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A Structural Characterization of
Market Power in Electric Power Networks
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Abstract—We consider a market in which capacity-constrained generators compete in scalar-parameterized supply functions to serve

an inelastic demand spread throughout a transmission constrained power network. The market clears according to a locational

marginal pricing mechanism, in which the independent system operator (ISO) determines the generators’ production quantities to

minimize the revealed cost of meeting demand, while ensuring that network transmission and generator capacity constraints are met.

Under the stylizing assumption that both the ISO and generators choose their strategies simultaneously, we establish the existence of

Nash equilibria for the underlying market, and derive an upper bound on the allocative efficiency loss at Nash equilibrium relative to the

socially optimal level. We also characterize an upper bound on the markup of locational marginal prices at Nash equilibrium above their

perfectly competitive levels. Of particular relevance to ex ante market power monitoring, these bounds reveal the role of certain market

structures—specifically, the market share and residual supply index of a producer—in predicting the degree to which that producer is

able to exercise market power to influence the market outcome to its advantage. Finally, restricting our attention to the simpler setting

of a two-node power network, we provide a characterization of market structures under which a Braess-like paradox occurs due to the

exercise of market power—that is to say, we provide a necessary and sufficient condition on market structure under which the

strengthening of the network’s transmission line capacity results in the (counterintuitive) increase in the total cost of generation at Nash

equilibrium.

Index Terms—Electricity markets, supply function equilibrium, market power, efficiency loss, power networks, Braess’ paradox.
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1 INTRODUCTION

We consider an electricity market design in which power
producers compete in supply functions to meet an inelastic
demand distributed throughout a transmission constrained
power network. Such markets are vulnerable to manipula-
tion given the large leeway afforded producers in reporting
their supply functions [1]. The potential for market ma-
nipulation is amplified by the largely inelastic nature of
electricity demand, and the presence of hard constraints on
transmission and production capacity [2], [3]. For example,
the strategic withholding of generation capacity by certain
producers during the 2000-01 California electricity crisis
resulted in over 40 billion US dollars in added costs to
consumers and businesses, and the bankruptcy of Pacific
Gas and Electric [4], [5].

In this paper, we analyze a stylized market model in
which power producers are required to bid supply func-
tions belonging to a scalar-parameterized family defined
in the manner of [6], [7]. Working within this setting, we
elucidate the role of market structure in determining the
degree to which price-anticipating producers can exercise
market power to influence market allocations and prices at
equilibrium.

Related Work: The formal study of (infinite-dimensional)
supply function equilibria dates back to the seminal work
of Klemperer and Meyer [1], which revealed that essen-
tially any production profile can be supported by a supply
function equilibrium in the absence of demand uncertainty.
There has subsequently emerged a large body of litera-
ture investigating the existence, uniqueness, and allocative
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(in)efficiency of supply function equilibria given various
restrictions on the parametric form of supply functions that
producers can bid—see, for example, [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20]. Closest to the
market model considered in the present paper, Johari and
Tsitsiklis [6] propose a scalar-parameterized supply function
bidding mechanism in which N producers compete to meet
a known and inelastic demand. Under the assumption that
each producer has sufficient capacity to serve the demand
individually, they establish an upper bound on the market’s
corresponding price of anarchy given by 1+1/(N−2). More
recently, Xu et al. [7] provide an elegant generalization of
these results to the setting in which producers have limited
production capacities, which are encoded in the supply
functions that they bid.

While the previous supply function models offer a com-
pelling description of competition in single-node electricity
markets, the characterization and analysis of supply func-
tion equilibria becomes challenging in the presence of net-
work transmission constraints [21], [22], [23], [24], [25]. For
example, it was shown in [23] that the profit maximization
problem for each producer amounts to a mathematical pro-
gram with equilibrium constraints (MPEC), which is, in gen-
eral, a computationally intractable nonconvex optimization
problem. Additionally, it is well known that, even under the
restriction to linear or piecewise-constant supply functions,
supply function equilibria may fail to exist in simple two or
three-node networks [26], [27]. In an effort to address such
difficulties in analysis, there has emerged another stream of
literature that resorts to the so-called networked Cournot
model to characterize the strategic interaction between pro-
ducers in constrained transmission networks. We refer the
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reader to [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38] for recent advances.

Building on the aforementioned models of competition,
there are a number of papers in the literature that empiri-
cally investigate the potential emergence of market power
and assess the extent to which it exercised by producers
in actual electricity markets (e.g., by estimating price-cost
markups) [10], [13], [14], [39], [40], [41], [42], [43]. With
regard to market power monitoring in practice, it is not
uncommon for regulating authorities to employ a variety
of structural indices to both assess the potential for market
power ex ante, and to detect the actual exercise of market
power ex post—see Twomey et al. [44] for a comprehensive
overview. In particular, the residual supply index (RSI) has
empirically proven to be an effective predictor of market
power as measured by price-cost markup. For example,
empirical analyses of hourly market data carried out by
the California Independent System Operator (CAISO) reveal
a significant negative correlation between hourly RSI and
hourly price-cost markup [45]. Beyond empirical evidence,
however, there is little theoretical justification in the litera-
ture for the observed effectiveness of the RSI as a predictor
of market power. An exception to this claim is the earlier
work of Newbery [46], which establishes an explicit rela-
tionship between a producer’s Lerner index (at equilibrium)
and its RSI in the setting of a single-node Cournot oligopoly
model. A basic limitation of these results, however, is their
inapplicability to markets with perfectly inelastic demand.

Our Contribution: In this paper, we develop a rigor-
ous equilibrium analysis of the locational marginal pricing
mechanism in a general network setting, where generators
are required to report scalar-parameterized supply func-
tions. Adopting a solution concept in which the ISO and
generators move simultaneously, we derive upper bounds
on the worst-case efficiency loss and price markups seen
at Nash equilibria. Of particular relevance to the design
of methods for market power detection and mitigation,
these bounds shed light on the explicit role of (and inter-
play between) certain structural indices of market power—
specifically, the market share and residual supply index of
a producer—in predicting the extent to which that pro-
ducer might exercise market power to influence the market
outcome to its advantage, e.g., increasing price above the
competitive level (cf. Theorem 1 and Corollary 1). In Section
3.5, we empirically validate the predictive accuracy of our
theoretical upper bound on price markups using historical
spot price data from the 1999-2000 Great Britain Electricity
Pool. In Section 4, we specialize our equilibrium analysis
to the setting of a two-node power network, and provide a
characterization of market structures under which a Braess-
like paradox occurs due to the exercise of market power. That
is to say, we characterize a range of scenarios in which the
strengthening of the network’s transmission line capacity
results in the (counterintuitive) increase in the total cost of
generation at a Nash equilibrium.

Organization: In Section 2, we introduce the scalar-
parameterized supply function bidding mechanism, and
formulate the networked supply function game. Section 3
establishes the existence of Nash equilibria and the unique-
ness of the production profile that they induce; along with
providing an upper bound on the worst-case efficiency loss

and price markups incurred at Nash equilibria. In Section
4, we uncover the occurrence of a transmission expansion
paradox under a specialization of our model to the setting
of a two-node power network. Section 5 concludes the paper
with a discussion on directions for future research.

Notation: Let R denote the set of real numbers,
and R+ the set of non-negative real numbers. Denote
the transpose of a vector x ∈ R

n by x⊤. Let x−i =
(x1, .., xi−1, xi+1, .., xn) ∈ R

n−1 be the vector including all
but the ith element of x. Denote by 1 the vector of all ones.
Denote by (·)+ the positive part function. For a univariate
function f : R → R that is both left and right differentiable
at x = x, we denote by ∂−f(x)/∂x and ∂+f(x)/∂x the left
and right derivatives of f evaluated at x = x, respectively.
Finally, the operator ◦ denotes the Hadamard product be-
tween matrices of the same dimension.

2 MODEL AND FORMULATION

2.1 Supply and Demand Models

We consider the setting in which producers compete to
supply energy to an inelastic demand spread throughout
a transmission constrained power network. The network is
assumed to have a connected topology consisting of n trans-
mission buses (or nodes) connected by m transmission lines
(or edges). Let V := {1, . . . , n} denote the set of all nodes.
In addition, we assume that there are Ni producers located
at each node i ∈ V , and let N :=

∑n
i=1 Ni denote the total

number of producers. We specify the nodal position of each
producer according to an incidence matrix A ∈ {0, 1}n×N

that is defined as

Aij :=

{
1, if producer j is located at node i,

0, otherwise.
(1)

Let Ni := {j |Aij = 1} be the set of producers at node i.
We assume that each column of the incidence matrix A has
exactly one nonzero entry—that is, each producer is located
at exactly one node in the network. The formal treatment of
more general generation ownership structures—in which a
producer’s generation capacity is allowed to span multiple
nodes in the network—is left as a direction for future work.

The demand for energy is assumed to be perfectly inelas-
tic. Accordingly, we let d ∈ R

n
+ denote the demand profile

across the network, where di represents the demand for
energy at node i. We let xj be the production quantity of
producer j, and denote by Cj(xj) the corresponding cost
incurred by producer j for producing xj units of energy. We
denote by x := (x1, . . . , xN ) ∈ R

N the production profile.
We make the following standard assumption regarding the
producers’ cost functions.

Assumption 1 (Convex Production Costs). The production
cost Cj(xj) of each producer j ∈ {1, . . . , N} is a convex
function that satisfies Cj(xj) = 0 for xj ≤ 0, and Cj(xj) > 0
for xj > 0.

We also assume that each producer j ∈ {1, . . . , N} has a
maximum production capacity Xj ≥ 0. It is important to note
that Assumption 1 implicitly ignores producers’ “start-up
costs”, as the incorporation of nonzero startup costs will, in
general, result in the discontinuity of producers’ production
cost functions at the origin.
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2.2 The Economic Dispatch Problem

Ultimately, the objective of the independent system operator
(ISO) is to choose a production profile that minimizes the
true cost of serving the demand, while respecting the ca-
pacity constraints on transmission and generation facilities.
Doing so amounts to solving the so called economic dispatch
(ED) problem, which is formally defined as

minimize
x∈RN

N∑

j=1

Cj(xj)

subject to Ax− d ∈ P,

0 ≤ xj ≤ Xj , j = 1, . . . , N.

