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Abstract We present in situ observations of mean and turbulent bottom stresses in a shallow,

wave- and current-driven flow over a cohesive sediment bed on the eastern shoals of South San Francisco

Bay. Data from a Nortek Vectrino Profiler deployed with its measurement volume overlapping the bed

allowed us to calculate mean velocity profiles and turbulent Reynolds stresses over a 1.5-cm profile with

1-mm vertical resolution. Additional acoustic instrumentation and pressure sensors provided mean

current and wave data. From these observations we found that biological roughness elements protruding

from the sediment bed result in a mean velocity profile qualitatively similar to that found in canopy shear

mixing layers. Despite fundamental differences between this measured velocity structure and that

assumed by wave-current boundary layer models, we also found that the addition of waves to mean

currents increases the net drag felt by the flow. The near-bed momentum flux was often dominated by a

wave-induced component, which was generated by interactions between the wavy flow and the rough bed.

Finally, we estimated the friction velocity using several different calculation methods and compared results

to the measured bottom stress. This analysis revealed that traditional methods (e.g., log law fitting and

point turbulence measurements) are consistent with one another when measuring the stress outside the

wave boundary layer but were all poor approximations of the total stress at the bed.

PlainLanguage Summary We conducted field work in South San Francisco Bay to investigate

how waves and tidal currents exert stress on a muddy sediment bed. Our data show that the average

velocity near the bed is qualitatively similar to flow over a submerged canopy, for example, flow over

seagrass, or atmospheric flow over a city. This velocity structure was caused by dense colonies of

bottom-dwelling worms at the bed. We also found that the addition of waves to the tidal currents caused the

flow to feel additional drag. Finally, we compared various methods of estimating the shear stress near the

bed and found that none of the estimation methods could adequately represent the measured bed stress.

These results are important for sediment transport modeling in estuaries.

1. Introduction

In a wide range of environmental flows, the shear stress induced by the bottom boundary is the most impor-

tant quantity to estimate. The bottom stress generally sets both the mean velocity profile and turbulence

production. It is also responsible for eroding sediment from the bed and mixing the sediment, momentum,

and other scalars throughout the water column. Historically, it has been difficult to measure the near-bed

vertical velocity gradient and turbulence statistics due to themillimeter-scale thickness of the bottombound-

ary layer (Nielsen, 1992). Therefore, the bottom stress is often parameterized based on a simplification of the

time-averaged momentum equation in the horizontal (Schlichting & Gersten, 2016). Assuming x is aligned

with the dominant flow direction, the 2-D time-averaged momentum equation is given by

𝜕

𝜕z
(uw) = −

𝜕p

𝜕x
+ 𝜈

𝜕2u

𝜕z2
, (1)

where time-averaging is denoted by an overbar, and we have assumed that the time-averaged flow is steady

and horizontally homogeneous; that is, u varies only in the vertical, z. Themean pressure gradient, 𝜕p
𝜕x
, drives

flow in its primary direction, x.

Specific derivations of bottom shear stress estimates arising from equation (1)will be reserved for section 3.2,

but in general, there are inherent uncertainties in this approach. First and foremost, bottomboundary geom-

etry is generally unknown without a field survey. Therefore, it is often assumed that the near-bed flow is
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accurately described by flat plate boundary layer theory and the associated “law of the wall” (Schlichting &

Gersten, 2016), which results in a viscous sublayer near the bed and a logarithmic layer above that. This is

a reasonable assumption, as most geophysical flows follow the law of the wall (Grant & Madsen, 1986).

Despite its widespread use, flat plate boundary layer theory is not universally applicable. If the rough-

ness elements at the bed are sufficiently large, the near-bed flow is better described by canopy flow theory,

which predicts a thicker “shear mixing layer,” rather than a viscous sublayer, beneath a modified logarith-

mic layer (Raupach et al., 1996). Canopy flow theory is applied to situations such as flow over seagrass beds

(Ghisalberti & Nepf, 2002) or atmospheric flow over rough topography (Finnigan, 2000).

The addition of surface gravity waves to the mean flow can lead to further complications by altering

near-bedmomentumexchange dynamics. Specifically, waves provide ameanmomentum flux in the positive

(wave-traveling) direction, which can generate a mean flow in the wave boundary layer (Longuet-Higgins,

1953). These effects have been shown experimentally and in the field over seagrass canopies (Luhar et al.,

2010, 2013). Waves can also modify the bottom stress and increase dissipation of turbulence kinetic energy

(TKE) over a rough bed (Grant &Madsen, 1979). Bed roughness in the presence of waves is often quantified

with the relative roughness A∕kb (Jonsson, 1966), where A = ub∕𝜔 is the wave semiexcursion length, kb is

the Nikuradse roughness length, ub is the bottom wave orbital velocity, and 𝜔 is the radian wave frequency.

Typical values of A∕kb in San Francisco Bay are(1−10) (Lacy &MacVean, 2016). Experimental work over

rippled, noncohesive beds has found A∕kb = (1− 100) (Grant & Madsen, 1982), and in general, we would

expect A∕kb ≫ 1 for long period waves over a smooth bed.

Numerous models to describe the combined wave-current bed shear stress have been proposed over the

years, andmany imply that wave-current interactions increase the “apparent” bottom roughness and induce

additional drag on the flow (Grant & Madsen, 1979; Styles et al., 2017; Styles & Glenn, 2000; You et al.,

1991). However, one recent numerical study suggests that the opposite effect may be seen in estuarine

environments with smooth beds; that is, the drag decreases with the addition of laminar waves (Nelson &

Fringer, 2018).

Due to measurement constraints, we have been unable to verify whether the primary assumptions in most

wave-current boundary layer models, specifically the assumption of a logarithmic velocity profile both

within and outside the wave boundary layer and the assumption of applicability over a wide range of A∕kb,

are valid in most estuarine systems. These uncertainties represent a significant knowledge gap for sediment

transport modeling. Erosion of sediment from the bed is generally parameterized as a function of the bed

shear stress (Mehta&Partheniades, 1982; Sanford, 2008; Sanford&Maa, 2001), which itself is parameterized

based on flow statistics such as the mean velocity and wave conditions (Grant & Madsen, 1979).

Here, we use novel acoustic instrumentation to measure both mean and turbulent stresses within the bot-

tom boundary layer in a shallow, wave- and current-driven flow over a cohesive sediment bed for a full

spring-neap cycle. These results are compared with more traditional methods of estimating the bottom

stress. Results are also analyzed in the context of wave-current boundary layer models to examine their

validity in describing the bottom stresses found in wave- and current-driven flows.

2. Field Experiment

As part of a study examining cohesive sediment transport and flocculation dynamics, we deployed four

instrument platforms on the shallow, eastern shoals of South San Francisco Bay from 17 July 2018 to 15

August 2018. This paper will focus on data collected at one of the platforms, as shown in Figure 1, which

contained the bulk of our hydrodynamics instrumentation. At the platform, we deployed three acoustic

Doppler velocimeters (ADVs) with their measurement volumes at 5, 15 and 45 cm above the bed (cmab),

respectively. The ADVs sampled the pressure and 3-D velocity at 8 Hz for 14 min each hour.

The platform also held a Nortek Vectrino Profiler (Vectrino) placed with its measurement volume overlap-

ping the bed, sampling at 64 Hz for 12 min each hour. The Vectrino measures all velocity components in 30

bins spaced at 1-mm intervals. A diver adjusted its vertical position in the water column until 10 bins were

below the bed, and the remaining 20 bins were directly above it. It was positioned in this manner because

the region of highest signal-to-noise ratio (SNR) is located 5 cm from the Vectrino transducer (Thomas et al.,

2017). Thus, we obtainedmore reliable velocity profiles and turbulence statistics by ensuring that this region

was at the bed. After deployment, the platform sank approximately 0.5 cm into the mud, so our profiles
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Figure 1. Deployment site in South San Francisco Bay. The platform was placed at approximately 1.5 m mean lower low water level on the shoals east of the
main channel and south of the San Mateo Bridge. The major and minor components of the mean currents are depicted by the major and minor axes of the tidal
ellipse centered at the platform, with the mean wind direction indicated by the arrow which corresponds to a fetch of approximately 28 km.

generally ranged from 0 to 1.5 cmab. Because the Vectrino does not have an onboard data logger, it was

controlled by a custom data logger designed and fabricated by the Sexton Corporation.

