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Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential

for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios.

Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores

of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these

greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold5

season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year

micrometeorological data set of methane and carbon dioxide fluxes that provides near-continuous data throughout the active

summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and

89 g C m−2 a−1 respectively, with cold season methane emission representing 54% of the annual total. In the other year,

net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold season methane10

emission here representing 82% of the annual total – a larger proportion than has been previously reported in the Arctic tundra.

Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons

– where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production

whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results

provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus15

on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling

temperature–methane flux dynamics.

1 Introduction

Active-layer soils and permafrost soils in the Arctic permafrost region contain significant stores of terrestrial organic carbon.

These ecosystems account for an estimated 1307 (1140–1476) Pg of organic carbon, with ∼1035 Pg found within soils between20

0 and 3 m depth (Hugelius et al., 2014). Recently-observed increases in surface air temperature within these regions (Polyakov

et al., 2002) have sparked interest in the biogeochemical cycling of this carbon store, as substrate metabolic activity — shown

to be positively correlated to temperature — can break down organic compounds in the soil, releasing soil organic carbon to
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the atmosphere in the form of carbon dioxide and methane (Lai, 2009). Furthermore, the “active layer” horizon, within which

most soil carbon decomposition takes place, has been observed in places to be expanding as the underlying permafrost thaws25

under the influence of a warming atmosphere, thus exposing larger quantities of organic carbon to decomposition (Schuur et al.,

2009; Romanovsky et al., 2010; Schuur et al., 2015; Vonk and Gustafsson, 2013).

Production of methane in the carbon-rich soils of the Arctic tundra takes place as a result of microbial metabolic activity

(Lai, 2009). The break-down of organic carbon to form methane is a complex process that requires contributions from various

taxa of microorganisms (Whalen, 2005). Methanogens form the last step in this process of producing methane from organic30

polymers (Conrad, 1999); whilst these methanogens encounter oxygen in the breaking down of acetate and carbon dioxide,

they cannot survive in oxic environments (Whalen, 2005; Kamal and Varma, 2008; Lai, 2009). As such, methanogenesis in

peatlands is an obligate anaerobic process that takes place largely within deeper, anoxic layers of the soil, generally below the

water table level (Le Mer and Roger, 2001). Methane production at these depths creates concentration gradients that lead to

upward diffusion of methane through the soil to the surface (Preuss et al., 2013). Furthermore, methane can be transported to35

the surface via ebullition and through aerenchymatous tissues within some vascular plants (Joabsson et al., 1999; Lai, 2009).

In the upper soil layers, another subset of microorganisms known as methanotrophs consume a portion of this produced

methane in the presence of oxygen, eventually oxidising it to carbon dioxide (Lai, 2009). These methanotrophs are largely ex-

posed to methane diffusing through the soil pore space, as ebullition is too quick to allow exposure to methanotrophs (Boone,

2000) and plant vascular transport shields methane from methanotrophic activity (Schimel, 1995; King et al., 1998; Verville40

et al., 1998). The rate of methane consumption is usually highest immediately above the water table level, where high concen-

trations of methane formed from the underlying methanogens meet with sufficient oxygen levels from the overlying atmosphere

(Dedysh et al., 2002). Rates of both methanogenesis and methanotrophy are highly dependent on temperature, with optimal

metabolic rates (as determined in the laboratory) occurring at temperatures of around 25 ◦C (Dunfield et al., 1993). Of the two

competing processes, methanogenesis has shown to be more temperature-dependent with higher reported rate changes per unit45

warming (e.g. per 10 ◦C (Q10): 5.3–16) compared to methanotrophy (Q10: 1.4–2.1) (Dunfield et al., 1993).

Estimating the methane exchange budget in Arctic tundra ecosystems and how it relates to temperature are challenging

objectives, currently subject to considerable uncertainties. Ambient observations in northern Alaska over 29 years showed no

clear increase in ambient atmospheric methane concentration enhancements during this period, despite noticeably warmer air

temperatures (Sweeney et al., 2016). Direct observations of methane exchange, however, during the Carbon in Permafrost50

Experimental Heating Research (CiPEHR) project, showed significant increases in methane emission under warming soil

conditions (Natali et al., 2015). Multi-year carbon exchange data sets are rare, and challenging winter conditions at Arctic

sites has led to many studies focussing largely on summer and early autumn periods (Euskirchen et al., 2012). The first year-

round micrometeorological methane exchange measurements reported showed that cold season methane emission dominated

the annual exchange budget, suggesting a predominant role of cold-season processes (Zona et al., 2016). At five Alaskan55

sites, substantial methane emission occurred throughout the cold season, and although emission rates were lower than those

measured during the warmer summer period, prolonged wintertime activity amounted to 50% ± 9% (mean ± 95% confidence
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interval) of annual emission. The authors suggest that this cold season emission may become more important under forecasted

climate conditions that include higher air temperatures and deeper snowpacks (Hay and McCabe, 2010; Zona et al., 2016).

We present here a two-year micrometeorological methane and carbon dioxide exchange data set, undertaken over an acidic60

tussock tundra site near the Toolik Field Station, Alaska, USA, on the north slope of the Brooks Range. Complimentary to air–

surface exchange measurements, we report soil pore space methane, carbon dioxide and oxygen concentrations and soil water

content in the upper 40 cm, as well as soil temperature profiles at and near the site to a depth of 150 cm. All measurement

systems were deployed year-round, providing near-continuous data coverage throughout both the summer growing seasons

and the cold winter seasons in both years. The goal of this study was to investigate environmental controls that significantly65

impact the magnitude and direction of methane fluxes in this environment – particularly over the colder winter months – as

environmental control–methane flux relationships during these periods are relatively poorly understood. These results add to

our growing understanding of carbon exchange dynamics in the Arctic tundra soils, as well as provide insights into how these

dynamics may evolve under forecasted changing conditions in this environment

2 Methods70

2.1 Site description

This study was performed over two full years from October 2014 to September 2016 at Toolik Field Station (Alaska, USA)

located on the north slope of the Brooks Range (68◦ 38’ N, 149◦ 36’ W, 720 m a.s.l.). The study site, approximately 180 km

south of the Arctic Ocean, overlies Cretaceous shale, claystone, siltstone, and sandstone, with soils that are characterised

as cryosols. Vegetation within the measurement footprint (see Fig. S1) is dominated by an acidic tussock tundra vegetation:75

scrubby plants (e.g. Cassiope tetragona (L.) D.Don, Arctostaphylos alpinus (L.) Spreng.), shrubs (e.g. Betula nana L., Salix

pulchra Cham.), tussock grasses (Carex), mosses and lichens (Shaver and Chapin III, 1991). Vegetation in other areas of the

measurement footprint were characterised as wet graminoid tundra (sedge and moss tundra). Both mineral and organic soil

profiles were closely present together with different horizon depths. Soil organic carbon content, based on eight soil sampling

pits to a depth of 90 cm around the flux tower, was highly variable, with A-horizon organic carbon concentrations averaging80

10.3% (range of 7 to 14%) and B-horizon organic carbon concentrations averaging 2.4% (range of 1 to 4%) (Olson et al.,

2018). Estimates of soil organic carbon density in the flux footprint range from 5 to 25 g C m−2 (Fig. S2).