(2)

Here, P ⊆ R
n represents the feasible set of nodal power

injections over the network. Adopting the assumptions on
which the so called DC power flow model [47] is based, one
can represent the set P as a polytope

P =
{
y ∈ R

n | 1⊤y = 0, Hy ≤ c
}
,

where H ∈ R
2m×n denotes the shift-factor matrix, and

c ∈ R
2m the corresponding vector of transmission line

capacities. We will refer to the constraint 1
⊤y = 0 as

the power balance constraint, and the constraint Hy ≤ c as
the transmission capacity constraint. Any production profile
x∗ = (x∗

1, . . . , x
∗
N ) ∈ R

N that solves (2) is called efficient, and

the corresponding aggregate production cost
∑N

j=1 Cj(x
∗
j )

is referred to as the efficient cost.

2.3 Scalar-parameterized Supply Function Bidding

In practice, the ISO does not have access to the producers’
true cost information. Instead, the producers are asked to
report their private information to the ISO in the form of
supply functions, which specify the maximum quantity a
producer is willing to supply as a function of price. In
the majority of US electricity markets in operation today,
it is customary for the ISO to require that each producer
report a supply function in the form of a non-decreasing step
function that is parameterized according to a finite number
of price-quantity pairs [48]. The characterization of market
equilibria that might emerge under this class of supply
functions is analytically intractable, in general—even in the
absence of network transmission constraints. The difficulty
in analysis derives in large part from the discontinuity of
each producer’s residual demand function [49], [50]. As a
result, there is a need to resort to stylized supply function
equilibrium models, which appropriately restrict the class
of supply functions from which a producer is allowed to
choose its bid. In principle, restrictions on the class of supply
functions should be chosen in such a manner as to facilitate
mathematical analyses, while preserving the main structural
determinants of market power and the primary mechanisms
by which market power is exercised, e.g., through the “eco-
nomic withholding” of capacity.

With this motivation in mind, we investigate the setting
in which producers are allowed to bid scalar-parameterized
supply functions, and analyze the existence and efficiency of
market equilibria that result under price-anticipating behav-
ior in this setting. In particular, we adopt the approach of Xu

et al. [7], and consider a capacitated version of the single-
parameter supply function first proposed in [6]. Specifically,
each producer j reports a scalar parameter θj ∈ R+ that
defines a supply function of the form

Sj(p; θj) = Xj −
θj
p
, (3)

where Sj(p; θj) denotes the maximum quantity that pro-
ducer j is willing to supply at any price p > 0. Here, Xj

is the true production capacity of producer j. Note that,
implicit in this choice of supply function parameterization,
is the requirement that each producer offer its full capacity
into the power market. That is, we do not allow producers
to bid their capacities strategically, as the “physical with-
holding” of capacity is carefully monitored and prohibited
by the majority of ISOs in operation today [51], [52]. We
denote the strategy profile of all producers by the vector of
bids θ := (θ1, . . . , θN ) ∈ R

N
+ .

Given the producers’ reported bids θ, the ISO’s objective
is to choose a production allocation that minimizes the
reported aggregate production cost, subject to the network
transmission and production capacity constraints. The re-
ported cost function of producer j is defined as the integral of
its inverse supply function, which is given by

Ĉj(x; θj) :=

∫ x

0

θj
Xj − z

dz = θj log

(
Xj

Xj − x

)
. (4)

With these reported costs in hand, the ISO solves the
following economic dispatch (ED) problem:

minimize
x∈RN

N∑

j=1

Ĉj(xj ; θj)

subject to Ax− d ∈ P,

xj ≤ Xj , j = 1, . . . , N.

(5)

Naturally, the misrepresentation of private cost informa-
tion by producers has the potential to induce market
allocations—as determined by the solution of problem (5)—
that are highly suboptimal (inefficient) for the original ED
problem (2). In this paper, we will attempt to understand
the role played by different market and network structures
in determining the extent of such inefficiency at equilibrium.

2.4 Attributes of the Supply Function Parameterization

We make several remarks regarding the supply function
parameterization considered in this paper. First, notice that
each producer’s reported cost function (4) resembles a log-
arithmic barrier function, which encodes each producer’s
capacity constraint in a continuously differentiable fashion.
As a result, one can omit the production capacity constraint
associated with any producer j whose bid satisfies θj > 0
from the ED problem (5) without changing its optimal solu-
tion. This substantially simplifies the mathematical analysis
of the resulting supply function game. Second, the paramet-
ric family of supply functions considered in this paper is
expressive enough to capture market outcomes in which
producers can exercise market power via the “economic
withholding” of capacity. Qualitatively, the inverse supply
function under this choice of parameterization resembles the
so-called “hockey stick” offer strategy in which a producer
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offers its last few units of supply at prices that are well in
excess of its true marginal cost [53]. In this context, θj/p
may be interpreted as the amount of capacity withheld by
producer j when the price is p.

We also note that, in contrast to the supply functions
considered in this paper, the more widely studied family
of affine supply functions [9], [10], [11], [17] cannot cap-
ture the economic withholding of capacity, as producers’
inverse supply functions are necessarily affine under this
parameterization. Moreover, the analysis of affine supply
function equilibria is known to be analytically intractable in
the presence of production capacity constraints [11].

Remark 1 (Possibility of Negative Supply). A practical
drawback of the class of supply functions that we consider
is that they allow for the possibility of market allocations
(i.e., solutions of the ED problem (5)) in which a producer
has a negative supply allocation. We will, however, show
that such outcomes are not possible at equilibrium. Namely,
we show in Proposition 1 (in Section 3) and Proposition 2
(in Appendix A) that the production quantity of a producer
is guaranteed to be non-negative at Nash equilibria and
competitive equilibria, respectively. It is also worth noting
that the results of this paper continue to hold under a
modified class of supply functions given by Sj(p; θj) =

max
{
Xj −

θj
p , −ǫ

}
, where ǫ > 0 is an arbitrary positive

constant. We forgo this treatment for ease of exposition.

2.5 Nodal Decomposition of Economic Dispatch

In what follows, we develop a primal decomposition of
the ED problem (5), which reveals an explicit relationship
between an individual producer’s production quantity and
the aggregate production quantity at his node. We do so
by introducing an auxiliary variable q := Ax ∈ R

n, which
we refer to as the nodal supply profile. Here, qi =

∑
j∈Ni

xj

represents the aggregate production quantity at node i, and
serves as the coupling variable between the (network-wide)
ED problem and the nodal ED problems defined in terms
of the local variables {xj |j ∈ Ni} at each node i ∈ V .
More formally, the ED problem (5) admits an equivalent
reformulation as

minimize
q∈Rn

n∑

i=1

Gi(qi; θ)

subject to q − d ∈ P,

qi = 0, if Ni = 0,

qi ≤
∑

j∈Ni

Xj , if Ni > 0, i = 1, . . . , n,

(6)

where Gi(qi; θ) denotes the optimal value of the local ED
problem at node i. It is defined as

Gi(qi; θ) := min




∑

j∈Ni

Ĉj(xj ; θj)

∣∣∣∣∣∣

∑

j∈Ni

xj = qi,

xj ≤ Xj , ∀j ∈ Ni

}
.

(7)

Given a fixed nodal supply profile q, the network-wide
ED problem (6) can be separated across nodes as n local ED
problems (7). Moreover, the optimal solution to the local ED

problem (7) can be expressed in closed-form as an explicit
function of the nodal supply profile q. It is not difficult to
show that if

∑
j∈Ni

θj > 0, then the optimal solution to (7)
is unique and is given by

xj (qi, θ) = Xj −
θj∑

k∈Ni
θk

·




∑

k∈Ni

Xk


− qi


 (8)

for each j ∈ Ni. If, on the other hand,
∑

j∈Ni
θj = 0, then

any feasible solution to the local ED problem (7) is optimal.
We specify one optimal solution to (7) according to

xj (qi, θ) =
Xj∑

k∈Ni
Xk

· qi (9)

for each j ∈ Ni. With Eqs. (8)–(9) in hand, one can express
the production cost at node i in closed-form as Gi(qi; θ) =∑

j∈Ni
Ĉj(xj(qi, θ); θj).

Remark 2 (Nodal Decomposition of Strategy Profile). We
note that xj(qi, θ) depends on the global strategy profile
θ only through the local strategy profile {θk|k ∈ Ni}. This
reveals an important insight. Namely, given a fixed nodal
supply profile q, the explicit interaction between producers
decouples across the different nodes in the network. Such
insight will play an important role in our game theoretic
analysis in Section 3.

2.6 Networked Supply Function Game

We now present a game theoretic model of supply function
competition in a constrained power network. We define the
set of players as N := {0, 1, . . . , N}, where 0 denotes the
ISO, and j ∈ {1, . . . , N} denotes the jth power producer.
In practice, the producers and ISO engage in a sequential-
move game in which the producers simultaneously report
their bids, in anticipation of the ISO’s determination of
production quantities and nodal prices according to the
solution of the ED problem (5). Formally, this amounts to
a multi-leader, single-follower Stackelberg game. However,
given the generality of the setting considered in this paper, a
general equilibrium analysis of a sequential-move formula-
tion is seemingly out of reach. We, therefore, adopt a simpli-
fying assumption, and consider a model of competition that
assumes that the producers and ISO move simultaneously.1

1. The model of simultaneous movement adopted in this paper—in
which the ISO’s strategic variables are the nodal supply quantities—is
known to manifest in market equilibria that underpredict the intensity of
competition in power networks with large transmission capacities, as
compared to the more plausible sequential-move formulation [33], [36].
We refer the reader to [54, Sec. IV], which provides a detailed numerical
comparison of market equilibria that result under both the sequential
and simultaneous-move formulations in a two-node network. Both
models are shown to provide identical predictions if the transmission
line is congested under the simultaneous-move formulation. However,
if the line capacity is sufficiently large such that the transmission line
is guaranteed to never congest, then the simultaneous-move formula-
tion is shown to predict higher price markups and a greater loss of
allocative efficiency at equilibrium than is predicted by the sequential-
move formulation. In contrast, an alternative model of simultaneous
movement—in which the ISO’s strategic variables are the nodal price
differences—will result in market equilibria that coincide with those
predicted by the sequential-move formulation in networks with suffi-
ciently large transmission capacities, but will overpredict the intensity
of competition in networks with limited transmission capacities. We
refer the reader to Yao et al. [36] for a comprehensive discussion on the
relative advantages and disadvantages of these competing models of
simultaneous movement.
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Specifically, we assume that the producers choose their sup-
ply function bids θ concurrent with the ISO’s determination
of the nodal supply profile q. As a result, the networked
supply function game decouples across the nodes in the
network, where the producers at each node, taking the ISO’s
nodal supply quantity as given, compete only amongst
themselves in determining their supply function bids. Such
a requirement of simultaneous movement can be interpreted
as an assumption of “bounded rationality” in which the
producers only partially anticipate the impact of their bids
on the congestion charges (i.e., the nodal prices differences)
that result at equilibrium—see, for example, Metzler et
al. [32] and Yao et al. [36]. We note that, for reasons of
computational and analytical tractability, the assumption
of simultaneous movement is commonly employed in the
related literature investigating the use of Cournot models
to describe competition in transmission constrained power
markets [28], [32], [33], [35], [36].

