

**Metalloid and metal oxide nanoparticles  
suppress Sudden Death Syndrome of soybean**

Cristian Perez, Roberto De La Torre Roche, Nubia Zuverza-Mena, Chuanxin Ma, Yu Shen, Jason C. White, Edson Pozza, Adélia Pozza, and Wade Elmer

*J. Agric. Food Chem.*, Just Accepted Manuscript • DOI: 10.1021/acs.jafc.9b06082 • Publication Date (Web): 03 Dec 2019

Downloaded from [pubs.acs.org](https://pubs.acs.org) on December 4, 2019

**Just Accepted**

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

# 1 Metalloid and metal oxide nanoparticles suppress Sudden Death Syndrome of

## 2 soybean

4 **Cristian D. P. Perez<sup>†,§</sup>, Roberto De La Torre Roche<sup>‡</sup>, Nubia Zuverza-Mena<sup>‡</sup>, Chuanxin  
5 Ma<sup>‡</sup>, Yu Shen<sup>‡</sup>, Jason C. White<sup>‡</sup>, Edson A. Pozza<sup>†</sup>, Adélia A. A. Pozza<sup>†</sup>, and Wade H.  
6 Elmer<sup>\*,§</sup>**

<sup>7</sup> <sup>†</sup>Department of Fitopatologia, Federal University of Lavras, Lavras 37200, Brazil

<sup>8</sup> <sup>‡</sup>Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123

9 Huntington Street, New Haven, Connecticut 06504, United States;

10 § Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station,

11 123 Huntington Street, New Haven, Connecticut 06504, United States;

<sup>12</sup>  $\perp$  Departamento de Ciéncia do Solo, Federal University of Lavras, Lavras 37200, Brazil.

13

14

15 Corresponding Author: Wade.Elmer@ct.gov

16

17

18 ▪ **ABSTRACT**19 ▪ **ABSTRACT**

20 Soybean (*Glycine max*) (V3 stage) were sprayed once with nanoparticles (NPs) of AgO, B, CeO,  
21 CuO, MnO, MoO<sub>3</sub>, SiO, TiO, or ZnO and exposed to *Fusarium virguliforme*, the cause of sudden  
22 death syndrome. Up to 80% root rot was observed in greenhouse experiments. However, NP CuO,  
23 B, MoO<sub>3</sub>, or ZnO reduced root rot severity by 17-25%. Infected roots and shoots had significant  
24 changes in B, Mg, P, S, Si, and Zn but NP treatment restored levels to that of healthy control. For  
25 example, the increased root Mg and Mn content induced by disease was reversed by NP B and Mn  
26 amendment. *In vitro* assays found the NPs did not inhibit the pathogen. This, along with the  
27 restoration of altered nutrient levels in the plant tissue, suggests that modulated plant nutrition  
28 increased disease defense. Treatment of seedlings with nanoscale micronutrients may be a new  
29 tool in promoting soybean health.

30 Key words: nanoparticles; soybean; *Fusarium virguliforme*; Foliar application, Disease  
31 suppression.

32

33 ▪ **INTRODUCTION**

34 Current estimates predict that global food production must increase by 60-70% by 2050 to  
35 maintain food security.<sup>1</sup> However, the consensus in the literature is that current agricultural  
36 practices are unsustainable. For example, year-over-year increases for most crops have decreased  
37 over the last 30-40 years; additional challenges posed by a changing climate and decreases in  
38 arable soil have further confounded efforts to systematically increase food production.<sup>2</sup>  
39 Consequently, dramatic changes are needed as part of an “Agri-Tech” revolution.<sup>1,3</sup> One area of  
40 particular concern in the current inefficiency in agrichemical delivery, with 70-90% of applied  
41 fertilizers and pesticides not reaching the intended target.<sup>2</sup> Nanoparticle (NP) forms of metalloid  
42 and metallic oxides of essential micronutrients have been shown to have important applications in  
43 plant protection and nutrition.<sup>2</sup> More rapid particle dissolution and greater activity of NP forms  
44 leads to improved growth and metabolic function.<sup>4-5</sup> The rate at which these elements can activate  
45 defensive physiological and biochemical processes can often control the level of host resistance  
46 and eventual consequence of disease.<sup>6</sup> Given that the role of micronutrients in plant metabolism  
47 and host defense directly affects the production of important secondary metabolites such as  
48 phenolics, lignin, quinones, tannins, and flavonoids, as well as membrane and cell wall stability,<sup>6-7</sup>  
49 continued efforts to further tune and enhance micronutrient availability and function in nanoscale  
50 form are warranted.

51 Although the role of micronutrients in the suppression of crop disease is well documented,<sup>8</sup>  
52 significant obstacles exist in delivering and distributing these elements to the infected tissues. For  
53 soil application to be an effective route of micronutrient delivery, the rates must be inordinately  
54 high due to element precipitation as insoluble oxides in slightly acid to neutral soils.<sup>9</sup> Conversely,  
55 most micronutrients are poorly translocated to the roots following foliar application,<sup>10</sup> which is

56 particularly problematic for root diseases since nutrition<sup>11</sup> in that tissue is critical to the balance  
57 between health and disease. Notably, foliar “feeding” to enhance plant health is an established  
58 practice,<sup>12</sup> but incorporating the use of nanoscale forms of micronutrients is a more novel  
59 approach.<sup>13</sup> Work from our group has demonstrated that applying NPs of copper oxide (CuO),  
60 copper phosphate nanosheets (Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>), and zinc oxides (ZnO) to seedlings grown in fungal-  
61 infested media resulted in improved nutrient uptake, translocation, and function when compared  
62 to the larger bulk equivalent or salt forms.<sup>14-17</sup> These efforts have focused almost exclusively on  
63 vegetable species infected by fungal root pathogens, such as *Fusarium* and *Verticillium*.  
64 Alternatively, nonessential elements, such as silver (Ag) and cerium (Ce), have also been shown  
65 to enhance plant growth under certain conditions when applied in nanoscale form.<sup>18-21</sup> In a recent  
66 review of the limited literature on NPs and plant disease, Ag, CuO, and ZnO were the materials  
67 shown to most consistently suppress crop disease;<sup>5</sup> notably, the mode of action for many of these  
68 materials is likely different and in some cases, unknown. For example, a 2006 study by Park et al.  
69 demonstrated that NP Ag could suppress powdery mildew of pumpkin,<sup>22</sup> likely due to the direct  
70 antibacterial activity of the treatment. Similarly, Graham et al. (2016) demonstrated that foliar  
71 application of NP ZnO on citrus reduced citrus canker after *Xanthomonas citri* subsp. *citri* was  
72 injected into the leaf intercellular space.<sup>23</sup> Notably, the antibacterial activity of zinc directly against  
73 the bacteria seems responsible for the reduced disease and this work has led to a commercially  
74 available nanoscale Zn formulation (Zinkicide®). Alternatively, work from our group has focused  
75 on foliar application of different nanoscale forms of Cu as a means to modulate plant nutrition in  
76 the root and stimulate plant defense against disease. Specifically, in both greenhouse and field  
77 studies, foliar treatment of vegetable species (eggplant, tomatoes, and watermelon) with Cu NPs  
78 in different forms and concentrations was shown to suppress *Fusarium* and *Verticillium* wilt to

79 varying degrees (Borgatta et al. 2018; Elmer and White 2016; Elmer et al. 2018; Ma et al. 2019).

80 14-17

81 Sudden death syndrome (SDS) of soybean (*Glycine max* (L.) Meer) caused by *Fusarium*  
82 *virguliforme* has increased in distribution and economic importance in the Midwestern United  
83 States. Since 2014, between \$200 to 700 million are estimated to have been lost due to SDS in the  
84 United States alone.<sup>24-25</sup> *F. virguliforme* (*Fv*) is the causal agent of SDS in North America, but the  
85 species complex differs in the southern hemisphere.<sup>26</sup> Early symptoms include poor root  
86 development and root rot that may progress into foliar symptoms later in the life cycle, including  
87 interveinal chlorosis and necrosis, defoliation, and early death.<sup>27</sup> Foliar symptoms can be quite  
88 variable and often manifest aggressively (i.e., sudden plant death) at anthesis.<sup>28</sup> The management  
89 of SDS has been difficult, although some advances have been made.<sup>29</sup> Selecting for host-plant  
90 resistance has been successful in identifying some cultivars with modest tolerance, but screening  
91 for resistance is difficult because disease onset and expression are strongly dependent on  
92 environmental factors.<sup>30</sup> Fungicides as seed treatments have some value,<sup>31-32</sup> although extensive  
93 use can lead to negative environmental consequences and potentially residues in the crop.  
94 Alternatively, crop rotation can provide suppression in some fields if other crops are available for  
95 growth.<sup>29, 33</sup> Cultural management of field parameters, such as improving soil drainage and  
96 reducing soil compaction, can reduce the severity of SDS,<sup>29, 34</sup> but no management strategy has  
97 consistently suppressed disease across a range of conditions. Additionally, host nutrition is another  
98 factor that can affect SDS severity.<sup>35-36</sup> The role of micronutrients in nanoscale metal oxide form  
99 as a foliar treatment strategy for soybean diseases has never been evaluated. Given the above-  
100 described successes with vegetable species and the strong need for novel management strategies

101 to achieve sustainable agriculture, investigations with disease systems such as SDS is highly  
102 warranted.

103 In the current study, our objectives were: 1) Determine the appropriate *F. virguliforme* inoculum  
104 concentration for three separate soybean cultivars to promote consistent levels of root rot, 2)  
105 Determine the *in vitro* antifungal activity of nanoscale B, CuO, Mn<sub>2</sub>O<sub>3</sub>, and ZnO NPs against *F.*  
106 *virguliforme* and 3) Determine the efficacy of foliar applications of the nanoscale essential  
107 micronutrients B, CuO, Mn<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, and ZnO and the nonessential metals Ag, CeO<sub>2</sub>, SiO<sub>2</sub> and  
108 TiO<sub>2</sub> at suppressing SDS in soybean in a series of asymmetric soil-based greenhouse studies. The  
109 measured endpoints included plant growth and root rot severity, as well as the elemental  
110 composition of roots and stems.

111

112 **▪ MATERIALS AND METHODS**

113 **Nanoparticles, plants, and inoculum.** NPs of Ag (20 nm, 99.99 % pure); B (100 nm, 99.9%  
114 pure); CuO (40 nm, 99.00% pure); CeO<sub>2</sub> (25 nm, 99.97% pure); Mn<sub>2</sub>O<sub>3</sub> (30 nm, 99.20% pure);  
115 MoO<sub>3</sub> (13-80 nm, 99.94% pure); SiO<sub>2</sub> (60-70 nm, 98.00% pure), TiO<sub>2</sub> (rutile, 10-25 nm, 99.50%  
116 pure); and ZnO (10-30 nm, 99.00% pure) were obtained from US Research Nanomaterials Inc.  
117 (Houston, TX). Bulk oxide equivalents were obtained from Fisher Scientific (New Jersey, USA).  
118 Depending on the experiment, suspensions of NPs were prepared at 500 or 1,000 µg/ml distilled  
119 water amended with a nonionic surfactant (1 ml/liter) (Regulaid®, Kalo Inc., Overland Park, KS).  
120 Suspensions were sonicated for 2 min in a probe sonicator (Fisher Scientific, FB505) at 50%  
121 amplitude immediately before application to achieve a stable dispersion. Particle zeta potential and  
122 hydrodynamic size were characterized in 500 mg/L solutions (prepared as above) by dynamic light

123 scattering (DLS) on a zetasizer (Malvern Zetasizer, Nanoseries ZS90). The particles were also  
124 characterized by transmission electron microscopy (TEM) (Hitachi HT7800).

125 Soybean cultivar 'Seedranch' (Seedranch, Odessa, FL) belong to Maturity Group I and its  
126 susceptibility to SDS was not known. Cultivar 'Sloan' (provided by Dr. Glen Hartman, University  
127 of IL) belongs to maturity groups II and has moderate resistant to some foliar diseases, but is highly  
128 susceptible to SDS.<sup>63</sup> Cultivar 'Spencer' (provided by Dr. Martin Chilvers, Michigan State  
129 University) belong to Maturity group IV and is highly susceptible to SDS.<sup>64</sup> Seeds were  
130 germinated in 36-celled (5.66 × 4.93 × 5.66 cm) plastic liners (1 plant/cell) filled with soilless  
131 potting mix (ProMix BX, Premier Hort Tech, Quakertown, PA, USA). The potting mix  
132 characteristics were as follows: pH = 6.5, NO<sub>3</sub>-N = 3 µg/g, NH<sub>4</sub>-N = 12 µg/g, P = 100 µg/g, K =  
133 180 µg/g, Ca = 1,66 µg/g, Mg = 125 µg/g, and soluble salts = 0.3 ms/cm as determined by Morgan  
134 Test (Lunt et al. 1950). The seedlings were fertilized once after three weeks with 40 ml of Peters'  
135 soluble 20-10-20 (N-P-K) fertilizer (R.J. Peters, Inc., Allentown, PA). Greenhouse temperatures  
136 averaged 17 to 22 °C night and 19 to 25 °C day. Seedlings in the V3 leaf stage were used to initiate  
137 all studies described below.<sup>37</sup>

138 The pathogen inoculum was prepared on Japanese millet that had been autoclaved with distilled  
139 water (1:1 wt/vol) for 1 hour on two consecutive days.<sup>38</sup> The millet was seeded with three agar  
140 plugs colonized by *F. virguliforme* (Isolate Mont-1).<sup>39</sup> The culture was allowed to grow for 2  
141 weeks at 22-25 °C and the millet was air-dried, and ground in a coffee mill for 30 sec. The millet  
142 inoculum was thoroughly mixed by hand into potting mix (ProMix BX, without mycorrhizae,  
143 Premier Hort. Tech, Quakertown, PA, USA). Imidacloprid was applied (0.3 g/pot) once as a  
144 granular amendment to suppress fungus gnats.

