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ABSTRACT
In 2009 we explored the feasibility of building a hybrid SQL
data analysis system that takes the best features from two
competing technologies: large-scale data processing systems
(such as Google MapReduce and Apache Hadoop) and par-
allel database management systems (such as Greenplum and
Vertica). We built a prototype, HadoopDB, and demon-
strated that it can deliver the high SQL query performance
and efficiency of parallel database management systems
while still providing the scalability, fault tolerance, and flex-
ibility of large-scale data processing systems. Subsequently,
HadoopDB grew into a commercial product, Hadapt, whose
technology was eventually acquired by Teradata. In this pa-
per, we provide an overview of HadoopDB’s original design,
and its evolution during the subsequent ten years of research
and development effort. We describe how the project inno-
vated both in the research lab, and as a commercial product
at Hadapt and Teradata. We then discuss the current vi-
brant ecosystem of software projects (most of which are open
source) that continued HadoopDB’s legacy of implementing
a systems level integration of large-scale data processing sys-
tems and parallel database technology.
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1. INTRODUCTION
In the first few years of this century, several papers were

published on large-scale data processing systems : systems
that partition large amounts of data over potentially thou-
sands of machines and provide a straightforward language
in which to express complex transformations and analyses
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of this data. The key feature of these systems is that the
user does not have to be explicitly aware of how data is
partitioned or how machines work together to process the
transformations or analyses, yet these systems provide fault
tolerant, parallel processing of user programs. Most notable
of these efforts was a paper published in 2004 by Dean and
Ghemawat, that described Google’s MapReduce framework
for data processing on large clusters [28]. The MapReduce
programming model for expressing data transformations,
along with the underlying system that supported fault tol-
erant, parallel processing of these transformations, was at
the time widely used across Google’s many business opera-
tions, and subsequently became widely used across hundreds
of thousands of other businesses, through the open-source
Hadoop implementation. Today, companies that package,
distribute, support, and train companies to use Hadoop
combine to form a multi-billion dollar industry.

MapReduce, along with other large-scale data processing
systems such as Microsoft’s Dryad/LINQ project [35, 47],
were originally designed for processing unstructured data.
One of their most famous use cases within Google and Mi-
crosoft was the creation of the indexes needed to power their
respective Internet search capabilities—which requires pro-
cessing large amounts of unstructured text found in Web
pages. The success of these systems in processing unstruc-
tured data led to a natural desire to also use them for pro-
cessing structured data. However, the final result was a
major step backward relative to the decades of research in
parallel database systems that provide similar capabilities
of parallel query processing over structured data [29].

For example, MapReduce provided fault-tolerant, parallel
execution of only two simple functions1: Map, which reads
key-value pairs within a partition of a distributed file in
parallel, applies a filter or transform to these local key-value
pairs, and then outputs the result as key-value pairs; and
Reduce, which reads the key-value pairs output by the Map
function (after the system partitions the pairs across ma-
chines by hashing the keys), and performs some arbitrary
per-key computation such as applying an aggregation func-
tion over all values associated with the same key. After per-
forming the reduce function, the results are materialized and
replicated to a distributed file system. The model presents

1This limitation is not shared by Dryad. Nonetheless,
Hadoop implemented MapReduce instead of Dryad.



several inefficiencies for parallel structured query processing,
such as: (1) Complex SQL queries can require a large num-
ber of operators. Although it is possible to express these op-
erators as a sequence of Map and Reduce functions, database
systems are most efficient when they can pipeline data be-
tween operators. The forced materialization of intermediate
data by MapReduce—especially when data is replicated to
a distributed file system after each Reduce function—is ex-
tremely inefficient and slows down query processing. (2)
MapReduce naturally provides support for one type of dis-
tributed join operation: the partitioned hash join. In par-
allel database systems, broadcast joins and co-partitioned
joins—when eligible to be used—are frequently chosen by
the query optimizer, since they can improve performance
significantly. Unfortunately, no implementation of broad-
cast and co-partitioned joins fit naturally into the MapRe-
duce programming model. (3) Optimizations for structured
data at the storage level—such as column-orientation, com-
pression in formats that can be operated on directly (with-
out decompression), and indexing—were hard to leverage
via the execution framework of the MapReduce model.

Even as studies continued to find that Hadoop performed
poorly on structured data processing tasks when compared
to shared-nothing parallel DBMSs [40, 43], widely respected
technical teams—such as the team at Facebook—continued
to use Hadoop for traditional SQL data analysis workloads.
Although it is impossible to fully explain the reasoning be-
hind the continued popularity of Hadoop for structured data
processing, possible explanations include the following:

• The parallel database industry had no free and open
source equivalent to the thriving Hadoop community.

• Hadoop’s adoption at well-known large Web compa-
nies, such as Yahoo, Facebook, and Twitter gave it
an additional level of credibility in terms of scalability
and ability to run over massive, heterogeneous, shared
nothing clusters of commodity servers.

• Hadoop had a level of fault tolerance that was un-
matched by even the most fault tolerant parallel
database system. For example, Hadoop handled server
failure in the middle of query processing without hav-
ing to restart a query. As clusters scale, this level of
fault tolerance becomes increasingly important.

• Many workloads contained a mix of structured and
unstructured data processing. Using a single system
for all types of query processing, that had the ability
to parallelize user defined functions over unstructured
data was convenient and typically reduced data trans-
fer and management costs.