We proceed with a formal description of the market
participants, their strategy sets, and payoff functions in the
networked supply function game.

2.6.1 Independent System Operator (ISO)

The ISO chooses the production quantities of the individual
producers to minimize the reported aggregate cost, while re-
specting transmission and production capacity constraints.
Given the nodal decomposition of the ED problem devel-
oped in Section 2.5, such choice can be reduced to the
determination of the nodal supply profile q ∈ R

n—which
we define to be the strategy of the ISO. Accordingly, we
define the payoff of the ISO as

π0 (q, θ) := −
n∑

i=1

Gi(qi; θ),

where his feasible strategy set is defined as

X0 :=



q ∈ R

n

∣∣∣∣∣∣
q − d ∈ P, qi ≤

∑

j∈Ni

Xj , if Ni > 0,

qi = 0, if Ni = 0

}
.

2.6.2 Producers and Nodal Pricing Mechanism

Each producer j ∈ Ni at node i ∈ V must choose a bid
parameter θj ≥ 0, which specifies his supply function.
With a slight abuse of notation, we denote the production
quantity of producer j by xj(q, θ) := xj(qi, θ), where the
right-hand side is specified according to Eqs. (8)–(9).

In this paper, we consider a nodal pricing mechanism, i.e.,
a mechanism in which prices are allowed to vary across
the different nodes in the network. In particular, if the bids
submitted at node i are such that

∑
j∈Ni

θj > 0, then the
corresponding price at node i is chosen to clear the market
at that node. That is to say, the price at node i is set as the
unique solution to the equation

∑
j∈Ni

Sj(p; θj) = qi. If, on
the other hand, the bids submitted at node i are such that∑

j∈Ni
θj = 0, then it follows that Sj(p; θj) = Xj for all

producers j ∈ Ni, whatever the price p. In this case, we set

the price equal to zero. It follows that the price at each node
i ∈ V is given by

pi (q, θ) =





∑
j∈Ni

θj(∑
j∈Ni

Xj

)
− qi

, if
∑

j∈Ni
θj > 0

0, if
∑

j∈Ni
θj = 0,

(10)

given a nodal supply profile q and bid profile θ.

Remark 3 (Locational Marginal Pricing). When the nodal
supply profile q ∈ R

n is chosen to solve the ED problem
(6), the nodal pricing mechanism (10) corresponds to the
so called locational marginal pricing (LMP) mechanism used
in many electricity markets that are in operation today. In
Appendix A, we show that the LMP mechanism ensures
the existence of an efficient competitive equilibrium in the
presence of transmission capacity constraints.

With the previous specification of nodal production
quantities and prices in hand, we are now in a position to
formally define the payoff of each producer j ∈ Ni as

πj (q, θ) := pi (q, θ)xj (q, θ)− Cj (xj (q, θ)) . (11)

Producer j’s feasible strategy set is given by Xj := R+.

2.6.3 Solution Concept

Let X :=
∏N

j=0 Xj denote the feasible strategy set for all
players, and π := (π0, π1, . . . , πN ) denote their collection
of payoff functions. It follows that the triple (N ,X , π)
defines a normal-form game, which we shall refer to as
the networked supply function game for the remainder of this
paper. We describe stable outcomes of the game (N ,X , π)
according to the Nash equilibrium solution concept. We
restrict our attention to pure strategy Nash equilibria in this
paper, as it is straightforward to show that the networked
supply function game does not admit any non-degenerate
mixed strategy Nash equilibria under Assumption 2 (which
ensures the strict concavity of producers’ payoff functions).

Definition 1 (Nash Equilibrium). The pair (q, θ) ∈ X is a
pure strategy Nash equilibrium (NE) of the game (N ,X , π) if
the payoff of the ISO satisfies

π0 (q, θ) ≥ π0 (q, θ) for all q ∈ X0,

and the payoff of each producer j ∈ {1, . . . , N} satisfies

πj (q, θj , θ−j) ≥ πj

(
q, θj , θ−j

)
for all θj ∈ Xj .

We let XNE ⊆ X denote the set of all pure strategy Nash
equilibria associated with the game (N ,X , π).

In Proposition 1, we show that the networked supply
function game is guaranteed to admit at least one pure
strategy Nash equilibrium if Assumptions 1-2 are satisfied.
Naturally, the production profile at a Nash equilibrium may
differ from the efficient production profile. We, therefore,
use the price of anarchy as a measure of the allocative efficiency
loss at a Nash equilibrium [55].

Definition 2 (Price of Anarchy). The price of anarchy (PoA)
associated with the game (N ,X , π) is defined according to

PoA := sup

{∑N
j=1 Cj (xj (q, θ))
∑N

j=1 Cj(x∗
j )

∣∣∣∣∣ (q, θ) ∈ XNE

}
,

where x∗ is the efficient production profile.
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3 NASH EQUILIBRIUM

In this section, we characterize the set of Nash equilibria of
the networked supply function game. Specifically, we char-
acterize the production profile and the nodal supply profile
at a Nash equilibrium as the unique optimal solutions to two
different convex programs, and provide upper and lower
bounds on the nodal prices at a Nash equilibrium in Section
3.2. In Sections 3.3–3.4, we use this characterization to derive
upper bounds on the worst-case allocative efficiency loss
and nodal price markups at a Nash equilibrium. The upper
bounds are explanatory in nature, as they reveal an explicit
relationship between a producer’s market power and clas-
sical structural indices of market power—specifically, the
producer’s market share and its residual supply index. Finally,
in Section 3.5, we empirically evaluate the predictive quality
of our theoretical upper bound on price markup using
historical spot price data from the 1999-2000 Great Britain
Electricity Pool.

3.1 Structural Market Power Indices

In what follows, we provide formal definitions of a pro-
ducer’s market share (MS) and residual supply index (RSI).
In order to define these market power indices, we first
introduce a (worst-case) measure of peak demand at a
node, which we refer to as the maximum nodal supply. More
precisely, the maximum nodal supply at node i ∈ V is
defined as

qmax
i := sup

{
qi
∣∣q ∈ R

n
+, q − d ∈ P

}
. (12)

Clearly, the maximum nodal supply at each node depends
on both the network’s transmission capacity and the de-
mand profile. And it holds that di ≤ qmax

i ≤ 1
⊤d for each

node i ∈ V . Using this (conservative) measure of peak
demand at a node, we define the market share of each
producer as follows.

Definition 3 (Market Share). The market share (MS) of a
producer j ∈ Ni at node i ∈ V is defined as

MSj :=
min{Xj , q

max
i }

qmax
i

.

Note that MSj ∈ [0, 1] for all producers, and that pro-
ducers with large (relative) market shares are more likely
to possess the ability to exercise market power. Despite its
prevelant use among market monitors, the market share
index has been criticized as an inadequate measure of mar-
ket power in unconcentrated markets in which the largest
producer has a small market share, but is close to being
pivotal [45], [56]. For instance, Sheffrin [57] argues that Cali-
fornia’s deregulated electricity markets were far from being
competitive during the 2000–2001 crisis, in spite of the fact
that no single producer had a market share exceeding 20%.
Sheffrin goes on to claim that, on many occasions, producers
with a market share less than 10% were able to influence the
market clearing price to an unwarranted degree.

In part, such critiques of the market share index have
served to motivate the design of alternative screening tools
for market power. One commonly used screen—originally
developed by the California Independent System Operator
(CAISO) [45]—is the residual supply index. Essentially, the

residual supply index of producer j measures the extent
to which the remaining aggregate production capacity in
the market (excluding producer j) is capable of meeting
demand. More precisely, we have the following definition.

Definition 4 (Residual Supply Index). For each node i ∈ V ,
the residual supply index (RSI) of each producer j ∈ Ni is
defined according to

RSIj :=

∑
k∈Ni

Xk −Xj

qmax
i

.

The residual supply index takes values RSIj ∈ [0,∞).
According to this definition, producer j is said to be pivotal
if RSIj < 1. That is, the removal of producer j from node
i precludes the remaining producers (at that node) from
meeting the maximum nodal supply at node i. Clearly, there
is potential for producer j to exercise considerable market
power if it is pivotal. If, on the other hand, RSIj ≫ 1,
then producer j is far from being pivotal, and will likely
have little market power to influence the market clearing
price. In practice, the residual supply index has proved to
be effective in predicting the exercise of market power in
electricity markets [45], [58], [59], [60], [61]. For example,
it was shown in [57] that market clearing prices are close
to being competitive on average if the RSI of the largest
producer is no less than 120%.

Remark 4 (Network Structure). We note that our definition
of residual supply index reflects the potential impact that
‘network structure’ will have on a producer’s market power
in a worst-case sense. First, each producer’s RSI is measured
with respect to a surrogate for its ‘nodal demand’ that
corresponds to the maximum power injection that can be
feasibly supported by the network at the producer’s node.
Second, the ‘residual production capacity’ at each node is
calculated with respect to the aggregate production capacity
at that node alone, and disregards the potential contribution
of production capacity from other nodes. Although they
might appear overly conservative at first glance, the com-
bination of these two approximations in characterizing a
producer’s residual supply index will play a central role in
our derivation of upper bounds on the worst-case allocative
efficiency loss and price markups seen at Nash equilibria in
the presence of network constraints.

3.2 Characterizing Nash Equilibrium

In Proposition 1, we establish the existence of Nash equilibria
for the networked supply function game. Additionally, we
characterize the nodal supply profile and the production
profile that result at a Nash equilibrium as the unique
optimal solutions to two different convex programs, and
provide upper and lower bounds on the nodal prices seen
at a Nash equilibrium. This characterization will play an
integral role in our subsequent derivation of upper bounds
on the worst-case allocative efficiency loss and nodal price
markups seen at Nash equilibria. We first require the fol-
lowing assumption, which limits the ‘local market power’
of each producer.

Assumption 2 (No Pivotal Supplier). The residual supply
index of each producer j ∈ {1, . . . , N} satisfies RSIj > 1.
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Essentially, Assumption 2 amounts to requiring that no
producer be pivotal.2 The requirement of no pivotal supplier
is enforced in electricity markets via the performance of
the so-called ‘pivotal supplier screen’. In the United States,
for instance, a producer is said to pass the pivotal supplier
screen if the annual peak demand can be met in the absence
of this producer [63, p. 18]. Additionally, the violation of
this assumption (i.e., the presence of pivotal suppliers) is
known to manifest in large price markups and allocative
efficiency loss at equilibrium—see [45], [64], [65], [66] for
several related theoretical and empirical analyses. Moreover,
in Appendix B, we provide an example of a two-node
network, which reveals that, in the absence of Assumption
2, the allocative efficiency loss at a Nash equilibrium can be
arbitrarily large for the game considered in this paper.

