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Abstract

Food security in Malawi relies on rainfall amount and timing. Because agricultural production is the main source of income for
most rural communities, increased frequency of extreme events will increase the risk of production failure—a major threat to food
security. Evidence of changing rainfall is reported by farmers and by recent analysis of gauge measurements, but these studies are
limited due to small sample size, type of tests, or both. The main goal of this study is to test both statistically significant and robust
but less significant changes in rainfall and rainy season for 1981-2018 using a high-resolution gridded dataset (0.05°). We
analyzed different indices including onset, length, and cessation of rainy season, number of dry days, and number of extreme
events during the rainy season. Our results show that roughly one-third of Malawi has experienced at least one type of significant
change in rainfall indices during the study period. For instance, Northern Malawi had ~ 2 fewer extreme event days/decade and an
end of season ~5 days/decade earlier as well as ~5 fewer dry days/decade. For the entire time period, delayed onset varies
spatially from 18 to 35 days, number of dry days has decreased 21.6 days, the rainy season has ended 28.8 days earlier in the north
and 36 days earlier in the south, and the number of extreme events has decreased 5 to 7 days in many places. The results are
heterogeneous spatially and suggest that broad scale forcings are not driving them.
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Introduction

Temporal and spatial variability of rainfall is a key factor in
water resources planning and management, agriculture plan-
ning, flood frequency analysis, and hydrological modeling
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farms (Raney 2005) and is expensive to implement. About
four-fifths of Malawians rely on maize as a staple food
(FAO 2009). So, food security research for Malawi has thus
focused on adapting planting times. Planting is initiated by the
Onset of the Rainy Season (ORS). The End of the Rainy
Season (ERS) and the Length of Rainy Season (LRS) are also
meaningful predictors of yield and food security (Maitima
et al. 2009).

Effective estimates for ORS and LRS are vital for setting
planting time (Snapp and Pound 2017). Any changes in rainfall
amounts, intensity, or temporal or spatial distribution would fur-
ther threaten food security (Barron et al. 2003; Maitima et al.
2009). For example, by the end of 2015 farming season, delayed
onset between 10 to 50 days dramatically reduced yield.
Excessive rainfall/flooding after planting leads to reduced har-
vests (MacColl 1990). The failure of consecutive rainy seasons in
East Africa associated with El Nifio in 2017 impacted approxi-
mately 6.7 million people in Malawi (FEWSNET 2017).
Understanding rainfall variability and its predictability is impor-
tant for farmers, policymakers, and hydrologists.

What is known, and what is poorly understood, about
Malawi’s rainfall changes? Research gaps in rainfall studies,
especially in less developed countries, are hampered by a lack
of high-quality observed climate data in terms of spatial reso-
lution, absence of research attention, and political barriers
(Desa and Niemczynowicz 1996; Alemaw and Chaoka
2002; Shongwe et al. 2006; Sawunyama and Hughes 2008;
Kizza et al. 2009; Ngongondo et al. 2011). These factors mo-
tivate a deeper, multiple dataset investigation on changes and
trends of rainfall characteristics.

Various factors hamper study of changing rainfall charac-
teristics. Research on rainfall tends to focus on predictability;
trends in drought are evident but causality and shifts in
synoptic-scale factors remain poorly understood (Nicholson
2017). Rainfall in Malawi is driven by the north-south passage
of the ITCZ (Intertropical Convergence Zone) together with
influences from the Congo air boundary, bringing a rainy sea-
son that runs from November to April. ENSO (EI Nino
Southern Oscillation) is another synoptic-scale factor that af-
fects Malawi’s rainfall variability. Several studies have ex-
plored drivers of changes in Malawi’s climate seasonality.
Nash et al. (2018) looked at the nineteenth-century rainfall
data and found significant but complex changes in wet and
dry seasons associated with El Nino conditions. Kumbuyo
et al. (2014) also suggested evidence for seasonality to be
affected by the quasi-biennial oscillation (QBO). Dunning
et al. (2016) similarly found large shifts in the rainy season
coincident with El Nino years in East Africa. Vrieling et al.
(2013) reported a reduction in the length of growing period for
Malawi over 1981-2011 using NDVI (Normalized Difference
Vegetation Index). However, these are not associated with
specific climate trends.
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Previous studies have investigated rainfall variability and
trends across Malawi. Nicholson et al. (2014) analyzed mean
rainfall climatology and interannual variability with ORS, ERS,
and LRS and found two patterns: first, a strong rainfall maximum
on Lake Malawi’s western shoreline during boreal spring and
second, a reduced rainfall pattern in mid-February which
are attributed to coarse-scale circulation changes. Vincent et al.
(2017) showed a broad drying trend in annual rainfall across
Malawi since 2000, lacking statistical significance due to high
variability. Ngongondo et al. (2014; hereafter, NTX14), the study
closest to this one, analyzed extreme indices to detect rainfall
onset, length, and cessation of growing season at 26 stations in
Malawi from 1961 to 2009. The results show a country-wide
shift in ORS and ERS, but without significant changes at the
a=0.05 level in length of the growing season.