The reasons behind Hadoop’s popularity thus included
both technical and non-technical considerations. However,
the technical reasons that contributed to the rise of Hadoop
often tended to be under-appreciated. HadoopDB was archi-
tected with the intention of taking Hadoop’s technical con-
tributions seriously. For example, Hadoop’s level of fault tol-
erance during run-time query processing, its ability to han-
dle heterogeneous clusters, and its ability to parallelize user
defined functions were legitimate reasons behind Hadoop’s
success. HadoopDB was designed to be a hybrid system ca-
pable of achieving these advantages of Hadoop, while also

MapReduce best meets the fault tolerance and ability to operate in
heterogeneous environment properties. It achieves fault tolerance
by detecting and reassigning Map tasks of failed nodes to other
nodes in the cluster (preferably nodes with replicas of the input Map
data). It achieves the ability to operate in a heterogeneous environ-
ment via redundant task execution. Tasks that are taking a long time
to complete on slow nodes get redundantly executed on other nodes
that have completed their assigned tasks. The time to complete the
task becomes equal to the time for the fastest node to complete the
redundantly executed task. By breaking tasks into small, granular
tasks, the effect of faults and “straggler” nodes can be minimized.

MapReduce has a flexible query interface; Map and Reduce func-
tions are just arbitrary computations written in a general-purpose
language. Therefore, it is possible for each task to do anything on
its input, just as long as its output follows the conventions defined
by the model. In general, most MapReduce-based systems (such as
Hadoop, which directly implements the systems-level details of the
MapReduce paper) do not accept declarative SQL. However, there
are some exceptions (such as Hive).

As shown in previous work, the biggest issue with MapReduce
is performance [23]. By not requiring the user to first model and
load data before processing, many of the performance enhancing
tools listed above that are used by database systems are not possible.
Traditional business data analytical processing, that have standard
reports and many repeated queries, is particularly, poorly suited for
the one-time query processing model of MapReduce.

Ideally, the fault tolerance and ability to operate in heterogeneous
environment properties of MapReduce could be combined with the
performance of parallel databases systems. In the following sec-
tions, we will describe our attempt to build such a hybrid system.

5. HADOOPDB
In this section, we describe the design of HadoopDB. The goal of

this design is to achieve all of the properties described in Section 3.
The basic idea behind behind HadoopDB is to connect multiple

single-node database systems using Hadoop as the task coordinator
and network communication layer. Queries are parallelized across
nodes using the MapReduce framework; however, as much of the
single node query work as possible is pushed inside of the corre-
sponding node databases. HadoopDB achieves fault tolerance and
the ability to operate in heterogeneous environments by inheriting
the scheduling and job tracking implementation from Hadoop, yet
it achieves the performance of parallel databases by doing much of
the query processing inside of the database engine.

5.1 Hadoop Implementation Background
At the heart of HadoopDB is the Hadoop framework. Hadoop

consits of two layers: (i) a data storage layer or the Hadoop Dis-
tributed File System (HDFS) and (ii) a data processing layer or the
MapReduce Framework.

HDFS is a block-structured file system managed by a central
NameNode. Individual files are broken into blocks of a fixed size
and distributed across multiple DataNodes in the cluster. The
NameNode maintains metadata about the size and location of
blocks and their replicas.

The MapReduce Framework follows a simple master-slave ar-
chitecture. The master is a single JobTracker and the slaves or
worker nodes are TaskTrackers. The JobTracker handles the run-
time scheduling of MapReduce jobs and maintains information on
each TaskTracker’s load and available resources. Each job is bro-
ken down into Map tasks based on the number of data blocks that
require processing, and Reduce tasks. The JobTracker assigns tasks
to TaskTrackers based on locality and load balancing. It achieves
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Figure 1: The Architecture of HadoopDB

locality by matching a TaskTracker to Map tasks that process data
local to it. It load-balances by ensuring all available TaskTrackers
are assigned tasks. TaskTrackers regularly update the JobTracker
with their status through heartbeat messages.

The InputFormat library represents the interface between the
storage and processing layers. InputFormat implementations parse
text/binary files (or connect to arbitrary data sources) and transform
the data into key-value pairs that Map tasks can process. Hadoop
provides several InputFormat implementations including one that
allows a single JDBC-compliant database to be accessed by all
tasks in one job in a given cluster.

5.2 HadoopDB’s Components
HadoopDB extends the Hadoop framework (see Fig. 1) by pro-

viding the following four components:

5.2.1 Database Connector
The Database Connector is the interface between independent

database systems residing on nodes in the cluster and TaskTrack-
ers. It extends Hadoop’s InputFormat class and is part of the Input-
Format Implementations library. Each MapReduce job supplies the
Connector with an SQL query and connection parameters such as:
which JDBC driver to use, query fetch size and other query tuning
parameters. The Connector connects to the database, executes the
SQL query and returns results as key-value pairs. The Connector
could theoretically connect to any JDBC-compliant database that
resides in the cluster. However, different databases require different
read query optimizations. We implemented connectors for MySQL
and PostgreSQL. In the future we plan to integrate other databases
including open-source column-store databases such as MonetDB
and InfoBright. By extending Hadoop’s InputFormat, we integrate
seamlessly with Hadoop’s MapReduce Framework. To the frame-
work, the databases are data sources similar to data blocks in HDFS.

5.2.2 Catalog
The catalog maintains metainformation about the databases. This

includes the following: (i) connection parameters such as database
location, driver class and credentials, (ii) metadata such as data
sets contained in the cluster, replica locations, and data partition-
ing properties.

The current implementation of the HadoopDB catalog stores its
metainformation as an XML file in HDFS. This file is accessed by
the JobTracker and TaskTrackers to retrieve information necessary
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Figure 1: The HadoopDB System Architecture [18]

achieving the high performance and efficiency of traditional
parallel database systems on structured SQL queries.