We also deployed an RBRduo Bottom Pressure Recorder (BPR) sampling continuously at 6 Hz and an

upward facing Nortek Aquadopp Acoustic Doppler Current Profiler (ADCP) to report mean current pro-

files over 0.1-m bins every 3 min based on 72 s of sampling. Table 1 summarizes the study site information

(mean lower low water level [MLLW] and GPS coordinates), instrumentation, and measurement heights in

centimeters above the bed.

3. Methods
3.1. Data Processing

Spikes were removed from ADV and Vectrino velocity time series using a phase-space despiking algorithm

(Goring & Nikora, 2002). The velocity data were then rotated into the direction of maximum variance, that

is, the first principal component calculated from the ADCP velocity time series. As seen in Figure 1, the

major component was aligned in the along-channel direction and the minor component was aligned in the

cross-channel direction. All u velocities reported herein are defined as themajor component, and v velocities

are the minor component. Vectrino and ADV data were rotated into the ADCP-derived principal directions

for each of their respective burst periods, and all statistics were calculatedwith respect to the new directions;

that is, the flow was considered statistically stationary during the burst period. For simplicity, we will focus

our analysis on the major velocity component, which was on average 2.6 times larger in magnitude than the

minor component.

During data processing, we noticed time-averaged negative vertical velocities in the ADV and Vectrino

data, with magnitudes on the order of 0.5–1 cm/s. It is unlikely that this trend was due to particle settling.

Simultaneous particle size distribution measurements collected with a Sequoia Scientific LISST-100x found

a median particle size of d50 = 72μm averaged over the deployment period. We also collected sediment

cores at the study site and measured a bulk sediment density 𝜌s = 1, 300 kg/m3 (Håkanson & Jansson,

2002). Assuming Stokes settling, this results in a settling velocity of 0.9 mm/s, significantly smaller than

Table 1
Instrument Platform Details

Location MLLW (m) Instruments cmab

37.58745◦N, 122.18530◦W 1.5 Vectrino Profiler 0–1.5

ADV 5, 15, 45

ADCP 15–400

BPR 100

Note. MLLW=mean lower lowwater level; ADV=acoustic Doppler velocimeter;
cmab = centimeters above the bed; ADCP = acoustic Doppler current profiler;
BPR = bottom pressure recorder.
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the mean vertical velocities measured by the instruments. Therefore, we can likely attribute the mean ver-

tical velocity to acoustic streaming, which is a mean flow induced by the instrument pressure transducer

(Poindexter et al., 2011). To account for this, we detrended the vertical velocities over each burst period and

will denote the resulting fluctuating velocities w.

After these quality control steps, the Reynolds stress tensor was calculated for each ADV burst based on

the Benilov wave-turbulence decomposition (Benilov & Filyushkin, 1970). This method was not viable for

the Vectrino, because unlike the ADV, it does not simultaneously log pressure. Therefore, the Reynolds

stress tensor was calculated using the phasemethod (Bricker &Monismith, 2007). As a validation, the phase

method was applied to the ADV data, with results matching those calculated from the Benilov method. The

Vectrino Reynolds stress was further corrected using an algorithm that accounts for probe geometry and

inherent variations in SNR over the profile (Thomas et al., 2017).

The Vectrino data were also used to estimate the TKE dissipation rate, which we calculated using a modi-

fied version of a spectral curve fitting method (Feddersen et al., 2007). Briefly, it involves curve fitting the

high-frequency power spectrum in the inertial range, whichwe found in our data ranged from3 to 8Hz,with

a noise floor correction based on the power spectral density between 20 and 30Hz. The near-bed TKE dissi-

pation rate reached a maximum of 𝜖 = 1.5× 10−3 m2/s3 over the deployment period and was often orders of

magnitude smaller. Using this value to estimate a Kolmogorov time scale results in (𝜈∕𝜖)1/2 = 0.026 s. There-

fore, the 64-Hz Vectrino sampling rate sufficiently resolved the turbulence spectrum for the vast majority of

our stress estimates.

ADCP velocity data were smoothedwith a 2-Dmedian filter using a 3×9 kernel, that is, three vertical bins in

space (0.3 m) and nine profiles in time (27 min). Profiles were then trimmed vertically to remove bins near

the free surface. BPR pressure data were separated into 12-min bins such that one bin overlapped exactly

with the Vectrino data each hour. We calculated spectra for each burst using the Welch method (Welch,

1967). On day 16 of the 28-day deployment, a large erosion event displaced the bed downward. Though

we have no reason to believe that this changed the fundamental bed characteristics or the near-bed mean

velocity structure, the region of highest SNR in the Vectrino profile was no longer aligned with the bed,

leading to erroneous near-bed turbulence statistics and velocity gradients. Therefore, we restrict our analysis

to the date range 17 July 2018 to 2 August 2018.

3.2. Wave-Current Interactions andMomentum Exchange

One of the primary goals of this study is to examine how the addition of surface waves to the mean flow

modifies near-bed shear stress and momentum exchange dynamics. A time-averaging procedure (such as

Reynolds averaging) will filter out the effects of waves in the mean velocity profile throughout most of

the water column, but within the wave boundary layer the waves and currents interact nonlinearly to pro-

duce a shear stress that cannot be described by a linear superposition of the two individual stresses. Most

wave-current boundary layer models imply that currents feel a rougher bottom in the presence of waves.

This effect can be described through a relative increase in the drag coefficient,

CD =

(
u∗
ur

)2

, (2)

as waves are added to the mean flow. This definition follows from the quadratic drag law, 𝜏b = CDu
2
r
= u2

∗
.

Here, 𝜏b is the total bed shear stress, u* is the friction velocity, and ur is a reference velocity at height z = zr ,

which we chose as zr = 1.2 cmab. The choice of reference velocity is arbitrary as long as it is within the log

layer rather than the wave boundary layer. For our data, the wave boundary layer never exceeded a thickness

of 2 mm, so 1.2 cm was always sufficiently far from the boundary and well within the logarithmic velocity

region.

To quantify the effects of waves on CD, we calculated the wave Reynolds number

Re𝛿 =
ub(2𝜈∕𝜔)

1∕2

𝜈
, (3)

where 𝜔 is derived from the Vectrino horizontal velocity power spectrum and (2𝜈∕𝜔)1/2 is the Stokes

boundary layer thickness. The wave-orbital velocity, ub, was calculated by first subtracting the Vectrino

burst-averaged velocity from its instantaneous velocity with

uw(z) = u(z) − u(z), (4)
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where the overbar denotes a time average over the burst period and uw is the instantaneous perturbation

velocity that includes effects of both waves and turbulence. Next, the root-mean-square of uw averaged over

the top five bins of the Vectrino profile was taken as a representative bottom orbital velocity,

ub =
1

5

5∑
𝑗=1

(
uw(z𝑗)

2
)1∕2

. (5)

The physical mechanism through which waves affect the mean bottom stress is by modifying near-bed

momentum exchange. Specifically, if the velocity is decomposed to include a mean, wave, and turbulence

component,

u = u + ũ + u′, (6)

where u is the mean (time-averaged) velocity, ũ is the wave velocity, and u
′

is the fluctuating turbulence

velocity, then the momentum flux (assuming that w = 0) becomes

uw = u′w′ + ũw′ + u′w̃ + ũw̃. (7)

By definition, waves and turbulence are uncorrelated when they coexist (Jiang & Street, 1991; Thais &Mag-

naudet, 1995) so the second and third terms on the right-hand-side of equation (7) are zero. For the case

of irrotational, periodic waves, the last term on the right-hand side is also zero (Dean & Dalrymple, 1991),

because the ũ and w̃ components of the wave velocity are 90◦ out of phase with one another, leaving only

the turbulent Reynolds stress u′w′. However, the assumption of irrotationality is not always valid, especially

near boundaries, for example, thewind-driven surface layer or near the bed (Magnaudet&Masbernat, 1990).