However, farmers report changes in rainfall. Increased dry
spells are strongly associated with drought and may be related
to broader climate changes in Southern Africa (Frich et al.
2002; Nastos and Zerefos 2009; Bouagila and Sushama
2013). This suggests that characterizing the effects of climate
change on rainfall for much of Africa may not be evident in a
single variable (e.g., average annual rainfall) and may not be
captured due to low station density. Gridded datasets may be
better at detecting these changes being reported anecdotally.

What do farmers observe? Simelton et al. (2013) used
farmer’s perception of rainfall change in Southern Malawi
and Botswana and compared them with meteorological data
to address whether rainfall has changed. They found mis-
matches between farmers’ perceptions and meteorological da-
ta. Some farmers noted higher interannual variability in the
timing of the onset while others reported that the rainy season
had started earlier and ended later. However, weather data
proved otherwise (Sutcliffe et al. 2016). Anecdotal evidence
can be misleading. Fisher et al. (2010) found discrepancies
between farmers’ perception of rainfall variability and
climate statistics using personal interviews. Joshua et al.
(2016) found that farmers’ perception of climate change in
Mphampha, Malawi, included more variable rainfall with a
later onset and earlier cessation, plus midseason dry spells.
Reports further south in Bolero describe warmer temperatures
and less rainfall during the past 10 years while the climate data
showed significantly increasing temperatures but an insignif-
icant decreasing trend in rainfall (Munthali et al. 2016).
Climate models project a shorter growing season (by 20—
55 days) by midcentury, associated with an earlier end date,
but with no significant change in onset (Vizy et al. 2015). At
best, the evidence is equivocal for a shift in rainfall, yet cli-
mate model projections suggest significant changes are under-
way or imminent (IPCC: Niang et al. 2014). For these reasons,
and for more spatially extensive coverage, we tested for sta-
tistically significant spatial and temporal changes in rainfall
from 1981 to 2018 across Malawi.
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The big picture question is “how is climate change affect-
ing agriculture in the developing world?” To answer this, we
chose a gridded dataset validated against gauge precipitation
measurements at available geographic locations. Our null hy-
pothesis is “there have been no significant changes in different
rainfall indices over Malawi temporally and spatially.” We
used the non-parametric Mann-Kendall test to determine the
spatiotemporal direction and magnitude of changes in rainfall
behavior. To assess the spatial distributions of these various
changes, we produced a zoning map which aggregated all
significant changes of the precipitation variability indices
across Malawi.

Data and methodology
Study area

Malawi is one of the “Feed the Future” countries for USAID
(United States Agency for International Development) in
Southeast Africa (Jury and Mwafulirwa 2002). The total area
of Malawi is about 118,484 km?, which is divided into lands
and water bodies including Lake Malawi in the east (Fig. 1).
The Great Rift Valley dominates topography in the region
from north to south. The mild tropical climate has an austral
summer rainy season, while the winter is very dry (Jury and
Mwafulirwa 2002). Variations in climate would adversely af-
fect most farmers (CDIAC cited in UNDP 2007). Malawi is
vulnerable to drought as rain-fed agriculture covers 40% of
their domestic product and with three-fifths of the population
under the poverty line (Mukherjee and Benson 2003;
Devereux et al. 2006). Understanding shifts in variability
and changes in rainfall is essential at finer scales for adequate
planning.

Data

Of the 43 weather stations available across Malawi, we chose
observations that had records from 1982 onward. Seventeen of
these datasets were omitted because their observations did not
extend into the CHIRPS (Climate Hazards Group InfraRed
Precipitation with Station data) period, which started in 1982.
This yielded only 26 stations that had more than 4 years during
the 1982-2018 time period. These 26 stations were used to val-
idate gridded CHIRPS data. Figure 2 shows the geographical
location and spatial distribution of the stations.

We required a gridded dataset with both fine spatial (less
than 50 km) and temporal (pentad or finer) resolution. Gauge
measurements are not spatially representative of Malawi’s cli-
mate or topography and almost all gridded rainfall datasets are
either at a daily frequency or high spatial resolution, but not
both. For this reason, we chose to examine CHIRP, CHIRPS,
ARC2, and PERSIANN-CDR gridded rainfall products to

compare the results and to find the best available gridded
dataset for analysis.