In the next section, we give a technical overview of
HadoopDB, according to the way it was described in the
original paper. In Section 3 we describe how the project
evolved in the research lab over the past decade after the
original paper was published, as HadoopDB expanded to
handle additional use-cases and workloads. In Section 4,
we discuss the commercialization of HadoopDB and how
the commercial product impacted the development of addi-
tional features and capabilities. In Section 5, we describe
several other integration efforts of large-scale data process-
ing systems with parallel database technology and the cur-
rent commercial landscape and open-source software tools
in this area. In Section 6, we conclude with a few ideas for
future work.

2. HADOOPDB
HadoopDB placed a local DBMS on every node in the

data processing clusters (Figure 1). Structured data were
stored in tables, sharded across these database systems.
Data was indexed within each DBMS as appropriate. The
original HadoopDB implementation used PostgreSQL as the
database system on each node; however, the HadoopDB pa-
per pointed out that improved performance could be gained
via using column-store systems. This capability of using an
underlying column-store system was added to the codebase
shortly after the initial release and its associated perfor-
mance gains2 were published in SIGMOD 2011 [22] as part of
a larger HadoopDB follow-up paper. Regardless of whether
HadoopDB used an underlying row-store or column-store,
storing data in systems optimized for managing structured
data enabled significant speedup in the map functions of
MapReduce tasks over structured data. HadoopDB pushed
filtering, projection, transformation, and even some join and
partial aggregations into the database systems on each node.

Figure 2 shows an example of how query processing work
is pushed into the single node database systems. A SQL
query is submitted to the system; in our example this query

2See also Figure 3 that we will discuss below in which
HadoopDB-VW leverages a column-oriented DBMS.



Figure 2: Pushing Map functions into the DBMS

requests the total revenue per year from a sales table. The
left side of the figure shows how this query may be converted
to Map and Reduce operators in a MapReduce job. The leaf
operator is a scan of the sales table. For each tuple, a projec-
tion operator (called Select) extracts the relevant attributes
for this query (year and revenue). An aggregation operator
(called Group By) groups all tuples with the same year and
sums the total revenue within each group. Each of these op-
erators — the scanning, the projecting of relevant attributes,
and the aggregating — can be done on a per-partition basis
in an embarrassingly parallel fashion. Therefore, systems
that automate the conversion of our example SQL query to
MapReduce tasks (such as the original version of Hive) will
perform all these tasks inside Map functions. For efficiency,
all three of these operations can be combined into a sin-
gle Map task (instead of requiring one Map task per SQL
operator), since each of these operators occur consecutively.

The aggregation that is done inside the Map task is done
on a per-partition basis. However, our example query re-
quired a global aggregation of revenue per year. Therefore,
additional aggregation is necessary to complete the process-
ing of this query, since each partition may contain tuples
associated with the same year. A Reduce task is used for
this global aggregation. Prior to the Reduce task, the aggre-
gated data produced by the Map task is partitioned by year
(so that all Map output associated with the same year end
up on the same physical machine), and then the aggrega-
tion is performed again in a Reduce task (which sums each
intermediate sum associated with the same year). In truth,
the aggregation done by the Reduce task is the only one
that is necessary. The “pre-aggregation” done in the Map
task could have been dropped without changing the seman-
tics of the query. However, network is often a bottleneck
in large-scale data processing systems, and pre-aggregating
data enables a reduction of data that must be shipped over
the network. Therefore, the pre-aggregation in the Map
phase is added by systems such as Hive as an optimization.

The right side of Figure 2 shows how the same query is
performed in HadoopDB. The query processing operators
that were performed in the Map task in the query plan from
the left side of the Figure are converted into a single operator

that is pushed down into the shards of the database system
and performed there as a series of traditional relational op-
erators. The results of this query are then partitioned by
year and the final aggregation performed inside a Reduce
task, in the same way as the left side of the figure.

At a high level, HadoopDB was able to achieve the fol-
lowing desirable properties in a data processing framework:

1. Flexibility with minimal cognitive overload. Query-
ing data in HadoopDB could be done in SQL, MapReduce,
or combinations thereof. HadoopDB automatically pushed
as much processing as possible into the underlying database
systems, without forcing the user to be aware of where pro-
cessing was being performed or how data was sharded.

2. Ability to run in a heterogeneous environment. By
leveraging the Hadoop framework for scheduling operators
within a query plan, HadoopDB overcame one of the key
scalability hurdles found in parallel database systems that
must run over thousands of machines. In such environments,
it is impossible to achieve performance homogeneity across
machines. Even if every single machine within the cluster
consists of the exact same hardware, it is usually the case at
that level of scale that at least one of the machines is run-
ning slower than the others—either because of malfunction-
ing hardware that allows the machine to stay alive, but at
reduced performance, or because of some software issue that
prevents the operating system or database system from giv-
ing the query the same level of resources as the other nodes
in the cluster. In these heterogeneous conditions, there is
a danger that the run-time of a task is lower-bounded by
the run-time of the slowest node in the cluster. HadoopDB
leveraged Hadoop to side-step such stragglers, by preemp-
tively re-scheduling query operators on other nodes (usually
a replica) within a cluster.

