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ABSTRACT

Machine learning algorithms are used to make decisions in various
applications. These algorithms rely on large amounts of sensitive
individual information to work properly. Hence, there are socio-
logical concerns about machine learning algorithms on matters
like privacy and fairness. Currently, many studies focus on only
protecting individual privacy or ensuring fairness of algorithms.
However, how to meet both privacy and fairness requirements si-
multaneously in machine learning algorithms is under exploited. In
this paper, we focus on one classic machine learning model, logistic
regression, and develop differentially private and fair logistic re-
gression models by combining functional mechanism and decision
boundary fairness in a joint form. Theoretical analysis and empir-
ical evaluations demonstrate our approaches effectively achieve
both differential privacy and fairness while preserving good utility.
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1 INTRODUCTION

Nowadays, machine learning algorithms are being widely used to
automatically make decisions, such as loan application and student
admission, based on our individual information. It is important
to address individuals’ sociological concerns such as privacy and
fairness and meet government laws and regulations (e.g., General
Data Protection and Regulation on data protection and privacy,
and Fair Credit Reporting Act or Equal Credit Opportunity Act on
fairness) in training and deploying machine learning algorithms
[2, 12].
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Differential privacy has been established as a standard privacy
model to achieve opt-out right of individuals [6]. Generally speak-
ing, differential privacy guarantees the query results or the released
model cannot be exploited by attackers to derive whether one partic-
ular record is present or absent in the underlining dataset. Various
mechanisms have been proposed to achieve differential privacy [4].
For example, the Laplace mechanism works by injecting random
noise into the released results such that the inclusion or exclusion
of a single individual record from the dataset makes no statistical
difference to the results found [6]. For prediction models, objective
perturbation [1] and functional mechanism [16], which add noise
to the objective function rather than parameters of built models,
have been shown great success.

Meanwhile, fairness-aware learning is increasingly receiving
attention in the machine learning field. Many studies have shown
that classification models have biased performance against the pro-
tected group, since the classifiers are only trained to maximize the
prediction accuracy. Current research to achieve fair classification
can be mainly categorized into two groups: in-processing methods
which incorporate fairness constraints into the classification mod-
els [11, 15], and pre/post-processing methods which modify the
training data and/or the potentially unfair predictions made by the
classifiers [5, 8, 10, 17, 18].

In this work, we focus on how to achieve both differential privacy
and fairness in logistic regression — a widely-used classification
model. It’s challenging to achieve both requirements efficiently.
The goal of differential privacy in a classification model is to make
sure the classifier output is indistinguishable whether an individual
record exists in the dataset or not. Its focus is on the individual level.
The goal of fairness-aware learning is to make sure that predictions
of the protected group are identical to those of the unprotected
group, e.g., admission rate of female (as protected group) should
be same to male (as unprotected group). Its focus is on the group
level. There are few studies on achieving both privacy protection
and fairness. Research in [5] proposed a notion of fairness that is a
generalization of differential privacy. Research in [9] developed a
pattern sanitization method that achieves k-anonymity and fairness.
Most recently, the position paper [7] argued for integrating recent
research on fairness and non-discrimination to socio-technical sys-
tems that provide privacy protection. However, there is no formal
study on how to achieve both differential privacy and fairness in
classification models.

We develop two methods to achieve differential privacy and
fairness in logistic regression. Our simple method incorporates the
decision boundary fairness constraint into the objective function
of the logistic regression as a penalty term and then applies the
functional mechanism to the whole constrained objective func-
tion to achieve differential privacy. The decision boundary fairness
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constraint of logistic regression is defined as the covariance be-
tween the users’ protected attribute and the signed distance from
the users’ unprotected attribute vectors to the decision boundary,
and can be further formulated as the signed distance between the
centroids of the protected and unprotected groups. To achieve dif-
ferential privacy, the functional mechanism brings randomness to
the polynomial coefficients of the constrained objective function by
introducing Laplace noise with zero mean. Because the penalty term
contributes to the global sensitivity of objective function, this sim-
ple approach may inject too much noise to the objective function,
which reduces the utility of the built logistic regression model. We
further develop an enhanced model that injects Laplace noise with
shifted mean to the objective function of logistic regression. Our
idea is based on the connection between ways of achieving differen-
tial privacy and fairness. We notice that both the fairness constraint
and functional mechanism perturb the polynomial coefficients of
the original objective function. Hence, we can combine them as
a single term. In fact, the decision boundary fairness constraint
of logistic regression can be treated as a shift of the polynomial
coeflicients by the signed distance between the centroids of the
protected and unprotected groups. As a result, we add noise from
a Laplace distribution with non-zero mean that is derived from
the fairness constraint. In this way, the fairness constraint is not a
penalty term, so we can use privacy budget more efficiently and
add less noise.