CHIRPS is a global expanded rainfall gridded dataset, with
a spatial resolution of 0.05° and a daily time scale. This dataset
is based on thermal infrared rainfall products including the
National Oceanic and Atmospheric Administration
(NOAA)’s rainfall estimates, ARC2 (African Rainfall
Climatology), the University of Reading’s TAMSAT African
Rainfall Climatology and Time series (TARCAT), and the
Tropical Rainfall Measuring Mission Multi-satellite Rainfall
Analysis version 7 (TRMM 3B42 v7) (Funk et al. 2015).
CHIRPS shows lower bias than the other gridded products
(Funk et al. 2015). There are limits to using CHIRPS; howev-
er, given the very limited gauge measurements across Malawi,
and no other fine resolution gridded datasets over Eastern
Africa, this was the best available dataset in terms of temporal
and spatial resolution, and analysis and resampling
algorithms.

ARC2 with 0.1° spatial resolution provides more than
30 years of rainfall estimates. Mean spatial distribution, annu-
al cycle, and interannual variability of rainfall in ARC2 shows
consistency with GPCP (Global Precipitation Climatology
Project) and PREC/L (NOAA’s PRECipitation
REConstruction over Land) long-term monthly rainfall
datasets. The monthly validation shows agreement with
weather gauge measurements in central and southern
Malawi, with a tendency to underestimate rainfall amounts.
ARC2 has been used to analyze wet and dry spells, onset,
peak, and extreme events across Africa (Novella and Thiaw
2012).

PERSIANN-CDR (The Precipitation Estimation from
Remotely Sensed Information using Artificial Neural
Networks—Climate Data Record) provides a 30-year record
of daily rainfall at 0.25° spatial resolution. This product is
suitable for global climate studies at the scale of extreme
weather events (Ashouri et al. 2015), although it tends to
overestimate rainfall compared to the other rainfall products
(Sun et al. 2018). All rainfall products show general underes-
timation of heavy rainfall over East Africa compared to gauge
observations from 205 stations (Thiemig et al. 2012).

CHIRP (Climate Hazard Group InfraRed Precipitation) is
developed based on global 0.05° monthly rainfall climatology
(CHPclim: The Climate Hazard Group’s Precipitation
Climatology version 1). The only difference between
CHIRP and CHIRPS is that CHIRP relies solely on remotely
sensed observations and is captured as pentads. Daily values
are disaggregated pentads based on daily CFS (Climate
Forecast System) fields rescaled to 0.05° resolution (Funk
etal. 2015). This disaggregation assumes that the total rainfall
over the pentad is distributed randomly over the 5-day win-
dow and is a significant source of uncertainty that CHIRPS
seeks to remediate; thus, the uncertainty in CHIRP is higher
where stations are sparse.
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Fig. 1 Geographical location of Malawi with annual monthly rainfall and temperature distribution on the upper right

Methodology
Gridded dataset accuracy assessment

To assess CHIRPS accuracy and consistency, we compared
daily gauge measurements from NTX14 with corresponding
CHIRPS values (1981-2018) at the same location as the sta-
tions using a 2-mm buffer (Eq. 1). Cross-validation and cor-
relation were applied to assess agreement during October
through March. We only used rainy season data to minimize
the effect of dry days within the dry season. To calculate
correlation between daily rainfall of CHIRPS and gauge data,
we tested a variety of pixels. Using a single pixel produces a
different correlation than multiple pixels and merely show a
change in correlation due to aspects of resolution. Thus, we
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tested one pixel, five-pixel (center plus four), and nine-pixel
(3 x 3) resolutions against the gauge measurements. We found
similar correlation values and report the single pixel results.

IF [CHIRPS—STATION]<=2 mm/day, then 1, otherwise 0
(1)

We calculated “similarity” and “correlation” to understand
the degree of alignment. “Similarity” shows the amount of
agreement between station value and CHIRPS value based
on daily rainfall comparison. The “correlation” value is the
Pearson correlation coefficient. The Sen’s slope estimator of
daily rainfall for the gauge measurements, CHIRPS and
PERSIANN, are also shown in the online resource 1 for
comparison.
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Rainfall variability

We developed several indices to capture rainfall variability,
which include ORS, ERS, LRS, NXE (number of extreme
events), and NDD (number of dry days) (Table 1) using
Python version 2.7.5. Several definitions of ORS have
been tested in the literature (FAO 1986; AGRHYMET
1996; Omotosho et al. 2000; Camberlin and Diop 2003;
Raes et al. 2004; Tadross et al. 2009; Liebmann et al.
2012; Fiwa et al. 2014; NTX14). However, finding the best