With Assumption 2 in hand, we state the following
result, which establishes the existence of Nash equilibria,
provides upper and lower bounds on nodal prices at a
Nash equilibrium, and shows that the production profile
and the nodal supply profile at a Nash equilibrium are
uniquely determined as the solutions of two explicit convex
programs.

Proposition 1 (Existence and Characterization of NE). Let
Assumptions 1-2 hold.

(i) The networked supply function game (N ,X , π) ad-
mits at least one pure strategy Nash equilibrium.

(ii) The production profile x (q, θ) ∈ R
N at a Nash equi-

librium (q, θ) is the unique optimal solution to the
following convex program:

minimize
x∈RN

n∑

i=1

∑

j∈Ni

C̃j(xj ; qi)

subject to Ax− d ∈ P,

0 ≤ xj ≤ Xj , j = 1, . . . , N,

(15)

where the modified cost functions {C̃j(xj ; qi)}
N
j=1 are

defined according to Eq. (13).

2. An important limitation of Assumption 2 is that it implicitly re-
quires that there is either no producer or at least two producers at each
node in the network. One possible way of ensuring the satisfaction of
Assumption 2, in practice, is to formulate the network model according
to a “reduction” of the actual power network, where a node in the
reduced network corresponds to a connected subnetwork of buses that
are connected by uncongested transmission lines. One approach to con-
structing such reduced network models is to leverage on common prior
knowledge of transmission lines that are “systematically congested” in
practice, as this would yield a reasonable approximation of the network
according to uncongested subnetworks connected by transmission lines
that are “normally” binding. We refer the reader to Yao et al. [62]
for a more detailed discussion on the treatment of “systematically
congested” transmission lines in constructing such network reductions.

(iii) The price pi(q, θ) at each node i ∈ V at a Nash
equilibrium (q, θ) satisfies

pi(q, θ) ∈

[
∂−C̃j

∂xj
,
∂+C̃j

∂xj

]
if xj(q, θ) ∈ [0, Xj), (16)

pi(q, θ) ∈

[
∂−C̃j

∂xj
, ∞

)
if xj(q, θ) = Xj , (17)

for each producer j ∈ Ni, where

∂−C̃j

∂xj
:=

∂−C̃j(xj(q, θ); qi)

∂xj
,

∂+C̃j

∂xj
:=

∂+C̃j(xj(q, θ); qi)

∂xj
.

(iv) The nodal supply profile q ∈ R
n at a Nash equilibrium

(q, θ) is the unique optimal solution to the following
convex program:

minimize
q∈R

n
+

n∑

i=1

G̃i(qi) subject to q ∈ X0, (18)

where the modified nodal cost functions {G̃i(qi)}
n
i=1 are

defined as

G̃i(qi) :=





∫ qi

0
gi(z)dz, if Ni > 0

0, if Ni = 0.
(19)

The function gi(z) is defined according to Eq. (14).

Several remarks are in order. First, Proposition 1 im-
plies that, although there may exist a multiplicity of Nash
equilibria, the production profile that results at a Nash
equilibrium is unique. Furthermore, Proposition 1 provides
an approach to the tractable calculation of the unique pro-
duction profile at a Nash equilibrium via the solution of
two finite-dimensional convex programs. That is, one first
solves problem (18) for the unique nodal supply profile
q at a Nash equilibrium; and then solves problem (15) to
determine the unique production quantity of each producer.
It is also worth noting that the modified nodal cost functions

{G̃i(·)}
n
i=1 admit closed-form expressions for a large family

of production cost functions Cj(·), e.g., piecewise-quadratic
functions.

We also note that Proposition 1 builds upon and gen-
eralizes existing results from the literature, [6, Thm. 1] and
[7, Thm 4.1], to accommodate the more general setting in
which there are transmission capacity constraints between
producers and consumers. We conclude this subsection with
a brief discussion of the key ideas used in proving Propo-
sition 1. The crux of the derivation relies on the suitable

C̃j(xj ; qi) :=

(
1 +

xj∑
k∈Ni,k 6=j Xk − qi

)
Cj(xj)−

(
1∑

k∈Ni,k 6=j Xk − qi

)∫ xj

0
Cj(z)dz (13)

gi(z) := max
j∈Ni




∂−C̃j(x̃j ; z)

∂xj

∣∣∣∣∣∣
x̃ ∈ argmin

x∈RN

{
∑

k∈Ni

C̃k(xk; z)

∣∣∣∣∣
∑

k∈Ni

xk = z and xk ≤ Xk ∀ k ∈ Ni

}
 (14)
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design of cost functions to ensure equivalence between the
stationarity conditions for problems (15) and (18) and the
best response conditions of all producers and the ISO at
Nash equilibrium. This enables the characterization of the
set of Nash equilibria according to the optimal solution
sets of the convex programs (15) and (18)—a technique
that is closely related to the use of potential functions in
characterizing Nash equilibria in potential games [67].

More specifically, given a nodal supply profile q, the

modified cost functions {C̃j(·)}
N
j=1 are constructed in such

a manner as to reflect the best response conditions for
all producers according to the stationarity conditions (Eq.
(16)–(17)) associated with problem (15). Since the modified
cost functions are parametric in the ISO’s decision q, we
construct another optimization problem (18) to enable the
computation of the nodal supply profile q at a Nash equilib-
rium. Towards this end, the modified nodal cost functions
{G̃i(·)}

n
i=1 are designed to ensure the equivalence between

the stationarity conditions for problem (18) and a certain
fixed point condition, which expresses the ISO’s decision q
as a best response to the best response of producers given
the nodal supply profile q. We refer the reader to Appendix
C for the complete proof of Proposition 1.

3.3 Bounding the Efficiency Loss

In Theorem 1, we provide an upper bound on the worst-case
allocative efficiency loss incurred at a Nash equilibrium. The
bound sheds light on the explicit role of market structure in
determining the impact of producers’ strategic behavior on
market (in)efficiency at equilibrium.

Theorem 1 (Price of Anarchy). Let Assumptions 1-2 hold.
The price of anarchy (PoA) associated with the game
(N ,X , π) satisfies

PoA ≤ 1 + max
j∈{1,...,N}

{
MSj

RSIj − 1

}
. (20)

Several important consequences can be deduced from
Theorem 1—the most of important of which relate to the
explicit role played by market structure in determining the
efficiency loss incurred at a Nash equilibrium. For instance,
the PoA bound in (20) reveals the inherent limitation of
the market share index, by itself, as an accurate predictor
of market power; and, provides a theoretical basis for the
empirically observed effectiveness of the residual supply in-
dex in predicting the actual exercise of market power (as
measured by price markups relative to perfectly competitive
levels [45], [59], [60]). In particular, the PoA bound ensures
a low efficiency loss for electricity markets in which all
participating power producers have large residual supply
indices—irrespective of their market shares. It is also worth
mentioning that, when all producers are concentrated at a
single node, we recover as a special case the PoA bound es-
tablished by Xu et al. [7] for single-node electricity markets.

Additionally, we note that the PoA bound in (20) hints
at the possibility of a Braess-like paradox, where an increase
in a network’s transmission capacity can result in the (coun-
terintuitive) increase in the aggregate cost of generation at
Nash equilibrium. The argument behind such a claim is that
an increase in a transmission line’s capacity can lead to an
increase in the maximum nodal supply at certain nodes in

the network. This, in turn, may increase the efficiency loss
at Nash equilibrium, as the PoA bound is non-decreasing
in the maximum nodal supply of each node. In Section 4.3,
we examine a two-node network, and establish a necessary
and sufficient condition (cf. Lemma 2) under which the
strengthening of the network’s transmission line capacity
results in this seemingly paradoxical behavior. We conclude
this subsection with a proof of Theorem 1.

Proof of Theorem 1. Let (q, θ) be a Nash equilibrium. Using
the assumption that each producer’s cost function Cj(xj) is
strictly positive and strictly increasing over (0,∞), we have
that

Cj(xj) ≤ Cj(xj) +
xjCj(xj)−

∫ xj

0 Cj(z)dz∑
k∈Ni,k 6=j Xk − qi

(21)

= C̃j (xj ; qi) (22)

≤ Cj(xj)

(
1 +

xj∑
k∈Ni,k 6=j Xk − qi

)
. (23)

Let x∗ be an efficient production profile. It holds that:

n∑

i=1

∑

j∈Ni

Cj(xj(q, θ))

≤
n∑

i=1

∑

j∈Ni

C̃j(xj(q, θ); qi) (24)

≤
n∑

i=1

∑

j∈Ni

C̃j(x
∗
j ; qi) (25)

≤
n∑

i=1

∑

j∈Ni

Cj(x
∗
j )

(
1 +

x∗
j∑

k∈Ni,k 6=j Xk − qi

)
(26)

≤
n∑

i=1

∑

j∈Ni

Cj(x
∗
j )·


1 + max

j∈Ni,i∈V





min {Xj , q
max
i }(∑

k∈Ni,k 6=j Xk

)
− qmax

i






 .

(27)

Here, inequality (24) follows from (21); inequality (25) fol-
lows from the optimality of x(q, θ) for problem (15); inequal-
ity (26) follows from (23); and, inequality (27) follows from
the feasibility of x∗ and q. It follows from inequality (27)
that the PoA at a Nash equilibrium is upper bounded by

PoA ≤ 1 + max
j∈Ni,i∈V





min {Xj , q
max
i }(∑

k∈Ni,k 6=j Xk

)
− qmax

i



 .

The desired result follows, as MSj = min {Xj , q
max
i } /qmax

i

and RSIj = (
∑

k∈Ni,k 6=j Xk)/q
max
i by definition.

3.4 Bounding the Price Markups

In this section, we derive upper bounds on the nodal price
markups at a Nash equilibrium in terms of the Lerner index—
a standard ex post measure of market power [68].

Definition 5 (Lerner Index). Given a strategy profile (q, θ) ∈
X , the Lerner index of producer j ∈ Ni at node i ∈ V is
defined as

LIj(q, θ) :=
pi(q, θ)− ∂+Cj(xj(q, θ))/∂xj

pi(q, θ)
.
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It is straightforward to show that, under the additional
assumption that (q, θ) ∈ XNE, the Lerner index of each
producer j is guaranteed to satisfy LIj(q, θ) ∈ [0, 1]. Ac-
cordingly, a Lerner index close to one (resp. zero) implies a
large (resp. small) price markup relative to the producer’s
true marginal cost. The following corollary to Proposition
1 shows that the Lerner index of each producer is upper
bounded at equilibrium.