145

146     **Cultivar sensitivity to infection.** The sensitivity of each of the three soybean cultivars to *F.*  
147     *virguliforme* infection was determined so as to guide design of the nanoscale amendment  
148     experiments. Cultivars ‘Seedranch’, ‘Sloan’ and ‘Spencer’ were transplanted at the V3 stage into  
149     1-liter plastic pots filled 0.8 liters of potting mix and were infested with 0, 0.5, 1.0, 2.0 or 3.0 g  
150     millet inoculum/liter. The inoculum was enumerated by serially diluting potting mix onto Peptone  
151     PCNB agar plates,<sup>40</sup> followed by incubation for 5 days and subsequent pathogen colony counting.  
152     The colony forming units (CFU) of *F. virguliforme* /g potting mix was then calculated. There  
153     were two soil samples per inoculum concentration and three plates per dilution at 10<sup>-2</sup> or 10<sup>-3</sup> ml/g  
154     soil (oven dry weight equivalent) were prepared. Replicate seedlings of each cultivar were  
155     transplanted into a pot filled with each inoculum density/concentration and were set on greenhouse  
156     bench in a 3 (soybean varieties) × 5 (inoculum concentrations) randomized complete block design  
157     with six replicates per treatment. Each pot received 50 ml of a complete fertilizer solution (20-20-  
158     20, N-P-K) once per month. The experiment was repeated eight months later with three replicates.  
159     After 5 weeks of growth, the experiments were terminated and the plants were removed from pots,  
160     washed in tap water to remove all potting mix, and weighed. The root systems were visually rated  
161     for the percentage root rot as the percent root area with reddish-brown discoloration. The root  
162     systems and above ground tissue were weighed separately, dried to a constant weight at 50 °C, and  
163     then re-weighed.

164

165     **NP toxicity against *F. virguliforme*.** The *in vitro* toxicity of select nanoscale micronutrients  
166     against *F. virguliforme* was determined by a shake culture method. Fifty ml of sterile potato  
167     dextrose broth (Difco Laboratories, Livonia, MI) was added to 125-ml Erlenmeyer flasks that  
168     were subsequently amended with 0, 100, and 1,000 µg/ml of NP B, CuO, Mn<sub>2</sub>O<sub>3</sub>, or ZnO.

169 Flasks were seeded with a colonized agar plug of *F. virguliforme* and were set on a platform  
170 shaker at 125 rpm for 5 days at 22 °C. Mycelial mats were harvested under vacuum onto pre-  
171 weighed Whatman® #1 filter paper that had been dried at 50 °C for 18 hr. The mycelia-  
172 containing filter papers were re-dried at 50 °C for at least 18 hours and weighed again. The dried  
173 mycelial mass was calculated after subtracting the weight of NP treatment that was added to the  
174 flask. There were three replicate flasks per NP type and concentration. The experiment was  
175 repeated to confirm the findings.

176

177 **Greenhouse experiments.** With the above information on cultivar-specific pathogen inoculum  
178 size, a series of asymmetric greenhouse experiments to investigate the effect of foliar applications  
179 of nanoscale forms of essential (B, CuO, Mn<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, and ZnO) and non-essential (Ag, CeO<sub>2</sub>,  
180 SiO<sub>2</sub>, TiO<sub>2</sub>) metal/metal oxides at 500 or 1000 µg/ml distilled water. Two separate experiments  
181 were conducted with the soybean cultivar 'Sloan'. In the first experiment, the effect of foliarly  
182 applied NPs B, CuO, Mn<sub>2</sub>O<sub>3</sub>, and ZnO (each at 500 or 1000 µg/ml) was investigated. Rates were  
183 based on past studies where positive growth benefits were observed at these rates.<sup>14-17</sup>  
184 Polyvinylidene chloride film (Saran™ wrap) was securely fitted around the stem of each plant to  
185 cover the soil and prevent NP contamination of the growth media. Seedlings were sprayed using  
186 plastic spray atomizers until the leaves were visibly wet (1-2 ml/plant; 0.5-1.0 mg NP/plant); the  
187 plants were allowed to dry and the film was removed. Control plants were sprayed with sonicated  
188 distilled water. The seedlings of each treatment were immediately transplanted into non-infested  
189 potting mix or to potting mix infested with 2 g/liter of millet inoculum. After transplanting, the  
190 plants were individually irrigated to avoid wetting the leaves. For this and other greenhouse  
191 experiments (unless otherwise noted), temperatures averaged 17 to 22 °C night and 19 to 25 °C

192 day. Three days after transplanting, one half of the plants in each treatment/infestation received  
193 100 ml of either a high fertilization regime of 100  $\mu\text{g}$  N/ml (as  $\text{NH}_4\text{NO}_3$ ) or low fertilization of 50  
194  $\mu\text{g}$  N/ml regime. Each pot subsequently received 50 ml of a complete fertilizer solution (20–20–  
195 20 N-P-K) every 2 wks. The experiment was arranged on a greenhouse bench as a randomized  
196 block design with five NPs treatments (untreated control, B,  $\text{CuO}$ ,  $\text{Mn}_2\text{O}_3$ ,  $\text{ZnO}$ ) x two inoculum  
197 levels (infested with *F. virguliforme* or not infested) x two fertilization regimes (high or low).  
198 Imidacloprid was applied (0.3 g/pot) once as a granular amendment to suppress fungus gnats.  
199 After 5 weeks, plants were harvested and fresh and dry weights were measured as described above.  
200 The roots were washed free of potting mix, weighed, and the percent root rot was visually  
201 determined. Samples of the feeder roots were surface-disinfested in 4% household bleach for 4  
202 min, rinsed in distilled water, and placed on two petri dishes containing Peptone PCNB medium.  
203 Dishes were placed over a 13 mm grid and the total length of the root pieces were estimated by  
204 the line intercept method.<sup>41</sup> After 5-7 days, *Fusarium* colonies were counted and expressed as  
205 colonies per cm root. Dried root and above ground tissues were analyzed for elemental  
206 composition described below. The data collected included plant wet and dry mass, SDS severity  
207 (percent root rot), and elemental composition of roots and above ground tissues (described below).

208 A second experiment with ‘Sloan’ was established that excluded NP B, included six replicates  
209 per treatment (instead of three), and directly compared the efficacy of 500  $\mu\text{g}/\text{ml}$   $\text{CuO}$ ,  $\text{Mn}_2\text{O}_3$ ,  
210 and  $\text{ZnO}$  NPs to their larger bulk equivalents on SDS disease progression. The particles were  
211 prepared and applied as above; the replicate seedlings were arranged on a greenhouse bench as a  
212 randomized block design with three NPs ( $\text{CuO}$ ,  $\text{Mn}_2\text{O}_3$ ,  $\text{ZnO}$ ) x two metal forms (NP versus bulk  
213 forms) x two inoculum levels (infested with *F. virguliforme* or not infested). Untreated infested  
214 and non-infested plants were included as controls. Plants were grown as described above and the

215 experiment was terminated after 5 weeks. At harvest, plant mass, SDS severity, and elemental  
216 composition were determined.

217 With the soybean cultivar 'Spencer,' the impact of foliar application of 500 µg/ml NPs B, CuO,  
218 Mn<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, or ZnO, as well as the nonessential elements Ag, CeO<sub>2</sub>, TiO<sub>2</sub>, or SiO<sub>2</sub>, on soybean  
219 growth, SDS, and elemental composition of stems and roots was evaluated. These non-essential  
220 elements were chosen because of known antimicrobial, antioxidative, photoactive, or secondary  
221 metabolic activity. The experimental design was similar to above; there were six replicates per  
222 treatment that were arranged on greenhouse benches as a 10 NP (Untreated control, Ag, B, CeO<sub>2</sub>,  
223 CuO, Mn<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, SiO<sub>2</sub>, TiO<sub>2</sub>, and ZnO) × 2 inoculum levels (infested with *F. virguliforme* or  
224 not infested) factorial randomized complete block design. Based on the pathogen inoculation data,  
225 we used 3 g of millet/liter inoculum as 'Spencer' is significantly more tolerant to SDS. Growth  
226 conditions in the greenhouse were warmer than other experiments (20-24 °C night, 26 to 30 °C  
227 day). After 5 weeks, plants were harvested and biomass, disease severity in the roots and tissue  
228 elemental content was determined.

229 With the soybean cultivar 'Seedranch,' the impact of foliar application of 500 µg/ml NPs B,  
230 CuO, or ZnO was directly compared to similar treatment with the nonessential elements Ag and  
231 CeO<sub>2</sub>. However, here the particle amendment was not by foliar spray application; instead, the  
232 plants were exposed to the NP treatment by inverting the seedling and then immersing the leaves  
233 into the NP suspensions for 3-5 seconds, followed by hanging the seedlings upside down until dry.  
234 This application technique likely provides more complete foliar coverage than spraying the shoots.  
235 Plants were then transplanted into infested or non-infested potting mix as described above. In this  
236 trial, there were nine replicates and plants were arranged on greenhouse benches as a six NP

237 (Untreated control, Ag, B, CeO<sub>2</sub>, CuO, and ZnO) x two inoculum levels (infested with *F.*  
238 *virguliforme* or not infested) in a factorial randomized complete block design.

239

240 **Elemental analysis.** Root and foliar tissues from the greenhouse experiments were analyzed  
241 for the elemental composition. Tissues were dried in an oven at 50 °C, ground in a Wiley mill,  
242 and passed through a 1 mm sieve. Acid digestion of ground samples (0.5 g) was done in 50 ml  
243 polypropylene digestion tubes with 5 ml of concentrated nitric acid at 115 °C for 45 min using a  
244 hot block (DigiPREP System; SCP Science, Champlain, NY). The elements Ag, B, Ca, Ce, Cu,  
245 Fe, K, Mg, Mn, Mo, P, S, Si, Ti and Zn were quantified using inductively coupled plasma optical  
246 emission spectroscopy (ICP-OES) on an iCAP 6500 (Thermo Fisher Scientific, Waltham, MA).  
247 Elemental content was expressed as µg/g (dry plant weight). In the ‘Spencer’ trial, tissue from  
248 replicates 1 and 2, 3 and 4, and 5 and 6 were composited, yielding three replicates per treatment.  
249 In the ‘Seedranch’ trial, tissue from replicates 1, 2 and 3; 4, 5, and 6; and 7, 8, and 9 were  
250 composited, yielding three replicates per treatment. Tissue from the other studies were not  
251 composited.

252

253 **Statistical analyses.** Data sets of biomass and elemental composition were subjected to Shapiro-  
254 Wilk’s Test for equality of variance. Normally distributed data with equal variance were analyzed  
255 for treatment effects (NPs and *F. virguliforme* infestation) using ANOVA for a mixed model  
256 factorial blocked design. Treatment effects (NP and Fusarium inoculation) were tested as fixed  
257 variables with block and replication as random effects. Means separated using Tukey’s Honestly  
258 Significant Difference Test at  $P < 0.05$ . Disease severity values (percent root rot) were analyzed  
259 non-parametrically using Wilcoxon Signed Fisher’s Test at ( $P = 0.05$ ) (Conover and Iman 1981).

260 Regression analysis was used to analyze the inoculum concentration on SDS and recovery of *F.*  
261 *virguliforme* from potting mix. All statistical analyses were performed using SYSTAT V.10  
262 (Cranes Software International Limited, Bangalore, Karnataka, INDIA)

263

264 ▪ **RESULTS**

265 **Particle characterization.** The hydrodynamic size and zeta potential of the particles used in  
266 the various experiments are shown in Table S1. Not surprisingly, significant particle aggregation  
267 occurred in solution prior to DLS analysis; particle sizes ranged from 96.8 nm ( $\text{TiO}_2$ ) to 1449 nm  
268 ( $\text{MoO}_3$ ). The zeta potentials of all particles were negative, ranging from -5.82 mV ( $\text{CuO}$ ) to -59.5  
269 ( $\text{Mn}_2\text{O}_3$ ). Images from TEM analysis can also be found in the SI.