2.2 Instrumentation

An aerodynamic gradient approach was utilised for observing air–surface methane and carbon dioxide fluxes. Turbulent char-

acteristics were measured using a Metek USA-1 sonic anemometer (Metek GmbH, Elmshorn, Germany), positioned 2.36 m85

above the tundra soil. Atmospheric sampling of trace gas concentrations was performed at heights z1 = 0.61 m and z2 =

3.63 m. Perfluoroalkoxy Teflon tubing from both the atmosphere and soil inlets were directed in a heated conduit to an onsite

field laboratory, and a solenoid valve system allowed sequential sampling at both heights with switching interval of 10 minutes
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(Obrist et al., 2017). Methane and carbon dioxide concentrations were quantified using a Los Gatos 915-0011 ultra-portable

greenhouse gas analyser (Los Gatos Research, Mountain View, CA, USA), factory-calibrated prior to installation and oper-90

ating at 1 Hz. The analyser was zeroed using methane- and carbon dioxide-free zero air approximately every 6 weeks. Line

intercomparison tests were also performed with the same frequency by moving both inlets to the same height and sampling for

between 12 and 24 hours (average 17 hours). Concentration differences between the sample lines during the intercomparisons

were <0.001 µmol mol−1 for methane and <0.1 µmol mol−1 for carbon dioxide. Although the emphasis here is on methane

flux magnitudes and dynamics, carbon dioxide fluxes are discussed at length in order to understand corresponding respiration95

processes that help us constrain the influence of microbial activity on observed methane fluxes.

Two soil profiles were installed between 15 and 20 m to the north of the flux tower (herein “Flux Tower” profiles), with

temperature and volumetric water content (VWC) measured at depths of 10, 20 and 40 cm. Temperatures were measured using

soil temperature probes (Model 107, Campbell Scientific Inc., Logan, UT, USA) and VWC was measured at the same depths

using time-domain reflectometry (Model CS615-L Soil Volumetric Water Reflectometers, Campbell Scientific Inc., Logan,100

UT, USA). Further from the flux tower (430 m to the north-east), Toolik Field Station operates two profiles of soil temperature

(thermocouple) measurements to a depth of 150 cm (0, 5, 10, 20, 50, 100 and 150 cm). Despite the increased distance, these

profiles were included in the current analysis as they provide a longer time series (measurements have been taken continuously

since 1988) and information at deeper depths than the Flux Tower profiles. A snow tower (Seok et al., 2009; Faïn et al., 2013)

was installed prior to the first snowfall and recorded temperatures at 0, 10, 20, 30, 40 and 110 cm above the soil surface, thus105

measuring temperatures within the snowpack as it developed above each measurement height. The average snowpack depth

over the site was measured daily using a camera set to automatically record images of reference snow stakes (Agnan et al.,

2018). These depth measurements began in November 2014, and so the first snowfalls in that year were not recorded.

2.3 Calculations

Fluxes of methane and carbon dioxide were calculated using the aerodynamic gradient approach described by Edwards et al.110

(2005):

F =
−ku∗(C2 −C1)

ln((z2 − d)/(z1 − d))−Ψ2 + Ψ1
, (1)

where F represents the flux of either methane or carbon dioxide, k the von Kármán constant, u∗ the friction velocity, Ci

the concentration of atmospheric trace gas species in question at height i = [1, 2], zi the sampling height, d the displacement

height and Ψi the stability-dependent integrated similarity functions for heat, as given by Businger et al. (1971). Herein we115

follow the convention of positive flux values representing emission, whilst negative values represent deposition.

Atmospheric turbulent characteristics (friction velocity and Obukhov stability) were calculated using the flux processing

software EddyPro v.6.2.0 (Li-COR, Lincoln, NE, USA) using 30-minute averaging periods. Rotation of sonic data into mean

wind vectors was accomplished using the double rotation technique and quality control tests for steady state and developed

turbulent conditions were implemented according to Foken et al. (2004). Apparent sonic anemometer sampling height was120
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altered according to daily observed snow depth in increments of 5 cm, as were gradient intake sampling heights. As a single

instrument was used for trace gas sampling at both intake heights, leading to a loss of temporal coverage within each 30-

minute period (Woodruff, 1986), gaps in the concentration time series were estimated for each averaging period using a 4th

order polynomial fit to the observed concentration time series. Average concentrations at each height were then calculated from

a truncated mean (10th–90th percentile) in order to reduce effects of outliers (Fig. S3).125

Two-dimensional footprint analyses were undertaken for each 30-minute period using the method of Kljun et al. (2015)

and fluxes for which the footprint intensity over the adjacent Toolik Lake was shown to be >20% of the total were removed

from analysis. Analysis of energy balance closure showed that calculated turbulent and soil heat fluxes for snow-free peri-

ods, excluding fetches in the direction of Toolik Lake, accounted for approximately 88% of net radiative fluxes (linear least

squares, p <0.001). Gaps in both methane and carbon dioxide fluxes, resulting from quality control and instrument down-130

time/maintenance, were filled using the R package REddyProc (Wutzler et al., 2018). The efficacy of this gap filling was tested

against a randomly-selected validation set of size equal to 10% of available flux values (Fig. S4). Ecosystem respiration was

approximated using gap-filled carbon dioxide fluxes, filtered to exclude times when incoming photosynthetically active radia-

tion (PAR) was above 5 µmol m−2 s−1 (Natali et al., 2015). Periods during which no data fitting this criteria are available (i.e.

polar day) were not gap-filled, resulting in incomplete temporal coverage for ecosystem respiration.135

3 Results and Discussion

3.1 Site climatology

Air temperatures, as observed at Toolik Field Station, showed similar patterns and magnitudes between 2014–15 and 2015–16,

ranging between -40 ◦C and 0 ◦C during the winter months and -5 ◦C and 20 ◦C during the warmest summer months (Fig.