3. Fault-tolerance. Another scalability hurdle in parallel
database systems is frequent machine failure. In traditional
clusters containing fewer than a hundred machines, failure
is a rare event—usually occurring less frequently than one
failed machine per day. Therefore, parallel database systems
typically did not support mid-query fault tolerance. If any
machine involved in processing a query failed in the mid-
dle of (or shortly after) its task, the query would abort and
start from scratch using a different replica of the data. As
long as queries take orders of magnitude less time to exe-
cute than the mean time to (at least one) machine failure
in the cluster, this lack of support for mid-query fault tol-
erance is not problematic. However, as the data scales, and
the number of machines in a cluster scales accordingly, two
things change: First, queries tend to take longer to run since
it is generally impossible to get perfectly linear speedup on
all queries. Second, the mean time to (at least one) ma-
chine failure decreases: for very large clusters of thousands of
cheap, commodity machines, it is not uncommon for at least
one machine to be failing on the order of minutes (instead of
hours or days). This combination of increased query latency
with lower mean time to failure results in a requirement for
mid-query fault tolerance. HadoopDB leveraged Hadoop’s
checkpointing of intermediate data to disk after Map tasks,
along with the determinism of Map and Reduce tasks in the
MapReduce model to implement mid-query fault tolerance
and thereby scale to very large deployments.



Figure 3: HadoopDB performance on TPC-H queries vs. Hive and commercial system DBMS-X [22]

4. Performance. Across a variety of data process-
ing tasks, HadoopDB outperformed simple SQL-into-
MapReduce translation layers (such as Hive), often by orders
of magnitude [18, 22]. Figure 3 shows a performance bench-
mark comparison on TPC-H (see Bajda-Pawlikowski et. al
for more details on this benchmark, experimental set-up,
and results [22]) in which the performance of HadoopDB is
compared with Hive and a commercial parallel row-oriented
database system (that is anonymized as required by their
license agreement and therefore called DBMS-X). Two ver-
sions of HadoopDB are compared: one in which PostgreSQL
(a row-store) is used as the single-node database system
on each node, and one in which VectorWise (an optimized
column-store) is used instead of PostgreSQL. HadoopDB
clearly outperformed Hive, and the column-oriented version
of HadoopDB was even able to outperform DBMS-X.

3. RESEARCH GROWTH
After the initial prototype and paper, HadoopDB contin-

ued to develop — both in the research lab and in industry.
In this section, we discuss how it developed in the research
lab, and in the next section we discuss how it was commer-
cialized and developed in the real world.

3.1 Split Execution
We further improved the performance of HadoopDB for

join and aggregation queries using strategies designed specif-
ically for HadoopDB’s split execution environment [22],
where the goal is to push as much query execution as possi-
ble into the higher performing underlying database systems.
Examples of these improvements include:

1. Split MapReduce/Database Joins. When it was pos-
sible to use a broadcast join, HadoopDB was improved to
choose optimally among multiple implementations: (i) a

Map-side join where at each node, the smaller table is read
from HDFS and transformed into an in-memory hash table,
which is then probed by tuples accessed sequentially from
the larger table within a Map task, or (ii) the smaller table
is inserted into a temporary table within each HadoopDB
node’s underlying database system and the join is pushed
entirely into the DBMS. Furthermore, Hadoop leveraged
semi-joins, especially when the projected column from the
semi-join is small, and implemented them via selection pred-
icates using the SQL IN clause, which was pushed down and
performed by the underlying database system.

2. Post-join partial aggregations. When a query involves
both joining tables and aggregating results of the join in a
way that requires multiple MapReduce iterations—such as
when the join key is different from the group-by aggregation
key—HadoopDB computed partial aggregations at the end
of the first Reduce task. Such partial aggregations saved
significant IO (and runtime) costs by preventing unnecessary
intermediate data from being written to HDFS.

3. Pre-join partial aggregations. HadoopDB trans-
formed aggregation operators into multiple stages of partial
aggregation operators and computed these partial aggrega-
tions before a join when the product of the cardinalities of
the group-by and join-key columns was smaller than the car-
dinality of the entire table.

3.2 Invisible Loading
A key selling point of Hadoop was its low time-to-first

analysis : as soon as data is produced, the data could be
dumped into Hadoop’s distributed file system and be imme-
diately available for analysis via MapReduce jobs. In con-
trast, database systems typically require data to be loaded
and tuned prior to being available for SQL queries. This ini-
tial data preparation for database systems usually involves



a non-trivial human cost of data modeling and schematizing
in addition to the tunable computational costs of copying,
clustering and indexing the data. Hadoop and NoSQL sys-
tems allowed users, especially those who were not entirely
familiar with the data, to trade cumulative long-term per-
formance benefits for quick initial analysis.

This presented another opportunity for a systems-level hy-
brid between large scale data processing systems and tradi-
tional database systems. We extended HadoopDB with an
Invisible Loading (IL) feature that achieves the low time-
to-first analysis of MapReduce jobs over a distributed file
system while still yielding the long-term performance ben-
efits of database systems [19]. IL seamlessly moves data
from a file system into a database system (i) with minimal
human intervention: users only need to write their MapRe-
duce jobs using a fixed parsing API and optionally use a
library of standard processing operators (e.g. filter, join,
group by, etc.) and (ii) without any human detection: IL
piggybacks on running MapReduce jobs and moves data into
the database systems without a visible increase in response
time by incrementally loading vertical and horizontal parti-
tions of the data into the database system and then incre-
mentally reorganizing the data.

In more detail, the important technical features of invisi-
ble loading include:

1. Laziness and opportunism. Only data that is actu-
ally accessed by MapReduce tasks get loaded into the
database system. As data is accessed by a MapReduce
job, invisible loading takes advantage of the data al-
ready being in cache to opportunistically load it into
the database system. This results in the more fre-
quently accessed attributes to be more fully loaded
into the database system.