270

271 **Cultivar sensitivity to infection.** An experiment was conducted to determine the appropriate  
272 pathogen inoculum for each of the soybean cultivars; the millet inoculum was added to potting  
273 mix at 0, 0.5, 1.0, 2.0 and 3.0 g of per liter and disease severity was monitored. A curvilinear  
274 increase was evident in the recovered CFU of *F. virguliforme* per g of oven dried potting mix  
275 (Figure 1 lower panel). The data were best fit by the polynomial equation  $\text{CFU} = 184.8x^2 - 155.5x$   
276 ( $R^2 = 0.98, P = 0.001$ ) where Y = CFU and X equal millet inoculum/g mix (dry weight equivalent).  
277 Disease severity as assessed by root rot ratings for soybean cultivars 'Seedranch' and 'Sloan'  
278 reached 50 to 75 % at 2.0 g inoculum/liter soil. In spite of an increase from 300 to 1,200 CFU/ g  
279 potting mix (Figure 1) at 3.0 g *F. virguliforme* inoculum/liter, the disease severity remained  
280 constant. Conversely, for 'Spencer' a maximum disease severity of approximately 25% occurred  
281 at 1.0 g inoculum/liter soil and root rot was unaffected by higher levels of pathogen inoculum.  
282 Thus, it appears that 'Seedranch' and 'Sloan' are more susceptible to the pathogen than is

283 'Spencer'. Given these findings, we used an inoculum size 2 g per liter soil for 'Seedranch' and  
284 'Sloan,' and for 'Spencer,' 3 g was used.

285

286 **NP toxicity against *F. virguliforme*.** An *in vitro* toxicity assay of 0, 100 and 1000  $\mu\text{g}/\text{ml}$  NP B,  
287 CuO, Mn<sub>2</sub>O<sub>3</sub>, and ZnO against *F. virguliforme* growth was conducted in two separate  
288 experiments (Figure S1). No interaction was detected between the separate experiments and as  
289 such, the data sets were combined. At 100  $\mu\text{g}/\text{ml}$ , there was no significant decreases in fungal  
290 growth for any of the NPs. At 1000  $\mu\text{g}/\text{ml}$ , NPs ZnO were the most toxic to *F. virguliforme*,  
291 completely inhibiting fungal growth at the, followed by CuO which caused more than 50%  
292 reduction in mycelial biomass. Nanoscale B exerted no fungal toxicity at 1000  $\mu\text{g}/\text{ml}$ , whereas NP  
293 Mn<sub>2</sub>O<sub>3</sub> unexpectedly enhanced *F. virguliforme* growth.

294

295 **Greenhouse experiments.** In the first greenhouse experiment with 'Sloan,' the fresh and dry  
296 weight data yielded the same results so only the fresh weight data are presented (Figure 2). Here,  
297 inoculation with *F. virguliforme* reduced total plant biomass by approximately 50% in the controls  
298 (Figure 2a) and percent root rot was nearly 90%, regardless of N fertilization rate. Significant  
299 interactions between the NP treatment and infestation with *F. virguliforme* were detected ( $P <$   
300 0.001) and were evident by the strong effect of the NP treatment on the mass of non-infested plants.  
301 The two main treatment effects were also significant; NP treatment at  $P < 0.001$  and infestation  
302 with *F. virguliforme* at  $P < 0.001$ . For healthy plants at the lower N fertilization rate, nanoparticle  
303 amendment had no impact on plant biomass, regardless of NP concentration (Figure 2a). However,  
304 at the higher N fertilization level (Figure 2b), NP CuO, B, ZnO at 500 mg/L significantly increased  
305 plant biomass (55-102%) in the healthy plants; a similar trend was evident at the 1000 mg/L level

306 for these three micronutrients, although the magnitude of increase was less. The trend for  $Mn_2O_3$   
307 was also for increased biomass, although neither amendment level resulted in statistically  
308 significant increases. Interestingly, in the diseased plants the increases in biomass with NP  
309 amendment were no longer evident; all treatments were statistically equivalent to the controls.  
310 Given that this pathogen manifests most overtly during plant flowering, this lack of impact on  
311 biomass is not surprising; as such, the more sensitive and valuable endpoint will be disease severity  
312 in the root system.

313 The root rot severity ratings are shown in Figure 3a; an example of root rot is shown in Figure  
314 4. For uninfected soils, plant root rot severity was obviously low and not impacted by treatment;  
315 for infected control plants, percentage rot was unaffected by N fertilization rate and ranged from  
316 86-89%. At the 500 mg/L NP treatment level, fertilization rate significantly impacted disease  
317 progress. Specifically, at low N fertilization, foliar application of nanoscale CuO, ZnO, and  $Mn_2O_3$   
318 significantly decreased root rot by 18.9, 24.7 and 17.1%, respectively. However, at the higher N  
319 fertilization rate, none of the treatments significantly impacted root disease. At the 1000 mg/L NP  
320 treatment level, fertilization rate had no impact on plant response and as such, the low and high N  
321 data were pooled for analysis (Figure 3b). Here, foliar amendment with CuO and ZnO significantly  
322 reduced diseased roots by 10.7 and 10.0%, respectively. Treatment with NP B or  $Mn_2O_3$  had no  
323 impact on disease onset.

324 Cultivar 'Sloan' root and shoot tissues were acid digested and analyzed for a range of elements  
325 (Table S2). The main effects of NP treatment, infestation, and tissue type were statistically  
326 significant for B and Cu. For the unamended control plants, tissue element content was not  
327 significantly impacted by N fertilization rate. At the 500 mg/L NP rate and lower N fertilization  
328 rate, the presence of disease significantly increased the root content of K, Mg, P, S, Si, and Zn.

329 Interestingly, at the 1000 mg/L NP rate, although the trends for nutrient increases were still evident,  
330 none of these increases were statistically significant, except Mg. Similarly, at the higher N  
331 fertilization level, disease significantly increased the root content of K, Mg, Mn, P, S, Si, and Zn  
332 at the 500 mg/L NP rate but many of these increases were lost at the higher rate. Specifically, at  
333 the 1000 mg/L NP amendment rate, only K, Mg, P and Zn levels were significantly increased in  
334 plant roots as a function of disease. The presence of disease in this experiment also impact shoot  
335 nutrient content; at the 500 mg/L level with low N fertilization, disease decreased the shoot content  
336 of B, Mg, Na, P, S, and increased the content of Si, and Ti. Unlike the roots, effects were similarly  
337 robust at the higher 1000 mg/L rate; shoot content was decreased for B, Cu, Mg, P, and Zn and  
338 was increased for Si, and Ti. At the higher N fertilization level, disease altered the shoot content  
339 of a large number of nutrients in the 500 mg/L NP treatment, including decreased Cu, Fe, Mg, Mn,  
340 Na, and Zn, as well as increased K, P, Si and Ti. Interestingly, at the 1000 mg/L NP level, the  
341 changes were far more modest, with Si and Ti being significantly increased. In terms of the  
342 amended elements in healthy plants, the Cu treatment was the only applied nanoscale nutrient that  
343 was present at significantly greater amounts in plant shoots; none of the foliar applied elements  
344 were present at significantly greater concentrations in the roots than found unamended controls.  
345 For the diseased plants, only B amendment at the 500 mg/L low N fertilization level and Mn<sub>2</sub>O<sub>3</sub>  
346 at the 1000 mg/L high fertilization level resulted in significantly greater shoot B and Mn content,  
347 respectively. In the roots of diseased plants, none of the amended elements were present at  
348 significantly greater levels in the roots of treated plants.

349 A number of the micronutrient changes induced by disease were reversed or restored to control  
350 levels upon nanoscale amendment, although this “return to control” was not observed in all cases.  
351 For example, in the roots of the 500 mg/L low N fertilization plants, the increased root content of

352 Mg induced by disease was restored to control levels by foliar B and  $Mn_2O_3$  amendment. Foliar B  
353 also restored root S levels to that of the controls. In the roots of the 1000 mg/L low N treatment,  
354 nanoscale B also restored Mg levels that had been elevated by disease. In the roots of 500 mg/L  
355 NP low N fertilization treatment, NP ZnO restored K content; NP B,  $Mn_2O_3$ , and ZnO restored  
356 Mg content; and NP B, CuO, and  $Mn_2O_3$  restored the Mn content. Last, at the 1000 mg/L high N  
357 level, the elevated root content of P induced by disease was restored to control levels upon foliar  
358 NP B treatment. In the shoots of diseased plants in the 500 mg/L low N treatment, foliar  
359 amendment with NP B and Mn increased the shoot B, P, and S to the level of uninfected control  
360 plants; similarly, in the 500 mg/L high N treatment, NP B and Mn reduced to shoot P content to  
361 that of the controls as well. Last, for the 1000 mg/L low N treatment, NP B increased the shoot B  
362 content to control values and both NP B and Mn restored P levels to that of the controls.

363 For the second ‘Sloan’ experiment, the B treatment was excluded and replicate numbers for the  
364 CuO,  $Mn_2O_3$ , and ZnO NP treatments were increased. Similar to the first ‘Sloan’ experiment, the  
365 fresh and dry weight data yielded the same findings and as such, only the fresh weight data are  
366 presented. Infestation with *F. virguliforme* was significant ( $P = 0.001$ ) and reduced the overall  
367 average fresh mass by 26%. Unlike the first ‘Sloan’ experiment, treatment with NP CuO,  $Mn_2O_3$ ,  
368 and ZnO had no impact on the biomass of healthy plants. Similarly, bulk forms of the metal oxides  
369 also had no effect on plant biomass in the un-infested controls. For the diseased plants, none of  
370 the nanoscale or bulk treatments increased plant mass of the infected plants relative to the diseased  
371 controls and percent reductions from the respective amended controls were approximately 20-  
372 36%. As noted above, this pathogen typically manifests during the reproductive stage and as such,  
373 impacts on biomass under the current experimental design are not necessarily anticipated. The  
374 percent root rot values of plants are shown in Figure 5. Disease was not detected in the healthy

375 plants; however, infestation in the control plants increased root rot severity to nearly 60%. Foliar  
376 treatment with bulk forms  $Mn_2O_3$  and  $CuO$  had no impact on disease severity; similarly, NP  $Mn_2O_3$   
377 had no impact as well. However, foliar application of bulk and NP  $ZnO$  and of NP  $CuO$  reduced  
378 disease severity by 17, 30, and 28% respectively. The nanoscale-specific nature of the response to  
379 these two elements is notable and is discussed below.

380 With regard to element content, there were interactions between the NP treatments x plant tissue,  
381 likely due to the elevated foliar levels verses the roots (Table S3). Significant main effects were  
382 also detected for NP treatment for Cu ( $P < 0.001$ ), Mn ( $P < 0.001$ ), and Zn ( $P = 0.005$ ). For the  
383 untreated controls, the presence of disease significantly decreased root Na content. In addition,  
384 there were trends for decreased Mg, as well as increased Ca, P, and Z, as a function of disease but  
385 because of significant replicate variability, these differences were not statistically significant. In  
386 the shoots, disease resulted in significantly greater P content, with a statistically insignificant trend  
387 for increased Na content. Regardless of disease presence, foliar treatment with NP or bulk  $CuO$ ,  
388  $Mn_2O_3$ , and  $ZnO$  resulted in higher above ground tissue concentrations of these respective  
389 elements. For a given treatment element, there was no difference in shoot content as a function of  
390 particle size. These increased shoot levels did not correspond to increased levels of any of the  
391 elements in the roots, regardless of disease. Similarly, for the other measured elements, there were  
392 no other changes of significance across the different treatments.