This implies that ũw̃ , which we will call the wave momentum flux, can be nonnegligible, a situation that

will be explored further in section 4.4.

3.3. Shear Stress EstimationMethods

Starting with the 2-D momentum balance (equation (1)), there are multiple ways to estimate the bottom

shear stress, each relying on different assumptions andmeasurement devices. We can integrate equation (1)

froman arbitrary depth, z, to themean-free surface height,H, assuming that the horizontal pressure gradient

is vertically uniform to obtain

(uw)s − (uw)z = −
𝜕p

𝜕x
(H − z) +

(
𝜈
𝜕u

𝜕z

)

s

−

(
𝜈
𝜕u

𝜕z

)

z

. (8)

Here, a subscript s denotes a surface value, and a subscript z denotes a value at arbitrary height z. Next, we

define the total shear stresses at the surface and height z as 𝜏s and 𝜏T(z), respectively,

𝜏s =

(
𝜈
𝜕u

𝜕z

)

s

− (uw)s, 𝜏T(z) =

(
𝜈
𝜕u

𝜕z

)

z

− (uw)z. (9)

This implies that the shear stress has both a viscous component and a component due to the vertical

momentum flux. This also allows us to write equation (8) as

−𝜏s + 𝜏T(z) = −
𝜕p

𝜕x
(H − z). (10)

Assuming that the stress is negligible at the free surface and defining the bottom stress in terms of a friction

velocity, 𝜏T(z = 0) = u2
∗
, we obtain

u2
∗
= −H

𝜕p

𝜕x
, (11)

where we retain the convention that a negative pressure gradient drives flow in the positive x direction. This

results in an estimation method for u* based on measuring the driving pressure gradient. Though we tried

to estimate u* in this manner, results were highly inconsistent with other estimation methods because it

relied on publicly available tide gage data rather than our own instruments. Therefore, we will not report

those estimates here. Substitution of equation (11) into equation (10) results in the profile of shear stress

throughout the water column,

𝜏T(z) = u2
∗

(
1 −

z

H

)
. (12)
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Within the viscous sublayer, which we define as z < 𝛿𝜈 , where 𝛿𝜈 is the viscous sublayer thickness, only the

viscous component of the shear stress is significant, that is, 𝜏T(z) ≈
(
𝜈
𝜕u

𝜕z

)
z
, resulting in the viscous sublayer

velocity profile,

u =
u2
∗
z

𝜈
. (13)

Therefore, the near-bed mean velocity gradient can be used to estimate the friction velocity with

u∗ =

(
𝜈
𝜕u

𝜕z

)1∕2

. (14)

This method has only recently become possible in situ due to advances in ADV technology like the Vectrino

Profiler used in this study. We will apply equation (14) to our Vectrino mean velocity data as one method for

estimating the bed shear stress. Further from the boundary, the viscous component of the stress becomes

negligible, leaving the shear stress equal to the momentum flux at arbitrary height z, that is, 𝜏T(z) = −(uw)z,

leading to

−(uw)z = u2
∗

(
1 −

z

H

)
. (15)

Rearranging, we obtain another estimate for the friction velocity,

u∗ = |uw|1∕2
z

(
1 −

z

H

)−1∕2

. (16)

Because this estimate is based on the full momentum flux, uw, it would include the effects of the

wave-induced momentum flux in a combined wave-current flow. If instead we set 𝜏T(z) = −(u′w′)z, that is,

the phase or Benilov method decomposed turbulent Reynolds stress at height z, then we obtain

u∗ = |u′w′|1∕2
z

(
1 −

z

H

)−1∕2

. (17)

This estimate of the bottom stress is based solely on the turbulence statistics and has been widely used

in estuarine boundary layer studies (MacVean & Lacy, 2014; Stacey et al., 1999; Stacey & Ralston, 2005).

Including the factor of
(
1 − z

H

)−1∕2

in each of the above estimates (equations (16) and (17)) ensures that

we take into account the linear decrease of the momentum flux with height z from the bed, as assumed in

turbulent open channel flow theory. This indicates that as long as the surface shear stress is negligible and

the total shear stress follows its assumed linear profile (equation (12)), u* can be estimated by measuring

the momentum flux anywhere in the water column. This is significant because uw can be easily measured

with a single high-frequency velocimeter. In this paper, we will apply equation (17) to ADV data to estimate

the bottom stress.

Retaining the assumption that 𝜏T(z) = −(u′w′)z, we can estimate the friction velocity yet another way fol-

lowing from the linear stress profile (equation (12)). Close to the bed, but not within the viscous sublayer,

we can assume that z∕H ≪ 1, which reduces equation (12) to

−u′w′ = u2
∗
. (18)

Invoking Prandtl's mixing length hypothesis (Prandtl, 1925) leads to the logarithmic law of wall,

u(z) =
u∗
𝜅
ln

(
z

z0

)
, (19)

where z0 is the bottom roughness and 𝜅 is the von Kármán coefficient. Recent work has suggested that

𝜅 = 0.38 is the most appropriate value for a boundary layer flow (Nagib & Chauhan, 2008), but we chose

a constant 𝜅 = 0.41 for consistency with previous studies in South San Francisco Bay (e.g., Bricker et al.,

2005; Cheng et al., 1999). The mean velocity profile can be measured with a profiling current meter, and

equation (19) can be fit for optimal values of u* and z0. This is another common way of estimating bottom
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Table 2
Summary of Each Method Used to Estimate the Friction Velocity

Instrument cmab Method Variable

Vectrino ≈ 0.5 Viscous stress + momentum flux (equation (22))
|||𝜈

𝜕u
𝜕z

− uw
|||
1∕2

b

Vectrino ≈ 0.5 Viscous + turbulent stress (equation (23))
|||𝜈

𝜕u
𝜕z

− u′w′|||
1∕2

b

Vectrino ≈ 0.5 Reynolds stress (equation (24))
|||u′w′|||

1∕2

b

Vectrino 0.6–1.5 Log law fit (equation (19)) u*

Vectrino 0.6–1.5 Canopy log law fit (equation (20)) u*c

Vectrino 0.4–0.6 Viscous sublayer fit (equation (13))
|||𝜈

𝜕u
𝜕z

|||
1∕2

ADV 5 Reynolds stress (equation (17))
|||u′w′|||

1∕2

5

(
1 − 5

H

)−1∕2

ADCP 20–100 Canopy log law fit (equation (20)) u*A

Note. cmab = centimeters above the bed; ADV = acoustic Doppler velocimeter; ADCP = acoustic Doppler
current profiler.

friction in estuarine flows (Cheng et al., 1999) and can be applied to both the Vectrino and ADCP mean

velocity profiles.

If the bottom boundary is better represented by a canopy than a flat plate (which was the case for our data),

the log law (equation (19)) is modified to become

u(z) =
u∗c
𝜅

ln

(
z − d

z0

)
. (20)

Here, u*c is the canopy friction velocity, and d denotes the canopy displacement height, which is given by

d

h
= 1 −

0.1

CDCah
, (21)

where h is the physical canopy height, CDC is the canopy drag coefficient, and a (m
−1) is the canopy den-

sity (Nepf, 2012). Ideally, CDC and a are estimated from canopy geometry. However, we did not have this

information when we fit equation (20) to mean velocity profiles, so we regressed for d in addition to u*c
and z0.