S5). Air temperatures in these years also remained within the range of those observed during the preceding 26 years during140

all months of the year. Soil temperatures at 20 cm depth were within the expected climatological range during the summer

months, however throughout the colder months (between mid-November and late April), temperatures during 2014–15 and

2015–16 were among the warmest observed since 1988. Likewise, at 100 cm depth, wintertime soil temperatures during 2014–

15 and 2015–16 were among the warmest seen in the Toolik Field Station record. Minimum cold season soil temperatures at

these depths for 2014–15 and 2015–16 were the second- and third-highest on record, respectively (Fig. S6). To investigate the145

climatological influence of atmospheric forcing on soil cooling, Fig. S6 also shows that 2014–15 had the shortest cold season

(defined in this instance as the period during which the 28-day running mean of 5 m air temperature remains below 0 ◦C)

and the third-smallest freezing degree day (FDD) value on record. Whilst 2015–16 had an average-length cold season (20th

shortest on record), it had the fourth-smallest FDD value since 1988.

Though snow depth has not been measured at Toolik Field Station across the same period of time, observations at the snow150

tower provide some additional insights into why soils were warmer during the winter of 2014–15 compared to 2015–16 (Fig.

S7). Snow depth was significantly (Student’s t-test, p <0.001) larger in 2014–15 (mean 32 cm) than in 2015–16 (mean 22 cm).

Deeper snowpacks are able to provide an increased thermoinsulation effect from cold air temperatures, particularly in the
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early cold season (Maksimova et al., 1977; Sokratov and Barry, 2002), thus leading to warmer and less variable surface soil

temperatures. This effect can be seen in the temperature pulses shown in the snow tower thermocouple data (Fig. S7) and their155

effect on the underlying soil, where the minimum subnivean surface temperature in 2014–15 (-12 ◦C) was 5 ◦C warmer than

that observed in 2015–16 (-17 ◦C).

Arctic tundra ecosystems are highly heterogeneous within the scale of micrometeorological flux footprints (typically 10s

to 100s metres Kljun et al., 2015; Fox et al., 2008), and during the winter, the combined effects of wind and topography

lead to even greater spatial heterogeneity in snow depths and snow physical properties (Agnan et al., 2018). Sub-surface soil160

temperatures, which are further influenced by air temperature and downwelling radiation; overlying vegetation and snow; and

soil properties and moisture, are likely highly spatially variable within the footprint as well. As a result, the limited number

of soil temperature profiles within the flux measurement footprint may not be fully representative of the average temperature

within the flux footprint. The four soil temperature profiles we have available are separated both in space and in the soil

properties in which they were installed. Fig. S8 shows the time series for each of these profile measurements at two common165

depths (10 and 20 cm). This time series shows that, whilst the absolute range of temperatures between measurements can be

pronounced, the correlation between these soil temperature measurements is reasonable enough throughout most of the study

period (mean R2 = 0.64) to warrant use of Toolik Field Station data for further investigation of temporal trends. The decision

to use Toolik Field Station data was driven primarily by the deeper profiles measured here, as this information is vital to the

primary outcomes of this study (see Section 3.4).170

3.2 Annual and seasonal flux patterns

Half-hourly methane and carbon dioxide fluxes are shown in Figure 1, along with total cumulative values over the ∼two-year

(727-day) study. Overall, based on combined raw and gap-filled data, the mean half-hourly methane flux showed an emission of

0.5 ± 0.5 mg C m−2 h−1 (herein, uncertainty is expressed as one standard deviation of the measured values). The distribution

of methane fluxes (Fig. S9) showed a positive skew, as well a secondary peak in values close to zero. Cumulative diel sums175

gave a mean net daily flux of 11 ± 8 mg C m−2 d−1. Over the study period as a whole the site acted as a net source of methane,

with a cumulative methane emission of 8.6 g C m−2 (4.9 g C m−2 and 3.7 g C m−2 in the first and second years, respectively).

The overall mean carbon dioxide flux across the two years of measurements was 0.0 ± 0.2 g C m−2 h−1 (mean net daily flux of

1 ± 3 g C m−2 d−1), with the site acting as a net source of carbon dioxide during both years of measurements. The distribution

of carbon dioxide fluxes across the study (Fig. S9) did not show skewness as seen in the methane flux distribution, though it did180

show a higher level of kurtosis. During the 24-month measurement period, the site emitted a net carbon dioxide flux equivalent

to 583 g C m−2 (485 g C m−2 and 89 g C m−2 in the first and second years).

Seasonality can be defined in a number of different ways depending on the processes of interest (Mastepanov et al., 2013);

initially, we followed similar definitions as those described by Zona et al. (2016) who investigated changes in methane fluxes

based on surface (10 cm) soil temperatures. Periods where surface soil temperatures were above 0 ◦C were defined as “active”185

seasons (yellow shading in Fig. 1) and those where soil temperatures were below 0 ◦C were defined as “frozen” seasons (blue

shading in Fig. 1). Zero curtain periods, where surface soil temperature remains close to 0 ◦C (± 0.5 ◦C) for prolonged
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time periods due to latent heat released or absorbed from soil water, were separated into “freezing” or “thawing” seasons.

Freezing seasons (turquoise shading, Fig. 1) occurred prior to the frozen season, whilst thawing seasons (green shading, Fig.

1) occurred after the frozen season and prior to the active season. Combined freezing–frozen–thawing periods were defined as190

“cold season”. The period from the onset of the freezing season in 2014 until the end of the active season in 2015 has herein

been defined as “Year 1”, whilst the same seasons from 2015 until 2016 have been defined as “Year 2”. Tables 1 and 2 give

summary methane and carbon dioxide flux data, respectively, for these seasons and years so defined.