393 For the experiment with the soybean cultivar ‘Spencer’, the efficacy of nanoscale micronutrients  
394 ( $B$ ,  $CuO$ ,  $ZnO$ ,  $Mn_2O_3$ ,  $MoO_3$ ) at suppressing disease was directly compared with non-essential  
395 elements of interest to nano-enabled agriculture; NP  $Ag$ ,  $SiO_2$ ,  $TiO_2$  and  $CeO_2$ . Similar to the two  
396 ‘Sloan’ experiments, fresh and dry biomass data were equivalent and as such, fresh weight results  
397 are discussed. The main effects of NP treatment ( $P < 0.001$ ) and infestation with *F. virguliforme*

398 ( $P < 0.001$ ) were significant, but there was no interaction ( $P = 0.898$ ). Infestation with *F.*  
399 *virguliforme* decreased soybean biomass by approximately 8% in the control plants, although the  
400 decrease was not statistically significant. With regard to treatments for the healthy plants, foliar  
401 amendment with all particles resulted in average biomass values that were greater than the controls,  
402 although variability was high and only CeO<sub>2</sub>, Si and MoO<sub>3</sub> were of statistical significance at  $P$   
403  $<0.10$ . Similarly, for the diseased plants, all treatments yielded trends of greater biomass, although  
404 variability was again rather high and none of the increases were of statistical significance. The  
405 infested plants had a percent root rot value of 81% (Figure 6); plants receiving foliar treatments of  
406 NP CeO<sub>2</sub>, Mn<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, B, and SiO<sub>2</sub> had severity ratings that were not significantly different  
407 from the diseased controls and ranged from 77-85%. Conversely, NP CuO and ZnO had  
408 statistically significant reductions in disease severity by 34 and 18%, respectively. NP Ag and  
409 TiO<sub>2</sub> foliar treatment resulted in disease reductions of 13 and 14%, respectively but these values  
410 were only different from the diseased controls at  $p < 0.10$ . With regard to element content, the  
411 presence of disease did not significantly impact the element content of the shoots or roots in this  
412 experiment, although trends for many of the elements were similar to previous experiments (Table  
413 S4). Not surprisingly, nearly all elements that were added as part of treatments were indeed  
414 detected at significantly greater levels in the shoots than present in the unamended controls; the  
415 exceptions were Si and Ti, which were not increased. However, the amounts of these added  
416 elements did not differ as a function of disease presence. Interestingly, the concentrations Cu in  
417 the roots was significantly greater when plants were foliar treated with nanoscale CuO.  
418 Specifically, levels of root Cu in the control and CuO-treated plants were 7.4 and 15.5 mg/kg,  
419 respectively ( $p < 0.05$ ). There were no other changes of note in the element content of soybean  
420 across the various treatments.

421 The design for the soybean cultivar ‘Seedranch’ was similar to the previous ‘Spencer’  
422 experiment, although with a decreased number of particles; the efficacy of NP micronutrients  
423 (CuO, B, ZnO) at suppressing disease was directly compared with NP Ag and CeO<sub>2</sub>. However,  
424 instead of a foliar application, the materials were applied as a “dip” treatment. The presence of  
425 disease reduced soybean significantly biomass by 31% in the unamended control plants. Foliar  
426 application of nanoscale Ag, B, CeO<sub>2</sub>, CuO, and ZnO had no impact on the biomass of either  
427 healthy or diseased plants. The diseased controls had a percent root rot of 50%; NP amendment  
428 with Ag, B, and CuO resulted in root rot values of 45, 38, and 57%, respectively; these values are  
429 not significantly different from the diseased controls. NP CeO<sub>2</sub> and ZnO foliar treatment resulted  
430 in root rot values of 31 and 36% respectively; by one-way ANOVA with the full data set, these  
431 values are not significantly different from the controls. However, a *t*-test with each treatment  
432 against the control (an admittedly weaker test) shows that both CeO<sub>2</sub> and ZnO values are  
433 significantly reduced from the diseased controls. With regard to element content, the presence of  
434 disease significantly altered the root and shoot element content for this cultivar (Table S5).  
435 Specifically, infestation with *F. virguliforme* significant decreased both Mg and Mn in the root  
436 tissue relative to disease-free controls; there were non-significant trends for decreased S and Zn as  
437 well, and for increased Ca content. Similarly, the shoots of infested plants contained significantly  
438 lower amounts of Ca and Mn, as well as significantly greater amounts of P and Si, as compared to  
439 healthy controls. There was also a trend for reduced Mg in the shoots as a function of disease but  
440 significant replicate variability confounded statistical significance. Similar to previous  
441 experiments, the concentration of most amended elements was significantly elevated in the shoots  
442 of plants receiving those specific treatments; the exception being Zn in the ZnO amended infested  
443 plants. However, none of the amended elements were present at significantly increased levels in

444 the roots of treated plants. Interestingly, shoot amendment with nanoscale CeO<sub>2</sub> restored the levels  
445 of Mg and Mn in the infected root tissue to that of control levels; similarly, NP CuO shoot  
446 amendment restored root Mn levels to the non-disease condition. In addition, NP CeO<sub>2</sub> treatment  
447 of the diseased plants restored shoot Mn and Si to non-disease levels; NP Cu had a similar  
448 restorative effect for shoot Mn content, as did NP Ag and B for the Si content of diseased shoots.  
449 There were no other notable changes in element content of the plants as a function of treatment.

450

451 ▪ **DISCUSSION**

452 Management strategies for SDS have included the use of moderately resistant cultivars,  
453 fungicides, and cultural rotation strategies, but none of these approaches have proven to be  
454 consistently.<sup>29, 31-34</sup> The current study explored the use of foliar application of metalloid and metal  
455 oxide NP to determine efficacy in suppressing SDS. After determining the optimal inoculum size  
456 (2-3 g/millet) to produce consistent root rot symptoms across three separate cultivars, we  
457 conducted four asymmetric greenhouse experiments that demonstrated the effects of nanoscale  
458 micronutrients and nonessential elements on SDS of soybean. Estimates of percent root rot were  
459 consistently the most sensitive endpoint to assess the efficacy of NP treatments; biomass was far  
460 more variable, both as a function of disease and treatment. As noted earlier, this lack of biomass  
461 effects is not entirely surprising given that the pathogen exerts the most severe symptoms at  
462 flowering stage, which our experimental design did not allow. Although not all NPs were evaluated  
463 in each experiment, we observed disease suppression of root rot across all four experimental trials,  
464 although significant cultivar-specific and particle-specific results were observed. Effective  
465 nanoscale amendments within specific experiments included NP B, CuO, ZnO, Mn<sub>2</sub>O<sub>3</sub>, and CeO<sub>2</sub>,

466 with reduced root rot values ranging from 17-36%. Once again, the nano-scale produce was more  
467 effective than the large bulk equivalents which aligns with a number of past studies.<sup>14,16,42</sup>

468 The finding that NP CuO and ZnO suppress SDS follows a number of other reports where  
469 foliarly applied NPs of these nutrients suppressed plant disease. NP of CuO suppressed Fusarium  
470 and Verticillium diseases in tomato, eggplant, and watermelon (Borgatta et al. 2018; Elmer et al.  
471 2018; Elmer and White 2016; Ma et al. 2019).<sup>15, 17</sup> In most cases, the disease suppression was  
472 associated with increased yield. In the current study, root tissue analysis revealed higher levels of  
473 Cu in select but not all experiments, which agrees with previous studies (Elmer et al. 2018; Elmer  
474 and White 2016; Ma et al. 2019). Variable root element content results may be a function of  
475 experimental design and growth dilution, since plants are grown for a number of weeks (5 in the  
476 current study) after NP foliar application. Hong et al (2016) noted that CuO NPs applied at lower  
477 concentrations (50 – 200 µg/ml) to cucumber (*Cucumis sativus*) plants did not significantly change  
478 the amount of Cu in the roots, suggesting a threshold may reached and that lower rates may not be  
479 as useful.<sup>42</sup> Alternatively, particle properties may be tuned to yield enhanced transport and activity  
480 (Borgatta et al. 2018 ; Ma et al. 2019). Wang et al. (2012) suggested that the shoot-to-root transport  
481 of CuO NPs takes place via phloem, although the mechanism is still largely unexplored. There is  
482 limited information on the interactions of plants with Cu-based NPs applied foliarly as compared  
483 to what has been published focusing on root exposure studies.<sup>43</sup> In roots, the uptake of Cu can  
484 occur as intact NPs or as ions released from Cu-based NPs.<sup>44</sup> In Bt-transgenic cotton, NP CuO  
485 applied to leaves were accumulated by endocytosis, while the NPs are retained in the cell wall of  
486 conventional cotton.<sup>45</sup> In the current study, it is not known whether the NPs are remaining on the  
487 leaf surface and slowly dissolving and releasing ions into the leaf through stomatal openings with  
488 subsequent ion transport to the roots, or if the NPs themselves are being accumulated and

489 transferred through the plant. In watermelon, the increased Cu root levels following foliar  
490 treatment with NP CuO were associated with strong up-regulation of polyphenol oxidase and PR1  
491 genes in the roots but only when NP CuO and *F. oxysporum* f. sp. *niveum* were both present.<sup>46</sup> Ma  
492 et al. (2019) reported similar gene expression changes with Fusarium-infested tomato that had  
493 been foliar treated with different forms of nanoscale Cu.<sup>17</sup> Interestingly, in that study nanomaterial  
494 morphology (amorphous, nanosheet) and composition (phosphate vs no-phosphate) significantly  
495 impacted biomass, disease progress, and the expression of defense-related genes. A similar  
496 mechanism may be occurring with soybean. Cu availability was shown to be a strong driver of  
497 polyphenol oxidase activity in soybean.<sup>47</sup> Copper serves as a cofactor for plastocyanins,  
498 peroxidases, and multi-Cu oxidases (Evans et al. 2007); all of which serve as key components of  
499 host defense. Interestingly, it appears that nanoscale Cu-induced defense reactions are somewhat  
500 non-specific with regard to pathogen and may serve as a highly useful management option in a  
501 range of disease systems.<sup>5</sup> More complex and tunable Cu composites may further enhance defense  
502 reaction by allowing targeted release of Cu ions.<sup>48</sup>

503 Zn nutrition has long been associated with disease suppression and the nutrient functions as a  
504 cofactor in superoxide dismutase (SOD) enzymes that quench free radicals.<sup>49</sup> Delivering Zn to  
505 plant in the nanoscale form has been shown to enhance host resistance in citrus, rose, and  
506 sugarbeets,<sup>23, 50-51</sup> but information on its uptake or accumulation in nanoscale versus ionic form is  
507 generally lacking. We also observed that NP ZnO had a significant positive effect on soybean  
508 resistance to SDS, significantly reducing root rot in two of the three cultivars. Similar to NP CuO,  
509 particle aggregation likely occurred in spite of probe sonication of the suspension for 2 min before  
510 application; this aggregation is known to reduce NP dissolution and highlights the need to tune  
511 particle properties such as charge and morphology through the use of coatings or by specific

512 formulation components. For example, researchers in Florida have begun to address this obstacle  
513 by formulating ZnO with various coatings.<sup>23</sup>

514 There is a history of Mn nutrition being associated with suppression disease.<sup>52</sup> Mn is an activator  
515 of Phenylalanine ammonia lyase and phenol synthesis.<sup>52</sup> The association between Mn and root  
516 health has been demonstrated in asparagus, beets, eggplant, strawberries, and wheat.<sup>8,52</sup> However,  
517 the potential benefits of nanoscale Mn to suppress SDS are unclear based on the current findings;  
518 there was only significant disease reduction with one cultivar (Spencer). Notably, *F. virguliforme*  
519 growth was stimulated *in vitro* by NP Mn<sub>2</sub>O<sub>3</sub> suggest, raising concerns over the potential of NP  
520 Mn<sub>2</sub>O<sub>3</sub> for SDS management.

521 The role of B in crop disease was reviewed by Stangoulis and Graham (2007);<sup>53</sup> the authors  
522 noted that in 20 reports where B was studied, 18 (90%) were associated with disease suppression.  
523 In those reports, disease was incited by foliar and root infecting fungi, bacteria, and viruses,  
524 suggesting B nutrition may mediate a wide array of defense mechanisms. Bellaloui et al. (2012)  
525 subsequently reported that soybean plants with enhanced B nutrition were more tolerant to the  
526 charcoal rot disease caused by *Macrophomina phaseolina* and had higher levels of phenolics, seed  
527 coat lignin, isoflavones, and sugars.<sup>54</sup> As such, although our work appears to be one of the few  
528 studies looking specifically at nanoscale B, the finding that foliar NP application of this nutrient  
529 suppressed SDS is not entirely surprising. In addition, an earlier study from our group examined  
530 the effect of NP B on watermelon in a field trial in B-deficient soil to determine effects on growth,  
531 yield, and Fusarium wilt disease progress.<sup>46</sup> When compared to untreated controls, a reduction in  
532 disease rankings was observed, although no effect on yield was detected. Given that soybeans are  
533 responsive to B application even in the absence of disease, NPs of B show promise as nanoenabled  
534 fertilizer to promote crop health.<sup>55</sup>

535 Nanoscale Ag was investigated in experiments involved two cultivars (Spencer, Seedranch) and  
536 in both cases, there was a trend for reduced root rot, although values were only statistically  
537 significant at  $p < 10$ . The antimicrobial properties of NPs Ag are well known,<sup>56</sup> and it was among  
538 the first NP to be used for plant disease.<sup>22</sup> There are a number of reports using NP Ag as part of  
539 various platforms. For example, Ocsoy et al. (2013) used NP Ag to functionalize graphene oxide,  
540 which was then foliar sprayed to suppress *Xanthomonas perforans* on tomatoes.<sup>57</sup> In the current  
541 report, the mechanism of potential disease suppression with NP Ag is not known. Direct toxicity  
542 to the pathogen seems unlikely given the temporal and spatial separation of the particle and  
543 pathogen. However, low levels of Ag were detected in the roots of one foliar-treated soybean  
544 cultivar, making it impossible to rule out direct effects. Alternatively, there could be an induced  
545 resistance stimulated by Ag amendment, although the physiological basis for this effect is not  
546 known. Specific root physiological and transcriptomic analyses are needed to determine if NP Ag  
547 can induce host resistance.