Table 1  Definition of rainy season indices

method is difficult since algorithms are not defined along
with the same scales, and estimation of the “start” is some-
what subjective. We defined ORS as “a day after October
Ist when the accumulated rainfall in 5 consecutive days
exceeds 5 mm, followed by 10 mm in the next 10 days”,
based on the Famine Early Warning System given by
AGRHYMET (1996). The end date of the rainy season
was determined by simply reversing this process, except
with rainfall amounts falling below the 5 mm threshold.
Dry days and extreme rainfall are calculated following

Indices Definition

ORS (Onset of Rainy Season) Any day after October st with accumulated rainfall in 5 consecutive day more than 5 mm

following by 10 mm accumulated rainfall in the next 10 consecutive days.

ERS (End of Rainy Season) Any day after February 1st with cumulative rainfall in 10 days less than 20 mm, and following

with less than 10 mm rainfall in the next consecutive days.
LRS (Length of Rainy Season)
NXE (Number of Extreme Events)
NDD (Number of Dry Days)

Days between start and end of rainy season.
Number of days with more than 20 mm rainfall. (>20 mm)
Number of days with less than 2 mm rainfall during the rainy season. (<2 mm)
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Tadross et al. (2009) and Nicholson et al. (2014). An “ex-
treme event” day (NXE) is defined as a day with the rain-
fall of more than 20 mm (>20 mm) and a dry day is a day
with less than 2 mm during the rainy season (<2 mm).
Length of rainy season (LRS) is the number of days be-
tween ORS and ERS (ORS — ERS). As a result, we made 5
different gridded maps that show spatial and temporal dis-
tributions of each metric for Malawi.

Statistical approach

Statistical analyses were done using R statistical software
(version 1.1.477). Pixel by pixel analysis identified the spatial
distributions of the trends. We used two non-parametric
methods to identify the strength and magnitude of the trends
because the data were not normally distributed, and non-
parametric tests are less sensitive to outliers. The widely
adopted Mann-Kendall test was used to analyze trends in cli-
mate and hydrology data (e.g., Wilks 2011; Zilli et al. 2017,
Sharma and Singh 2019). The non-parametric Mann-Kendall
test examines the distribution of data to be independent and
identical. The main reason for using a non-parametric test is
that non-parametric tests are suitable when there is missing
data in time series, the distribution is non-normal, or the data
set is censored (Boslaugh 2012). The null hypothesis is that

Table 2
Station data) at a daily frequency

there is no trend (Mann 1945; Kendall 1970), while our hy-
pothesis states that there is a monotonic trend over time.

We calculated the test statistic Tau using the “Kendall”
package (McLeod 2011) in R. The range of Tau is between
—1 to + 1, with negative values showing a decreasing trend
(more negative “steps”) and positive values showing an in-
crease in trend (more upward “steps”). A significance level of
o =0.05 was used in this study to identify significant trends.

To quantify the trend magnitude for all five indices, the
Mann-Kendall test has been widely used with the non-
parametric and robust Sen’s slope estimator (Xu et al. 2003;
Partal and Kahya 2006; Gocic and Trajkovic 2013; Sharma
and Babel 2014; Wu et al. 2014) as the distributions may
deviate significantly from a Gaussian distribution. This test
is also not highly sensitive to skewness or large outliers
(Kumar Sen 1968). Details on Sen’s slope estimator and the
Mann-Kendall test are described in Yue and Pilon (2011).

Results

Gridded data validation

CHIRPS vs. gauge measurements

Figure 2 and table 2 shows a 60% correlation between gauge
measurements and corresponding CHIRPS daily values.

Correlation and similarity (within 2 mm agreement) between station data and CHIRPS (Climate Hazards Group InfraRed Precipitation with

Station Longitude Latitude Altitude Correlation Similarity
(degree, W) (degree, S) (m) (%)