2. No requirement of complete schema knowledge.
MapReduce users generally write MapReduce jobs
over datasets for which they do not have complete
knowledge of the semantics or types of the various at-
tributes within the records/key-value pairs that these
jobs access. The invisible loading technique therefore
did not require users to specify the schema of a file a
priori. Rather, the code simply injects itself into the
data parsing logic contained within Map tasks to infer
the parts of the schema that are present in those tasks.

3. Utilization of column-stores to align multiple at-
tributes. The above described features of laziness,
opportunism, and incomplete schema knowledge im-
plies that some columns will be loaded before others.
Invisible loading leveraged column-oriented storage to
enable increased flexibility for incremental loading of
different attributes from the same HDFS file.

4. Incremental data reorganization, Invisible loading
included an implementation of an Incremental Merge
Sort (IMS), that gradually sorted columns on which
users often executed selection predicates. IMS had the
added advantage of only performing a fixed amount of
work per MapReduce job, which kept overhead costs
low in comparison with other adaptive organization
techniques of the time.

5. A polymorphic library of data access and pro-
cessing operators. These operators were designed

to work correctly over data spread arbitrarily across
the file system and the underlying database systems
of HadoopDB.

From a performance perspective, the overhead of incre-
mentally loading data from the file system to the database
system was barely detectable by the end user. The primary
detectable side-effects were the performance improvements
that resulted from an increased amount of data being inside
the higher performing database systems [19].

3.3 Sinew
The prerequisite to use invisible loading is that data found

on the file system is relational and straightforward to load
into a relational database system. The reason why the data
had not already been loaded into a database system was
just for convenience: the user did not want to go to the
effort of understanding all the data semantics and attribute
types to the point where a schema can be declared, or spend
the time waiting for the data to be loaded into a database
system. But if a user had the prerequisite time and effort,
the data could be loaded up front.

However, given Hadoop’s usage as a data lake that stores
arbitrary data, non-relational data is frequently found: key-
value, nested and other semi-structured and self-describing
data types are common. While the invisible loading tech-
nique was a good solution for relational data, a different
technique was necessary for “multi-structured” data.

This observation lead to the development of Sinew [44]
— a technique similar in motivation to invisible loading, but
designed for multi-structured data. The basic idea was to
present to the user a “universal relation” for each entity-set.
This universal relation contained one column correspond-
ing to each attribute that is defined in at least one entity
within the entity-set. If an entity contains a nested object,
the nested keys are flattened and referenceable as distinct
columns using a dot-delimited name with the nested key pre-
ceded by the key of the parent object. The less structured
an entity-set, the more sparse is its universal relation. This
relation is queryable via SQL, where NULL is returned for
any column value that is undefined for a specific entity.

Figure 4: Sinew architecture [44]

As data is loaded into the database system, it starts off
being serialized using a Sinew-specific semi-structured seri-
alization format into a binary column in the DBMS called
a “column reservoir”. This column reservoir is parsed on
the fly at query time to extract the relevant columns for a
given input query. A schema analyzer (see Figure 4) tracks a



query workload and the statistical properties of each column
and decides which columns—if they were to be migrated
from “virtual columns” in the column-reservoir to physi-
cal columns within the RDBMS table—will result in perfor-
mance improvement. Dense (i.e. frequently appearing) at-
tributes and those with a cardinality that significantly differs
from the RDBMS optimizer’s default assumption are typi-
cally good candidates for migration. The primary impetus
in selecting which columns to migrate to physical columns
is to reduce the system cost of on-the-fly materialization of
virtual columns at query time. Migrating dense columns
will usually lead to overall improved system performance,
but if the RDBMS is a row-store, the schema analyzer has
to balance the potential benefits with the associated system
overhead of maintaining tables with many attributes.

Once a column is chosen for migration, a “column mate-
rializer” (Figure 4) incrementally migrates the column into
a physical column in the DBMS, similar to the ”invisible
loading” technique described above, such that this migra-
tion does not need to occur all at once. This allows mi-
gration to have no discernible effect on system performance
(aside from the performance benefit of reduced parsing costs
to access the column at query time).

3.4 Automatic Schema Generation
Neither the work on invisible loading, nor Sinew at-

tempted to optimize the initial version of a generated
schema. The work on invisible loading inferred the schema
of a dataset based on how it was used. As mentioned above,
the invisible loading technique intercepted Map tasks and
looked for parsing logic within these tasks. It used this
parsing logic to detect the schema of the raw files. In many
cases, the way data was organized in raw files is based solely
on the whims of the processes that generated the data, and
little concern is made for organizing data in a way that fa-
cilitates query processing. Meanwhile, for nested and other
types of semi-structured data, Sinew used a single universal
relation per entity instead of considering whether decom-
position of this initial relation would lead to improved se-
mantics and performance. In practice, we found that more
careful consideration of the optimal schema for a dataset
could lead to many benefits — especially for nested data
sets, for which the initial data organization (or the universal
relation) is rarely optimal for data analysis. Consequently,
significant effort was spent in the automatic generation of
optimized relational schemas for datasets commonly found
in Hadoop. This work culminated in a technique that anal-
yses raw nested files and uses the statistical properties of
particular attribute expressions to automatically generate a
normalized schema that can be used in HadoopDB (or any
other relational database system) [30].

3.5 HadoopDB for Graph Datasets
HadoopDB was originally designed for relational datasets,

and the work on Sinew and automatic schema genera-
tion extended its applicability to nested and other semi-
structured datasets. However, in 2011, we discovered that
the HadoopDB architecture is well-suited for an additional
use-case: graph datasets. In particular, we found that
HadoopDB could scale graph analysis algorithms beyond
existing limitations at the time [33]. The basic idea was to
replace the single-node database systems from the original
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Figure 5: Using HadoopDB for graph datasets

HadoopDB architecture with single-node optimized graph
database systems3 as shown in Figure 5.