548 Ce is a nonessential element that has recently received attention as health promoting element in  
549 plants when applied in bulk and nanoscale form.<sup>21, 58</sup> The current study shows that NP CeO<sub>2</sub>  
550 decreased root rot severity in one of two trials. Adisa et al. (2018) demonstrated that NP CeO<sub>2</sub> was  
551 suppressive to Fusarium wilt of tomato, and also increased the content of chlorophyll, lycopene,  
552 catalase, peroxidase, polyphenol oxidase, fruit production, and total biomass when compared to  
553 untreated plants or to those amended with Ce acetate.<sup>21</sup> Although the mechanisms of disease  
554 suppressive effects are unclear, nanoscale Ce is known to quench ROS in plants.<sup>59</sup> It is unclear if  
555 NP CeO<sub>2</sub> will have a role in disease management platforms, but additional research is certainly  
556 warranted.

557 In the *in vitro* assay, we observed that the dried mycelial biomass of *F. virguliforme* was  
558 relatively unaffected by 100 and 1,000  $\mu\text{g}/\text{ml}$  NP B, slightly inhibited by NP CuO at the high dose,  
559 and was actually stimulated by NP  $\text{Mn}_2\text{O}_3$ . The greatest inhibition was observed with NP ZnO at  
560 the highest level where no fungal growth occurred. Others have also found that NP ZnO were  
561 inhibitory to *F. graminearum*,<sup>60</sup> as well as to *Botrytis cinerea* and *Penicillium expansum*.<sup>61</sup> Elmer  
562 and White (2016) incorporated NP CuO,  $\text{Mn}_2\text{O}_3$  or ZnO into 25% potato dextrose agar and also  
563 found that only Zn was inhibitory to the radial expansion of *F. oxysporum* f. sp. *lycopersici*. In  
564 both that study and the current one, NP  $\text{Mn}_2\text{O}_3$  were stimulatory to *Fusarium* species.<sup>14</sup> Given that  
565 NP CuO were generally non-toxic up to 1,000  $\mu\text{g}/\text{ml}$  in the *in vitro* assay, it is unlikely there was  
566 a direct fungicidal effect on the pathogen in the plant-based assay. Indirect positive effects through  
567 increased host defense is a much more likely mechanism of action.

568 Fertilization and plant nutrition are often overlooked as components of disease suppression.<sup>8</sup>  
569 This oversight may result from reports where the addition of micronutrients in the absence of  
570 disease do not increase yield.<sup>62</sup> As a result, the use of nutrition to influence plant disease is  
571 significantly underutilized as a disease management strategy. Considering the findings herein  
572 and the supportive existing literature, the positive effects of nanoscale micronutrients/elements  
573 B, CuO,  $\text{CeO}_2$ , and ZnO hold promise in the suppression of soybean SDS; NP Ag,  $\text{Mn}_2\text{O}_3$ ,  $\text{MoO}_3$   
574 need more study, but may also have potential. Ongoing studies are currently exploring more  
575 tunable forms and shapes of many different nano-elements. Field studies are planned to  
576 determine the role of these NPs on enhancing yield and grain quality. Although formulation and  
577 delivery of NPs will require considerable interest from the chemical industry prior to wide-scale  
578 acceptance by soybean growers, it has become increasingly clear that the role of NPs in plant  
579 health has great potential as a new tool for growers as foliarly applied nanofertilizers.<sup>2</sup> We

580 recognize that potential environmental risks need to be recognized and addressed, but the low  
581 dose applications of required or non-essential nutrients in nanoscale form to young seedlings  
582 could offer significant benefit with much lower environmental and economic impact.<sup>5</sup>

583

584 ▪ **ACKNOWLEDGEMENTS**

585 This work was supported by the National Science Foundation under the Center for Sustainable  
586 Nanotechnology CHE-1503408. The Center for Sustainable Nanotechnology is part of the  
587 Centers for Chemical Innovation Program. W.E. acknowledges USDA-NIFA-Hatch 00655 for  
588 support of technical staff, Mr. Peter Thiel. C.D., P.P, E.A.P, and A.A.A.P acknowledge the  
589 Federal University of Lavras, Graduate Abroad Sandwich Scholarship Program. ICP-OES  
590 analyses and particle characterization were performed by R.D.L.T.-R. and N.Z.-M. and were  
591 supported by USDA-NIFA-AFRI 2016-67021-24985 and FDA 1U18FD005505-03, respectively.  
592 We also thank Dr. Glen Hartman for soybean seed and Martin Chilvers for soybean seed and the  
593 isolate of *F. virguliforme*.

594

595 ▪ **ASSOCIATED CONTENT**

596 Supporting Information

597 The Supporting Information is available free of charge on the ACS Publications website at  
598 DOI: ...

599

600

601 ▪ **AUTHOR INFORMATION**

602 The authors declare no competing financial interest.

603

## 604 ▪ REFERENCES

605 (1) Lowry, G. V.; Avellan, A.; Gilbertson, L. M. Opportunities and challenges for nanotechnology in the  
606 agri-tech revolution. *Nat. Nanotechnol.* **2019**, *14* (6), 517-522.

607 (2) Kah, M.; Tufenkji, N.; White, J. C. Nano-enabled strategies to enhance crop nutrition and protection.  
608 *Nat. Nanotechnol.* **2019**, *14* (6), 532-540.

609 (3) White, J. C.; Gardea-Torresdey, J. Achieving food security through the very small. *Nat. Nanotechnol.*  
610 **2018**, *13* (8), 627-629.

611 (4) Servin, A.; Elmer, W.; Mukherjee, A.; De la Torre-Roche, R.; Hamdi, H.; White, J. C.; Bindraban, P.;  
612 Dimkpa, C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop  
613 yield. *J. Nanopart. Res.* **2015**, *17* (2), 21.

614 (5) Elmer, W.; White, J. C. The future of nanotechnology in plant pathology. In *Annual Review of  
615 Phytopathology*, Leach, J. E.; Lindow, S. E., Eds. Annual Reviews: Palo Alto, 2018; Vol. 56, pp 111-133.

616 (6) Graham, D. R.; Webb, M. J. Micronutrients and disease resistance and tolerance in plants. In  
617 *Micronutrients in Agriculture. 2nd ed.* , J. J. Mortvedt; F. R. Cox; L. M. Shuman; Welch, R. M., Eds. Soil  
618 Sci. Soc. Amer. Inc. : Madison, Wisconsin, USA, 1991.

619 (7) Roemheld, V.; Marschner, H. Function of micronutrients in plants. In *Micronutrients in Agriculture*, J.  
620 J. Mortvedt, Ed. Soil Sci. Soc. Amer. Inc. : Madison, Wisconsin, USA, 1991; pp 297-328.

621 (8) Elmer, W. H.; Datnoff, L. E. Mineral nutrition and suppression of plant disease. In *Encyclopedia of  
622 Agriculture and Food Systems*, Alfen, N. V., Ed. Elsevier: San Diego, California, USA, 2014.

623 (9) Leeper, G. W. Factors affecting availability of inorganic nutrients in soils with special reference to  
624 micronutrient metals. *Annu. Rev. Plant Physiol. Plant Molec. Biol.* **1952**, *3*, 1-16.

625 (10) Bukovac, M. J.; Wittwer, S. H. Absorption and mobility of foliar applied nutrients. *Plant Physiol.*  
626 **1957**, *32* (5), 428-435.

627 (11) Read, D. J.; Duckett, J. G.; Francis, R.; Ligrone, R.; Russell, A. Symbiotic fungal associations in  
628 'lower' land plants. *Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci.* **2000**, *355* (1398), 815-830.

629 (12) Reuveni, R.; Reuveni, M. Foliar-fertilizer therapy - a concept in integrated pest management. *Crop*  
630 *Prot.* **1998**, *17* (2), 111-118.

631 (13) Servin, A. D.; White, J. C. Nanotechnology in agriculture: Next steps for understanding engineered  
632 nanoparticle exposure and risk. *NanoImpact* **2016**, *1*, 9-12.

633 (14) Elmer, W. H.; White, J. Nanoparticles of CuO improves growth of eggplant and tomato in disease  
634 infested soils. *Environ. Sci. Nano* **2016**, *3*, 1072-1079.

635 (15) Borgatta, J.; Ma, C. X.; Hudson-Smith, N.; Elmer, W.; Perez, C. D. P.; De la Torre-Roche, R.;  
636 Zuverza-Mena, N.; Haynes, C. L.; White, J. C.; Hamers, R. J. Copper Based Nanomaterials Suppress  
637 Root Fungal Disease in Watermelon (*Citrullus lanatus*): Role of Particle Morphology, Composition and  
638 Dissolution Behavior. *Acs Sustain. Chem. Eng.* **2018**, *6* (11), 14847-14856.

639 (16) Elmer, W.; De La Torre-Roche, R.; Pagano, L.; Majumdar, S.; Zuverza-Mena, N.; Dimkpa, C.;  
640 Gardea-Torresdey, J.; White, J. C. Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt  
641 of Watermelon. *Plant Dis.* **2018**, *102* (7), 1394-1401.

642 (17) Ma, C. X.; Borgatta, J.; De La Torre-Roche, R.; Zuverza-Mena, N.; White, J. C.; Hamers, R. J.;  
643 Elmer, W. H. Time-Dependent Transcriptional Response of Tomato (*Solanum lycopersicum* L.) to Cu  
644 Nanoparticle Exposure upon Infection with *Fusarium oxysporum* f. sp. *lycopersici*. *Acs Sustain. Chem.*  
645 *Eng.* **2019**, *7* (11), 10064-10074.

646 (18) Lamsal, K.; Kim, S. W.; Jung, J. H.; Kim, Y. S.; Kim, K. S.; Lee, Y. S. Application of silver  
647 nanoparticles for the control of *Colletotrichum* species in vitro and pepper anthracnose disease in field.  
648 *Mycobiology* **2011**, *39* (3), 194-199.

649 (19) Lamsal, K.; Kim, S. W.; Jung, J. H.; Kim, Y. S.; Kim, K. S.; Lee, Y. S. Inhibition effects of silver  
650 nanoparticles against powdery mildews on cucumber and pumpkin. *Mycobiology* **2011**, *39* (1), 26-32.

651 (20) Ali, M.; Kim, B.; Elfield, K. D. B.; Norman, D.; Brennan, M.; Ali, G. S. Inhibition of Phytophthora  
652 parasitica and P-capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia  
653 absinthium. *Phytopathology* **2015**, *105* (9), 1183-1190.

654 (21) Adisa, I. O.; Pullagurala, V. L. R.; Rawat, S.; Hernandez-Viecas, J. A.; Dimkpa, C. O.; Elmer, W.  
655 H.; White, J. C.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Role of Cerium Compounds in Fusarium  
656 Wilt Suppression and Growth Enhancement in Tomato (*Solanum lycopersicum*). *J. Agric. Food Chem.*  
657 **2018**, *66* (24), 5959-5970.

658 (22) Park, H. J.; Kim, S. H.; Kim, H. J.; Choi, S. H. A new composition of nanosized silica-silver for  
659 control of various plant diseases. *Plant Pathology J.* **2006**, *22* (3), 295-302.

660 (23) Graham, J. H.; Johnson, E. G.; Myers, M. E.; Young, M.; Rajasekaran, P.; Das, S.; Santra, S.  
661 Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. *Plant Dis.* **2016**,  
662 *100* (12), 2442-2447.

663 (24) Wrather, J. A.; Anderson, T. R.; Arsyad, D. M.; Tan, Y.; Ploper, L. D.; Porta-Puglia, A.; Ram, H. H.;  
664 Yorinori, J. T. Soybean disease loss estimates for the top ten soybean-producing countries in 1998. *Can.*  
665 *J. Plant Pathol.-Rev. Can. Phytopathol.* **2001**, *23* (2), 115-121.

666 (25) Wrather, J. A.; Koenning, S. R.; Anderson, T. R. Effect of Diseases on Soybean Yields in the United  
667 States and Ontario (1999 to 2002). *Plant Health Progr.* **2003**, *4* (1), 24.

668 (26) Aoki, T.; O'Donnell, K.; Homma, Y.; Lattanzi, A. R. Sudden-death syndrome of soybean is caused  
669 by two morphologically and phylogenetically distinct species within the *Fusarium solani* species complex  
670 - *F-virguliforme* in North America and *F-tucumaniae* in South America. *Mycologia* **2003**, *95* (4), 660-  
671 684.