Corollary 1. Let Assumptions 1-2 hold. At a Nash equilib-
rium (q, θ), the Lerner index of producer j ∈ Ni satisfies

LIj(q, θ) ≤
MSj

MSj +RSIj − 1
(28)

if xj(q, θ) < Xj . Furthermore, if producer j ∈ Ni has a
differentiable cost function and xj(q, θ) = qmax

i < Xj , then

LIj(q, θ) =
1

RSIj
. (29)

Corollary 1 reveals the potential for large price markups
at nodes that have a dominant producer with a small resid-
ual supply index. We provide empirical evidence in support
of this claim in Section 3.5 using historical spot price data
from the Great Britain Electricity Pool.

We also note that, in a related line of investigation,
Newbery [46] employs a Cournot oligopoly model to char-
acterize a producer’s Lerner index in terms of its RSI un-
der a variety of assumptions on the market structure. In
particular, under the assumption of symmetric producers,
Newbery shows the Lerner index of each producer to be
inversely proportional to its RSI. This functional relationship
is similar in structure to our upper bound on the Lerner in-
dex in Corollary 1, despite the differences in the underlying
models of competition employed. We note, however, that
implicit in the Cournot model, which Newbery treats, is the
requirement of nonzero demand elasticity. Consequently, his
results cannot be applied to the setting considered in this
paper, which considers a perfectly inelastic demand model.

Proof of Corollary 1. Let (q, θ) be a Nash equilibrium. It fol-
lows from condition (16) in Proposition 1 that

pi(q, θ) ≤
∂+C̃j(xj(q, θ); qi)

∂xj

if xj(q, θ) < Xj . Calculating the right derivative of the
modified cost function yields

pi(q, θ) ≤

(
1 +

xj(q, θ)∑
k∈Ni\{j}

Xk − qi

)
∂+Cj(xj(q, θ))

∂xj
.

(30)

It follows that the Lerner index of producer j satisfies

LIj(q, θ) = 1−
∂+Cj(xj(q, θ))/∂xj

pi(q, θ)

≤ 1−
1

1 + xj(q, θ)
/(∑

k∈Ni\{j}
Xk − qi

)

=
xj(q, θ)

xj(q, θ) +
∑

k∈Ni\{j}
Xk − qi

.

The Lerner index bound in (28) follows, as it necessarily
holds that qi ≤ qmax

i and xj(q, θ) ≤ min{Xj , q
max
i }.

Additionally, it follows from condition (16) in Proposi-
tion 1 that inequality (30) holds with equality if producer
j’s cost function Cj is differentiable at xj(q, θ). This implies
the satisfaction of Eq. (29) if xj(q, θ) = qmax

i < Xj .

3.5 Comparison to Historical Market Data

It follows from (30) that—at a Nash equilibrium (q, θ)—the
price at any node i ∈ V is upper bounded by

pi(q, θ) ≤

(
1 +

MSj
RSIj − 1

)
∂+Cj(xj(q, θ))

∂xj
, (31)

given any producer j ∈ Ni whose production capacity con-
straint is nonbinding at Nash equilibrium.3 In this section,
we evaluate the predictive accuracy of the price bound (31)
using market data from the Great Britain (GB) Electricity
Pool for the winter of 1999-2000. During this time period,
producers in the GB Electricity Pool were required to bid
supply functions in the form of nondecreasing step func-
tions, and were remunerated for their cleared production
quantities according to a uniform market clearing price set
at the pool level. See [69], [70] for a detailed description of
the underlying market mechanism in place in Great Britain
during this time period. Figure 1 contains a scatter plot
obtained from [59] of spot electricity prices (£/MWh) versus
the residual supply index of the producer with the largest
uncontracted production capacity during this time period.

In order to calculate the price bound (31), we require
estimates of the underlying producer’s true marginal cost
and market share. If we adopt a simplifying assumption
of linearity of the producer’s cost function, then the spot
prices in Figure 1 imply an upper bound on the producer’s
true marginal cost of £8/MWh. As for the producer’s mar-
ket share, we do not have access to information on the
producer’s uncontracted production capacity or detailed
demand data for the time period under consideration. We,
therefore, estimate the producer’s market share according to
a worst-case upper bound of MS ≤ 1. The combination of
these two approximations implies an upper bound on the
spot prices of the form

spot price ≤

(
RSI

RSI− 1

)
8 (£/MWh), (32)

which is valid for all RSI ∈ (1,∞).
We plot the estimated upper bound (32) against the

historical market data in Figure 1. Notice that, with the
exception of a few outliers in the data, the a priori upper
bound (32) and the upper envelope of the observed spot
prices are in near agreement. The near agreement between
our theoretical bound and the spot price data is particularly
striking in light of the apparent discrepancy between the
class of piecewise-constant supply functions employed in
the GB Electricity Pool and the scalar-parameterized family
considered in this paper. This empirical observation lends
some credence to the claim that the parametric family of
supply functions studied in this paper—although stylized in
nature—preserves the key structural determinants of market

3. We note that one such producer is guaranteed to exist at each
node given the satisfaction of Assumption 2, i.e., that there is no pivotal
producer in the market.
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Spot price vs Residual Supply Index GBWinter 1999-2000

RSI%

￡
/M
W
h

Spot price

Upper bound (32)

Fig. 1: A scatter plot obtained from [59] of spot electricity prices versus the residual supply index (RSI) of the generator
with the largest uncontracted production capacity in the Great Britain Electricity Pool during the 1999-2000 winter. The
solid line corresponds to the price upper bound (32).

power and the mechanisms by which market power is ex-
ercised, e.g., through the economic withholding of capacity
when (residual) supply is scarce.

4 A TRANSMISSION EXPANSION PARADOX

In this section, we restrict our attention to the setting of a
two-node power network, and provide a characterization of
market structures under which a Braess-like paradox emerges
due to the exercise of market power. Specifically, we char-
acterize a range of scenarios in which the strengthening
of the network’s transmission line capacity results in the
counterintuitive increase in the total cost of generation at the
Nash equilibrium.4

4.1 A Two-node Network

Consider a two-node power network with a nodal demand
profile given by d = (d1, d2) > 0, and a total demand of
D = d1 + d2. We denote the capacity of the transmission
line connecting the two nodes by c ∈ R+. We assume that
the producers that are common to a node are symmetric and
have linear cost functions. Specifically, we denote the pro-
duction capacity and cost function of each producer j ∈ Ni

at node i ∈ {1, 2} by Xj = Ki and Cj(xj) = (βixj)
+,

respectively. We enforce the satisfaction of Assumption 2
(i.e., that no producer be pivotal) by requiring that

Ki(Ni − 1)

D
> 1

4. Braess’s original paradox revealed that the addition of new roads
to a traffic network can manifest in the counterproductive effect of
increasing drivers’ total commute time at equilibrium [71].

for each node i ∈ {1, 2}. This condition, in combination with
the assumption of linear production costs, guarantees the
existence of a unique Nash equilibrium for the networked
supply function game.5 Finally, we assume that β2 > β1,
i.e., that node 2 is more expensive than node 1. It follows
that the efficient production cost can be calculated as

CostEff :=
N∑

j=1

Cj(x
∗
j ) = β1D + (β2 − β1)(d2 − c)+.

4.2 Economic Inefficiency of Transmission Expansion

In what follows, we derive a necessary and sufficient con-
dition on the market structure under which transmission
capacity expansion results in the increase in the total cost
of generation at Nash equilibrium. We first characterize the
locational marginal prices (LMPs) and nodal supply profile
that result at the Nash equilibrium for the system under
consideration. Let q = (q1, q2) be the nodal supply profile at
Nash equilibrium. It follows from Proposition 1 that q is the
unique optimal solution to the following convex program:

minimize
q∈R

2
+

2∑

i=1

∫ qi

0
βi

(
1 +

1/Ni

(Ni − 1)Ki/z − 1

)
dz

subject to q1 + q2 = D

|q1 − d1| ≤ c.

(33)

5. More specifically, the linearity of production costs implies the
differentiability of each modified cost function C̃j . This, in combination
with statement (iii) in Proposition 1, guarantees the uniqueness of the
LMPs at a Nash equilibrium. The uniqueness of both the LMPs and the
production profile at Nash equilibrium implies the uniqueness of Nash
equilibrium.
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Additionally, the LMPs at the unique Nash equilibrium can
be computed according to Eq. (60) in Appendix C. More
specifically, if there is positive production at node 2 at the
Nash equilibrium, i.e., q2 > 0, then the corresponding LMP
at each node i ∈ {1, 2} is given by

pi = βi

(
1 +

(
Ni

(
Ki(Ni − 1)

qi
− 1

))−1
)
. (34)

If instead q2 = 0, then the corresponding LMPs at each node
are identical and are given by

p1 = p2 = β1

(
1 +

(
N1

(
K1(N1 − 1)

D
− 1

))−1
)
. (35)

We let CostNE denote the aggregate production cost at
Nash equilibrium. It is given by

CostNE = β1q1 + β2q2.

In what follows, we investigate the behavior of the aggre-
gate production cost at Nash equilibrium as a function of the
network’s transmission capacity c. In particular, we provide
an explicit characterization of the right derivative of CostNE

with respect to c, and establish a necessary and sufficient
condition under which this derivative is guaranteed to
be strictly positive—that is, a condition under which the
aggregate production cost at the Nash equilibrium increases
with the transmission capacity.

Lemma 2. Let (p1, p2) denote the LMPs at the Nash equilib-
rium. Then

∂+CostNE

∂c
= (β2 − β1) · sgn(p1 − p2), (36)

where sgn(0) = 0. Additionally, p1 > p2 if and only if

1 +

(
N1

(
K1(N1 − 1)

d1 − c
− 1

))−1

1 +

(
N2

(
K2(N2 − 1)

d2 + c
− 1

))−1 >
β2

β1
. (37)

The proof of Lemma 2 is deferred to Appendix E. The
necessary and sufficient condition in (37) sheds light on
the role of market and network structures in driving the
emergence of this Braess-like paradox. Loosely speaking, if
the network’s transmission capacity is sufficiently limited,
and if the market power of producers (as measured by
the residual supply index) at node 1 is sufficiently large
relative to the market power of producers at node 2, then the
Nash equilibrium will result in LMPs that correspond to the
(inefficient) transmission of power from the high-marginal
cost node 2 to the low marginal cost node 1. For such market
structures, a small increase in the network’s transmission
capacity will induce an increase (resp. decrease) in the
production at node 2 (resp. node 1), thereby increasing the
aggregate production cost at Nash equilibrium.