Table 1 shows marked differences in the magnitude and seasonality of methane fluxes between the two years. Cumulative

methane emission in Year 1 was 1.3-fold that of Year 2, across a slightly shorter period (347 days compared to 380 days). All195

seasons showed net methane emission across the study period, with statistically significant differences (Student’s two sample

t-test, p <0.05) in the net daily flux between Year 1 and Year 2 for all seasons. The largest seasonal differences in net daily

methane fluxes between years were for the active and frozen seasons (6 and 10 mg C m−2 d−1, respectively). For Year 2, the

active season showed significantly higher methane emission compared to Year 1, releasing 1.7 g C m−2 (15 mg C m−2 d−1),

or 46% of the annual total, compared to 0.9 g C m−2 (9 mg C m−2 d−1), or 18% of the annual total for Year 1. Conversely,200

the frozen season showed higher emission in Year 1, releasing 2.5 g C m−2 (16 mg C m−2 d−1), or 51% of the annual total,

compared to 1.1 g C m−2 (6 mg C m−2 d−1), or 30% of the annual total in Year 2. Year 1 also showed higher methane emission

in the freezing and thawing seasons, though these represented similar percentages of the annual total across both years (∼25%

of annual total for freezing and 3–4% of annual total for thawing). Zona et al. (2016) reported average cold season methane

emission from five Alaskan Arctic sites of 1.7 ± 0.2 g C m−2, accounting for between 37 and 64% of the total annual methane205

budget at these sites. The authors note that these contributions are higher than those estimated from previous models and

periodic chamber observations. In our study, observations in Year 2, where 50% of annual methane emission occurred in the

cold season, are within the ranges reported by Zona et al.. However, cold-season methane emission during Year 1 accounted

for 82% of annual net emission, indicating that cold-season methane emission can strongly dominate annual flux magnitudes,

to a larger extent than recent evidence suggests.210

Figure 1a shows the detailed temporal patterns that help explain differences in seasonal net emission between the two years.

For Year 1, the 28-day moving average (herein MA28) methane flux (red line in Fig. 1a) was initially relatively high and positive

at the onset of the freezing season (∼1 mg C m−2 h−1), and remained at a similarly high level during the Year 1 freezing season

and most of the frozen season. In early March 2015, the MA28 methane flux began to steadily decline during the late frozen

season, thawing season, and mid-way into the active season, reaching a minimum emission of ∼0.1 mg C m−2 h−1 in August215

2015 before increasing again to ∼0.7 mg C m−2 h−1 at the onset of the Year 2 freezing season in September 2015. In contrast,

in the Year 2 freezing season, MA28 methane flux began to decline in October 2015, and continued a consistent and relatively

constant decline throughout the winter until it approached ∼0.2 mg C m−2 h−1 in February 2016. It was not until the thawing

season in June 2016 that the MA28 methane flux again began to increase in magnitude (net positive), reaching a peak of

∼0.9 g C m−2 h−1 about mid-way through the Year 2 active season.220

Carbon dioxide fluxes (Table 2) showed significant net emission throughout the entire cold season in Year 1 (471 g C m−2

or 1.9 g C m−2 d−1), followed by minor net emission in the subsequent active season (14 g C m−2 or 0.1 g C m−2 d−1). Year
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2 freezing and frozen seasons showed lower carbon dioxide emission than Year 1, and the thawing season showed net carbon

dioxide deposition, resulting in a combined cold season emission of 294 g C m−2 or 1.1 g C m−2 d−1 (38% lower than Year

1). Net active season carbon dioxide fluxes in Year 2 showed significant deposition, at -211 g C m−2 or -1.9 g C m−2 d−1.225

Annual and multi-season micrometeorological flux studies are rare for the Alaskan Arctic (Commane et al., 2017); however,

the net annual carbon dioxide flux for Year 2 is within the range of values reported for wet sedge tundra (2 to 147 g C m−2 a−1

Euskirchen et al., 2012, 2017), and larger than for heath tundra (21 to 61 g C m−2 a−1 Euskirchen et al., 2012, 2017) or

tussock tundra (13 to 15 g C m−2 a−1 Euskirchen et al., 2012; Oechel et al., 2014). The net annual carbon dioxide flux was

significantly above the range previously reported for wet sedge tundra. Arctic tundra ecosystems are highly heterogeneous230

both physically and biogeochemically (Fox et al., 2008) and the area examined here is no exception. Seasonal two-dimensional

footprint analyses (Fig. S10) showed a prdeominantly southerly footprint during all seasons, where fens and moist tundra are

more abundant (Fig. S1). Importantly, the homogeneity in all seasonal footprints shown in Fig. S10 excludes the possibility

that observed differences in seasonal flux magnitudes (i.e. higher cold season contributions in Year 1 relative to Year 2) are due

to flux footprint differences over heterogeneous surfaces.235

Figure 1b shows the detailed temporal patterns of seasonal net carbon dioxide emission for the two years. Active season

net carbon dioxide sinks in both years are consistent with long-term eddy covariance observations that show summertime sink

trends in the Alaskan Arctic (Oechel et al., 2008). These active season carbon dioxide sinks also are consistent with large-

scale aircraft observations over the Alaskan North Shore tundra (Commane et al., 2017) that show a switch to carbon dioxide

uptake during June–August, peaking at approximately -0.3 g C m−2 h−1. Cold season MA28 carbon dioxide fluxes are almost240

consistently positive, only switching to net uptake in the late thawing season of Year 1. A major distinction between the two

years of measurements is the duration of relatively high emission – also noted by Commane et al. – that begins in the late

active season and extends into the freezing season. As shown in Figure 1b, while MA28 carbon dioxide emission decreased

relatively early in Year 2, dropping below 0.1 g C m−2 h−1 in October 2016, in Year 1 this decline occurred at a slower rate,

remaining relatively high and not reaching the same low value until January 2015. Importantly, in both years, MA28 carbon245

dioxide fluxes do not completely cease during the cold season and always maintain a small emission throughout winter (up to

0.1 g C m−2 h−1).

In summary, the two years showed substantial temporal differences in methane fluxes, with Year 1 showing higher methane

emission throughout most of the cold season (100% greater), contributing a high fraction (82%) of annual net methane emis-

sion. This is in contrast to Year 2, which experienced a continued decline in methane emission that began early in the freezing250

season, resulting in a relatively low contribution (54%) to the annual total. Annual carbon dioxide flux magnitudes were most

similar to other wet sedge tundra measurements; show strong seasonal trends with relatively high respiration in the freezing

season and prolonged but low carbon dioxide emission in the frozen season; and carbon dioxide uptake during the thawing

and/or active season, largely in agreement with carbon dioxide flux patterns reported for northern tundra ecosystems before.