672 (27) Roy, K. W.; Rupe, J. C.; Hershman, D. E.; Abney, T. S. Sudden death syndrome of soybean. *Plant*  
673 *Dis.* **1997**, *81* (10), 1100-1111.

674 (28) Gongora-Canul, C.; Nutter, F. W.; Leandro, L. F. S. Temporal dynamics of root and foliar severity of  
675 soybean sudden death syndrome at different inoculum densities. *Eur. J. Plant Pathol.* **2012**, *132* (1), 71-  
676 79.

677 (29) Hartman, G. L.; Chang, H. X.; Leandro, L. F. Research advances and management of soybean  
678 sudden death syndrome. *Crop Prot.* **2015**, *73*, 60-66.

679 (30) Scherm, H.; Yang, X. B. Risk assessment for sudden death syndrome of soybean in the north-central  
680 United States. *Agric. Syst.* **1999**, *59* (3), 301-310.

681 (31) Weems, J. D.; Haudenshield, J. S.; Bond, J. P.; Hartman, G. L.; Ames, K. A.; Bradley, C. A. Effect  
682 of fungicide seed treatments on *Fusarium virguliforme* infection of soybean and development of sudden  
683 death syndrome. *Can. J. Plant Pathol.* **2015**, *37* (4), 435-447.

684 (32) Kandel, Y. R.; Wise, K. A.; Bradley, C. A.; Chilvers, M. I.; Tenuta, A. U.; Mueller, D. S. Fungicide  
685 and Cultivar Effects on Sudden Death Syndrome and Yield of Soybean. *Plant Dis.* **2016**, *100* (7), 1339-  
686 1350.

687 (33) Xing, L. J.; Westphal, A. Interaction of *Fusarium solani* f. sp *glycines* and *Heterodera glycines* in  
688 sudden death syndrome of soybean. *Phytopathology* **2006**, *96* (7), 763-770.

689 (34) Leandro, L. F.; Tatalovic, N.; Luckew, A. Soybean Sudden Death Syndrome—advances in knowledge  
690 and disease management. *Plant Sci. Rev.* **2012**, *7*, 1-14.

691 (35) Rupe, J. C.; Sabbe, W. E.; Robbins, R. T.; Gbur, E. E. Soil and plant factors associated with sudden-  
692 death syndrome of soybean. *J. Prod. Agric.* **1993**, *6* (2), 218-221.

693 (36) Sanogo, S.; Yang, X. B. Relation of sand content, pH, and potassium and phosphorus nutrition to the  
694 development of sudden death syndrome in soybean. *Can. J. Plant Pathol.* **2001**, *23* (2), 174-180.

695 (37) Fehr, W. R.; Caviness, C. E. Stages of soybean development. *Iowa Agricultural and Home*  
696 *Economics Experiment Station Special Report* **1977**, (80), 3-11.

697 (38) Elmer, W. H.; White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes  
698 and eggplants in disease infested soil or soilless medium. *Environ. Sci. Nano* **2016**, *3* (5), 1072-1079.

699 (39) Gray, L. E.; Achenbach, L. A. Severity of foliar symptoms and root and crown rot of soybean  
700 inoculated with various isolates and inoculum rates of *Fusarium solani*. *Plant Dis.* **1996**, *80* (10), 1197-  
701 1199.

702 (40) Leslie, J. F.; Summerell, B. A. *The Fusarium laboratory manual*. Blackwell Publishing: 2006.

703 (41) Tennant, D. Test of a modified line intersect method of estimating root length. *J. Ecol.* **1975**, *63* (3),  
704 995-1001.

705 (42) Hong, J.; Wang, L. N.; Sun, Y. P.; Zhao, L. J.; Niu, G. H.; Tan, W. J.; Rico, C. M.; Peralta-Videa, J.  
706 R.; Gardea-Torresdey, J. L. Foliar applied nanoscale and microscale CeO<sub>2</sub> and CuO alter cucumber  
707 (*Cucumis sativus*) fruit quality. *Sci. Total Environ.* **2016**, *563*, 904-911.

708 (43) Keller, A. A.; Adeleye, A. S.; Conway, J. R.; Garner, K. L.; Zhao, L. J.; Cherr, G. N.; Hong, J.;  
709 Gardea-Torresdey, J. L.; Godwin, H. A.; Hanna, S.; Ji, Z. X.; Kaweeteerawat, C.; Lin, S. J.; Lenihan, H.  
710 S.; Miller, R. J.; Nel, A. E.; Peralta-Videa, J. R.; Walker, S. L.; Taylor, A. A.; Torres-Duarte, C.; Zink, J.  
711 I.; Zuverza-Mena, N. Comparative environmental fate and toxicity of copper nanomaterials. *NanoImpact*  
712 **2017**, *7*, 28-40.

713 (44) Zuverza-Mena, N.; Martinez-Fernandez, D.; Du, W. C.; Hernandez-Viecas, J. A.; Bonilla-Bird, N.;  
714 Lopez-Moreno, M. L.; Komarek, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Exposure of  
715 engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.  
716 *Plant Physiol. Biochem.* **2017**, *110*, 236-264.

717 (45) Van, N. L.; Ma, C. X.; Shang, J. Y.; Rui, Y. K.; Liu, S. T.; Xing, B. S. Effects of CuO nanoparticles  
718 on insecticidal activity and phytotoxicity in conventional and transgenic cotton. *Chemosphere* **2016**, *144*,  
719 661-670.

720 (46) Elmer, W.; De La Torre-Roche, R.; Pagano, L.; Majumdar, S.; Zuverza-Mena, N.; Dimkpa, C.;  
721 Gardea-Torresdey, J.; White, J. C. Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt  
722 of Watermelon. *Plant Dis.* **2018**, *102* (7), 1394-1401.

723 (47) Marziah, M.; Lam, C. H. Polyphenol oxidase from soybeans (*glycine-max* v-palmetto) and its  
724 response to copper and other micronutrients. *J. Plant Nutr.* **1987**, *10* (9-16), 2089-2094.

725 (48) Strayer-Scherer, A.; Liao, Y. Y.; Young, M.; Ritchie, L.; Vallad, G. E.; Santra, S.; Freeman, J. H.;  
726 Clark, D.; Jones, J. B.; Paret, M. L. Advanced copper composites against copper-tolerant xanthomonas  
727 perforans and tomato bacterial spot. *Phytopathology* **2018**, *108* (2), 196-205.

728 (49) Duffy, B. Zinc and plant disease. In *Mineral Nutrition and Plant Disease*, L. E. Datnoff; W. H.  
729 Elmer; D. M. Huber, Eds. APS Press: St. Paul, Minnesota. USA, 2007; pp 155-178.

730 (50) Derbalah, A. S.; El-Moghazy, S. M.; Godah, M. L. Alternative Control Methods of Sugar-beet Leaf  
731 Spot Disease Caused by the Fungus *Cercospora beticola* (Sacc). *Egypt. J. Biol. Pest Control* **2013**, *23* (2),  
732 247-254.

733 (51) Paret, M. L.; Palmateer, A. J.; Knox, G. W. Evaluation of a light-activated nanoparticle formulation  
734 of titanium dioxide with zinc for management of bacterial leaf spot on Rosa 'Noare'. *Hortscience* **2013**, *48*  
735 (2), 189-192.

736 (52) Thompson, I. A.; Huber, D. M. Manganese and plant disease. In *Mineral Nutrition and Plant  
737 Disease*, L. E. Datnoff; W. H. Elmer; D. M. Huber, Eds. APS Press.: St. Paul. Minnesota. USA, 2007; pp  
738 139-153.

739 (53) Stangoulis, J. C. R.; Graham, R. D. Boron and plant disease. In *Mineral Nutrition and Plant Disease*,  
740 L. E. Datnoff; W. H. Elmer; D. M. Huber, Eds. APS Press: St. Paul. Minnesota. USA, 2007; pp 207-214.

741 (54) Bellaloui, N.; Mengistu, A.; Zobiole, L. H. S.; Shier, W. T. Resistance to toxin-mediated fungal  
742 infection: role of lignins, isoflavones, other seed phenolics, sugars, and boron in the mechanism of  
743 resistance to charcoal rot disease in soybean. *Toxin Rev.* **2012**, *31* (1-2), 16-26.

744 (55) Ross, J. R.; Slaton, N. A.; Brye, K. R.; DeLong, R. E. Boron fertilization influences on soybean yield  
745 and leaf and seed boron concentrations. *Agron. J.* **2006**, *98* (1), 198-205.

746 (56) Jo, Y. K.; Kim, B. H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on  
747 Phytopathogenic Fungi. *Plant Dis.* **2009**, *93* (10), 1037-1043.

748 (57) Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M. X.; Tan, W. H.  
749 Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as  
750 an antibacterial against *xanthomonas perforans*. *ACS Nano* **2013**, *7* (10), 8972-8980.

751 (58) Rico, C. M.; Hong, J.; Morales, M. I.; Zhao, L. J.; Barrios, A. C.; Zhang, J. Y.; Peralta-Videa, J. R.;  
752 Gardea-Torresdey, J. L. Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant  
753 defense system and in vivo fluorescence imaging. *Environ. Sci. Technol.* **2013**, *47* (11), 5635-5642.

754 (59) Wu, H. H.; Shabala, L.; Shabala, S.; Giraldo, J. P. Hydroxyl radical scavenging by cerium oxide  
755 nanoparticles improves *Arabidopsis* salinity tolerance by enhancing leaf mesophyll potassium retention.  
756 *Environ. Sci. Nano* **2018**, 5 (7), 1567-1583.

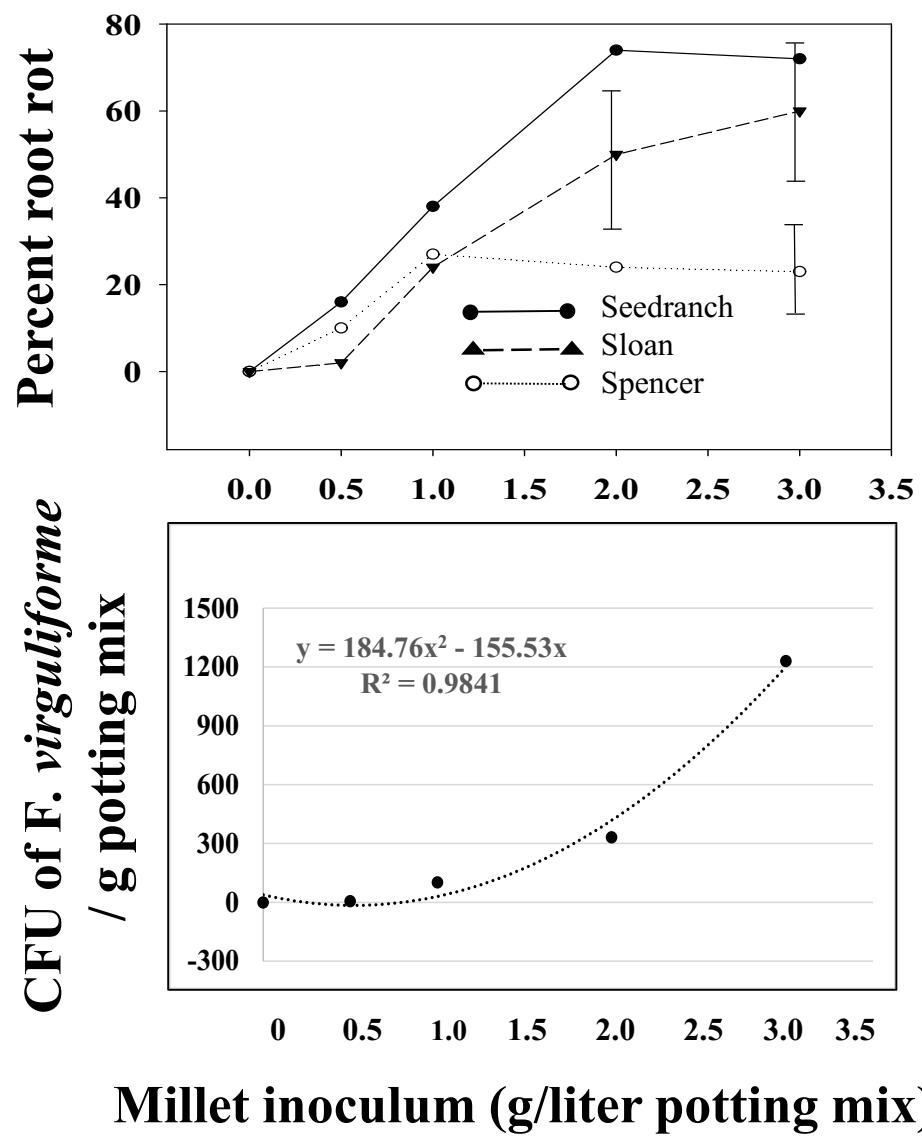
757 (60) Dimkpa, C. O.; McLean, J. E.; Britt, D. W.; Anderson, A. J. Antifungal activity of ZnO nanoparticles  
758 and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen  
759 *Fusarium graminearum*. *Biometals* **2013**, 26 (6), 913-924.