It is worth noting that Sauma and Oren [72] uncover
an example of a similar transmission expansion paradox
in the context of a simultaneous-move networked Cournot
model. In contrast to their characterization, which is entirely
numerical in nature, Lemma 2 sheds light on how market
structure might induce market power that gives rise to

such counterintuitive market outcomes under transmission
expansion.

It is also possible to extend this line of reasoning to estab-
lish similar conditions under which an increase in ‘competi-
tion’ at a node 2 (as measured by the number of producers
at that node) results in the increased dispatch of the high
marginal cost generation at node 2, in place of the lower
marginal cost generation at node 1—thereby increasing the
total cost of generation at the Nash equilibrium. This seem-
ingly paradoxical behavior is in direct contrast to the more
commonly held belief that the market entry of additional
producers serves to improve economic efficiency, in general.
We note that Berry et al. first described such counterintuitive
‘network effects’ in their seminal paper [25], which employs
a computational approach to the calculation of linear supply
function equilibria in constrained transmission systems.

4.3 Numerical Analysis

We consider a two-node power network with a nodal de-
mand profile given by d1 = d2 = 1, and set the number
of producers at nodes 1 and 2 to be N1 = 3 and N2 = 10,
respectively. We fix the marginal cost of producers at node
1 to be β1 = 1, and vary the marginal cost of producers
at node 2 between two values β2 ∈ {1.15, 1.45}. All pro-
ducers are assumed to have identical production capacities
K1 = K2 = 0.51D.
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Fig. 2: We fix two different values of β2, and vary the
transmission capacity c from 0 to 0.8. Figures 2(a)-2(b) plot
the efficient cost and the aggregate production cost at Nash
equilibrium. Figures 2(c)-2(d) plot the nodal prices at Nash
equilibrium.

The leftmost plots in Figure 2 correspond to a marginal
cost of β2 = 1.15 at node 2. For this choice of marginal
cost, it is straightforward to show that condition (37) is
satisfied for all transmission capacity values c ∈ [0, 0.3].
Indeed, Figure 2(a) shows the aggregate production cost at
Nash equilibrium to be strictly increasing over this range of
capacity values, and constant for all other capacity values
greater than 0.3. It is also worth noting that Figure 2(c)
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corroborates the necessary and sufficient condition (37),
as the nodal prices satisfy p1 > p2 for all transmission
capacities less than or equal to 0.3 The rightmost plots in
Figure 2 correspond to a marginal cost of β2 = 1.45 at
node 2. It is straightforward to show that, for this choice
of marginal cost, condition (37) is violated for all transmis-
sion capacities c ≥ 0. Accordingly, Figure 2(b) reveals the
aggregate production cost to be monotone nonincreasing in
the network’s transmission capacity.

5 CONCLUSION

We conclude the paper with a brief discussion surrounding
possible directions for future research. First, the equilibrium
analysis of the supply function game considered in this
paper relies on the assumption that the nodal demand
profile is both inelastic and known. It would be of interest
to generalize our analysis to the setting in which the de-
mand exhibits price elasticicity and/or randomness in the
values it takes; and quantify the extent to which uncertainty
and price elasticity of demand serves in mitigating the
exercise of market power by strategic power producers—
in a similar spirit to prior analyses of supply function
equilibria in the absence of network constraints [1], [10].
Second, our analysis relies on the simplifying assumption
that producers and the ISO choose their strategies simul-
taneously. Such an assumption facilitates the tractability
of equilibrium analysis, which, in turn, provides structural
insights on the influence of generator capacity and transmis-
sion constraints on the ability of producers to exert market
power. Nevertheless, it is well understood in the literature
that the assumption of simultaneous movement between
the ISO and producers—as compared to the more plausi-
ble sequential-move formulation—will manifest in market
equilibria that underpredict the intensity of competition in
power networks with little to no transmission congestion
[33], [36]. It would, therefore, be of interest to investigate
the design of solution concepts that better approximate the
sequential nature of the interaction between producers and
the ISO, while preserving tractability of analysis. As one
possible starting point, it would be interesting to analyze an
alternative model of simultaneous movement in which the
ISO’s strategic variables are the nodal price differences, as
opposed to nodal supply quantities. In the specific context of
networked Cournot models, such approximations have been
previously shown to provide more accurate predictions of
market outcomes in networks with little to no congestion—
see, for example, Yao et al. [36]. Third, our analysis of the
supply function game is static in nature. As to whether or
not these equilibria can be attained as the stable outcome
of a natural learning dynamic remains unknown. Finally, it
would be of interest to test the predictive accuracy of the
theoretical bounds established in this paper against more
comprehensive market data drawn from LMP-based energy
markets currently in operation.
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APPENDIX A

COMPETITIVE EQUILIBRIUM

Under the assumption of price-taking behavior, we establish
both the existence and the efficiency of competitive equilibria,
which we define as follows.

Definition 6 (Competitive Equilibrium). The nodal price
profile p > 0 and producers’ bid profile θ ≥ 0 constitute a
competitive equilibrium (CE) if producers are maximizing their
profits given the nodal prices p, i.e.,

θj ∈ argmax
{
pi · Sj

(
θj , pi

)
− Cj

(
Sj

(
θj , pi

)) ∣∣ θj ≥ 0
}

for each node i ∈ V and producer j ∈ Ni; and the market
clears at each node i ∈ V according to

∑

j∈Ni

Sj(θj , pi) = qi,

where the nodal supply profile q solves the ISO’s economic
dispatch (ED) problem

q ∈ argmin

{
n∑

i=1

Gi(qi; θ)

∣∣∣∣∣ q ∈ X0

}
.

At a competitive equilibrium, each producer maximizes
its profit while taking its nodal price as given. In addition,
the market clears at each node in the network according
to a nodal price profile, which induces a nodal supply
profile that solves the ISO’s ED problem. Next, we show
that competitive equilibria exist, and that any competitive
equilibrium is efficient.

Proposition 2 (Existence and Efficiency of CE). Let Assump-
tion 1 hold, and assume that the ED problem (2) is strictly
feasible. There exists at least one competitive equilibrium.
Furthermore, the production profile at any competitive equi-
librium is efficient.

We omit the proof of Proposition 2, as it is straight-
forward to establish equivalence between the conditions
for competitive equilibrium in Definition 6 and the (KKT)
optimality conditions for the original ED problem (2). It
is important to mention that the guaranteed efficiency of
competitive equilibrium is a consequence of the particular
nodal pricing mechanism that we employ—namely, loca-
tional marginal pricing. We note that this is in contrast to the
formulation of [20], which analyzes linear supply function
equilibrium in a transmission constrained power network
under a uniform pricing mechanism. In the presence of trans-
missions constraints, uniform pricing mechanisms do not
guarantee the existence or the efficiency of a competitive
equilibrium, in general.

APPENDIX B

EXAMPLE: UNBOUNDED PRICE OF ANARCHY

Consider a two-node power network with a nodal demand
profile given by d = (D/2, D/2), where D > 0. Assume
that the transmission line has capacity at least c > D/2, and
that there are at least two producers at each node in the
network. Moreover, producers that are common to a node
are assumed to have identical production capacities. That is,
we assume that Xj = Ki for each producer j ∈ Ni at each

node i ∈ {1, 2}. The production capacities are assumed to
satisfy

N1K1

D
≥ 1 >

(N1 − 1)K1

D
and

(N2 − 1)K2

D
> 1.

It follows that Assumption 2 is violated, as RSIj < 1 for all
producers j ∈ N1. Define the production costs of producers
according to

Cj(xj) =

{
(xj)

+
, if j ∈ N1

(β(t)xj)
+
, if j ∈ N2

where

β(t) =

(
1 + t/N1

(N1−1)K1−t

)

(
1 + (D−t)/N2

(N2−1)K2−(D−t)

)

for some parameter t satisfying

(N1 − 1)K1

1 + N2

N1

(
(N2−1)K2

D − 1
) < t < (N1 − 1)K1.

This guarantees that β(t) > 1. Given these assumptions,
one can verify that the following strategy profile (q, θ)
constitutes a Nash equilibrium for the game:

q = (t,D − t)

θj =

(
1 +

t/N1

(N1 − 1)K1 − t

)(
Ki −

qi
Ni

)

for all j ∈ Ni and i ∈ {1, 2}. The production profile at the
Nash equilibrium (q, θ) is therefore given by

xj(q, θ) =

{
t/N1, if j ∈ N1

(D − t)/N2, if j ∈ N2.

Also, the fact that N1K1 ≥ D implies that an efficient
production profile is given by

x∗
j =

{
D/N1, if j ∈ N1

0, if j ∈ N2.

The price of anarchy associated with this game, therefore,
satisfies

PoA ≥
t+ β(t)(D − t)

D
,

which implies that PoA → ∞ as t → (N1 − 1)K1.

APPENDIX C

PROOF OF PROPOSITION 1

The proof is divided into five parts. In part 1, we present
necessary and sufficient optimality conditions for each pro-
ducer’s profit maximization problem and the ISO’s eco-
nomic dispatch (ED) problem. We use these conditions in
parts 2 and 3 to show that the production profile, x(q, θ),
and nodal supply profile, q, at a Nash equilibrium (q, θ)
are the unique optimal solutions to problem (15) and (18),
respectively. In part 4, we show that the nodal price pi(q, θ)
at each node i ∈ V at a Nash equilibrium (q, θ) satisfies
conditions (16)–(17). In part 5, we establish the existence of
a Nash equilibrium by construction. Throughout the proof,
we will assume that there are at least two producers at each
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node in the network, as this will serve to streamline the
exposition. It is straightforward to generalize the proof to
accommodate scenarios in which Ni = 0 for certain nodes
i ∈ V in the network.

Part 1 (Optimality Conditions): Lemma 3 provides a set
of necessary and sufficient optimality conditions for each
producer’s profit maximization problem. Its proof is analo-
gous to step 1 of the proof of [7, Thm. 4.1], and is, therefore,
omitted for the sake of brevity.

Lemma 3. Let Assumptions 1-2 hold, and let q ∈ X0 ∩ R
n
+.