Given the number of options available for estimating u*, it is necessary to define a “true” bottom stress

against which we can compare the different estimation methods. For this, we chose the sum of the viscous

stress and momentum flux (the total shear stress 𝜏T in equation (9)) measured in the Vectrino bin 1 mm, or

one measurement bin, above the top of the canopy roughness elements, that is,

u∗ =
||||𝜈
𝜕u

𝜕z
− uw

||||
1∕2

b

, (22)

where the subscript b denotes a bottom measurement. The canopy height was defined as the kink point in

the velocity profile below which the mean velocity was approximately zero (e.g., h = 3.9 mm in Figure 3).

This was computed as the measurement bin 2 mm below the location of the maximum vertical velocity

gradient and confirmed through visual inspection of each velocity profile. Though the canopy height varied

over the deployment period, equation (22) was usually applied at 0.5 cmab.

If we remove the wave momentum flux from the total momentum flux in equation (22), we obtain an

estimate of the friction velocity due solely to the currents,

u∗ =
||||𝜈
𝜕u

𝜕z
− u′w′

||||
1∕2

b

. (23)

We can also ignore the viscous component in equation (23) and estimate the friction velocity based on the

measured turbulent stress near the bed,

u∗ =
|||u′w′|||

1∕2

b
. (24)
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Figure 2. (a) Depth-averaged velocity measured by the ADCP, (b) total water depth measured by the BPR, (c) wind
velocity at 760 cm above mean sea level measured at the Redwood City National Oceanic and Atmospheric
Administration National Data Buoy Center station, and (d) significant wave height calculated from bottom pressure
recorder-derived power spectra during three days of our deployment.

All of the u* estimation methods that we use in this paper are summarized in Table 2, which lists the instru-

ment used for measurement, the height above the bed at which the measurement was taken, the method,

and the given variable.

4. Results and Discussion
4.1. Site Conditions

Tidal currents ran primarily northwest-southeast (ebb and flood, respectively; see tidal ellipse in Figure 1),

withmaximumdepth-averaged current (denotedU)magnitudes ranging from20 to 30 cm/s (Figure 2a). The

mean tidal range was approximately 2 m, as seen by the total water depth, D, in Figure 2b. Data taken from

the National Oceanic and Atmospheric Administration National Data Buoy Center Redwood City weather

station approximately 10 kmwest of the study site showed diurnal northwesterly winds that gained strength

in the early afternoon and lasted until evening, with maximum wind speeds of approximately 10 m/s (see

Figure 1 for primary direction and fetch and Figure 2c for wind velocity at 7.6 m above mean sea level). The

wind drove primarily westerly waves that increased in height each afternoon as shown by the significant

wave height, Hsig, in Figure 2d. Spectral analysis of the wave signal showed peak frequencies ranging from

0.2 to 0.5 Hz.

4.2. Mean Boundary Layer Characteristics

In Figure 3a, we show a characteristic velocity profile measured by the Vectrino, time-averaged over a single

12-min burst period. The profile has three distinct regions; from 0 to 3 mm above the bed, the mean velocity

is approximately zero. This is likely due to the abundance of biological material (mostly feeding tubes built

by Sabaco elongatus, a benthic worm species) protruding from the bed, which were found on the surface of

sediment cores collected at the study site (see Figure 4). From 3 to 6mmabove the bed, the velocity increases

approximately linearly in height. This is suggestive of the viscous sublayer described in equation (13). Above

this region the flow transitions to a logarithmic profile, which could be described by either the standard log

law (equation (19)) or given the benthic worm canopy, the canopy log law (equation (20)).

In a theoretical log layer, the friction velocities based on the viscous sublayer (equation (13)) and the log

law (equation (19)) will match because the near-bed velocity gradient sets the friction velocity higher in

the water column. To check this, we fit equation (19) to the upper (logarithmic) part of the velocity profile
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Figure 3. Vectrino burst-averaged profiles of (a) velocity, with (b) showing fits (dashed red lines) of the viscous
sublayer velocity profile (equation (13), r2 = 0.93), the standard log law fit for u* (equation (19), r

2 = 0.99), and the
canopy log law fit for u*c (equation (20), r

2 = 0.99, fit not shown because it overlaps with the standard log law) to the
mean velocity profile.

and equation (13) to the lower (linear) part of the velocity profile as seen by the dashed lines in Figure 3b.

However, this fitting procedure showed that u* is over 3 times larger in the log layer compared to the linear

region. This trend was consistent throughout the measurement period, indicating that the law of the wall

is not strictly applicable for this system despite looking qualitatively correct. Furthermore, classic scaling

for the viscous sublayer dictates that its dimensional thickness is given by 𝛿v =
5𝜈

u∗
. Using u∗ =

(
𝜈
𝜕u

𝜕z

)1∕2
from Figure 3b, this corresponds to a thickness of 𝛿v ≈ 0.8 mm; using u* from the fit to equation (19), we

obtain a thickness of 𝛿v ≈ 0.2 mm. Both of these values are much smaller than the 𝛿v ≈ 3-mm thickness

seen in Figure 3. Fitting the canopy log law (equation (20)) to the logarithmic portion of the velocity profile

produces a u*c value that is closer to
(
𝜈
𝜕u

𝜕z

)1∕2
but still larger by a factor of 2.

Some of the discrepancy between the near-bed gradient and log law estimates of u* could be explained by

the increased fluid viscosity induced by high concentrations of suspended sediment near the bed. How-

ever, suspended sediment concentrations estimated from Vectrino acoustic backscatter calibration were

(1− 10) g/L in the linear velocity region (not shown); previous studies have demonstrated that significant
kinematic viscosity changes would not be expected for this range of concentrations (Gust, 1976). However,

sediment-induced stratification could affect turbulence dynamics in this region and will be explored in a

forthcoming paper.

Another explanation for the friction velocity estimation discrepancy can be found in the section of the veloc-

ity profile closest to the bed. Including this region of near-zero velocity, the profile looks similar to a canopy

Figure 4. Sediment core recovered from the study site showing a canopy composed of Sabaco elongatus worm tubes.
The numbers on the ruler indicate centimeters above the bottom of the core.
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Figure 5. (a) The mean velocity profile shown in Figure 3, with the dashed red line denoting the fit to equation (25)
(r2 = 0.96), the solid red line denoting the fit to equation (20) (r2 = 0.99), and the dashed black line indicating the
canopy height at h = 3.9mm and (b) velocity profiles from the entire study period overlaid on one another, with the
same fits as in (a). For (b), we used a nonlinear least squares fitting procedure to determine optimal values of 𝜃, ⟨u⟩, ⟨z⟩,
u*, and z0.

flow shear mixing layer over submerged vegetation (Ghisalberti & Nepf, 2002). To test the applicability of a

canopy flow model to these velocity profiles, we fit them to the hyperbolic tangent profile

u −
⟨
u
⟩

Δu
= 0.5 tanh

(
z − ⟨z⟩
2𝜃

)
, (25)

where Δu = u2 − u1 and
⟨
u
⟩
= 0.5(u1 + u2). Here, u1 is the minimum velocity over the profile, u2 is the

maximum velocity, ⟨z⟩ is the height corresponding to ⟨u⟩, and 𝜃 is the momentum thickness given by

𝜃 = ∫
∞

−∞

⎡
⎢⎢⎣
1

4
−

(
u −

⟨
u
⟩

Δu

)2⎤
⎥⎥⎦
dz. (26)

Figure 5a shows the fit to equation (25) using the same data as shown in Figure 3. This fit is expected to be

qualitatively correct until approximately two canopy heights above the bed, where the canopy height, h, is

the mean physical height of the canopy elements. Above z = 2h, the velocity profile follows the canopy log

law (equation (20)) set by the mean pressure gradient (Ghisalberti & Nepf, 2002).