Inter-annual comparison, however, showed cold-season carbon dioxide fluxes that were 38% higher in Year 1, also largely255

driven by slower and later declines in carbon dioxide emission fluxes during the freezing and frozen periods.
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3.3 Soil temperature relationships

Continuous cold season methane flux data at the ecosystem level are rare for Arctic tundra ecosystems. Given the strong dom-

inance of cold-season fluxes for annual flux magnitudes (54% to 82% in our study), the pronounced differences in cold season

methane flux dynamics between the two years merit particular attention. Methane flux dynamics are controlled largely by soil260

methanogenic and methanotrophic activity (Lai, 2009), and previous research has suggested that, in frozen soils (where water

table dynamics become less important), soil temperature has the strongest control on microbial activities that drive methane

production and consumption (Le Mer and Roger, 2001). In order to maintain comparability with similar year-round methane

flux observations in the Alaskan Arctic (Zona et al., 2016), our initial investigations into relationships between ecosystem-level

methane fluxes and underlying soil temperatures began with soil temperatures measured at 10 cm depth (hereafter surface265

soil temperature). This is shown in the upper panels of Figure 2, where MA28 methane fluxes are plotted against MA28 sur-

face soil temperatures, as measured at the Toolik Field Station. Horizontal lines show the spread of all available surface soil

measurements (i.e. both at Toolik Field Station and closer to the flux tower).

Based on these upper panels in Figure 2, it is evident that methane fluxes showed very different relationships with surface

soil temperature in Year 1 compared to Year 2. For Year 2 (Fig. 2b), we observed a pattern similar to that reported by Zona et al.270

(2016), whereby MA28 methane fluxes began to decrease mid-way through the freezing season (point F, October 2015). As

surface soil temperatures continued to decrease during the frozen season (F–G), MA28 methane fluxes continued to decline,

reaching a minimum during the frozen season in March 2016 (point G). MA28 methane fluxes remained low (between 0.1

and 0.2 mg C m−2 h−1) during the remaining frozen season, as MA28 surface soil temperatures increased from its minimum

of -5.1 ◦C to 0 ◦C (G–H). As surface soil temperatures continued to warm above 0 ◦C during and beyond the late thawing275

season, methane emission increased significantly into the active season (H–I), peaking in August 2016 (point J). The rela-

tionships observed in Year 2 provide evidence that surface soil temperature is correlated with cold season methane fluxes, yet

with substantial variability and a strong hysteresis between freezing and thawing periods. Zona et al. (2016) suggested that

temperature-dependent decreases in the near-surface methane oxidative capacity were largely responsible for the slow atten-

uation of methane fluxes in the early frozen period (here F–G), noting that sites with the largest and warmest active layers280

displayed the slowest decrease in methane fluxes. Soil pore gas concentration measured in our study show that oxygen levels

within the upper 40 cm were sufficient (>17%) to ensure methane oxidation in this zone across the entire study period and

hence that the top 40 cm soils were continuously oxic (data not shown). We also note that soil pore gas measurements took

place in an elevated, drier tussock region and that the thickness of the upper oxidative region is expected to be smaller in lower

depression areas and more water-saturated wet sedge regions (Gebauer et al., 1996). Due to the dominance of methanotrophic285

microbial communities in the upper oxic region, surface soil temperatures are likely an underlying reason, and hence a good

predictor, for observed declines in freezing season methane emission. However, the strong Year 2 active season increase in

methane emission is unlikely causally related to surface soil temperatures, as methanogenic microbial communities are less

abundant in the upper 40 cm of soils. Instead, as suggested by Zona et al., increases in methane emission as surface soils warm
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above 0 ◦C (points H–I in Fig. 2b) are likely coincident with enhanced methanogenic activity as temperature pulses reach290

deeper anoxic soil layers (see Section 3.4).

In contrast to Year 2, Year 1 MA28 methane fluxes showed almost completely reversed relationships with surface soil

temperatures (Fig. 2a). MA28 methane fluxes remained high (mean 0.8 mg C m−2 h−1) throughout the freezing and early

frozen seasons in spite of temperatures decreasing below freezing (A–B), with values among the largest observed across

the entire study period. Methane fluxes only began to decrease after March 2015 (point B) as MA28 surface temperature295

approached its minimum value of that season (-2.6 ◦C). Thereafter, methane fluxes continued to decline, even as surface

temperature began to increase again in the remaining frozen and thawing seasons, as well as partway into the active season (B–

C). The Year 1 minimum MA28 methane flux of 0.1 mg C m−2 h−1 occurred during the active season (point E, August 2015).

During the active season, relationships between surface temperature and MA28 methane fluxes were highly variable, showing

both positive and negative correlations. These data from Year 1 that show in parts inverse relationships between methane flux300

and surface soil temperature (relative to Year 2 and Zona et al. (2016)) suggest that, under certain conditions, surface soil

temperature alone cannot always reliably predict seasonal methane flux patterns. In fact, that some of the highest methane

emission observed during the period of coldest surface soil temperature in the Year 1 cold season is in direct contrast to the

strong temperature-dependence of microbial activity reported by Zona et al. (2016).

Figure 2c,d similarly display relationships of MA28 net ecosystem respiration with MA28 surface soil temperature, whereby305

ecosystem respiration is approximated as carbon dioxide fluxes during periods when incoming PAR is less than 5 µmol m−2 s−1.

Note that this approach only provides an upper boundary for heterotrophic microbial activity as autotrophic respiration by plants

also contributes to observed carbon dioxide fluxes (Hicks Pries et al., 2015). These panels show that, in both years, MA28 res-

piration fluxes decreased rapidly during the onset of both freezing seasons as soil surface temperature cooled, from 0.3 to

0.0 g C m−2 h−1 (Year 1) and 0.2 to 0.0 g C m−2 h−1 (Year 2). As surface soils cooled further during the frozen seasons, res-310

piration fluxes remained low, with Year 2 frozen season MA28 respiration fluxes decreasing from 0.04 to 0.01 g C m−2 h−1,

whilst in Year 1 these values were more variable, declining from 0.1 g C m−2 h−1 to near-zero before increasing again to

0.05 g C m−2 h−1. Respiration fluxes increased in both years prior to and during the thawing periods as surface soils warmed.

It is noteworthy that the beginning of these increases coincided with turning points in the MA28 methane flux-surface tem-

perature relationship (points B and G). In the active season, as discussed previously, Year 2 showed higher net carbon dioxide315

emission than Year 1. Similarly, since surface soil temperatures were much warmer in the Year 1 cold season, heterotrophic

respiration in this upper oxic soil region remained high relative to Year 2 leading to higher cold season cumulative carbon diox-

ide losses (Table 2). The strong relationships between cold season ecosystem respiration fluxes and surface soil temperature,

and the relative similarity between the two years, is consistent with patterns reported in previous research (Lüers et al., 2014;

Euskirchen et al., 2012; Björkman et al., 2010), and largely explain differences in the temporal trends of ecosystem respiration320

flux between the two years. This result suggests that changing heterotrophic microbial respiration in the upper soil region is

not a suitable explanation for the differences in methane flux–surface soil temperature relationships observed between Years 1

and 2.