Bolero 33.78 11.02 1100 0.62 57.55
Chitedza 33.63 13.97 1149 0.67 53.83
Makhanga 35.15 16.52 76 0.73 68.60
Monkey Bay 34.92 14.08 482 0.72 58.99
Nkhata Bay 34.30 11.60 5191 0.61 58.99
Bvumbwe 35.07 15.92 1146 0.86 57.50
Chichiri 35.05 15.78 1132 0.74 56.51
Chileka 34.97 15.67 767 0.90 58.77
Chitipa 33.27 9.70 1285 091 53.35
Dedza 34.25 14.32 1632 0.70 53.30
Karongo 33.95 9.88 529 0.84 54.84
Kasungu 33.47 13.02 1058 0.77 59.22
Makoka 35.18 15.53 1029 0.87 58.64
Mangochi 35.25 14.47 482 0.72 60.78
Mimosa 35.62 16.07 652 0.88 52.66
Nzimba 33.60 11.90 1349 0.72 53.43
Mzuzu 34.02 11.43 1254 0.75 52.91
Ngabu 34.95 16.50 102 0.89 66.82
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Many stations were used in building CHIRPS, so as expected,
we found a strong agreement. For example, looking at Nkhata
Bay station in Northern Malawi, the correlation between
gauge measurements and CHIRPS values was 0.61. Even
higher, Mangochi station had a correlation coefficient of
0.72. Based on these correlations and all other station correla-
tions and similarities, CHIRPS data are the most reliable of the
available datasets to use for change detection and significant
trend analysis.

To have a better comparison of gridded data and gauge
measurements, we produced a map of Sen’s slope of ORS
and ERS using stations, PERSIANN, and CHIRPS, which is
available in the appendix. Based on this map, CHIRPS shows
the highest agreement with gauge measurement trends.
Although the values do not match perfectly, the trend shows
agreement on whether it is increasing or decreasing.

CHIRPS vs. other gridded data

We applied the Mann-Kendall test (reporting Tau for our first
step) on all 4 gridded datasets to compare the spatial pattern of
trend in all 5 indices. Results are shown in Fig. 3.

Figure 3 compares datasets spatially, and we did not calcu-
late significance; this is done in the section on Sen’s slope
below. Figure 3a shows the Mann-Kendall trend of ORS over
all datasets. There is an overall agreement between CHIRPS,
ARC2, and PERSIANN especially in south Malawi of
0.1 days/year, or a delay of 10 days/decade in onset. In
Northern Malawi, PERSIANN and ARC2 show a retreating
trend (earlier onset) of ~ 1 day/decade. PERSIANN captures
the positive trend in the Southern Malawi in agreement with
CHIRPS. Central Malawi shows a delay in onset trend of
between 1 and 2.5 days per decade. There is broad agreement
between different datasets in terms of onset of season except
for CHIRP, which shows very few strong trends. In Fig. 3b
(number of extreme events), there is general consistency be-
tween CHIRPS, CHIRP, and ARC2 except in Northern
Malawi, where the inclusion of gauge measurements in
CHIRPS shows a decrease in NXE. The decrease in
Northern Malawi is also shown in the station’s analysis from
NTX14. PERSIANN disagrees with the first three datasets
and shows a dissimilar trend and pattern. Despite annual av-
erage rainfall showing a statistically significant increasing
trend from 1901 to 2018 over Eastern and Southern Africa,
PERSIANN overestimates the amount of rainfall in Malawi
compared to the other datasets and is coarser in resolution.
This is the main disagreement between PERSIANN and other
datasets.

Figure 3¢ shows ERS across the entire region. CHIRPS and
CHIRP show sharply differing trends in Central and Northern
Malawi, and PERSIANN and ARC2 are mostly homoge-
neous. The change in ERS in Northern Malawi based on
CHIRPS and CHIRP is roughly 0.4 days earlier per year or

a rate of 4 days/decade. While CHIRPS and CHIRP show
earlier cessation, PERSIANN and ARC2 show later cessation.
Patterns in ERS are similar to patterns in NXE for ARC2 and
PERSIANN, suggesting that extreme events may need to be
examined in connection to drivers of cessation.

Figure 3d shows the trend in number of dry days (NDD). In
the South and Central Malawi, all gridded datasets show a
similar positive trend—1 to 3 more dry days per decade. As
the spatial resolution becomes coarser, the trend is larger.
CHIRPS shows the mildest change in NDD, and along with
CHIRP indicates fewer dry days in northern Malawi.

Interannual rainfall trends

Because of general similarity, higher resolution, the inclusion of
gauge measurements, and the highest agreement with station
trends, we focused on CHIRPS for the next step. Similar to
Dunning et al. (2016), ORS and ERS trends show shorter and
weaker rainy seasons nationwide. Figure 4 shows the non-
parametric Sen’s slope of the trend at the 5% significance level
for all 5 indices. Many of the variables have connected trends.

Starting with ORS, at the 95% confidence level, there are two
significant areas of changes in the south and along the lake. In the
southern part around Bangula, the rainy season has become de-
layed ~34.5 days since 1981, and in the areas along the lake
close to Salima and Mkaika, the rainy season has been delayed ~
18 days. The shift in onset has occurred mainly in more recent
years.

