute λ1ti and λ2ti by Equation 6 and 7

4: Set ∆f by Equation 8

5: Set
¯λ1 =

( ∑n
i=1 λ1ti

)
+ Lap (µ,

∆f
ε )

6: Set
¯λ2 =

( ∑n
i=1 λ2ti

)
+ Lap (0,

∆f
ε )

7: Let
¯fD (w) = ¯λT

1
Φ1 + ¯λT

2
Φ2

8: Compute w̄ = argmin

w
¯fD (w)

9: Return w̄

Comparison between PFLR and PFLR*. In PFLR, the fairness

constraint term дD (w) contributes to the sensitivity of the poly-

nomial coefficients of the objective function. In PFLR*, the fair-

ness constraint is achieved by adding Laplace noise with non-

zero mean value, so the sensitivity of the polynomial coefficient
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is not related to дD (w). PFLR* uses separate budgets on objec-

tive function and fairness constraint, so it’s more flexible to find

good trade-offs among privacy, fairness and utility. The fairness

constraint has a much smaller sensitivity than the objective func-

tion (∆д ≪ ∆f ). Hence, we can allocate a relatively small pri-

vacy budget on calculating the fairness constraint with Laplace

mechanism, the utility is still satisfactory. Then, more privacy bud-

get can be used to the objective function, resulting in a smaller

scale of noise. More concretely, we compare the amount of noise

that is introduced to the two proposed approaches. The variance

of λϕti ∈ {
¯λ1, ¯λ2} in PFLR is 2(∆

˜f /ε )
2
. Thus, the variance of to-

tal noise added in PFLR is 2(d2 + d ) (∆
˜f /ε )

2
. On the other hand,

the variance of λϕti ∈
¯λ2 in PFLR* is Var ( ¯λ2) = 2(∆f /εf )

2
. Be-

cause PFLR* injects Laplace noise to both
¯λ1 and µ, based on

the law of total variance, the variance of λϕti ∈
¯λ1 in PFLR* is

Var ( ¯λ1) = E[Var ( ¯λ1 |µ )] + Var (E[ ¯λ1 |µ]) = 2(∆f /εf )
2 + 0. Thus,

the variance of total noise added in PFLR* is 2(d2 + d ) (∆f /εf )
2
. If

we set εf ≥ (∆f /∆ ˜f )ε , PFLR* injects less noise.

4 EXPERIMENTS
4.1 Experiment Setup
Dataset.We evaluate our methods on Adult [3] and Dutch [19]. For

both datasets, we consider “Sex” as protected attribute and “Income”

as decision. For unprotected attributes, we convert categorical at-

tributes to one-hot vectors and normalize numerical attributes to

x ∈ [0, 1]. The Adult dataset has 45222 records and 40 features. The
Dutch dataset has 60420 records and 35 features.

Baselines. We compare the proposed differentially private and

fair logistic regression models (PFLR and PFLR*) with the follow-

ing baselines: 1) a regular logistic regression model (LR); 2) a differ-
entially private only LR using functional mechanism (PrivLR); 3) a
fair only LR using Equation 11 as the fairness constraint (FairLR).

Metrics.Weevaluate the performance of the proposed approaches

and baselines on utility and fairness. We use accuracy as the utility

metric and risk difference (RD) as the fairness metric. We run all

models 10 times for each setting and report the mean and standard

deviation of each metric.

4.2 Experimental Results
We first compare the performance of all five methods when ε = 1

( εf = ε/2 in PFLR*). As shown in Table 1, the regular logistic

regression (LR) achieves the accuracy of 0.8380 on Adult and 0.8164

on Dutch, but it doesn’t protect privacy nor achieves fairness (RD =
0.1577 and 0.1747, respectively). PrivLR has privacy protection

but the accuracy decreases 11.42% on Adult and 17.52% on Dutch

compared with LR as the result of the trade-off between privacy and

utility. The risk difference of PrivLR is lower than LR, yet still larger

than 0.05. The decrease of risk difference is mostly due to its low

accuracy instead of fairness. FairLR achieves fairness (RD = 0.0095

on Adult and RD = 0.0299 on Dutch) as expected but it has no

privacy guarantee. For PFLR and PFLR*, they both meet the privacy

and fairness requirements. PFLR* has significantly higher accuracy

than PFLR on both datasets (based on t-tests with p-values < 0.05).

It indicates that PFLR* adds less noise to meet the same level of

privacy guarantee.

(a) Accuracy (b) Risk difference

Figure 1: PFLR* with different privacy budget splits εf /ε
(Adult dataset, ε = 10)

Different Privacy Budgets. Table 2 shows how different settings

of privacy budget ε affect our two methods and PrivLR. For PrivLR,

its accuracy decreases dramatically when a stronger privacy re-

quirement (smaller ε) is enforced. The risk difference of PrivLR

decreases with the decrease of ε (the increase of noise). When ε is
large, the accuracy is good and the risk difference is high. When ε
is small, the accuracy is bad and the risk difference is low but with

high variance.