Using this corrected log law, the velocity profiles follow the expected canopy flow/shearmixing layer profile,

with the fit to the hyperbolic tangent (equation (25)) matching best until approximately 8mm above the bed

(i.e., two canopy heights) and the fit to the canopy log law (equation (20)) matching best above that. Most

importantly, this model captures the width of the linear portion of the velocity profile more accurately than

the viscous sublayer scaling. Over the study period, the average roughness length estimated from the fitting

procedure was z0 = 0.9mm, consistent with the length of worm tubes and other features shown in Figure 4.

The roughness length increased during the wavy period each afternoon; these wave-current dynamics will

be discussed further in section 4.3.

The canopy flow model is consistent throughout the study period. Figure 5b shows that despite some out-

liers, most of the measured velocity profiles collapse onto the expected functional form. This is a significant

result because it shows that the fundamental velocity structure within 1 cm of the bed cannot be inferred

from measurements outside that region. A log law fit to the mean velocity further from the bed gener-

ally implies a corresponding mean velocity gradient in the viscous sublayer. However, because the canopy

induces a shear mixing layer rather than a viscous sublayer, the mean shear felt by the bed is substantially

lower.

4.3. Wave-Mean Flow Interactions

Plotted in Figure 6 are three estimates of the drag coefficient calculated from equation (2), bin-averaged

by the wave Reynolds number, Re𝛿 . When calculating CD, we chose to estimate u* with the canopy log law
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Figure 6. The drag coefficient CD =
(
u∗
ur

)2
, bin averaged by wave Reynolds number. The friction velocity, u*, was

estimated using (a) the canopy log law (equation (20)), (b) the summation of the viscous and turbulent stresses 1 mm
above the canopy top (equation (23)), and (c) the summation of the viscous stress and full momentum flux 1 mm above
the canopy top (equation (22)). Error bars denote the standard error on the Re𝛿 bin averaging.

(equation (20)) for Figure 6a, with the summation of the viscous and turbulent stresses 1 mm above the

canopy top (equation (23)) for Figure 6b, andwith the full bottom stress, the summation of the viscous stress

and full momentum flux 1 mm above the canopy top (equation (22)) in Figure 6c. The wave Reynolds num-

ber reached a maximum value of Re𝛿 ≈ 125 over the deployment period, which would indicate a laminar

boundary layer for oscillatory flow over a smooth bed (Jensen et al., 1989). As discussed in the previous

section, though, the bed was extremely rough, which can lead to turbulent behavior at far lower Re𝛿 (Chen

et al., 2007).

In Figure 6a, despite an outlying decrease near Re𝛿 = 75, the drag coefficient generally increases with Re𝛿 .

This suggests that the mean flow feels greater drag in the presence of waves. Based on the definition of

CD (equation (2)), for a constant bed shear stress, the measured velocity at the reference height decreased

with increasing wave strength. Using the log law (equation (19)), equation (2) can be equivalently expressed

in terms of bottom roughness; that is, CD =
(

𝜅

ln(zr∕z0)

)2
(Cheng et al., 1999). This explicitly shows that an

increase in CD corresponds to a larger apparent bottom roughness, a result that agrees qualitatively with

most wave-current boundary layer models.

As discussed in the previous section, the near-bed flow structure is not adequately described by a logarith-

mic velocity profile, even when using the corrected canopy log law (equation (20)). Therefore, the stress

in Figure 6b, defined as the sum of the viscous and turbulent stresses, may be more representative of the

shear stress response to wave forcing. Here, the error bars are substantially larger; this additional scatter is

due to the burst periods when u′w′ and 𝜕u

𝜕z
were the same sign near the bed, resulting in a negative shear

production term and complicating the relationship between the reference velocity, ur , and the friction veloc-

ity, u*, in equation (2). The relative occurrence of these negative production burst periods can be seen in

Figure 10a in section 4.4. Regardless, the average drag coefficient tends to increase with increasing wave

strength, supporting the assertion that waves increase bottom drag over a rough bed.

Finally, we can define CD using the full bed stress, the sum of the viscous stress and full momentum flux

(equation (23)). This is shown in Figure 6c and displays a similar trend to the previous two definitions. Error

bars are again large, but the magnitude by which CD increases over the range of Re𝛿 is also much larger

(note the change in y axis scale). This is not surprising because this definition of u* explicitly includes wave

effects through the wave momentum flux, ũw̃. Therefore, we would expect an increase in Re𝛿 (i.e., stronger

waves) to result in a substantially larger CD, because CD is proportional to u
2
∗
.

We initially planned to use these data to test the applicability of various wave-current boundary layer mod-

els. However, many widely used models (Grant & Madsen, 1979; Styles et al., 2017; Styles & Glenn, 2000)

assume that the mean velocity within the wave boundary layer follows a log law. For our data, the near-bed

mean velocity is better described by canopy flow theory (equation (25)), which represents fundamentally

different dynamics. Therefore, we restrict our analysis to affirming the qualitative result that wave-current

interactions increase the apparent bottom roughness, without explicitly comparing different models to

our data.
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Figure 7. (a) Depth-averaged velocity, U, calculated from acoustic Doppler current profiler data, (b) bottom
wave-orbital velocity calculated from Vectrino data, (c) Vectrino turbulent Reynolds stress (u′w′) and wave momentum
flux (ũw̃) at 0.6 cmab, and (d) acoustic Doppler velocimeter total vertical momentum flux (uw), calculated during
3 days of the deployment corresponding to Figure 2, which also contains wind data for this time period. The red dashed
vertical lines in each panel indicate the times corresponding to different panels in Figure 8.

4.4. Turbulent Boundary Layer Characteristics

Figure 7c shows the turbulent Reynolds stress and wave momentum flux, denoted by u′w′ and ũw̃ ,

respectively, calculated via the phase method from the Vectrino data during 3 days of the deployment corre-

sponding to Figure 2. Because the Vectrino provides a profile of Reynolds stresses for each burst, the values

plotted are taken from 0.6 cmab. We chose this point in the profile because it generally corresponded to the

maximummagnitude wavemomentum flux, displayed variations in the turbulent Reynolds stress of similar

magnitude, and was also within the Vectrino region of highest SNR. Figure 7d shows the total vertical

momentum flux, uw, calculated from ADV data at three heights above the bed. For clarity, these values are

not decomposed into their wave and turbulence components, but in general, we expect uw = u′w′ + ũw̃.

Figures 7a and 7b show the corresponding depth-averaged current,U, and bottom wave-orbital velocity, ub,

respectively.

The Reynolds stress, u′w′, shown in Figure 7c, varies tidally. As expected, it is negative when the

depth-averaged current is positive (during flood tides) and positive when the depth-averaged current is neg-

ative (during ebb tides). This ensures that the production term in the TKE equation, −u′w′ 𝜕u

𝜕z
, is positive.

Conversely, ũw̃ varies diurnally and is more negative with the onset of large afternoon wind waves. During

periods of strong wave activity, ũw̃ can dominate u′w′ by up to an order of magnitude in absolute value.

When wave action decreases overnight and through the morning, u′w′ and ũw̃ are generally of similar

magnitude.