Number of dry days (NDD) during the rainy season has been
decreasing from 1981 to 2018 in Northeast Malawi which is the
wettest part of Malawi. Thus, NDD tends to be fewer in recent
years with essentially no trend in NDD for most of the nation.
Region from Kaporo and Mwenitete to Kaonga has experienced
lower NDD, about 21.6 days in 2018 compared to 1981. The rest
of the significant changes has happened over the lake in
Northeastern Malawi. This is a strong decline. The minimum
amount of significant decrease is about 7 days for this region.

There is a large contiguous area of significant changes in
ERS over Malawi in the north. This trend is uniformly nega-
tive (i.e., earlier end of rains) at the 5% significance level as
the season tends to end earlier. In Fig. 4, areas around Chitipa,
Misuko, and Kameme in the north, Livingstonia in northeast
and Chikangawa in the center of Malawi has experienced
earlier ERS about 28.8 days in the north and center and
21.6 days earlier in the northeast. These results are broadly
consistent with NTX14, but this method shows how change is
spatially distributed. In the south, around Mbenje and Lujeri,
the rainy season has ended 36 days earlier than it was in 1981.

NXE shows a negative trend that is spatially similar to
ERS—evident in the other datasets as well. Within a 5% sig-
nificance level, the Sen’s slope shows a declining trend of the
number of extreme rainfall days. This pattern covers nearly all
northern Malawi and is spottier over southern Malawi. In the
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Fig. 3 Comparison of the spatial pattern of trend by Tau values using 4
different gridded dataset, CHIRPS (Climate Hazards Group InfraRed
Precipitation with Station Data), CHIRP (Climate Hazard Group
InfraRed Precipitation), ARC2 (African Rainfall Climatology version2),
and PERSIANN (The Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks) for a Onset of Rainy
Season (ORS), b Number of eXtreme Events (NXE); ¢ End of Rainy
Season (ERS); and d Number of Dry Days (NDD)

northwest, areas around Chilumba, NXE has decreased ~
5.4 days over 36 years. In the north, around Kopa Kopa and
Kapirinkonde, it has decreased ~ 7 days over 36 years. In the
south, around Tedzani, another significant decline in NXE
about 7 days over 36 years is highlighted. These small trends
in such a highly variable system can be significant if the re-
gion already has a very low instance of extreme events.

The LRS trend map displays very few significant changes
in the LRS mostly in the south. According to Figure 4, in the
south, around Sandama, the rainy season has shortened by
75.6 days over 36 years, while in Bangula it has shortened
by 54 days over the time span examined. Although there are a
few pixels scattered in the center and south of Malawi with a
positive trend. In these areas, the rainy season has been length-
ened to about 49.3 days over 36 years.

Discussion

Broad trends and variability

Comparing CHIRPS to gauge measurements and three other
gridded datasets helped us to understand if CHIRPS is

consistent and if the gridded datasets broadly agree. We found
that the higher spatial resolution datasets gave more consistent
results. As previously noted, reanalysis datasets show a higher
variability compared to gauge-based and satellite-based
datasets (Sun et al. 2018). PERSIANN-CDR (0.25° resolu-
tion) was unable to capture much of the variability of indices
found with the others. It overestimated rainfall amounts and
was inconsistent with the NXE gauge measurements com-
pared to the consistent trend among the other three
(CHIRPS, CHIRP, and ARC2). Trends in other indices such
as ORS, NDD, and ERS showed a similar pattern; as pixel size
reduced, variability increased. Fidelity to gauge measure-
ments is important, as gauge measurements remain the gold
standard. However, in the absence of gauge measurements, it
was difficult to discriminate which stations were accurate.
The null hypothesis posits no significant changes in differ-
ent rainfall indices. However, anecdotal reports motivated a
second look at these and other trends. Several studies have
found weak trends or statistical insignificance in the ORS,
ERS, LRS, and NXE, but limited to only gauge measure-
ments. Others (e.g., Tadross et al. 2009; Dunning et al.
2016) were continental in scale and not easily downscaled/
granular enough to look at Malawi specifically. Our results
broadly echoed the reported mismatch between meteorologi-
cal data and farmer’s perceptions of trends (Simelton et al.
2013). These results show that much of Malawi is indeed
experiencing some statistically significant changes in how
the rainy season behaves. NTX14 lacked the spatial extent
of gridded data needed to identify significant changes at the
a=0.05 level for ORS, ERS, and LRS in under-measured
locations. This study partly resolves this apparent discrepancy.