Our contributions are as follows: 1) To our best knowledge, this
is the first work to study how to achieve both differential privacy
and fairness in classification models. 2) We develop two methods
to achieve differential privacy and fairness in logistic regression. In
particular, our enhanced method, which adds Laplace noise with
non-zero mean as equivalence to fairness constraint, can reduce
the amount of added noise and hence better preserve utility. 3) We
conduct evaluation on two real-world datasets and results show
that our approaches meet both differential privacy and fairness
requirements while achieving good utility.

2 PRELIMINARY

Let D = {X,S, Y} be a dataset with n tuples t1,t2,- - ,t,, where
X = (X1,X2, -+ ,Xy) indicates d unprotected attributes; S de-
notes the protected attribute; Y is the decision. For each tuple
ti = {xi, 51, y;}, without loss of generality, we assume x;(;) € [0,1]
forl=(1,2,---,d),s; € {0,1}, and y; € {0, 1}. Our objective is to
build a classification model § = g(x; w) with parameter w from D
that achieves reasonable utility and meets both fairness and differ-
ential privacy requirements. To fit w to make accurate predictions,
we have an objective function fp(w) = X7, f(t;; w) that takes
t; and w as input. The optimal model parameter W is defined as:

W = argn&i}n SEftisw).

2.1 Differential Privacy

Differential privacy guarantees the output of a query g be insen-
sitive to the presence or absence of any one individual record in
a dataset. We use D and D’ to denote two neighboring datasets
which differ in exactly one record.

Definition 2.1. Differential Privacy [6]. A mechanism M sat-
isfies e-differential privacy, if for all neighboring datasets D and D’
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and all subsets Z of M’s range:
Pr(M(D) € Z) < exp(e) - Pr(M(D’) € Z). (1)

The parameter ¢ denotes the privacy budget (smaller values
indicate a stronger privacy guarantee).

Definition 2.2. Global Sensitivity [6]. Givena query g: D — RY,
the global sensitivity A is defined as A = maxp_pr |Iq(D) — q(D’)|l.

The global sensitivity measures the maximum possible change
in g(D) when one record in the dataset changes. The Laplace mech-
anism is a popular method to achieve differential privacy. It adds
identical independent noise into each output value of ¢(D).

Definition 2.3. Laplace Mechanism [6]. Given a dataset D and
a query ¢, a mechanism M(D) = q(D) + n satisfies e-differential
privacy, where 5 is a random vector drawn from Lap(0, %) L

Functional Mechanism. Functional mechanism [16] is a differen-
tially private method designed for optimization based models. It
achieves e-differential privacy by injecting noise into the objective
function of the model and returns privacy preserving parameter w
that minimizes the perturbed objective function.

Because the objective function fp(w) is a complicated function
of w, the functional mechanism exploits the polynomial representa-
tion of fp(w). The model parameter w is a vector that contains d val-

ues wi, wp, - -+, Wy. Let ¢(w) denote a product of wi, wy, - -+ , Wy,
ie, p(w) = w;l . W§2 . ~-w;d for some cq,¢z,- -+ ,cq € N. Let
®; (j € N) denote the set of all products of wy, wz,- -+, wg with

degree j, ie, ®; = {wf1 chz -~~w2d| 2?21. cl. = j}. For example,
@1 = {wy, w2, -+, wg}, and @3 = {w; - wjli,j € [1,d]}.