The ADV data in Figure 7d show similar trends, namely, a coherent tidal variation in momentum flux with

a superimposed diurnal variation due to waves. These data also allow us to evaluate the applicability of

the linear shear stress profile described by equation (15). For that equation to hold, we would expect the

absolute value of the momentum flux to decrease with distance from the boundary. This is sometimes true,

for example, each night near 00:00. But the clearest signal in this time series comes from theADVat 45 cmab,

which shows an increase in momentum flux magnitude each afternoon during the onset of strong wind

waves. Interestingly, this increase is positive when the mean currents are negative (e.g., just after 26 July
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Figure 8. Turbulent Reynolds stress and wave momentum flux profiles (black solid and black dotted lines, respectively) and total momentum flux (gray dashed
line) for (a) strong waves, positive mean shear; (b) moderate waves, positive mean shear; (c) weak waves, positive mean shear; (e) strong waves, negative mean
shear; (f) moderate waves, negative mean shear; and (g) weak waves, negative mean shear. Panels (d) and (h) show the mean velocity profiles corresponding to
each plot in the top and bottom rows, respectively, with the vertical axis showing distance above the bed in linear scale rather than log scale. The data closest to
the bed (0–1.5 cmab) were taken with the Vectrino, while the three data points furthest from the bed (denoted with circular markers) were calculated using the
acoustic Doppler velocimeters at 5, 15, and 45 cmab, respectively.

12:00) and negative when the mean currents are positive (e.g., later that afternoon), contrasting with the

exclusively negative wave momentum fluxes measured by the Vectrino in Figure 7c.

To further probe the turbulence structure both within and outside the boundary layer, Figures 8a–8c

show representative profiles of the turbulent Reynolds stress and wave momentum flux, along with the

total momentum flux uw, for varying magnitudes (strong, moderate, and weak) of the ratio ub∕U > 0.

Figures 8e–8g show the same stresses for similar magnitudes of ub∕U but for ub∕U < 0. The boundaries

between strong, moderate, and weak waves were set such that we had an equal number of burst periods

in each category. Strong wave bursts were defined as |ub∕U| > 0.40, moderate wave bursts were defined as

0.21 < |ub∕U| < 0.40, and weak wave bursts were defined as |ub∕U| < 0.21. A positive ub∕U indicates that

the tide is flooding, that is, flowing toward the southeast (see tidal ellipse in Figure 1) and that the mean

shear, 𝜕u

𝜕z
, is positive. Because the waves almost always propagate toward the eastern shore, the waves and

currents are generally additive in this case. Conversely, ub∕U < 0 indicates that the tide is ebbing, the mean

shear is negative, and the waves and currents oppose each other.

When waves are strong and the mean shear is positive (Figure 8a), u′w′ is relatively small over the measure-

ment profile compared to ũw̃, which reaches a maximum magnitude near 0.6 cmab. Above that point, it

decays to zero but becomes slightly positive at 15 and 45 cmab. When waves are strong but oppose the tides

(Figure 8e), the profile displays almost identical behavior: a strong negative peak in ũw̃ near the bed and a

similar weaker trend toward positive stresses at 15 and 45 cmab. In both cases, the current magnitude is rel-

atively weak compared to the wave-induced velocities, so it is reasonable to infer that the sign change in the

mean flow has a negligible effect. The positive stresses at 15 and 45 cmab, however, were not expected; we

saw in Figure 7d that the wave-driven momentum flux was often positive when the currents were negative

(this situation matches Figure 8e), but in Figure 8a the wave-driven momentum flux is positive when the

current is also positive.
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Figure 9. Histograms over 0.4–1.4 cmab from the Vectrino profile showing counts of the different components of the
total stress for varying wave conditions: (a) viscous stress during weak wave bursts, (b) turbulent stress during weak
wave bursts, (c) wave stress during weak wave bursts, (d) viscous stress during moderate wave bursts, (e) turbulent
stress during moderate wave bursts, (f) wave stress during moderate wave bursts, (g) viscous stress during strong wave
bursts, (h) turbulent stress during strong wave bursts, and (i) wave stress during strong wave bursts. The within-canopy
portions of the profiles are neglected in each panel because the excessive near-zero counts skewed the color bar,
making the rest of the profile difficult to interpret.

When the current magnitude increases relative to the wave-induced velocity, the turbulent Reynolds stress

begins to make up an increasing proportion of the total stress, as shown in Figures 8b and 8f. The wave

momentum flux is still strongly negative below 1 cmab in Figure 8b and remains slightly negative further

from the bed. When the sign of the current changes (Figure 8f), the wave-induced stress at 45 cmab also

changes sign; this behavior exactly matches the wavy periods in Figure 7d.

The case of relatively weak waves is shown in Figures 8c and 8g. It is only when the wave-induced velocity is

much weaker than the current velocity that the turbulent Reynolds stress dominates the total stress profile.

In Figure 8c, the Reynolds stress and wave momentum flux are both negative over the entire profile during

the flood tide. Conversely, they are positive over the entire profile in Figure 8g during the ebb tide, providing

further evidence that both the magnitude and direction of the total momentum flux and its components are

determined by the interplay of waves and currents, rather than a simple superposition of each in absence of

the other. In both the weak wave case and the moderate wave case, the total stress could be represented by

a linear profile, as the stresses generally decay with distance from the bed. This would not be a reasonable

assumption for the strong wave cases where the shear stress approaches larger values (in magnitude) away

from the bed, perhaps due to wind stress at the surface.

The profiles in Figure 8 provide valuable snapshots of the stress both within and outside the boundary

layer, but we can also show amore comprehensive momentum balance in the near-bed region for the entire
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Figure 10. Histograms of (a) Vectrino turbulence kinetic energy production from 0.4 to 1.4 cmab; (b) Vectrino wave
production from 0.4 to 1.4 cmab; (c) turbulence kinetic energy production from the ADV at 5 cmab (light gray), the
ADV at 15 cmab (gray), and the ADV at 45 cmab (black); and (d) wave production from the ADV at 5 cmab (light gray),
the ADV at 15 cmab (gray), and the ADV at 45 cmab (black). Bins in panels (a) and (b) are log spaced to better reflect
the data range. ADV = acoustic Doppler velocimeter.

deployment period. In Figure 9, each column shows a different stress component (viscous, turbulent, and

wave from left to right), normalized by the total stress 𝜏T (equation (9)). Each row shows a different set of

wave conditions (weak, moderate, and strong from top to bottom). The viscous stress (leftmost column) is

strongest close to the bed as expected, though it is generally the weakest component and rarely comprises a

significant portion of the total stress. As waves increase in strength (from Figures 9a to 9d to 9g), the viscous

stress contribution decreases. This could be due to the dominance of the wave-induced stress (Figure 9i) or

wave-current interactions which can weaken velocity gradients by enhancing near-bed momentummixing

(Nielsen, 1992).

The turbulent Reynolds stress (center column) is damped near the bed but is often the dominant stress com-

ponent by approximately 0.7 cmab in the weak wave case (Figure 9b). The moderate wave case has the most

scatter, though in general the turbulent Reynolds stress (Figure 9e) is less dominant than the wave-induced

stress (Figure 9f) close to the bed, but comprises an increasing portion of the stress further from the bed. In

the strong wave case, the turbulent Reynolds stress (Figure 9h) remains weak relative to the wave-induced

stress (Figure 9i) over the entire profile, as the wave-induced stress dominates from 0.5 cmab upward.

Trends in the relative magnitudes of the stress terms in Figures 8 and 9 make sense, but the sign of the wave

momentum flux profiles is less intuitive. The expected sign of wave-induced production (Pw = ũw̃ 𝜕u

𝜕z
) has

been examined by previous studies with conflicting results. One set of laboratory experiments showed that

Pw > 0 over the water column, indicating that energy is transferred from the waves to the mean current

(Cheung, 1985; Jiang et al., 1990). Other researchers found Pw < 0 in the majority of their experiments, sug-

gesting that thewaveswere often gaining energy from themean flow (Thais&Magnaudet, 1996; Reidenbach

et al., 2007). We found both situations in our data, as shown in Figure 10.