10

https://doi.org/10.5194/bg-2019-437
Preprint. Discussion started: 18 November 2019
c© Author(s) 2019. CC BY 4.0 License.



3.4 Regression tree approach to seasonal methane flux dynamics

As discussed above, methane fluxes are largely dependent on microbial processes that compete in outcome (i.e. methanogenesis325

vs. methanotrophy), yet show similar environmental dependencies (Le Mer and Roger, 2001). Previous soil methane studies

have shown a range of controlling factors on microbial activity related to both methanotrophic and methanogenic activities,

including temperature, water table depth, oxygen availability and Eh, soil organic matter content, soil pH, soil texture and soil

mineralogy, though soil temperature and water table depth are often identified as the major of these controlling factors (Le

Mer and Roger, 2001; Yvon-Durocher et al., 2014; Gulledge et al., 1997). We employed a regression tree approach (Sachs330

et al., 2008) to explore non-linear relationships between observed methane fluxes and variables identified in the literature

as influential to methanotrophic/methanogenic activity. Of the known variables, soil organic carbon content, pH, texture and

mineralogy cannot explain changes in fluxes over short time periods and hence were not included. Additionally, pore-space

oxygen concentrations were not included in the analysis since it was measured only in the upper 40 cm and remained oxic

throughout the entire study period. For the regression tree, we hence used soil temperature data from the surface to 150 cm335

depth, as well as surface VWC. Daily values were chosen in order to reduce the influence of diel variability, with net daily

sums (in the case of methane fluxes) and mean daily values (for temperature and water content) as inputs into the model. The

outcome of this analysis is shown in Fig. 3a, along with the time series of net daily methane fluxes used to build the model

(Fig. 3b). Horizontal lines and coloured shading in Fig. 3b show mean ± one standard deviation of the input methane flux data,

as grouped by the predictive model. The predictive capability of this model, tested against a randomly-selected validation set340

representing 10% of the available input data, shows an R2 value of 0.69 (p <0.001).

The two variables that most effectively cluster methane flux values within the hyper-dimensional data space are soil tem-

peratures measured at 100 cm and at 10 cm depths. Critically, these two temperature variables separate, and likely explain,

substantial methane flux differences observed during the frozen seasons between Year 1 and Year 2. Specifically, the frozen

season in Year 2 was largely represented by regression tree outcomes when temperatures at 100 cm soil depth were below345

-2.4 ◦C, marked in Fig. 3b in blue and red. This is the only season during the study period when 100 cm soil temperature fell

below this threshold (see also Fig. 4). Measurements throughout the active layer by Gebauer et al. (1996) at nearby Imnavait

Creek suggest that it is highly likely that soils at these depths are anoxic and thus methanogenesis is the dominant relevant

microbial process taking place here. In contrast to Year 2, the Year 1 frozen season was largely separated from the remainder of

the study period (with 100 cm soil temperatures above -2.4 ◦C) when 10 cm temperatures were simultaneously below -0.6 ◦C350

(purple and green shading). During this season, methane emission values were amongst the highest observed throughout the

entire study period. As discussed previously, our own soil pore gas measurements show that these surface soils are oxic and

thus methanotrophy is here likely the dominant relevant microbial process. It must be noted that these temperature thresholds

do not represent mechanistic limits but instead the most effective clustering of observed data, based on the chosen environmen-

tal parameters. Even so, the reasonably good predictive capability of this model provides strong evidence that a critical reason355

for strong flux differences between frozen season methane fluxes was differences in deep soil temperature between the two

years. More precisely, these first two results from the regression tree analysis show a threshold temperature value at a depth
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of approximately 100 cm that is linked to low methane emission in Year 2, and an additional threshold temperature value at a

depth of approximately 10 cm that is linked with high frozen season emission in Year 1.

A decrease in methanogenesis below a temperature threshold around -2.4 ◦C as suggested by the model is in reason-360

able agreement with several experimental laboratory studies. Incubation studies investigating the temperature dependency

of methanogenesis in Arctic soils have shown that it can take place at sub-zero temperatures, though at greatly reduced rates.

Rivkina et al. (2004) reported substantial methane production at temperatures of -1.8 ◦C in Siberian permafrost soils, as well

as methane production in these soils at temperatures as low as -16.5 ◦C, though at a rate 100 times lower than at -1.8 ◦C.

Similarly, Panikov and Dedysh (2000) observed minor methane emission from Siberian peat bog soils at -20 ◦C that increased365

by an order of magnitude after thawing. Chowdhury et al. (2015), using soils from Barrow, Alaska, showed evidence of sub-

stantial methanogenesis in organic and mineral active layer soils kept at 4 and 8 ◦C, yet this was not observed in permafrost

soils or in active layer soils kept at -2 ◦C. Similarly, for methanotrophic activity, temperature dependencies have also been

observed, again with lower microbial activity reported at lower soil temperatures. Jørgensen et al. (2015) reported an expo-

nential relationship between temperature and methane uptake in unsaturated Arctic tundra soils. At 18 ◦C they observed a370

deposition flux of 192 µg C m−2 h−1 – this decreased to 24 µg C m−2 h−1 in soils kept at -4 ◦C. Richter (2019) also observed

a temperature-related decrease in methane oxidation in A- and B-horizon soils sampled near Toolik Lake, to below detection

levels at temperatures below -2 ◦C. Based on this evidence and our regression tree analysis, we suggest that the separation of

methane fluxes in the Year 2 frozen season (the period with the lowest methane fluxes across the entire study period) is linked

to an inhibition of methane production due to low soil temperatures in deep, anoxic soil horizons. Further, we suggest that the375

separation of methane fluxes in the Year 1 frozen season (the period with some of the highest methane fluxes across the entire

study period) is linked to an inhibition of methane oxidation due to low soil temperatures in oxic, surface soil horizons.