Based on the Stone-Weierstrass Theorem [13], any continuous
and differentiable function can be expressed in the polynomial rep-

resentation. Hence, the objective function fp(w) can be expressed

as a polynomial of wy, wa, - -+, wy, for some J € N:
n J
fow) =237 " Agr,d(w), (2)
i=1 j=0 ped;

where A4;, € R denotes the coefficient of ¢(w) in the polynomial.
Functional mechanism perturbs the objective function fp(w)
by injecting Laplace noise into its polynomial coefficients 14 =

p A, +Lap(0, %),Where A= Zm?X Z]]‘=1 Z¢€¢j [IAg¢!11- Then
the model parameter W is derived to minimize the perturbed func-
tion fp(w).
Applying Functional Mechanism on Logistic Regression. A
logistic regression on D returns a function which predicts §; = 1
with probability:

Ui = q(xi;w) = exp(xiTw)/(l + exp(xiTw)). 3)

The objective function of logistic regression is defined as:

n
fow) =" [log(1 + exp(x] w)) - yix] w]. (4)
i=1
As the polynomial form of fp(w) in Equation 4 contains terms with
unbounded degrees, to apply the functional mechanism, Equation

The Laplace distribution Lap(n|y, b) with mean y and scale b has probability

density function Lap(n|p, b) = 2% exp( ‘x;"l ). Its variance is 2b%.




4 is rewritten as the approximate polynomial representation based
on Taylor expansion [16]:

n 2 f10 ( j n
fo) = (3 3 "= (e w) ) = (v Jw. )
i=1 j=0 i=1
where fi(-) = log(1 + exp(-)).
When rewriting Equation 5 in the form of Equation 2, we have

(%) - (). ©
10 (2. ™)

Mg&t,— Vped, = Ay =

Ag1;}pew, = Aot; =
The global sensitivity of fp(w) is:

£0(g) d £20)
oy = 2mps ([P —0) S| Zx<z>x<m>i)
<2 (d+d—2):£+d.
2 8 4

(8)
Thus, to achieve ¢-differential privacy, the functional mechanism
A
adds Lap(0, Tf) noise to the polynomial coefficients of the objective
function.

2.2 Classification Fairness

There are many definitions or requirements of classification fairness.
A common notion of group fairness is demographic parity, which
requires that a decision Y is independent of the protected attribute

S.

Definition 2.4. Demographic Parity [10]. A classification model
J = q(x;w) satisfies demographic parity if Pr(Y = 1|S = 1) =
Pr(Y = 1|S = 0).

The discrimination of the model can be quantified by risk differ-
ence (RD):

D = |Pr(Y =1|S = 1) — Pr(Y = 1|S = 0)|. )

To achieve classification fairness, the in-processing approaches are
to find parameter w that minimizes the objective function under a
fairness constraint:

minimize fp(w)
. (10)

subjectto gp(w) <7, gp(w) > -1,
where gp(w) is the constraint term; 7 € R* is the threshold of
constraint. For example, in [15], the fairness constraint is defined
as the covariance between the users’ protected attribute and the
signed distance from the users’ unprotected attribute vectors to the
decision boundary {dw(x;)}I;,

n

~B[(s — 3)ldw(x) & ) (s; = 5)dw (x1),

i=1
(11)

where § is the mean value of the protected attribute; E[(s — §)] = 0.
For linear classification models, like logistic regression or linear
SVMs, the decision boundary is simply the hyperplane defined by
T =2 (si— §)xiTW.

9p(w) = E[(s - §)dw (x)]

x' w = 0. Then, Equation 11 reduces to gp(w)
The decision boundary fairness is proven to be a notion of fairness
that minimizes the surrogate risk difference [14].
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3 DIFFERENTIALLY PRIVATE AND FAIR
LOGISTIC REGRESSION

In this section, we first present a simple approach (PFLR) to achieve
differentially private and fair logistic regression. Then we show it
leads to an enhanced approach (PFLR*) that achieves the same level
of differential privacy and fairness with more flexibility and less
noise.