760 (61) He, L. L.; Liu, Y.; Mustapha, A.; Lin, M. S. Antifungal activity of zinc oxide nanoparticles against  
761 *Botrytis cinerea* and *Penicillium expansum*. *Microbiol. Res.* **2011**, 166 (3), 207-215.

762 (62) Sutradhar, A. K.; Kaiser, D. E.; Behnken, L. M. Soybean response to broadcast application of boron,  
763 chlorine, manganese, and zinc. *Agron. J.* **2017**, 109 (3), 1048-1059.

764 (63) Tande. C.;Hadi, B.;Chowddury, R.;Subramainan, S.; Byamukama, E. First report of sudeetn death  
765 syndrome of soybean casued by *Fusarium virguliforme* in south Dakota *Plant Dis.* **2014**, 98:1012.

766 (64) Stephens, P. A.; C. D. Nickell; F. L. Kolb. Genetic Analysis of Resistance to *Fusarium solani* in  
767 Soybean. *Crop Sci.* **1993**, 33:929-930.


768

769

770

771 Figure 1.

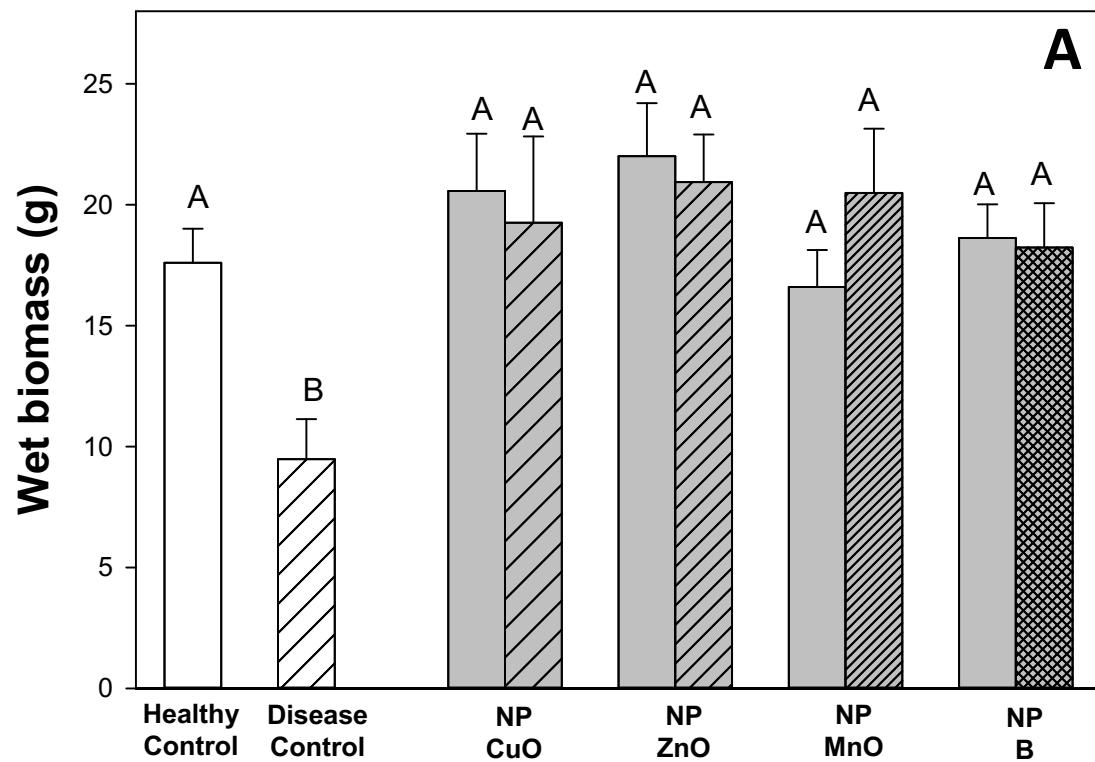
772



773

774 Figure 1. (Upper panel) The effect of increasing rates of millet inoculum of *Fusarium*  
775 *virguliforme* on the percent root of three soybean cultivars, Seedranch, Sloan, and Spencer;  
776 values represent the mean of six replicates error bars represent the standard error of the mean;

777 (Lower panel) the effect of increasing rates of millet inoculum of the recovery *Fusarium*  
778 *virguliforme* following serial dilutions on agar; values represent the mean of four replicates.


779

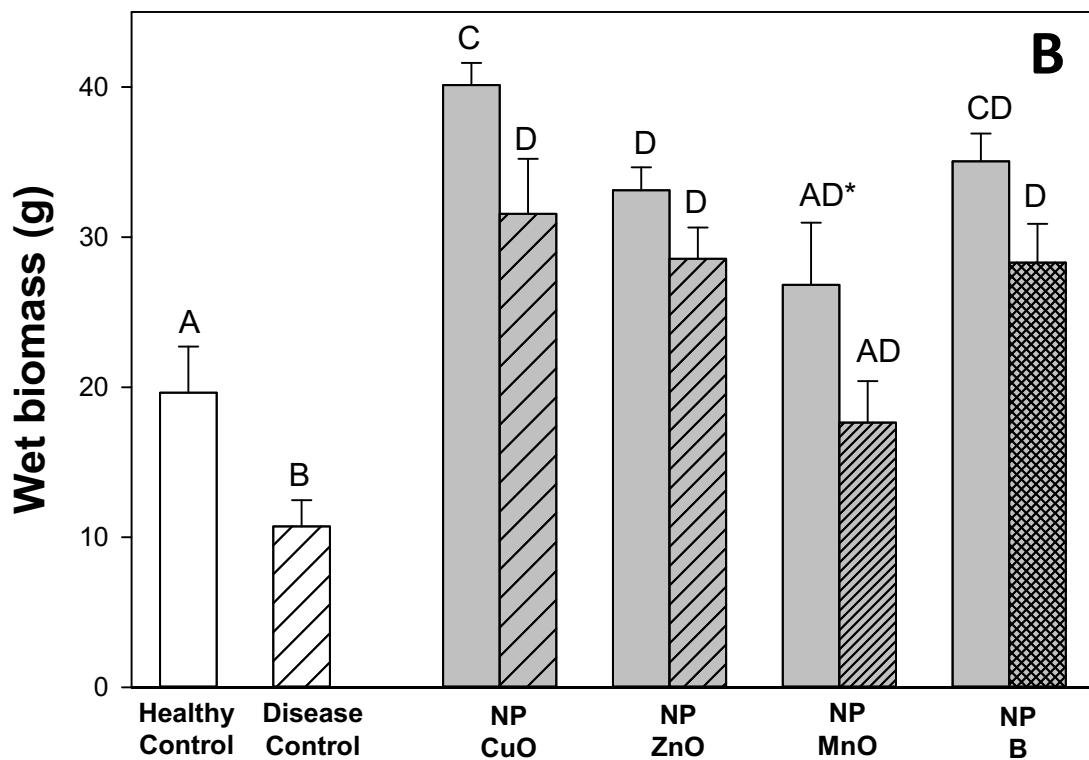
780

781

782

Figure 2A. Wet biomass of healthy soybean grown in un-infested media for 5 weeks at low N fertilization (100 ml of 50 mg N/ml). The disease control is included for comparison. Select seedlings were foliar treated with 1-2 ml of 500 (solid bars) or 1000 (hatched bars) mg/L NP CuO, ZnO, MnO, or B prior to transplanting. Bars with different letters are significantly different (one way ANOVA with Student Newman Keuls MCT).




783

784

37

785

Figure 2B. Wet biomass of healthy soybean grown in un-infested media for 5 weeks at high N fertilization (100 ml of 100 mg N/ml). The disease control is included for comparison. Select seedlings were foliar treated with 1-2 ml of 500 (solid bars) or 1000 (hatched bars) mg/L NP CuO, ZnO, MnO, or B prior to transplanting. Bars with different letters are significantly different (one way ANOVA with Student Newman Keuls MCT). \* indicates statistical significance at  $p < 0.10$ .



786

787

788

789

Figure 3A. Percent root rot in soybean grown in media infested with *Fusarium virguliforme* for 5 weeks under low N fertilization (100 ml of 50 mg N/ml). Select seedlings were foliar treated with 1-2 mL of 500 mg/L NP CuO, ZnO, MnO, or B prior to transplanting into infested media. Bars with different letters are significantly different (one way ANOVA with Student Newman Keuls MCT)

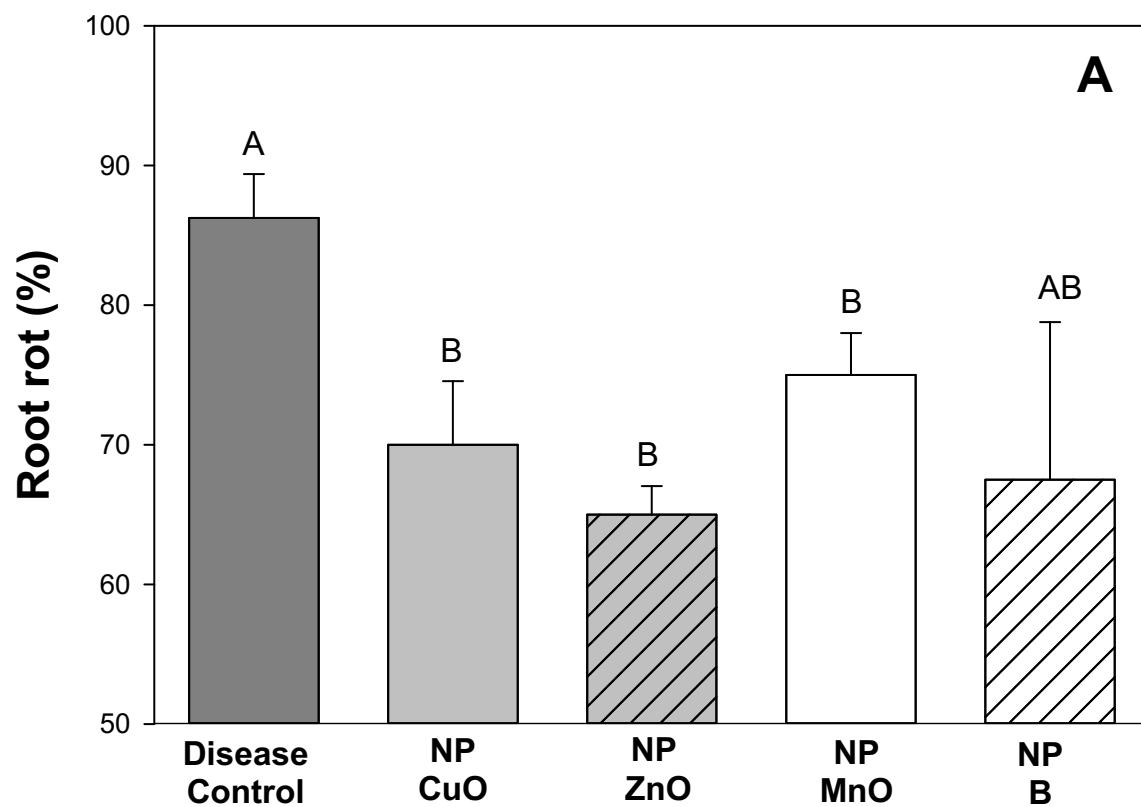
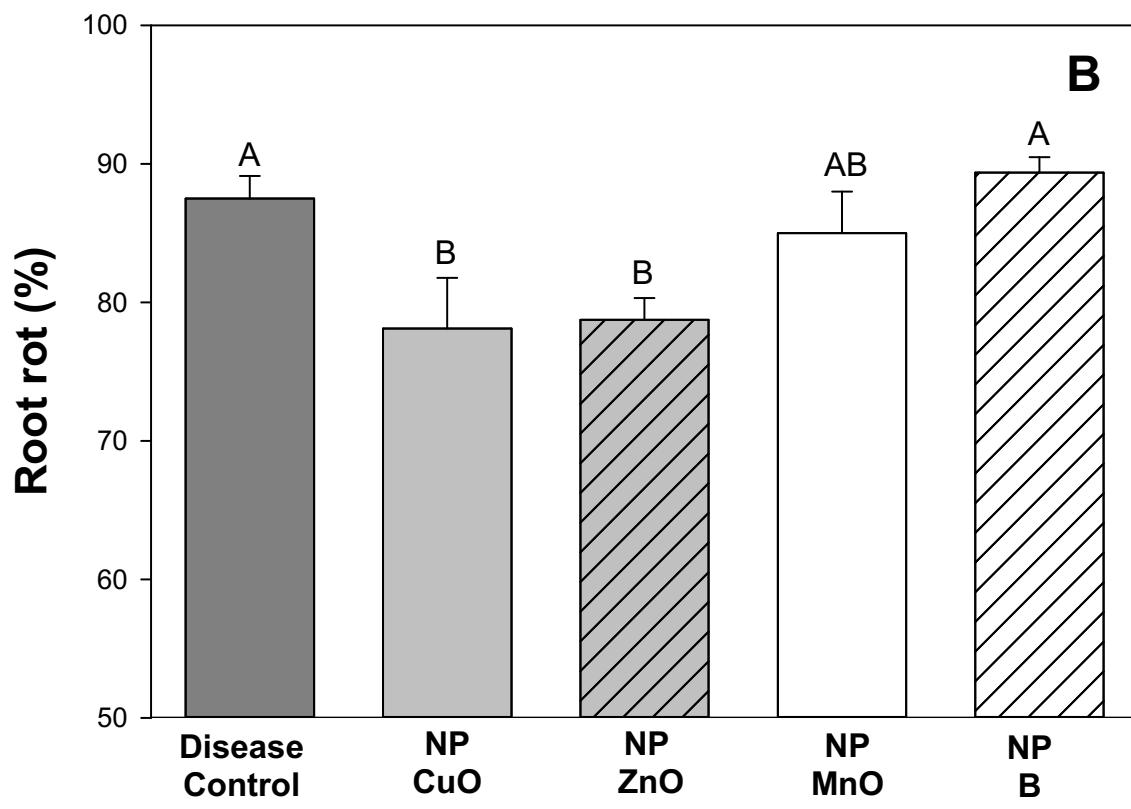