ORS . LRS
[1<03 Bl-21t0-15 <10 NXE P
[103t005 E9-1.5t0-1 EN-1.0t0-08 1-035t0-0.2 <06
B 051t00.7 H-1t0-05 B 0.810-06 B -0210-015 B 0.6 10 0.4
B 0.7 t0 0.96 £-05t0-0.1 -06t0-0.4 0,15 t0 -0.05 0.4 10-0.2
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Fig. 4 Spatial distribution of magnitude of trend using Sen’s slope estimator for ORS (Onset of Rainy Season), ERS (End of Rainy Season), LRS
(Length of Rainy Season), NXE (Number of eXtreme Events), and NDD (Number of Dry Days) at 5% level of significance
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Looking at the distributions of each index over time shows
consistently high interannual variability, as well as overall
variability of indices (not shown), consistent with Tadross
et al. (2009). Interannual variability in ORS is positive (i.e.,
increasing) and shows an overall later onset trend of 5 days/
decade, or ~ 20 days later since the 1980s for the green areas in
Figure 4. The interannual variability of NDD is small, with a
decreasing trend. Dry spells in the middle of the growing
season are reported in FEWS data (FEWSNET 2017) and by
farmers as being more common. The increasing trend in ERS
shows that the rainy season ending has a different pattern than
the ORS trend and clustered in the north; this may be due to
the post-break shift in rainfall forcing (Nicholson et al. 2014)
and needs to be examined further with a regional climate
model to understand how these shifts are unfolding.
Surprisingly, the NXE annual average shows decreasing
trends only. Interannual variability of LRS is consistent
throughout but a small region on the south which shows a
significant decreasing trend. This contrasts with more local-
ized reductions in LRS found by Fiwa et al. (2014).

Regional aspects

Figure 5 aggregates all five significant changes from Figure 4.
Figure 6 shows the map with boxplots of two selected

I ORS
I ERS
B LRS

W NDD
I NXE

NXE+ERS
NDD-+NXE
ORS+LRS
I NXE+NDD+ERS
[~--JLake Malawi

Fig. 5 Spatial aggregation of all statistically significant changes across
Malawi and their overlaps; ORS (Onset of Rainy Season), ERS (End of
Rainy Season), LRS (Length of Rainy Season), NXE (Number of
eXtreme Events), and NDD (Number of Dry Days)

@ Springer

statistically significant regions to better explore the variability
in North and South Malawi. The cutoff at the national bound-
ary artificially makes this inappropriate for robust trend detec-
tion, but some general patterns emerged. For ERS North, the
evident trend towards lowered ERS variability is spatially
consistent, the overall tendency is towards an earlier ending
date of 20 days earlier since the 1980s, although this is not
evident in the last 4 years. There is also interdecadal variation
in the interquartile range (IQR) of the boxplots showing in-
creased extremes in the late 1980s/early 1990s and again for
most of the 2000s.

For ERS South, which just encompasses the cluster show-
ing a positive (i.e., later cessation) trend in red in Figure 5, the
behavior is less clear. The ends of major ENSO events in 1998
and 2016 are associated with a very early ERS, but overall, the
positive trend in this region, since 2005, is more consistent.
Variability shows no evident pattern.

The regional boxplots for NXE are more consistent for
Northern and Southern Malawi, showing a reduction of both
mean and IQR. This reduction is more pronounced during
the last decade, with 0.2 events/year fewer. Both regions
show similar distributions, suggesting that the drivers behind
this decline in NXE are likely forced by global scale drivers
as modified by Indian ocean SSTs (e.g., Black et al. 2003;
Ummenhofer et al. 2018) and not by local-scale processes
like deforestation or land cover change. However, some in-
teresting differences occur; for example, the NXE North had
peak means in 1994, 1997, 2001, and 2009. The NXE South
had peaks in 1995, 1999, 2004, 2005, and 2010. These
patterns are also consistent with droughts occurring more
frequently than floods in East Africa (Williams and Funk
2011) and the intensification of the Indian Ocean Dipole
(Abram et al. 2008).

With statistically significant changes to ORS and ERS,
we expect LRS to change significantly as well. However,
this is not the case. For most locations, ORS and ERS
changed in the same direction, offsetting any LRS effect.
Because of the high variability in both ORS and ERS, the
only way a statistically significant change in LRS is likely
when both ORS and ERS act together to either expand or
contract LRS. Often for many locations, ORS and ERS
are shifted in the same direction—Ilater or earlier—and
those LRS showed no significant change.