3.1 PFLR: A Simple Approach

One straightforward approach to achieve both differential privacy
and fairness is to apply the functional mechanism to the objective
function with fairness constraint fD (w). We consider the fairness
constraint as a penalty term to the objective function. Then, the
objective function ends up as:

fo(w) = fp(w) + algp(w) - 7, (12)

where « is a hyper-parameter to balance the trade-off between
utility and fairness. We set @ = 1,7 = 0 for ease of discussion. The

theoretical analysis still holds if @ and 7 are set to other values.
For logistic regression, fp(w) is the objective function shown
in Equation 4, and gp (w) indicates the decision boundary fairness

constraint shown in Equation 11. We then rewrite fD (w) in the
polynomial form based on Taylor expansion.

ot = (532 6w ) - Syt o

i=1 j=0
By transforming fD(w) in the form of Equation 2, we have ilt,— =

Z(si - §)X1TW‘. (13)
i=1

Aty + 1(si = 5)x;| and /izﬁ = Aat;, where Ay, and Ay;, are defined
in Equations 6 and 7, respectively.

The global sensitivity of fD(w) is:
20 3 “’(o)
-y+ IS—Sl) X(l)‘

=1

Z X<I)X<m)‘)

Af = thaxq(

(14)
2 2

<2(—+i)—%+3d

The derived w satisfies e-differential privacy by applying Algorithm
1. Since the objective function contains the fairness constraint as a
penalty term, the classification model also achieves fairness.

Algorithm 1 PFLR (Dataset D, objective function fp(w), fairness
constraint gp (w), privacy budget ¢)

1: Set fp(w) by Equation 12
: Compute A4, and Ay;;, by Equations 6 and 7
: Set /ilti = A1y, + I(si = 5)x;| and /12;1. = Aoy
: Set A by Equation 14
5. Set ):1 = (Z?:l j-lti) + Lap(O, ATf)
- ~ Az
6 Set 1y = (X1, Aar,) + Lap(0, L)
7: Let fD(W) = i{q)l + XZTCI)Z
8: Compute w = arg m“i,n fp(w)

)

oW

9: Return w

THEOREM 3.1. Algorithm 1 satisfies e-differential privacy.



Proor. Assume D and D’ are two neighbouring datasets. With-
outloss of generality, D and D’ differ in row ¢, and ;.. A is calculated
by Equation 14. f(w) is the output of Line 7. We have

: ol z4en iwr%lL)

I1 exp( A7

Pr{f(w)|D} _ JFlged;

Prfw)ID'] . exp(fllzt;w'iw;-hlll)
1—[ exp( - “ Z A¢t /1¢t )
J=1 ped; i

j=1 ¢0€¢'j
2 (15)

1_[ exp(i ||/i¢tr_/i¢t§ 1)

J=1¢
P
—ew (5 X )
j=1
£ 2 -
< exp(E ~2mtaxz Z ||)L¢t||1) = exp(¢).

J=1¢ed;

Ag
2

| -

1Age, = Age;
€PD;

-

3.2 PFLR": An Enhanced Approach

We further enhance the simple approach by incorporating the fair-
ness constraint into the Laplace noise.

In Equation 13, the fairness constraint gp(w) = 37, (si — §)xlTw
can be considered as shifting the first degree polynomial coefficients
of @1 in the objective function by 3.7 | (si—5)x;. Since .7, (s;i=35)x;
is the signed distance between the centroids of the protected and
unprotected groups, the derived w based on the shifted coefficients
ensures that the centroids of the protected and unprotected groups
have the same distance to the decision boundary. Thus, the decision
boundary fairness is achieved.

Meanwhile, the functional mechanism adds Laplace noise to
inject randomness to the polynomial coefficients of the objective
function. Because Pr{f(w)|D} depends on the probability of the
noise distribution, the designed Laplace noise provides the property
of differential privacy.

Following this observation, instead of applying the fairness con-
straint as a penalty term to the objective function, we design a new
functional mechanism that incorporates fairness constraint into
the Laplace noise. In particular, we shift the polynomial coefficients
when adding Laplace noise. The shift is achieved by setting the mean
of Laplace distribution. As gp (w) only affects ®1, we change the
mean of Laplace distribution y = {p(y) }le from 0 to 3.1 (si — 5)x;
for the coefficients related with ®1, so it has the equivalent effect to
the fairness constraint. Formally, we have y;) = X1, (si — 8)x(1)¢,-
Because the fairness constraint is not a penalty term of the objective
function, PFLR* has the same objective function as the regular logis-
tic regression fp(w) (defined in Equation 5). The global sensitivity
of PFLR™ is Af = d%/4 + d as shown in Equation 8.