We also found that the way graph data is partitioned
across the single-node graph database systems is important.
In 2011, existing distributed graph analysis systems gener-
ally hash partitioned graph vertices across the machines in a
cluster. This partitioning algorithm worked well for simple
index lookup queries, where queries focus on small numbers
of vertices or edges. However, for more involved queries,
such as sub-graph pattern matching, efficiency was far from
optimal. This is because many graph processing algorithms
require traversing the graph along its edges. If data is hash-
partitioned, neighboring vertices will usually be found on
different physical machines, and traversing the edge between
vertices requires communication across machines. The (po-
tentially multiple) rounds of communication over the net-
work needed for non-trivial graph processing queries can
quickly become a performance bottleneck, leading to high
query latencies.

Therefore, instead of using hash partitioning, we used a
graph partitioning algorithm. This enabled vertices that
are close to each other in the graph to be stored on the
same machine, which resulted in a smaller amount of net-
work communication at query time.

An additional complication relative to HadoopDB was
how data is replicated. The original HadoopDB architecture
replicated entire shards. A replica of a shard contained all
data within that shard, and no data from any other shard.
The original partitioning of data across shards was disjoint.
Thus, a data item could be found only inside the shard that
it was partitioned to, along with all the replicas of that
shard. This disjoint partitioning and complete shard repli-
cation allowed management and accounting of the replicas

3Our initial prototype used RDF-3X as the single-node
graph database system on each HadoopDB node.



to be straightforward. However, for graph data, we found
that more complicated replication algorithms could improve
performance. The intuition is that, in practice, some ver-
tices are much more broadly connected than other vertices.
Placing such well-connected vertices on only a single ma-
chine caused two problems:

1. It is challenging to generate a balanced partitioning
across nodes.

2. The large number of vertices they are connected to
results in a likelihood that a non-trivial percentage of
them are stored in a different partition.

Instead, we allowed additional replication at the borders
of partitioned subgraphs such that the same vertex can
be replicated to multiple partitions, thereby allowing well-
connected vertices to be stored within the same partition of
a larger percentage of its neighbors.

The architecture of this approach is shown in Figure 5.
Graph vertices are loaded into the system by feeding them
into the data partitioner module which performs an initially
disjoint partitioning of the graph by vertex. The output of
the partitioning algorithm is then used to assign vertices to
worker machines according a placement algorithm that de-
termines which vertices were on the boundary of the graph
partitioning output and are good candidates for extra repli-
cation across partitions. Each partition is then loaded into
the optimized graph database system on each node and in-
dexed as appropriate.

The master node serves as the interface for graph anal-
ysis queries. It accepts queries and decomposes them into
operators that can be performed in isolation across the sin-
gle node graph database systems, and ships these operators
to the worker nodes. All cross-partition operations are per-
formed using the Hadoop processing framework, just as in
the original HadoopDB model. Query plans are a composi-
tion of parallel operators that work in isolation across the
single node database systems and cross-partition steps im-
plemented within Hadoop.

This work continued with follow-up research on graph
query optimization [34], graph compression [37], and dy-
namic graph partitioning and replication [32].

4. THE INDUSTRIAL EVOLUTION
The original HadoopDB codebase was released open

source alongside the original VLDB publication. Since sev-
eral thousand downloads shortly followed its release, it be-
came clear that there was significant commercial interest in
the HadoopDB technology. This created an opportunity to
develop the prototype into a production-ready system that
could be deployed by real enterprises. Two of the authors
of the original HadoopDB paper (Daniel Abadi and Kamil
Bajda-Pawlikowski) joined forces with a student at the Yale
School of Management (Justin Borgman) to start a company
called Hadapt whose goal was to transform HadoopDB from
a research idea into a usable system. The expectation was
that commercialization, in addition to demonstrating the
applicability of the original design, would inspire further re-
search within the context of the HadoopDB project.

Hadapt was founded in 2010. It used the success of the
initial prototype, along with the patents associated with
the research innovations described in Section 3—patents on

the HadoopDB architecture [14], split execution [13], in-
visible loading [12], Sinew [17], and application to graph
data [16]—to raise over $16 million dollars in two rounds of
financing [7]. Over the next two years, Hadapt hired ap-
proximately 30 employees, mostly engineers who worked on
improving and expanding the HadoopDB-based technology.

Hadapt succeeded in taking the HadoopDB technology
from academic prototype to production-ready software.
Along the way, the company gained customers who re-
quested additional features that had not been anticipated
in the original HadoopDB design. Most of these features
related to the data lake nature of Hadoop deployments.
These customers found the Hadoop distributed file sys-
tem (HDFS) to be cost-efficient in storing all kinds of
data (structured, semi-structured, and unstructured). Al-
though HadoopDB was able to achieve high performance
and fault tolerance when querying structured and semi-
structured data, it lacked sufficient native capabilities to
interact with the unstructured data that sat in the same
file system. Hadapt customers wanted to access unstruc-
tured data directly from the Hadapt engine, via extensions
to Hadapt’s SQL interface.

Consequently, Hadapt added a scalable full-text search ca-
pability by leveraging SOLR [5]. Each node ran a shard of
SOLR in addition to the HadoopDB DBMS shard. Hadapt
supported indexing columns in a table via SOLR, thereby
enabling full-text search using SQL syntax extensions, typ-
ically in the WHERE clause of SQL queries. Later, as the
product expanded its applications to more latency-sensitive
BI analytics, Hadapt allowed customers to trade fault toler-
ance for reduced query runtime using the Hadapt ”Interac-
tive Query” capability [15]. Along the way, native support
for modern HDFS file formats such as ORC and Parquet
was introduced. Finally, Hadapt built a cost-based opti-
mizer that leveraged table and column statistics to reorder
joins and choose appropriate distribution methods.