Figure 3B. Percent root rot in soybean grown in media infested with *Fusarium virguliforme* for 5 weeks. Select seedlings were foliar treated with 1-2 mL of 1000 mg/L NP CuO, ZnO, MnO, or B prior to transplaning into infested media. Percent root rot was unaffected by N fertilization rate; as such, data for low and high fertilization rates were pooled. Bars with different letters are significantly different (one way ANOVA with Student Newman Keuls MCT)



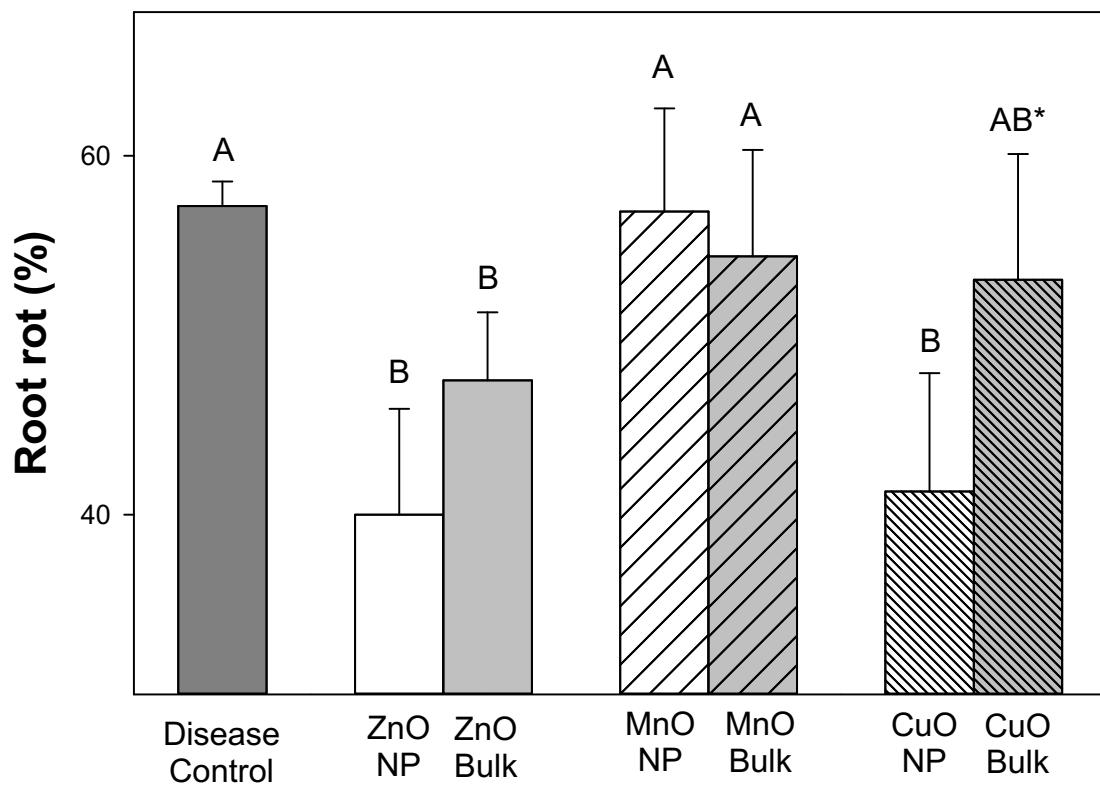
793

794

795

796 Figure 4. Images of healthy (left) and Fusarium-infected (right) soybean roots. Dark coloration  
797 or root rot is evident.



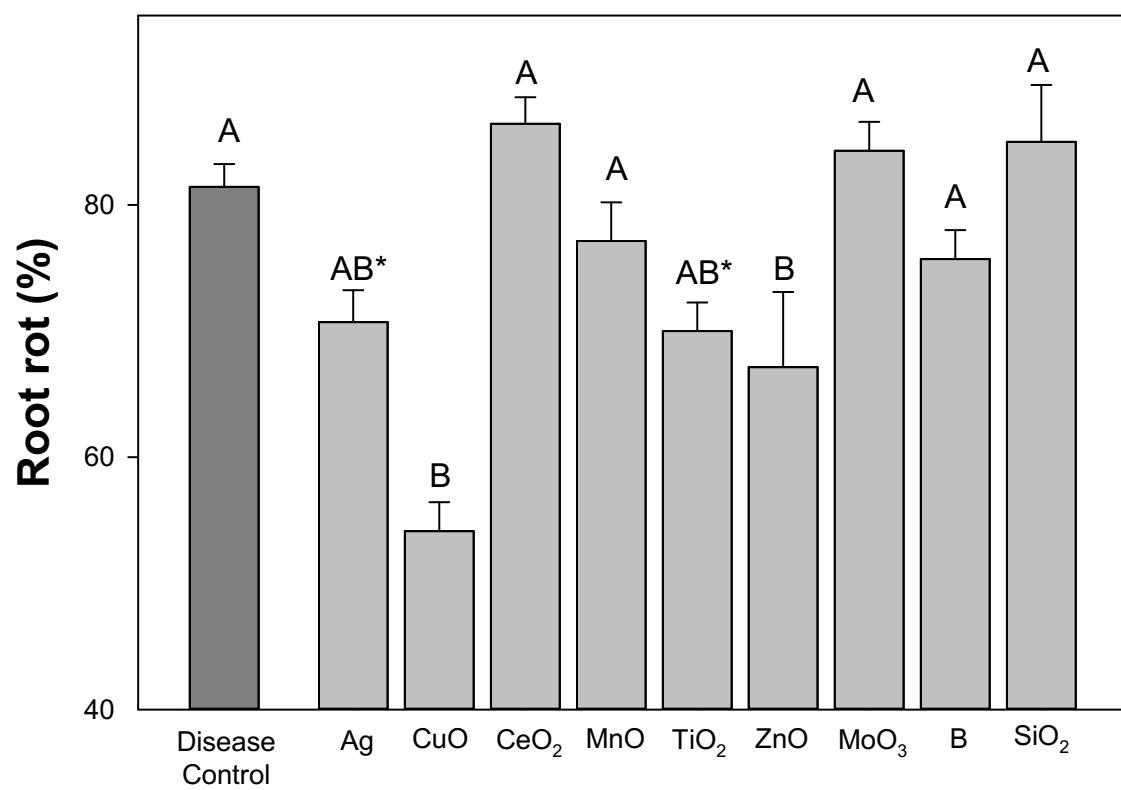

798

799

800

801 Figure 5. Percent rot root in soybean (Sloan) grown in infested media with *Fusarium*  
802 *virguliforme* for 5 weeks. Select seedlings were foliar treated with 1-2 ml of either NP or bulk  
803 ZnO, Mn<sub>2</sub>O<sub>3</sub> or CuO prior to transplanting into infested media. The statistical analysis was one  
804 way ANOVA was done on controls, bulk, and NP form of an element. Bars with different letters  
805 are significantly different within an element type ( $p<0.05$ ). \* indicates significant difference at  
806  $p<0.10$

807




808

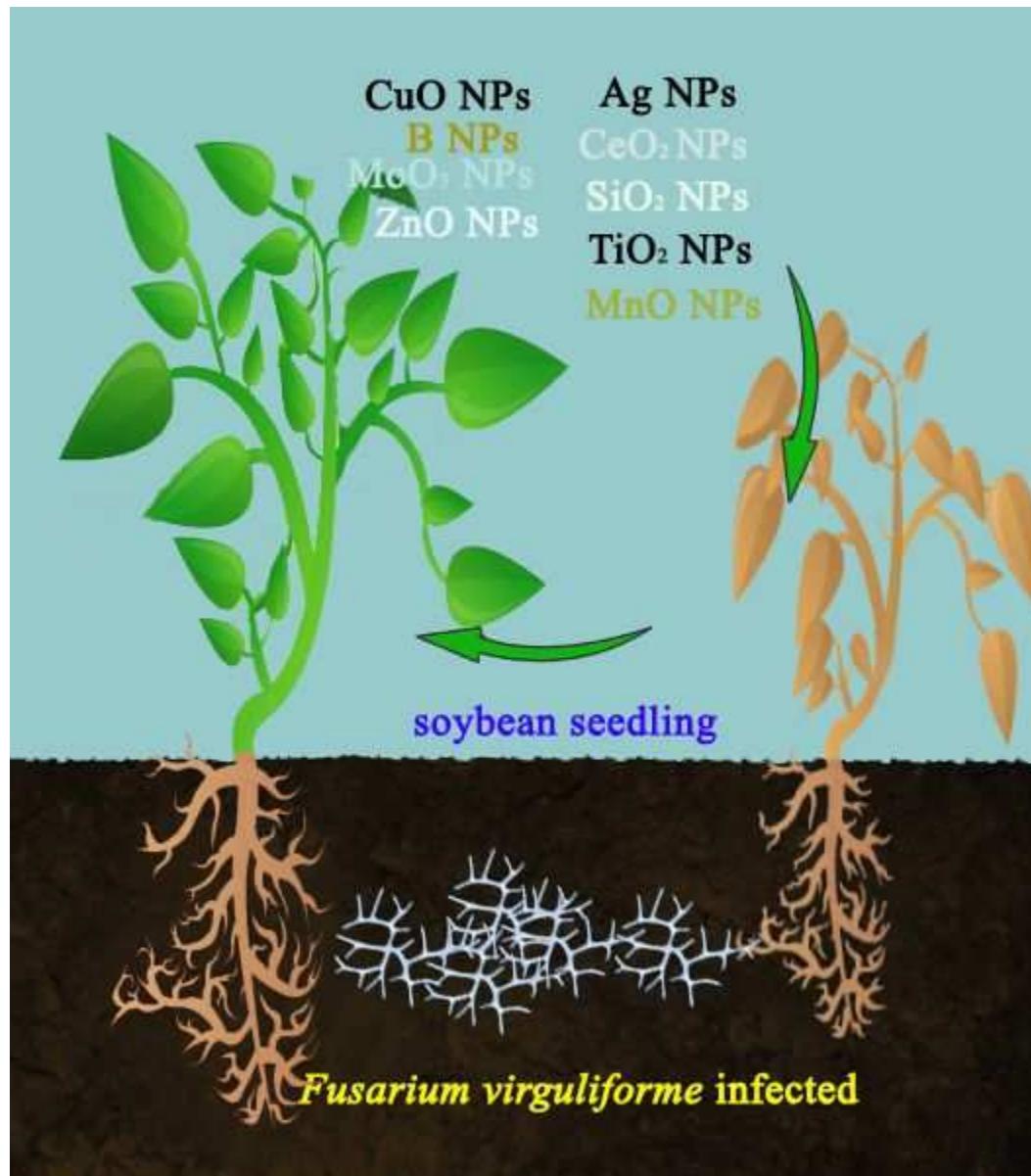
809

810

811 Figure 6. Percent rot root in soybean (Spencer) grown in infested media with *Fusarium*  
812 *virguliforme* for 5 weeks. Select seedlings were foliar treated with 1-2 ml of 500 ug/ml NP Ag,  
813 CuO, CeO<sub>2</sub>, Mn<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, ZnO, MoO<sub>3</sub>, B, or Si prior to transplanting into infested media. Bars  
814 with different letters are significantly different (One way ANOVA with SNK MCT p<0.05). \*  
815 indicates significant difference at p<0.10



816


817

818

819

820

821 Table of content graphic



822