Note that, given a dataset, p = 3.7, (s; —5)x; is fixed. As we also
access data when calculating g, a small part of privacy budget ¢4
is used to calculate p in a differentially private manner by Laplace
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mechanism (Algorithm 2 Line 2). The sensitivity of u is

d
Bg =2max| Y (st, - §)xtr(1)‘ < 2d. (16)
=1

We formalize our new functional mechanism with fairness con-
straint as Algorithm 2. We split the total privacy budget ¢ into two
parts ¢ and 4. We first calculate the differentially private y with
the privacy budget ¢4 (Lines 1-2). Then, we introduce Laplace noise

A
Lap(p, g—;) to the polynomial coefficients of the objective function

with the privacy budget ¢¢ (Lines 3-7). Note that we only add the
shifted Laplace noise to coefficients with ®;. Finally, we derive the
optimized W according to fp(w) (Line 8). Next we show PFLR*
achieves e-differential privacy.

THEOREM 3.2. Algorithm 2 satisfies e-differential privacy.

Proor. Assume D and D’ are two neighbouring datasets. With-
out loss of generality, D and D’ differ in row ¢ and ¢/. A is calcu-

lated by Equation 8. f(w) is the output of Line 7. Adding Laplace
noise with non-zero mean to coefficients still satisfies Sf—differential
privacy.

Pr{f(w)|D}
Pr(f(w)ID)

1] exp( et
oc,

1 e ( o \z,;u

ped,

ol I3 3 20
i
55 el
”P( Zron = 2l
2
T[] (2 e 200
1 e,
- 2
:ew(%f Z;‘; 1260, - Ae; H,)
A J
S(‘xp(% amax Y Y HAWH,):cxp(E‘/)
=

Using Laplace mechanism, Line 2 satisfies ¢4-differential privacy on
calculating . Since &7 + £ = ¢, Algorithm 2 satisfies e-differential
privacy. m]

Algorithm 2 PFLR* (Database D, objective function fp(w), fair-
ness constraint gp (w), privacy budget ¢f, £g)

1: Set A4 by Equation 16

= A
2: Calculate y = {,u(l)};i:l by Ky = Z?Zl (i —s)x(l)ti +Lap(0, s_gg)

3: Compute Aq;; and Ay, by Equation 6 and 7
4: Set Ay by Equation 8
5 Set Ay = (T, Ay, ) + Lap(p, Tf)
6: Set )Ez = (Z;‘fl ﬂzti) + Lap(0, —f)
7: Let fp(w) = AT @y + AT @,
8: Compute W = arg min fp(w)

w

9: Return w

Comparison between PFLR and PFLR". In PFLR, the fairness
constraint term gp(w) contributes to the sensitivity of the poly-
nomial coefficients of the objective function. In PFLR*, the fair-
ness constraint is achieved by adding Laplace noise with non-
zero mean value, so the sensitivity of the polynomial coefficient



is not related to gp(w). PFLR* uses separate budgets on objec-
tive function and fairness constraint, so it’s more flexible to find
good trade-offs among privacy, fairness and utility. The fairness
constraint has a much smaller sensitivity than the objective func-
tion (A; < Ay). Hence, we can allocate a relatively small pri-
vacy budget on calculating the fairness constraint with Laplace
mechanism, the utility is still satisfactory. Then, more privacy bud-
get can be used to the objective function, resulting in a smaller
scale of noise. More concretely, we compare the amount of noise
that is introduced to the two proposed approaches. The variance
of A¢ti € {1, Ay} in PFLR is 2(AJ;/£)2. Thus, the variance of to-
tal noise added in PFLR is 2(d? + d)(AJ;/s)Z. On the other hand,
the variance of A4, € Az in PFLR* is Var(l) = 2(Af/£f)2. Be-
cause PFLR* injects Laplace noise to both A; and y, based on
the law of total variance, the variance of /1¢ € )1 in PFLR* is
Var(A1) = E[Var(A|p)] + Var(E[A|p]) = 2(Af/£f)2 + 0. Thus,
the variance of total noise added in PFLR* is 2(d? + d)(Af/gf)Z. If
we set ef > (Af/Af)s, PFLR” injects less noise.