For PFLR and PFLR*, when ε = 0.1, 1, PFLR* has significantly

higher accuracy than PFLR on both Adult and Dutch (based on

t-tests with p-values < 0.05). Especially, when ε = 0.1, PFLR’s

accuracy is only 0.6172 on Adult and 0.5069 on Dutch while PFLR*’s

accuracy is 0.7491 on Adult and 0.6158 on Dutch. The accuracy

of PFLR* is more consistent and relatively more resilient under

different settings of privacy budget ε . When ε is relaxed to 100,

PFLR and PFLR* have similar accuracy to FairLR (shown in Table 2).

Overall, PFLR* outperforms PFLR especially when privacy budget

is small.

Different Privacy Budget Splits εf /ε for PFLR*. PFLR* splits
the privacy budget (ε = εf + εд ) into two parts: computing the

fairness constraint (εд ) and building the classification model (εf ).
Therefore, there is a trade-off between fairness and utility by con-

trolling εf /ε . We further evaluate the performance of PFLR* in

terms of accuracy and risk difference with various privacy budget

splits by ranging the values of εf /ε from 0.05 to 0.95 with an in-

terval as 0.05. In Fig. 1a, we observe that with the increase of εf ,
the accuracy increases accordingly. This is because when εf keeps

increasing, the privacy budget for the objective function becomes

large, which reduces noise added to the classification model. For

the risk difference, as shown in Fig. 1b, when εf increases, the risk

difference increases. This is because PFLR* injects more noise to

compute the fairness constraint. However, the risk difference is

consistently smaller than 0.05 while increasing εf . Hence, as the
result of a small sensitivity ∆д , the utility of fairness constraint is

well preserved even with a small εд .

5 CONCLUSION AND FUTUREWORK
In this work, we have developed two differentially private and

fair logistic regression models, PFLR and PFLR*. PFLR is to apply

the functional mechanism to the objective function with fairness
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Table 1: Accuracy and risk difference (mean ± std.) of each method (ε = 1)

Method

Adult Dutch

Accuracy Risk Difference Accuracy Risk Difference

LR 0.8380 ± 0.0023 0.1577 ± 0.0064 0.8164 ± 0.0048 0.1747 ± 0.0033

PrivLR 0.7238 ± 0.0612 0.0502 ± 0.0581 0.6412 ± 0.0458 0.0739 ± 0.0574

FairLR 0.7739 ± 0.0521 0.0095 ± 0.0071 0.7673 ± 0.0064 0.0299 ± 0.0067

PFLR 0.7400 ± 0.0182 0.0213 ± 0.0258 0.6278 ± 0.0408 0.0206 ± 0.0204

PFLR* 0.7552 ± 0.0092 0.0053 ± 0.0070 0.6482 ± 0.0188 0.0430 ± 0.0265

Table 2: Accuracy and risk difference with different privacy budgets ε

ε
PrivLR PFLR PFLR*

Accuracy Risk Difference Accuracy Risk Difference Accuracy Risk Difference

Adult

0.1 0.6263 ± 0.1480 0.0883 ± 0.0805 0.6172 ± 0.1187 0.0351 ± 0.0493 0.7491 ± 0.0040 0.0028 ± 0.0039

1 0.7238 ± 0.0612 0.0502 ± 0.0581 0.7400 ± 0.0182 0.0213 ± 0.0258 0.7552 ± 0.0092 0.0053 ± 0.0070

10 0.7270 ± 0.0877 0.1459 ± 0.0798 0.7631 ± 0.0155 0.0338 ± 0.0255 0.7632 ± 0.0093 0.0204 ± 0.0140

100 0.8295 ± 0.0032 0.1624 ± 0.0116 0.7835 ± 0.0318 0.0332 ± 0.0243 0.7913 ± 0.0200 0.0234 ± 0.0189

Dutch

0.1 0.5241 ± 0.0396 0.0317 ± 0.0187 0.5069± 0.0459 0.0441 ± 0.0245 0.6158 ± 0.0239 0.0516 ± 0.0204

1 0.6412 ± 0.0458 0.0739 ± 0.0574 0.6278 ± 0.0408 0.0206 ± 0.0204 0.6482 ± 0.0188 0.0460 ± 0.0265

10 0.7239 ± 0.0902 0.1346 ± 0.0563 0.7282 ± 0.0493 0.0211 ± 0.0152 0.7080 ± 0.0329 0.0220 ± 0.0208

100 0.8154 ± 0.0042 0.1687 ± 0.0054 0.7681 ± 0.0054 0.0301 ± 0.0085 0.7618 ± 0.0144 0.0250 ± 0.0128

constraint as a penalty term. Our enhanced model, PFLR*, takes

advantage of the connection between ways of achieving differen-

tial privacy and fairness and adds the Laplace noise with non-zero

mean. The experimental results on two datasets demonstrate the

effectiveness of two approaches and show the superiority of PFLR*.

In this work, we consider logistic regression as the classification

model and the covariance between decision boundary and the pro-

tected attribute as the fairness constraint. In future work, we plan

to extend our methods to other classification models and other fair-

ness constraints. Another research direction is to study allocation

strategies of privacy budget, e.g., adding different amount of noise

to coefficients containing different attributes.
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