Figure 10a shows histograms of turbulence production (PT = u′w′ 𝜕u

𝜕z
) from the Vectrino profile over

0.4–1.4 cmab. As expected, PT < 0 for nearly the entire deployment at every measurement depth, ensur-

ing a positive turbulence production term in the TKE equation. Conversely, the wave-induced production

Pw is both positive and negative (though it is skewed toward negative). In most of the cases shown in

Figure 8, we found ũw̃ < 0 regardless of the mean current direction. This is expected from classical the-

ory (Longuet-Higgins, 1953) and indicates that waves tend to pump positive momentum into the near-bed

region. Therefore, it is not surprising that Figure 10b shows both positive and negative values of Pw.
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Figure 11. The turbulence kinetic energy dissipation rate, 𝜖, plotted against (a) turbulence production and
(b) combined wave and turbulence production. All values are calculated from Vectrino data at 0.6 cmab. The
red line indicates a one-to-one fit, with the r2 value indicating the coefficient of determination.

The ADV turbulence production terms, shown in Figure 10c, are also skewed heavily negative and decrease

in magnitude with distance from the bed. Unlike the Vectrino data, the ADV wave production terms

(Figure 10d) are generally smaller in magnitude than the associated turbulence production, which makes

sense because wave production is strongest near the bed. For the majority of measurement bursts, Pw was

negative, indicating that the wave field higher in the water column was primarily extracting energy from

the mean flow (Thais & Magnaudet, 1996). We also found that most of the positive Pw values in the 15- and

45-cmab ADV data occurred when waves were strong relative to currents, that is, corresponding to the case

in Figure 8a. This suggests that when they were strong, the waves were acting as a source of energy to the

mean currents, as has been observed in previous laboratory experiments (Jiang et al., 1990).

To elucidate the various energy transfer mechanisms among the waves, turbulence, and mean flow, we

attempted to close the combinedwave-current TKE budget (Reynolds&Hussain, 1972).While the full trans-

port equation proved difficult to close, we found an approximate balance near the bottom boundary between

the TKE dissipation rate, 𝜖, and turbulence production,

u′w′ 𝜕u

𝜕z
+ 𝜖 = 0. (27)

Figure 11a shows 𝜖 against −PT , while Figure 11b shows 𝜖 against the combined wave and current produc-

tion (−PTw = −PT − Pw), a term that appears in the full wave-current TKE budget. Because Figure 11 is

plotted in log-log space, only positive values of −PT and −PTw are shown. The coefficient of determination

(r2) values shown in the figure, however, is calculated using all values of dissipation and production regard-

less of sign. Because they are not based on linear regression, the r2 values can be negative for the poorer fits.

The agreement in Figure 11a is reasonable, indicating that TKE dissipation primarily balances turbulence

production. In general, turbulence production is larger than dissipation; given the high concentrations of

suspended sediment and resulting density gradients near the bed, it is possible that the buoyancy flux (which

we do not account for) serves as an additional sink of TKE.

As shown in Figure 11b, adding the wave production term decreases the correlation with dissipation by

increasing the magnitude of the total production term. This indicates that the wave momentum flux is

not necessarily balanced by an increase in near-bed dissipation, as has been observed for flows over sea-

grass canopies (Luhar et al., 2010, 2013). Nonetheless, the wave momentum flux often plays a dominant

role in momentum exchange dynamics: the relative magnitudes of u′w′ and ũw̃ were consistent through-

out the time series, with u′w′ only dominating ũw̃ when the wave orbital velocity was approximately an

order of magnitude less than the depth-averaged current velocity. This is likely due to the smaller scale of

the wave boundary layer compared to the mean current boundary layer. Over the deployment period, the

mean viscous sublayer thickness was 5𝜈∕u* = 2.0mm, while the mean wave boundary layer thickness was

(2𝜈∕𝜔)1∕2 = 0.9mm. This results in sharper gradients andmore shear in the wave-induced velocity near the

bed. Therefore, for a given velocity magnitude the stress gradients are stronger due to waves than they are

due to mean currents. These large wave-induced momentum fluxes near the bed have major implications
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Figure 12. The turbulence kinetic energy dissipation rate, 𝜖, plotted against turbulence production measured by
acoustic Doppler velocimeters at (a) 5, (b) 15, and (c) 45 cmab. The red line indicates a one-to-one fit, with the r2 value
indicating the coefficient of determination.

for sediment transport because they are more likely to erode the bed. This result is consistent with numer-

ous studies that have emphasized the importance of waves in resuspending cohesive sediments (Brand et al.,

2010; Friedrichs et al., 2000; MacVean & Lacy, 2014).

We also applied theTKEbalance (equation (27)) to theADVdata at 5, 15, and 45 cmab, as shown inFigure 12.

At 5 cmab (Figure 12a) we find a reasonable balance, though dissipation slightly outweighs turbulence

production. This disparity grows larger at 15 and 45 cmab, showing that 𝜖 > −PT over most of the water

column. Contrasting with the Vectrino data in Figure 11, adding the ADV wave production term increases

the correlation to dissipation at each location in the water column (not shown). However, it is difficult to

say whether dissipation is elevated as a result of wave production or if turbulence production is suppressed

by another mechanism. A previous study conducted in a wavy flow also found that dissipation was larger

than the shear production magnitude throughout the water column (Feddersen et al., 2007), suggesting

that vertical diffusion of TKE may play an important role in the energy budget. Whitecapping waves have

also been shown to enhance TKE dissipation throughout the water column in shallow, wavy flows (Jones &

Monismith, 2008). Either of these explanations would be reasonable for our data too.

4.5. Estimation of the Friction Velocity

The analysis conducted so far has already shown how some of the friction velocity estimates in Table 2

will compare to one another. For example, we know that regressing for u* using the traditional log law

(equation (19)) is not appropriate for this system given the canopy flow dynamics. We also saw in Figure 9

that both the viscous stress estimate (equation (14)) and the turbulent stress estimate (equation (24)) rarely

make up a significant portion of the total stress near the bed on their own. The combined viscous-turbulent

estimate (equation (23)) would show better agreement with the total stress but only during the weak wave

cases. Therefore, we are left with three additional friction velocity estimates: u*c from the Vectrino canopy

Figure 13. The full bed shear stress
|||𝜈

𝜕u
𝜕z

− uw
|||
1∕2

b
, calculated with b = 1mm above the canopy top, compared with

estimating u* as (a)
|||u′w′|||

1∕2

5

(
1 − 5

H

)−1∕2
, the turbulent Reynolds stress from the acoustic Doppler velocimeter at

5 cmab extrapolated to the bed, (b) u*c, the friction velocity estimated from a log law fit (equation (20)) to Vectrino
mean velocity data, and (c) u*A from the acoustic Doppler current profiler mean current profile. All units are in
centimeters per second, and the red line indicates a one-to-one fit, with the r2 value indicating the coefficient of
determination.
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Figure 14. The bed shear stress solely due to currents
|||𝜈

𝜕u
𝜕z

− u′w′|||
1∕2

b
, calculated with b = 1mm above the canopy top,

compared with estimating u* as (a)
|||u′w′|||

1∕2

5

(
1 − 5

H

)−1∕2
, the turbulent Reynolds stress from the acoustic Doppler

velocimeter at 5 cmab extrapolated to the bed, (b) u*c, the friction velocity estimated from a log law fit (equation (20))
to Vectrino mean velocity data, and (c) u*A from the acoustic Doppler current profiler mean current profile. All units
are in centimeters per second, and the red line indicates a one-to-one fit, with the r2 value indicating the coefficient of
determination.

log law fit (equation (20)), |u′w′|1∕25

(
1 − 5

H

)−1∕2

from the 5-cmab ADV data (equation (17)), and u ∗A from a

canopy log law fit to the ADCPmean velocity profile (equation (20)). Each of these estimations is compared

to the full bottom stress (equation (22)) in Figure 13, with r2 values indicating goodness of fit.