4 EXPERIMENTS

4.1 Experiment Setup

Dataset. We evaluate our methods on Adult [3] and Dutch [19]. For
both datasets, we consider “Sex” as protected attribute and “Income”
as decision. For unprotected attributes, we convert categorical at-
tributes to one-hot vectors and normalize numerical attributes to

€ [0, 1]. The Adult dataset has 45222 records and 40 features. The
Dutch dataset has 60420 records and 35 features.

Baselines. We compare the proposed differentially private and
fair logistic regression models (PFLR and PFLR*) with the follow-
ing baselines: 1) a regular logistic regression model (LR); 2) a differ-
entially private only LR using functional mechanism (PrivLR); 3) a
fair only LR using Equation 11 as the fairness constraint (FairLR).

Metrics. We evaluate the performance of the proposed approaches
and baselines on utility and fairness. We use accuracy as the utility
metric and risk difference (RD) as the fairness metric. We run all
models 10 times for each setting and report the mean and standard
deviation of each metric.

4.2 Experimental Results

We first compare the performance of all five methods when ¢ = 1
(& = ¢/2 in PFLR"). As shown in Table 1, the regular logistic
regression (LR) achieves the accuracy of 0.8380 on Adult and 0.8164
on Dutch, but it doesn’t protect privacy nor achieves fairness (RD =
0.1577 and 0.1747, respectively). PrivLR has privacy protection
but the accuracy decreases 11.42% on Adult and 17.52% on Dutch
compared with LR as the result of the trade-off between privacy and
utility. The risk difference of PrivLR is lower than LR, yet still larger
than 0.05. The decrease of risk difference is mostly due to its low
accuracy instead of fairness. FairLR achieves fairness (RD = 0.0095
on Adult and RD = 0.0299 on Dutch) as expected but it has no
privacy guarantee. For PFLR and PFLR", they both meet the privacy
and fairness requirements. PFLR* has significantly higher accuracy
than PFLR on both datasets (based on t-tests with p-values < 0.05).
It indicates that PFLR* adds less noise to meet the same level of
privacy guarantee.
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Figure 1: PFLR” with different privacy budget splits ¢ /¢
(Adult dataset, ¢ = 10)

Different Privacy Budgets. Table 2 shows how different settings
of privacy budget ¢ affect our two methods and PrivLR. For PrivLR,
its accuracy decreases dramatically when a stronger privacy re-
quirement (smaller ¢) is enforced. The risk difference of PrivLR
decreases with the decrease of ¢ (the increase of noise). When ¢ is
large, the accuracy is good and the risk difference is high. When ¢
is small, the accuracy is bad and the risk difference is low but with
high variance.

For PFLR and PFLR*, when ¢ = 0.1, 1, PFLR* has significantly

higher accuracy than PFLR on both Adult and Dutch (based on
t-tests with p-values < 0.05). Especially, when ¢ = 0.1, PFLR’s
accuracy is only 0.6172 on Adult and 0.5069 on Dutch while PFLR*’s
accuracy is 0.7491 on Adult and 0.6158 on Dutch. The accuracy
of PFLR* is more consistent and relatively more resilient under
different settings of privacy budget ¢. When ¢ is relaxed to 100,
PFLR and PFLR* have similar accuracy to FairLR (shown in Table 2).
Overall, PFLR* outperforms PFLR especially when privacy budget
is small.
Different Privacy Budget Splits ¢7/¢ for PFLR". PFLR" splits
the privacy budget (¢ = ¢ + ¢4) into two parts: computing the
fairness constraint (¢4) and building the classification model (gf).
Therefore, there is a trade-off between fairness and utility by con-
trolling e/e. We further evaluate the performance of PFLR* in
terms of accuracy and risk difference with various privacy budget
splits by ranging the values of &¢/e from 0.05 to 0.95 with an in-
terval as 0.05. In Fig. 1a, we observe that with the increase of ef,
the accuracy increases accordingly. This is because when 5 keeps
increasing, the privacy budget for the objective function becomes
large, which reduces noise added to the classification model. For
the risk difference, as shown in Fig. 1b, when ef increases, the risk
difference increases. This is because PFLR* injects more noise to
compute the fairness constraint. However, the risk difference is
consistently smaller than 0.05 while increasing Ef. Hence, as the
result of a small sensitivity Ag, the utility of fairness constraint is
well preserved even with a small ¢4.