The full time series of interpolated soil temperature profile measurements at Toolik Field Station is shown in Fig. 4, along

with the -2.4 ◦C isotherm identified in the first grouping of the regression tree analysis. These profile data show clearly that

the deeper soil horizons never reached the cold temperatures in the Year 1 frozen season that they did in the Year 2 frozen380

season – in fact, the -2.4 ◦C isotherm did not move below 70 cm depth in Year 1. The MA28 methane flux (black line, lettering

corresponds in time to that given in Fig. 2) shows cold-season decreases that accompany cold temperature pulses into the deeper

soil horizons. This is more readily seen in Year 2 (F–G) with the greater contrast in soil temperatures, though it is also noted

that in Year 1 the onset of a decrease in methane emission (B–C) corresponds in time to a lowering of the -2.4 ◦C isotherm and

a still-perceptible cold temperature pulse to lower soil horizons. This highlights that the limits identified in the regression tree385

analysis (i.e. -2.4 ◦ at 100 cm depth) are not claimed to be mechanistic, yet they still provide valuable insight into competing

methanogenic/methanotrophic processes within the soil profile. Frozen season differences in the MA28 respiration flux (green

line) and, particularly, the ratio of methane flux to respiration (yellow line) further reiterate the disconnect between methane

production and respiration that was highlighted in the discussion surrounding Fig. 2.

The shading in Fig. 3 shows that, whilst cold season methane fluxes could not be grouped together within the hyper-390

dimensional data space for Years 1 and 2, freezing and thawing periods largely were. This suggests that the remaining seasonal

methane flux dynamics can be related to the balance of continued methanogenesis at depth and methanotrophic activity near the
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surface. Specifically, predicted methane fluxes outside the frozen seasons (orange, yellow, and brown shading) are separated

according to temperatures at 150 cm and 20 cm, yet follow a similar pattern whereby colder temperatures at depth (suggesting

inhibited methanogenesis) and warmer surface temperatures (suggesting enhanced methanotrophy) jointly lead to smaller pre-395

dicted methane fluxes (see also Fig. 4). One exception to these general patterns is during active seasons at times when surface

VWC is greater than 0.65. During these periods the largest mean methane fluxes (as well as the largest methane flux variability)

of any grouping were observed (pink shading). This observation is consistent with studies reporting increased methanogenic

activity relative to methanotrophy under water-saturated soil conditions due to reduced oxygen diffusivity and highly reducing

conditions in otherwise oxic surface soils (Le Mer and Roger, 2001).400

3.5 Implications for Arctic methane fluxes

Considerable debate exists over the potential future of methane fluxes in the Arctic tundra under future climates (Sweeney et al.,

2016). Hydrologic modelling under IPCC forecasts by Hay and McCabe (2010) predicted warmer air temperatures with greater

precipitation, leading to the suggestion that methane fluxes may increase as labile carbon becomes available due to permafrost

thaw. Warming experiments undertaken in the field in Alaska have also shown that warmer and wetter soils resulting from405

increased snow cover emit considerably more methane during the active period (Natali et al., 2015). Zona et al. (2016) stated

that cold season fluxes made up to 64% of their reported annual methane emission, due to relatively low but consistent emission

over a large portion of the year. We show here that cold season methane emission can account for an even greater percentage

of the annual budget and that, under certain conditions, cold season emission fluxes are among the highest throughout the

year – as high as peak active season emission from saturated soils. Cold season methane fluxes are also subject to significant410

inter-annual variability. We further provided evidence that particularly high cold-season methane emission occurs when deep

soil horizons are insulated and temperatures remain above the point where methanogenesis is efficient, while cold surface soil

temperatures simultaneously minimise methanotrophic activity.

Modelled forecasting of Arctic methane fluxes is typically undertaken using air temperature data, due to its relative ease of

measurement and prediction, and the assumption that air temperature is closely linked to soil temperature (Riley et al., 2011;415

Koven et al., 2013; Zhu et al., 2014). An analysis of a 29-year record at Barrow, Alaska, however, showed no correlation

between increasing air temperature and methane concentration anomaly (Sweeney et al., 2016), suggesting that air temperature

is an inadequate variable for predicting methane fluxes. Air and soil temperature measurements at Toolik Field Station taken

since 1988 (Fig. S6) show that, whilst Year 1 was the shortest winter (defined here once more as the period where MA28

air temperatures <0 ◦C) on record, both Year 1 and Year 2 were unusually warm and similarly ranked in regards to total420

FDDs (3rd and 4th warmest on record, respectively). Similarly, minimum cold season soil temperatures in the upper (20 cm)

and deep (100 cm) horizons were unusually warm in both years, comparative to the long-term record (2nd and 3rd highest

values, respectively). Given the relative similarity in the temperature anomaly of both years compared to the last 28, the large

differences in cold season methane emission (2 times larger in Year 1 compared to Year 2) is unlikely related to a simple linear

relationship with increasing air, or even soil, temperatures.425
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Instead, we suggest the presence of a deep soil temperature threshold in anoxic horizons above which cold season methano-

genesis – and hence net methane emission – remains high. Climatologically, there was little difference between Years 1 and 2 in

terms of cold season FDDs, or minimum soil temperatures, relative to the previous 28 years. Yet, as suggested in the regression

tree analysis and the temperature profiles in Fig. 4, any such temperature threshold was not crossed in the Year 1 cold season,

allowing methanogenesis to continue relatively unabated. Snow profile measurements (Fig. S7) show that, in addition to both430

winters experiencing relatively warm air temperatures, deeper snow in Year 1 likely insulated the underlying soil such that

anoxic soil horizons cooled at a much slower rate. If, as has been predicted (e.g. Hay and McCabe, 2010), the Arctic continues

to warm and precipitation increases, high methane emission winters will likely become more prevalent in the future, particu-

larly also if enhanced summertime warming pulses penetrate deeper in the soil profile. Our observations highlight the need for

more sophisticated modelling of temperature regimes in the forecasting of methane emission. More importantly, we suggest435

that the increasing number of year-round ecosystem flux measurement sites operating in Arctic regions should monitor soil

temperatures throughout the entire active soil region, rather than limit observations to the upper surface horizons. Temperature

data throughout the entire active soil profile, preferably in conjunction with estimates of soil redox conditions, would help to

further elucidate the competing microbial processes that drive methane fluxes at the surface.