In 2014 Hadapt was acquired by Teradata and became
a new division called the Teradata Center for Hadoop.
Hadapt’s impact began with a significant improvement of
the Teradata QueryGrid for Hadoop. By applying the prin-
ciples of split execution from HadoopDB, leaf parts of the
query plan were pushed down from Teradata into Hadoop.
This optimization substantially reduced expensive CPU cy-
cles on Teradata clusters and minimized network traffic.

Later, in order to further extend the reach of QueryGrid,
Teradata decided to back the open source project Presto [11]
that supported many data sources beyond Hadoop. The
ex-Hadapt team embarked on a multi-year roadmap to con-
tribute to Presto and bring an enterprise-ready distribution
of the project to the market. What followed were many en-
hancements that descended from Hadapt, especially in the
areas of security, performance, ANSI SQL compatibility, BI
tool support, and data source connectivity.

As a result of these efforts, Presto experienced an unprece-
dented global growth in popularity in both on-premise and
cloud deployments. In late 2017 many of the original Hadapt
team members founded Starburst Data [9], an independent
company focused on developing and providing commercial
support for its enterprise-grade distribution of Presto.

5. THE SQL/HADOOP ECOSYSTEM
During the time period in which HadoopDB was devel-

oped, much debate and research effort focused on improving



the interface to large-scale data processing systems. At one
extreme was the original MapReduce paper which expressed
all transformations using a procedural interface via Map and
Reduce functions. At the other extreme was Hive [45, 2]
which provided a declarative SQL interface4. There were
several popular interfaces in between these two extremes,
such as Pig [39], SCOPE [26], and MapReduce extensions
in commercial parallel database systems such as Greenplum
and Aster Data.

HadoopDB aimed to be a hybrid not at the language or
interface level but at the systems level. To achieve this, it in-
tegrated certain features of MapReduce-style systems (fault
tolerance, handling heterogeneous commodity clusters, abil-
ity to parallelize user-defined functions) with capabilities of
parallel database systems (storage-level optimizations, effi-
cient query processing). Perhaps the most important contri-
bution of HadoopDB was breaking down the illusory divide
between the two technologies and embracing the important
technical advantages of both.

HadoopDB led the way in bringing systems implementa-
tion techniques from the parallel database systems commu-
nity into the large-scale data processing community. Several
subsequent projects continued in this direction aiming for
even higher performance and efficiency in analyzing struc-
tured data.

One way that HadoopDB gained a performance advantage
over the state of the art was by (optionally) storing struc-
tured data in columnar format and providing a query exe-
cution framework that was able to take advantage of colum-
nar storage by keeping data in columnar form during certain
query operators. It is well known that column-oriented stor-
age and execution can improve performance of many classes
of analytical query workloads—especially those that scan
large amounts of data but analyze only a subset of attributes
from a given table per query. HadoopDB implemented this
approach by placing single-node column-oriented database
systems on each machine. The Hadoop community sub-
sequently also introduced columnar storage capabilities in
native HDFS file formats. The two most widely-used op-
tions are ORCFile [3] and Parquet [4]. They both support
relational and nested data.

Parquet and ORCFile use PAX blocks [20] for columnar
storage. In PAX, data is kept in columns within blocks, but
a given block may consist of multiple columns from the same
table. This makes tuple reconstruction faster since all data
needed to perform this operation can be found in the same
block. On the other hand, PAX reduces scan performance
compared to pure column stores since not all data for a given
column is placed contiguously on disk.

Parquet and ORCFile are not query execution engines.
Rather, they are file formats that enable column-oriented
storage and compression. In order to get the equivalent ben-
efit that HadoopDB was able to achieve when leveraging an
underlying column-oriented DBMS, Parquet and ORCFile
need to be combined with a query execution engine that
can leverage column-oriented storage. Indeed, Parquet and
ORCFile were introduced exactly for this purpose: so that
a new wave of SQL engines for Hadoop could benefit from
column-oriented storage and processing just as HadoopDB
had done in 2009.

4Hive converted all SQL expressions to Map and Reduce
functions under the covers.

This next generation of Hadoop-based query engines used
many of the ideas from HadoopDB in the way they were ar-
chitected using systems-level integration of low-latency par-
allel database techniques within large-scale data processing
systems. We now give several examples of such SQL engine
projects subsequent to the original HadoopDB paper.

As mentioned above, Hive existed solely as a language-
based hybrid at the time the HadoopDB paper was pub-
lished. Subsequently, its community transformed the project
into a more systems-level hybrid. First, Hive evolved to sup-
port pluggable execution engines and proposed Apache Tez
[41] as an alternative to MapReduce. Tez, which is similar
to Dryad [35], represents data processing as DAGs, allow-
ing more efficient execution of SQL operators. Next, Hive
gained an additional processing layer called LLAP (Live
Long and Process) [24] that introduced per-node daemons
responsible for local query execution and caching hot data.
In essence, LLAP instances served a similar purpose in Hive
as local DBMS servers in HadoopDB. To further improve the
performance of complex queries, Hive incorporated Apache
Calcite [23] that provided cost-based optimization using
statistics kept in the Hive Metastore. Finally, transactional
table support using ORC ACID completed Hive’s journey
towards Big Data Warehousing on Hadoop.