5 CONCLUSION AND FUTURE WORK

In this work, we have developed two differentially private and
fair logistic regression models, PFLR and PFLR*. PFLR is to apply
the functional mechanism to the objective function with fairness



Table 1: Accuracy and risk difference (mean + std.) of each method (¢ = 1)

Method Adult Dutch
Accuracy Risk Difference Accuracy Risk Difference
LR 0.8380 £ 0.0023 | 0.1577 £ 0.0064 | 0.8164 + 0.0048 | 0.1747 + 0.0033
PrivLR | 0.7238 £ 0.0612 | 0.0502 £ 0.0581 | 0.6412 + 0.0458 | 0.0739 + 0.0574
FairLR | 0.7739 £ 0.0521 | 0.0095 + 0.0071 | 0.7673 + 0.0064 | 0.0299 + 0.0067
PFLR | 0.7400 + 0.0182 | 0.0213 £ 0.0258 | 0.6278 % 0.0408 | 0.0206 % 0.0204
PFLR* | 0.7552 % 0.0092 | 0.0053 + 0.0070 | 0.6482 + 0.0188 | 0.0430 + 0.0265

Table 2: Accuracy and risk difference with different privacy budgets ¢

PrivLR PFLR PFLR*

¢ Accuracy Risk Difference Accuracy Risk Difference Accuracy Risk Difference

0.1 | 0.6263 + 0.1480 | 0.0883 + 0.0805 | 0.6172 + 0.1187 | 0.0351 + 0.0493 | 0.7491 £ 0.0040 | 0.0028 + 0.0039

Adult 1 0.7238 £ 0.0612 | 0.0502 + 0.0581 | 0.7400 £ 0.0182 | 0.0213 &+ 0.0258 | 0.7552 + 0.0092 | 0.0053 + 0.0070
10 | 0.7270 + 0.0877 | 0.1459 £ 0.0798 | 0.7631 + 0.0155 | 0.0338 + 0.0255 | 0.7632 + 0.0093 | 0.0204 + 0.0140

100 | 0.8295 + 0.0032 | 0.1624 + 0.0116 | 0.7835 + 0.0318 | 0.0332 £ 0.0243 | 0.7913 £ 0.0200 | 0.0234 + 0.0189

0.1 | 05241 + 0.0396 | 0.0317 + 0.0187 | 0.5069+ 0.0459 | 0.0441 + 0.0245 | 0.6158 + 0.0239 | 0.0516 + 0.0204

Dutch 1 0.6412 £+ 0.0458 | 0.0739 + 0.0574 | 0.6278 + 0.0408 | 0.0206 + 0.0204 | 0.6482 + 0.0188 | 0.0460 + 0.0265
10 | 0.7239 +0.0902 | 0.1346 + 0.0563 | 0.7282 £ 0.0493 | 0.0211 + 0.0152 | 0.7080 + 0.0329 | 0.0220 + 0.0208

100 | 0.8154 + 0.0042 | 0.1687 + 0.0054 | 0.7681 + 0.0054 | 0.0301 + 0.0085 | 0.7618 + 0.0144 | 0.0250 + 0.0128

constraint as a penalty term. Our enhanced model, PFLR*, takes
advantage of the connection between ways of achieving differen-
tial privacy and fairness and adds the Laplace noise with non-zero
mean. The experimental results on two datasets demonstrate the
effectiveness of two approaches and show the superiority of PFLR™.
In this work, we consider logistic regression as the classification
model and the covariance between decision boundary and the pro-
tected attribute as the fairness constraint. In future work, we plan
to extend our methods to other classification models and other fair-
ness constraints. Another research direction is to study allocation
strategies of privacy budget, e.g., adding different amount of noise
to coefficients containing different attributes.
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