For each producer j ∈ Ni at each node i ∈ V ,

πj (q, θj , θ−j) ≥ πj

(
q, θj , θ−j

)
∀ θj ∈ Xj

if and only if the following conditions are satisfied:

xj(q, θ) ∈ [0, Xj ], (38)

and

pi(q, θ) ∈

[
0,

∂+C̃j

∂xj

]
if xj(q, θ) = 0, (39)

pi(q, θ) ∈

[
∂−C̃j

∂xj
,
∂+C̃j

∂xj

]
if xj(q, θ) ∈ (0, Xj), (40)

pi(q, θ) ∈

[
∂−C̃j

∂xj
, ∞

)
if xj(q, θ) = Xj , (41)

where the production quantity xj(q, θ) is defined according to
Eqs. (8)-(9), and the nodal price pi(q, θ) is defined according
to Eq. (10). The left and right partial derivatives of the
modified cost function are calculated at:

∂−C̃j/∂xj := ∂−C̃j(xj(q, θ); qi)/∂xj ,

∂+C̃j/∂xj := ∂+C̃j(xj(q, θ); qi)/∂xj .

Lemma 4 provides a set of necessary and sufficient
optimality conditions for the ISO’s ED problem (6).

Lemma 4. Let (q, θ) ∈ X , and assume that

qi <
∑

j∈Ni

Xj (42)

for each node i ∈ V . Then, the nodal supply profile q is the
unique optimal solution to problem (6) if and only if there
exist multipliers λ ∈ R and µ ∈ R

2m
+ that satisfy

p(q, θ) = λ1−H⊤µ, (43)

µ ◦ (H(q − d)− c) = 0, (44)

where the vector p(q, θ) := (p1(q, θ), . . . , pn(q, θ)) is deter-
mined according to Eq. (10).

Proof of Lemma 4. Problem (6) is a convex program with
linear constraints. It follows that the Karush-Kuhn-Tucker
(KKT) conditions are both necessary and sufficient for opti-
mality. That is to say, q ∈ X0 is optimal if and only if there
exist Lagrange multipliers λ ∈ R and µ ∈ R

2m
+ associated

with the constraints 1
⊤(q − d) = 0 and H(q − d) ≤ c,

respectively, which satisfy the stationarity conditions

∇

(
n∑

i=1

Gi(qi; θ)

)
− λ1+H⊤µ = 0, (45)

and the complementary slackness conditions

µ ◦ (H(q − d)− c) = 0.

Also, it is straightforward to show that

Gi(qi; θ) =
∑

j∈{Ni|θj>0}

θj log

(
Xj

∑
k∈Ni

θk

θj
(∑

k∈Ni
Xk − qi

)
)

if
∑

j∈Ni
θj > 0, and Gi(qi; θ) = 0 if

∑
j∈Ni

θj = 0. Hence,
each function Gi is differentiable in qi if inequality (42) is
satisfied. A direct calculation shows that

∇

(
n∑

i=1

Gi(qi; θ)

)
= p(q, θ), (46)

where the vector p(q, θ) is defined according to Eq. (10).

Part 2 (Production Profile at Nash Equilibrium): Let (q, θ)
be a Nash equilibrium. We now prove that the production
profile x(q, θ) (defined according to Eqs. (8)-(9)) is the
unique optimal solution to problem (15). First, it is straight-

forward to show that the modified cost function C̃j(xj ; qi)
is strictly convex in xj over [0, Xj ], given the satisfaction
of Assumptions 1 and 2. This—in combination with fact
that the feasible region of problem (15) is defined in terms
of linear constraints—implies that the KKT conditions (47)-
(53) are necessary and sufficient for optimality. Specifically, a
production profile x ∈ R

N is optimal for problem (15) if and
only if there exist Lagrange multipliers λ ∈ R and µ ∈ R

2m
+

such that the following conditions hold.

(i) Primal feasibility:

Ax− d ∈ P, (47)

xj ∈ [0, Xj ] for j = 1, . . . , N. (48)

(ii) Stationarity:

pi ∈

(
−∞,

∂+C̃j(xj ; qi)

∂xj

]
if xj = 0, (49)

pi ∈

[
∂−C̃j(xj ; qi)

∂xj
,
∂+C̃j(xj ; qi)

∂xj

]
if xj ∈ (0, Xj), (50)

pi ∈

[
∂−C̃j(xj ; qi)

∂xj
, ∞

)
if xj = Xj , (51)

for each i ∈ V and j ∈ Ni, where the vector p ∈ R
n is

defined according to

p := λ1−H⊤µ. (52)

(iii) Complementary slackness:

µ ◦ (H(Ax− d)− c) = 0. (53)

We now employ Lemmas 3 and 4 to show that the KKT
conditions are satisfied at x = x(q, θ).

Primal feasibility: Since (q, θ) is a Nash equilibrium, it
follows from Lemma 3 that conditions (38)-(41) are satisfied
for each j ∈ {1, . . . , N}. The combination of condition (38)
and the fact that Ax(q, θ) = q ∈ X0 implies the satisfaction
of the primal feasibility conditions (47)-(48).
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Stationarity: Inequality (38) and Assumption 2 together
guarantee that

0 ≤ qi ≤ qmax
i <

∑

j∈Ni

Xj − max
k∈Ni

Xk (55)

for each node i ∈ V . It follows that qi <
∑

j∈Ni
Xj for

each node i ∈ V . And, since (q, θ) is a Nash equilibrium,
it follows from Lemma 4 that there exist multipliers λ ∈ R

and µ ∈ R
2m
+ that satisfy Eqs. (43) and (44). The satisfaction

of Eq. (43), in combination with the conditions (39)–(41), im-
plies that (x(q, θ), λ, µ) satisfy desired the set of stationarity
conditions (49)–(52).

Complementary slackness: Since (q, µ) satisfy Eq. (44) and
q = Ax(q, θ), it follows that

µ ◦ (H(Ax(q, θ)− d)− c) = 0. (56)

Part 3 (Nodal Supply Profile at Nash Equilibrium): Let (q, θ)
be a Nash equilibrium. We now prove that the nodal supply
profile q is the unique optimal solution to problem (18).
At the heart of our proof is the following technical lemma,

which establishes the strict convexity of the function G̃i over
a superset of [0, qmax

i ], and characterizes its left and right
derivatives. Its proof can be found in Appendix D.

Lemma 5. Let Assumption 1 hold. For each node i ∈ V ,
define the constant

Qi :=
∑

j∈Ni

Xj − max
k∈Ni

Xk,

and define the set Λi(z) according to Eq. (54) for each z ∈
[0, Qi). All of the following statements are true:

(i) The set Λi(z) is compact for each z ∈ [0, Qi).

(ii) The function G̃i(qi) is strictly convex on [0, Qi).

(iii) The left and right derivatives of the function G̃i(qi)
satisfy

∂−G̃i(z)

∂qi
= inf Λi(z) ∀z ∈ (0, Qi),

∂+G̃i(z)

∂qi
= supΛi(z) ∀z ∈ [0, Qi).

Assumption 2 implies that any feasible solution q ∈ X0∩
R
n
+ to problem (18) is guaranteed to satisfy

0 ≤ qi ≤ qmax
i < Qi (57)

for each node i ∈ V . This implies that the objective function
of problem (18) is strictly convex over its feasible region,
which is defined by linear constraints. Therefore, q is the
unique optimal solution to problem (18) if and only if there
exist Lagrange multipliers λ ∈ R and µ ∈ R

2m
+ such that

(q, λ, µ) satisfy the following KKT conditions.

(i) Primal feasibility: q ∈ X0 ∩ R
n
+.

(ii) Stationarity:

pi ∈

(
−∞,

∂+G̃i(qi)

∂qi

]
if qi = 0, (58)

pi ∈

[
∂−G̃i(qi)

∂qi
,
∂+G̃i(qi)

∂qi

]
if qi > 0, (59)

for each node i ∈ V , where

p = λ1−H⊤µ. (60)

(iii) Complementary slackness:

µ ◦ (H(q − d)− c) = 0. (61)

The assumption that (q, θ) is a Nash equilibrium implies
that q ∈ X0 ∩ R

n
+ (cf. the inequality in (55)). We now

establish the existence of Lagrange multipliers λ ∈ R and
µ ∈ R

2m
+ such that the stationarity and complementary

slackness conditions are satisfied at

pi(q, θ) ∈

(
−∞,

∂+G̃i(qi)

∂qi

]
if qi = 0, (62)

pi(q, θ) ∈

[
∂−G̃i(qi)

∂qi
,
∂+G̃i(qi)

∂qi

]
if qi > 0, (63)

for each node i ∈ V , and

p(q, θ) = λ1−H⊤µ, (64)

µ ◦ (H(q − d)− c) = 0. (65)

Given the assumption that (q, θ) is a Nash equilibrium, it
follows from Lemma 3 that conditions (39)–(41) are satisfied
for each j ∈ Ni and i ∈ V . It is straightforward to verify
that this implies that pi(q, θ) ∈ Λi(qi) for all i ∈ V . It
follows from Lemma 5 that conditions (62) and (63) are
both satisfied. Finally, Lemma 4 guarantees the existence
Lagrange multipliers λ ∈ R and µ ∈ R

2m
+ such that Eqs.

(64)–(65) are satisfied.

Part 4: (Nodal Price at Nash Equilibrium): Let (q, θ) be a
Nash equilibrium. The fact that the nodal price pi(q, θ) at
each node i ∈ V satisfies conditions (16)–(17) immediately
follows from conditions (39)–(41) in Lemma 3, as the left
derivative of the modified cost function C̃j(xj ; qi) evaluated

at xj = 0 satisfies ∂−C̃j(0; qi)/∂xj = 0.

Part 5 (Construction of a Nash Equilibrium): Before pro-
ceeding with the proof, we first provide a sketch of the main
arguments employed. We establish the existence of a Nash
equilibrium by construction. We do so, in part 5-A, by first
constructing a nodal supply profile q ∈ R

n
+ as the unique op-

timal solution to problem (18). Next, we solve an equivalent
reformulation of problem (15) to obtain a production profile
x ∈ R

N
+ , and define a nodal price vector p ∈ R

n
+ according

to a linear combination of its optimal Lagrange multipliers.

Λi(z) :=



λ ∈ R

∣∣∣∣∣∣
∃x ∈ R

N such that
∑

j∈Ni

xj = z and xj ∈ argmin
xj≤Xj

{
C̃j(xj ; z)− λxj

}
∀ j ∈ Ni



 (54)
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Using the resulting production quantities and nodal prices,
we construct a producer strategy profile according to

θj := pi(Xj − xj)

for each producer j ∈ Ni and node i ∈ V . In part 5-
B, we complete the proof by showing that the necessary
and sufficient conditions for Nash equilibrium established
in Lemmas 3 and 4 are indeed satisfied by the pair (q, θ) as
constructed.

Part 5-A (Constructing a Candidate NE): Let q be the
unique optimal solution to problem (18). Consider the fol-
lowing relaxation to problem (15), where we have dropped
the nonnegativity constraints on the production quantities.

minimize
x∈RN

n∑

i=1

∑

j∈Ni

C̃j(xj ; qi)

subject to Ax− d ∈ P,

xj ≤ Xj , j = 1, . . . , N.