4 Conclusions440

Year-round measurements of ecosystem-scale methane and carbon dioxide fluxes were undertaken at Toolik Field Station in

the Alaskan Arctic over two years. Annual carbon dioxide exchange budgets suggest that these observations are representative

of wet sedge tundra, with seasonal patterns that are characteristic of the Alaskan North Slope generally. Net methane and

carbon dioxide fluxes in the Year 2 cold season (2.0 g C m−2 and 294 g C m−2 respectively, over 269 days) were similar in

magnitude to values reported in similar studies, and positive correlations between surface soil temperature and methane were445

observed as previously reported by Zona et al. (2016). Year 1 cold season net methane and carbon dioxide fluxes, however,

were 100% and 38% higher, over a shorter cold season (22 days shorter). Relationships between respiration fluxes and surface

soil temperature were similar between years and with those reported in the literature, suggesting that warmer soil temperatures

in the oxic surface horizon can largely explain the differences in annual cold season carbon dioxide budgets between the two

years. Methane flux and surface soil temperature, by contrast, showed almost reversed relationships between the two years,450

suggesting that surface soil temperature was not always sufficient to explain methane emission dynamics over the course of

this study.

Whilst cold season soil temperatures and FDDs were similar across both years (relative to the 28-year record), we observed

that deeper snow pack in Year 1 led to significantly warmer soil temperatures, particularly in the deeper portion of the active

soil profile. A regression tree analysis shows that high Year 2 frozen season methane fluxes were clustered from other data455

along the deep (100 cm) temperature axis at a threshold of -2.4 ◦C, suggesting inhibited methanogenesis in deeper, anoxic soil

horizons. The highest cold season fluxes (among the highest of the two-year study) were observed during Year 1, when deep

soil temperatures remained above this threshold whilst surface temperatures were simultaneously below -0.6 ◦C, suggesting
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limited methanotrophy in upper soils being unable to offset methane production at depth. From our data we cannot reliably

state that these thresholds represent mechanistic limits, only that they highlight a pattern of temperature dynamics between the460

upper, oxic layer and the deeper, anoxic layer that are key to controlling surface methane fluxes via their limiting influence on

the competing processes of methanotrophy and methanogenesis. These temperature dynamic patterns further explain methane

flux dynamics outside of the frozen season during both years. Our results suggest that high cold season methane emission may

be associated with warmer atmospheric temperatures and deeper snowpacks, and highlight a need for measurement and mod-

elling of soil temperatures throughout all seasons, and throughout the entire active soil profile. Such expansion in observation465

capacities will allow more accurate prediction of potential changes in the annual methane exchange budget in Arctic tundra

regions.
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Figure 1. Half-hourly measured (blue lines) and gap-filled (yellow lines), and cumulative flux data (purple lines) for methane (upper panel)

and carbon dioxide (lower panel). 28-day centred moving averages (red lines) have been included based on half-hourly flux data. Shading

shows seasons (as defined in the text) for both years beginning with freezing (turquoise), then frozen (blue), thawing (green) and active

(yellow).

20

https://doi.org/10.5194/bg-2019-437
Preprint. Discussion started: 18 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 2. Methane (upper panels) and respiration (lower panels) fluxes against soil temperatures for Year 1 (left panels) and Year 2 (right

panels). Horizontal error bars represent the range of soil temperatures across all four sampling pits, circles represent values used in decision

tree analysis (average of both Toolik Field Station profiles). Colours correspond to seasons as in Fig. 1. Lettering on methane flux plots are

sequential in time and correspond to those shown in Fig. 4. Lettering on respiration plots are given for the same times as those in methane

plots. Open circles represent times for which respiration data are missing – respiration values here are linearly interpolated in time between

the closest known values.
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Figure 3. Outcome of the regression tree analysis (upper panel), giving decision steps and outcomes (mean ± standard deviation in

mg C m−2 d−1) of selected methane emission data. Turquoise squares give the variable and thresholds around which decisions are made

– lines pointing upwards correspond to values above this threshold and lines pointing down to values below. Lower panel shows net daily

methane flux data (black line), along with means (horizontal lines) and standard deviations (shaded regions) of input data, as grouped by the

regression tree in upper panel. Note that all methane flux data are net daily sums.
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Figure 4. 28-day moving average methane (black line) and ecosystem respiration (green line) fluxes, along with the ratio of the two (yellow

line). Lettering corresponds in time to that given in Fig. 2. Shading gives soil temperature as measured at Toolik Field Station according to

depth (right axis). Purple dotted line shows the depth of the -2.4 ◦C isotherm.
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Table 1. Overview of methane fluxes split according to season. Values in parentheses in cumulative columns are percentages of the total for

that year. Daily differences are the differences in mean daily fluxes for that season between the two years, with p-statistics from Student’s

two-sample t-test giving the significance with which the null hypothesis (values come from distributions with same mean) can be rejected.

Year 1 Year 2 Daily

29 Sep 2014 – 14 Sep 2015 15 Sep 2015 – 03 Oct 2016 Difference

Duration Cumulative Daily Duration Cumulative Daily Value (p)

days g C m−2 mg C m−2 d−1 days g C m−2 mg C m−2 d−1 mg C m−2 d−1

Freezing 66 1.3 19 ± 4 56 0.8 14 ± 4 5

(27%) (21%) (<0.001)

Frozen 155 2.5 16 ± 5 181 1.1 6 ± 3 10

(51%) (30%) (<0.001)

Thawing 26 0.2 6 ± 2 32 0.1 3 ± 2 3

(4%) (3%) (0.003)

Active 100 0.9 9 ± 8 111 1.7 15 ± 9 6

(18%) (46%) (<0.001)

Total 347 4.9 380 3.7
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Table 2. As for Table 1, for carbon dioxide fluxes. Seasonal percentages are represented as the absolute value of net seasonal exchange as a

proportion of the annual total. As seasonal net totals are bi-directional, these percentages do not necessarily add to 100.

Year 1 Year 2 Daily

29 Sep 2014 – 14 Sep 2015 15 Sep 2015 – 03 Oct 2016 Difference

Duration Cumulative Daily Duration Cumulative Daily Value (p)

days g C m−2 g C m−2 d−1 days g C m−2 g C m−2 d−1 g C m−2 d−1

Freezing 66 293 4 ± 3 56 167 3 ± 2 1.5

(60%) (188%) (0.001)

Frozen 155 148 1 ± 1 181 142 0.8 ± 0.5 0.2

(31%) (106%) (0.04)

Thawing 26 30 1 ± 2 32 -15 0 ± 1 1.6

(6%) (17%) (<0.001)

Active 100 14 0 ± 3 111 -211 -2 ± 3 2.0

(3%) (237%) (<0.001)

Total 347 485 380 89
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