Spark [48] is a distributed general-purpose processing
engine comparable to Tez and Dryad in the way it ex-
pands data processing operators beyond ‘Map’ and ‘Reduce’.
Spark maintained the MapReduce system capability of pro-
viding fault tolerance during query processing, but provides
users with more control in specifying the required level of
fault tolerance. Compared to MapReduce, Spark achieves
significant speedup for iterative data processing workloads
and therefore became popular for machine learning, graph
analytics, and ETL use cases. Spark supports data ana-
lytics via a variety of end user interfaces such as Scala,
Python, and R. Analogously to how Hive and HadoopDB
brought SQL to Hadoop, the Shark project [46] brought
SQL to Spark. By using Spark instead of MapReduce,
Shark was able to achieve higher performance than the orig-
inal MapReduce-based version of Hive. In 2014, Shark was
replaced by SparkSQL [21]. SparkSQL leveraged a new
DataFrame API, featured a query optimizer called Catalyst,
and introduced a number of execution engine improvements
collectively referred to as Project Tungsten. More recently,
Databricks open-sourced Delta [6], a transactional table
storage for Spark built on top of Parquet.

Flink is similar to Spark, but is less connected to the
Hadoop ecosystem and more commonly used for continuous
streaming use cases relative to Spark [25].

Drill [1] is a distributed SQL engine inspired by Google
Dremel [38]. The project was created by MapR (now part
of HPE) but never got embraced by the leading Hadoop ven-
dors. Apache Drill provided connectivity to data sources be-
yond HDFS, including plain JSON files, MongoDB, HBase,
and Object stores.

Impala [36] and HAWQ [27] went a step farther than
HadoopDB. Like HadoopDB, they include specialized single-
node query execution engines on each node in a Hadoop
cluster, and execute query operators in parallel across these
engines. However, in HadoopDB, only the lower parts of a
query plan were pushed down into the single-node database
systems, while communication across nodes was managed
using Hadoop’s MapReduce framework. By contrast, Im-



pala and Hawq built full parallel database execution en-
gines within a Hadoop cluster, thereby allowing entire query
plans to avoid MapReduce or the other execution frame-
works available in Hadoop. This resulted in the query pro-
cessing engine losing some of the fault tolerance, heteroge-
neous cluster tolerance, and thus scalability advantages of
HadoopDB. Nonetheless, Impala and HAWQ were able to
achieve low latency queries via fully pipelined relational op-
erators and native integration with HDFS, which reduces
the need for mid-query fault tolerance.

Presto [42] is another full parallel database execution en-
gine that avoids the need for other Hadoop-based generic
data processing engines during query processing. The
project was originally created at Facebook as the successor
to Hive to allow for concurrent interactive queries over large
datasets. Similar to Impala, Presto fully pipelines query
execution for performance and therefore does not support
mid-query fault tolerance. The open source project features
an efficient execution engine employing vectorized columnar
data processing, runtime query bytecode compilation, opti-
mized data structures, and multi-threaded processing that
leverages multi-core CPUs efficiently.

Presto includes native abilities to query multiple data
sources including Object Stores, HDFS, NoSQL systems and
RDBMSs. Presto’s inherent separation of compute and stor-
age makes Presto well-suited for deployments in the cloud
and in cloud-like environments such as Kubernetes. Among
the key members of Presto’s development community is the
ex-Hadapt team at Starburst Data [10] (see Section 4) that
recently contributed a Cost-Based Optimizer [8].

By being complete implementations of parallel execution
engines, Impala, HAWQ, and Presto are somewhat inde-
pendent systems that integrate with Hadoop mostly at the
storage level (although Impala and HAWQ both also inte-
grate with Hadoop’s resource management tools). To that
end, they provide similar (albeit more native) functionality
to a large number of commercial parallel database systems
that have “connectors” to Hadoop that enable them to read
data from HDFS. These systems thus serve as a SQL inter-
face to data stored in HDFS, and use their own execution
engines for non-trivial parts of query processing. Almost
every parallel DBMS vendor now has a Hadoop connector.
Some implementations that are more closely integrated with
Hadoop include Oracle Big Data SQL, Redshift Spec-
trum, Teradata QueryGrid, Vertica on Hadoop, and
IBM Big SQL.

6. CONCLUSION
Hellerstein et al. note that the “unfortunate consequence

of the disaggregated nature of contemporary data systems is
the lack of a standard mechanism to assemble a collective un-
derstanding of the origin, scope, and usage of the data they
manage” [31]. While unified frameworks like Presto and cen-
tral metadata repositories like Hive Metastore help amelio-
rate some of these issues, several end-user problems require
novel solutions. These include (i) discoverability: allowing
analysts to determine whether certain data exists and, if so,
and how it is processed, (ii) minimizing wasted and dupli-
cated effort involved in data cleaning, pre-processing, and
data analysis, as well as sharing learned insights, (iii) bet-
ter governance through tracking data from source to use,
and (iv) better automation of schema inference, data clean-
ing, repair, and pattern finding. These problems require

human-in-the-loop tools that visualize metadata, processes,
provenance and results across an entire data lake.

Much effort has been spent by Hadoop distributors and
members of the ecosystem to integrate HadoopDB’s per-
formance improvements into the thriving current ecosystem
of query processing tools that run on Hadoop. However,
many of HadoopDB’s usability innovations—such as incre-
mental movement of data from HDFS into file formats that
are optimized for query processing, as pioneered by the in-
visible loading [19], Sinew [44], and schema generation [30]
projects—remain in their infancy in the Hadoop ecosystem.
As Hadoop crosses the chasm of wide-spread adoption, we
expect usability will become the next front of rapid innova-
tion and competitive differentiation.
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