Although about one-third of the country shows evidence
of some type of change (Fig. 5), nearly half of Malawi
shows significant change but significant only at the 0.10
level (not shown). Only the central region of Malawi is free
of any type of change, and many areas (especially in the
north) show multiple types of change. Most of northern
Malawi—where we find more significant changes in
rainfall—is not in the main maize belt, and its higher ele-
vation means that yield is constrained as much by temper-
ature limits as by water stress.
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Conclusion

Recent variability of crop yields in Malawi has been attributed to
differences in weather, seasonality, and aspects of human man-
agement. However, causes of yield change are difficult to attri-
bute, and farmers’ reports speculate that rainfall change is a major
factor. Here we present results to assess the nature and magnitude
of these rainfall shifts. We employed the daily CHIRPS dataset at
a spatial resolution of 0.05° from 1981 to 2018. We tested this
gridded dataset for validity against gauge measurements and
found that the correlation is high and likely an accurate dataset.
We also tested the trends using three other gridded datasets in-
cluding CHIRP, ARC2, and PERSIANN-CDR. We determined
that PERSIANN-CDR is too coarse to capture regional variabil-
ity well. CHIRPS was sufficient to estimate general trends over
Malawi for our five indices, and the trends (even when using
different gridded datasets) showed similar behavior with some
exceptions, particularly with extreme events. The NXE differ-
ences may be due to processes involved in building gridded
datasets, where on-the-ground data are sparse, or to ocean influ-
ences, or maybe some combination of the two.

The main purpose of showing the trends is to highlight the
fact that much of Malawi shows no significant change for any
single variable, but that there are cohesive clusters with sig-
nificant changes. Some of these most persistent changes in the
non-white regions of Fig. 5 showed high variability and some
dramatic localized shifts:

* Delayed ORS ranging from 18 to 35 days;
* Decreased NDD about 21.6 days;

» Earlier ERS ranging from 21.6 days in the northeast and
36 days in the south;

* A broad decline in NXE of between 5 and 7 days fewer;

» Spatially isolated but strong trends in LRS ranging from
54 days less to 49 days more.

Our results show that roughly one-third of Malawi has ex-
perienced at least one type of significant change during the
study period. Northern Malawi had ~ 2 fewer days/decade with
extreme events and an end of season ~ 5 days/decade earlier, as
well as ~ 5 fewer dry days/decade, although ARC2 and CHIRP
had the opposite trend. This is important to verify and needs
more ground gauge measurements. Central Malawi exhibited a
variety of changes over the study period including earlier ces-
sation in the central west, later onset in the central east, a longer
rainy season in the middle, and fewer extreme events in the
central east. The results are heterogeneous spatially and sug-
gest that broad scale forcings are not driving them.

Some of these numbers are dramatic due to treating a long-
term trend as linear; the actual data are very noisy with large
jumps and nonlinearities. Locally clustered changes in some
areas suggest that the drivers of change are likely coarse-scale.
We combined all significant changes in one map and provided
an aggregate zoning map of changes (Fig. 5). Accordingly,
Northern and Southern Malawi have been experiencing at
least one type of rainfall change, with central Malawi’s trends
not being significant. The most dominant changes are related
to ERS and NXE. This research followed from NTX14, which
found a shift to a later time in ORS and ERS, with no major
change in the LRS (and not statistically significant). However,
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Fig. 6 Regional boxplots for NXE (Number of eXtreme Events) and ERS (End of Rainy Season) for two grouped areas; ORS (Onset of Rainy Season),
ERS (End of Rainy Season), LRS (Length of Rainy Season), NXE (Number of eXtreme Events), and NDD (Number of Dry Days)

@ Springer



2052

N. Haghtalab et al.

this study found similar trends with statistical significance in
areas where no gauge measurements are available.

Our results do validate anecdotal farmers’ perception
somewhat, especially in southern Malawi, but the nature and
magnitude of those changes are not consistent across Malawi.
To support more practical applications, we are working on
using multiple approaches for determining onset with multiple
datasets in the future. We will expand this approach to more of
East Africa. Our use of a single algorithm limits the validity of
these results in that out onset dates may not account for erratic
starts to the rainy season. As a practical application for
farmers, we are mainly identifying which metrics of change
are consistent across datasets and worthy of continued explo-
ration for trend changes.

For future work, interannual and intra-seasonal variability
driven by synoptic drivers versus land-use drivers needs to be
explored with a regional climate model. This is in part to
understand how pre- and post-“break” rainfall seasons might
be responding to shifting circulations (Nicholson et al. 2014).
Also, finding hotspots of robust and significant changes, then
relating them to global forcings or to more localized drivers
(e.g., specific changes in land cover and land use at those
hotspots) would be helpful in assessing the roles and magni-
tudes of land-atmosphere feedbacks. In this way, understand-
ing connections between external forcings, land use change,
and rainfall together with improving drought-tolerant crop
varieties will give us more tools to help farmers adapt.
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