(66)

Assumptions 1 and 2 guarantee that each modified cost

function C̃j(xj ; qi) is strictly convex and strictly increasing
in xj over [0, Xj ], and is equal to zero for all values xj ≤ 0.
This guarantees that problem (66) has a unique optimal
solution that is nonnegative elementwise, which, in turn,
implies the optimality of this solution for problem (15).

Let x ∈ R
N
+ be the unique optimal solution to problem

(66), which is a convex program with linear constraints. It
follows that there exist Lagrange multipliers λ ∈ R and µ ∈
R
2m
+ such that the following conditions are satisfied.

(i) Stationarity: For each i ∈ V and j ∈ Ni,

pi ∈

[
∂−C̃j(xj ; qi)

∂xj
,
∂+C̃j(xj ; qi)

∂xj

]
if xj < Xj (67)

pi ∈

[
∂−C̃j(xj ; qi)

∂xj
, +∞

)
if xj = Xj (68)

where

p := 1λ−H⊤µ. (69)

(ii) Complementary slackness:

µ ◦ (H(q − d)− c) = 0. (70)

The vector p that we specify in Eq. (69) will play the role of
a ‘nodal price vector’ in constructing producers’ strategy
profile. Specifically, we construct the producers’ strategy
profile θ according to

θj := pi(Xj − xj)

for each producer j ∈ Ni and node i ∈ V . As constructed,
the producers’ strategy profile θ is guaranteed to be non-
negative elementwise, as the inequalities (67)–(68) guarantee

that pi ≥ 0 for each i ∈ V , since each modified function C̃j

is non-decreasing over (−∞, Xj ].

Part 5-B (Checking Necessary and Sufficient NE Conditions):
Recall that x ∈ R

N
+ and q ∈ R

n
+ are the unique optimal

solutions to problems (66) and (18), respectively. It is not
difficult to show that x and q are related according to

Ax = q.

Using this fact, it is straightforward to verify that the nodal
prices p(q, θ) and production quantities x(q, θ) induced by
(q, θ) satisfy

pi(q, θ) = pi ∀ i ∈ V, (71)

xj(q, θ) = xj ∀ j ∈ {1, . . . , N}, (72)

where recall that pi(q, θ) is defined according to Eq. (10),
and xj(q, θ) is defined according to Eqs. (8)–(9).

To complete the proof, it suffices to show that the
necessary and sufficient conditions for Nash equilibrium
established in Lemmas 3 and 4 are satisfied by the pair (q, θ)
as constructed. This is immediate to see upon examination
of Eqs. (67)–(72). This completes the proof that (q, θ) is a
Nash equilibrium.

APPENDIX D

PROOF OF LEMMA 5

Proof of statement (i): Fix i ∈ V and z ∈ [0, Qi). Consider the
following convex optimization problem:

minimize
x∈RN

∑

j∈Ni

C̃j(xj ; z)

subject to
∑

j∈Ni

xj = z

xj ≤ Xj , if j ∈ Ni

xj = 0, if j ∈ {1, . . . , N} \ Ni,

(73)

It follows from Assumption 1 that the modified cost function

C̃j is strictly convex and strictly increasing over [0, Xj ], and

satisfies C̃j(xj ; z) = 0 for xj ≤ 0. This guarantees that
problem (73) admits a unique optimal solution x̃(z) that
is non-negative element-wise. Notice that the set Λi(z) is
the set of optimal Lagrange multipliers associated with the
nodal power balance constraint

∑
j∈Ni

xj = z for problem
(73). It can, therefore, be expressed as

Λi(z) =

{
λ

∣∣∣∣∣
∂−C̃j(x̃j(z); z)

∂xj
≤ λ ≤

∂+C̃j(x̃j(z); z)

∂xj
,

∀j ∈ Ni

}
.

The above expression can be simplified to

Λi(z) =

[
max
j∈Ni

{
∂−C̃j(x̃j(z); z)

∂xj

}
, min
j∈Ni

{
∂+C̃j(x̃j(z); z)

∂xj

}]
.

(74)

It follows that set Λi(z) is compact for every z ∈ [0, Qi).

Proof of statement (ii): It suffices to show that gi(z) is
strictly increasing in z over (0, Qi). Fix 0 < z < y < Qi. We
now show that gi(z) < gi(y). First note that gi(z) satisfies

gi(z) = max
j∈Ni

{
∂−C̃j(x̃j(z); z)

∂xj

}
= inf Λi(z), (75)

where

∂−C̃j(x̃j(z); z)

∂xj
=

∂−Cj(x̃j(z))

∂xj

(
1 +

x̃j(z)∑
k∈Ni,k 6=j Xk − z

)
.

(76)
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for each j ∈ Ni. Additionally, 0 < z < y < Qi implies that
there exists j0 ∈ Ni, such that

0 ≤ x̃j0(z) < x̃j0(y) ≤ Xj .

This implies the following chain of inequalities:

gi(z) = inf Λi(z) ≤ supΛi(z) ≤
∂+C̃j0(x̃j0(z); z)

∂xj0

<
∂−C̃j0(x̃j0(y); z)

∂xj0

=
∂−Cj0(x̃j0(y))

∂xj0

(
1 +

x̃j0(y)∑
k∈Ni,k 6=j0

Xk − z

)

<
∂−Cj0(x̃j0(y))

∂xj0

(
1 +

x̃j0(y)∑
k∈Ni,k 6=j0

Xk − y

)

=
∂−C̃j0(x̃j0(y); y)

∂xj0

≤ gi(y).

Here, the first line follows from a combination of Eqs. (74)
and (75); the second line follows from the strict convexity of

the function C̃j(xj ; z) in xj over [0, Xj ]; the third and the
fifth lines follow from Eq. (76); and the fourth line follows
from the fact that 0 < z < y < Qi. This finishes the proof of
statement (ii).

Proof of statement (iii): It will be convenient to define the
function

hi(z) := supΛi(z).

Using the fact that convex functions defined over a bounded
interval are differentiable at all but countably many points
in that interval, it is straightforward to show that hi(z) =
gi(z) for all but countably many z ∈ [0, Qi). This implies
that

G̃i(qi) =

∫ qi

0
gi(z)dz =

∫ qi

0
hi(z)dz. (77)

Consequently, statement (iii) is true if hi(z) is right-
continuous on [0, Qi) and gi(z) is left-continuous on (0, Qi).
We only prove the left-continuity of the function gi(z), as the
proof of right-continuity of hi(z) is analogous.

First, it follows from Eq. (76) and the convexity of C̃j that
gi(z) is left-continuous if x̃j(z) is left-continuous in z for
each j ∈ Ni. Recall that for any z ∈ (0, Qi), the parametric
optimizer x̃(z) is the unique optimal solution to problem
(73), and is guaranteed to be nonnegative elementwise. This
implies that x̃(z) is also the unique optimal solution of the
following convex program:

minimize
x∈RN

∑

j∈Ni

C̃j(xj ; z)

subject to
∑

j∈Ni

xj = z

0 ≤ xj ≤ Xj , if j ∈ Ni

xj = 0, if j ∈ {1, . . . , N} \ Ni.

(78)

The feasible region of problem (78) is compact and con-
tinuous (i.e., both upper and lower hemicontinuous) in
the parameter z over (0, Qi). Additionally, the objective

function of problem (78) is strictly convex in x and jointly
continuous in (x, z) for all z ∈ (0, Qi). It follows from
Berge’s maximum theorem in [73, p. 116] that the unique
parametric optimizer x̃(z) of problem (78) is continuous in
z on (0, Qi). In particular, this implies the left-continuity of
x̃j(z), which completes the proof.

APPENDIX E

PROOF OF LEMMA 2

The crux of the proof centers on the derivation of a closed-
form expression for the optimal solution of problem (33). We
first eliminate the decision variable q2 through substitution
of the power balance constraint q2 = D − q1, which yields
the equivalent reformulation of problem (33) as:

minimize
q1∈R

∫ q1

0
β1

(
1 +

1/N1

(N1 − 1)K1/z − 1

)
dz

+

∫ D−q1

0
β2

(
1 +

1/N2

(N2 − 1)K2/z − 1

)
dz

subject to (d1 − c)+ ≤ q1 ≤ D − (d2 − c)+.
(79)

It will be notationally convenient to denote the projection
operator onto a closed interval [a, b] ⊆ R according to [·]ba. It
is straightforward to show that the unique optimal solution
to problem (79) is given by

q1 = [q̃1]
D−(d2−c)+

d1−c , (80)

where q̃1 is the unique solution to the following first-order
condition on the open interval (0, (N1 − 1)K1):

β1

(
1 +

(
N1

(
K1(N1 − 1)

q1
− 1

))−1
)

= β2

(
1 +

(
N2

(
K2(N2 − 1)

D − q1
− 1

))−1
)
.

(81)

It follows from Eq. (80) that

CostNE = β2D + (β1 − β2) [q̃1]
D−(d2−c)+

d1−c .

Since q̃1 does not depend on the transmission capacity c, it
holds that

∂+CostNE

∂c
=





β2 − β1 if q̃1 < d1 − c,

β1 − β2 if q̃1 > D − (d2 − c)+ and c < d2,

0 otherwise.

To complete the proof of the first part of Lemma 2, it suffices
to show that the following two conditions hold:

p1 > p2 ⇐⇒ q̃1 < d1 − c, (82)

p1 < p2 ⇐⇒ q̃1 > D − (d2 − c)+ and c < d2. (83)

To show that condition (82) holds, first recall the explicit
formulae for the LMPs at Nash equilibrium in Eqs. (34)-(35).
It follows that p1 > p2 if and only if

β1

(
1 +

(
N1

(
K1(N1 − 1)

q1
− 1

))−1
)

>β2

(
1 +

(
N2

(
K2(N2 − 1)

D − q1
− 1

))−1
)
,

(84)
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where q1 is specified according to Eq. (80). It follows that

p1 > p2 ⇐⇒ q̃1 < q1,

since q̃1 is the unique solution to Eq. (81). Furthermore, it
holds that

q̃1 < q1 ⇐⇒ q̃1 < d1 − c,

since q1 = [q̃1]
D−(d2−c)+

d1−c . This proves that (82) holds. The
proof that (83) holds is analogous, and is, therefore, omitted.

To prove the second part of Lemma 2, note that the
previous arguments also imply that p1 > p2 if and only
if the inequality in (84) is satisfied for q1 = d1 − c. Plugging
q1 = d1 − c into (84) shows that p1 > p2 if and only if the
inequality in (37) holds.
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