None of the methods shown in Figure 13 provide adequate estimations of the bed stress. Most commonly,

they overestimate the stress compared to its true value, though there is significant scatter both above and

below the one-to-one lines. It is likely that an underestimation of the stress corresponds to a strong wave

burst period, as none of the estimation methods explicitly account for wave activity. Conversely, an over-

estimate of the stress could be attributed to the presence of the bed itself, which acts to reduce velocity

and pressure fluctuations (e.g., Hunt & Graham, 1978), thus limiting the stress the bed feels. The same

effect could be caused by near-bed sediment-induced stratification as well. None of the estimation methods

shown in Figure 13 account for these boundary effects; indeed, the shear stress profile used in deriving

the estimation methods assumes that the stress increases linearly toward the boundary, which of course is

not true.

Given that the three estimation methods in Figure 13 do not account for waves, a fairer assessment of their

validity is found in Figure 14. Here, we compare them to the bed shear stress due solely to currents, that is,

the sum of the viscous and turbulent stress components 1mm above the canopy top (equation (23)). Surpris-

ingly, the goodness of fit decreases substantially in each case compared to the full stress in Figure 13. The

scatter is reduced, though, and the errors are primarily overestimates of the bed shear stress. This helps con-

firm our analysis from Figure 13, suggesting that the more traditional estimates of bed shear stress tend to

overestimate the actual current-induced bed shear stress by failing to account for boundary effects. Interest-

ingly though, these estimationmethods often do a better job of representing the full bed shear stress because

the wave stresses compete against the near-bed viscous damping. Of course, they do not always perform

better; during strong wave bursts, they underestimate the bed shear stress substantially.

Overall, none of the estimation methods accurately predict either the full bed shear stress or the

current-induced bed shear stress. Even when they perform best, they do so for the wrong reasons: their

overestimation of the bed shear stress is merely compensated for by unresolved wave stresses. Further, no

measurement outside the boundary layer was able to predict the structure of themean velocity (and thus the

mean bed shear stress) near the bed, because they could not resolve the canopy shear mixing layer dynam-

ics. This discrepancy could lead to significant overestimations of the mean shear at the bed necessary to, for

example, initiate sediment motion.

Despite the failure to predict dynamics near the bed, traditional measurements were largely consistent with

one another outside the canopy region. Figure 15 shows the canopy log law fit to the Vectrino velocity profile

(equation (20)) against the 5-cmab ADV friction velocity estimate (equation (17)) and the ADCP log law

estimate (equation (20)). Coefficient of determination values are substantially higher than in Figures 13 and
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Figure 15. The friction velocity, u*c, estimated from fitting the Vectrino mean velocity profile to the canopy log law

(equation (20)) compared to (a)
|||u′w′|||

1∕2

5

(
1 − 5

H

)−1∕2
, the turbulent Reynolds stress from the acoustic Doppler

velocimeter at 5 cmab extrapolated to the bed and (b) u*A from the acoustic Doppler current profiler mean current
profile. All units are in centimeters per second, and the red line indicates a one-to-one fit, with the r2 value indicating
the coefficient of determination.

14, indicating that the assumption of a logarithmic velocity profile is valid throughout most of the water

column. And while these estimates do not accurately predict the total stress measured by the Vectrino at

the bed, the Vectrino only sampled at a single location; horizontal variations in bed geometry would lead

to corresponding changes in the local bed stress. Log law fitting and turbulence measurements outside the

wave boundary layer cannot resolve those variations and therefore provide reasonable estimates of the stress

dynamics in the bulk flow.

4.6. Vectrino Error Analysis

Given the novelty of the canopy flow observed and discussed in section 4.2, it is necessary to ensure that

the near-zero velocities above the bed and the mixing layer velocity profile are not merely artifacts of the

measurement technique. Contrastingwith our results, two recent field studies involving a Vectrino deployed

with its measurement profile at the sediment-water interface found evidence of a viscous sublayer above

a smooth sediment bed (Brand et al., 2016; Wengrove & Foster, 2014). This indicates that the Vectrino is

capable of measuring viscous sublayer profiles in situ when the bed is smooth and that our canopy shear

mixing layer profiles are likely due to the worm tube canopy rather than artificial thickening of a viscous

sublayer. We also conducted a laboratory test to measure wave-induced velocity profiles above a smooth

cohesive sediment bed composed of South San Francisco Bay mud. We found that the velocity decayed to

zero at the bottom boundary, unlike our field measurements in which the velocity decayed to zero at the top

of the canopy. These results mirrored those found in a recent laboratory study using a Vectrino in a sediment

flume (Hooshmand et al., 2015). This is further evidence that our reported velocity profiles are showing

physical flow features rather than measurement errors.

As discussed in section 3.2, ũw̃ is assumed to be zero for irrotational, periodic waves. Therefore, it is surpris-

ing that it dominates the total momentum flux during wavy conditions. Previous studies have noted that

slight tilts in velocimeter orientation or a gently sloping bed can induce erroneously large ũw̃measurements

(Trowbridge, 1998). On the other hand, given the proximity to the bed, the irrotationality assumption could

be violated which would indicate that the values of ũw̃ are not simply due to measurement error. To check

whether or not this is the case, we calculated the quantity

𝜙 =
ũw̃√
ũ2
√
w̃2

. (28)

As |𝜙| → 0, the phase angle between ũ and w̃ approaches 90◦, and the wave-induced stress becomes

negligible. For erroneous measurements, we would expect (10−2) values of |𝜙| (Bricker & Monismith,

2007). As |𝜙| → 1, the phase angle approaches 0◦, indicating that the wave-induced stress is nonnegligible

and induced by physics rather than measurement error. Over the measurement period, the mean value of

|𝜙| for the Vectrino measurements was |𝜙| = 0.42, suggesting that ũw̃ is significant near the bed. For the
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ADV data, |𝜙|5 = 0.17, |𝜙|15 = 0.23, and |𝜙|45 = 0.15 over the measurement period for the ADVs at 5, 15,

and 45 cmab, respectively. This indicates that the near-bed wave-induced vorticity remains nonnegligibly

higher in the water column but generally decreases with distance from the bed.

5. Conclusions

We conducted field work with the goal of characterizing the mean and turbulence properties of the

wave-current boundary layer in a shallow flow over a cohesive sediment bed. We found that the mean

velocity structure in the near-bed region resembled a canopy flow shear mixing layer, rather than a viscous

sublayer. This resulted in a decreasedmean bed shear stress compared to what onewould calculate by fitting

a log law to the mean current profile.

We also found that the addition of waves to mean currents increased the net drag felt by the flow. When

quantifying bottom drag using a bed shear stress based solely on the currents (i.e., the traditional approach),

the drag increased because waves modified the mean velocity profile, leading to an increased apparent bot-

tom roughness. Including the wavemomentum flux in the bottom drag calculation also led to an increase in

drag, though this followed directly from modification of the bed shear stress by the wave momentum flux.

While these results are qualitatively consistent with numerous wave-current boundary layer models, they

also illustrate the inherent limitations and faulty assumptions in those models. Namely, no wave-current

boundary layer model that we are aware of directly accounts for the wave momentum flux. Rather, most

parameterize the effect of waves through a combined wave-current friction velocity, which itself defines a

logarithmic velocity profile inside the wave boundary layer (Grant &Madsen, 1979; Styles et al., 2017; Styles

&Glenn, 2000). The velocity profiles that wemeasuredwere not logarithmic inside thewave boundary layer,

andwe found that thewavemomentum fluxwas often the dominant component of the total bed shear stress.

This suggests a fundamentally different mechanism for wave-induced increases in bottom drag, and one

that we expect is important over any bed rough enough to break the orthogonality between the horizontal

and vertical wave velocities.

These results emphasize the importance of detailed bed roughness characterization in combined

wave-current flows. In our data, we found relative roughness values of A∕kb = (0.1 − 1), a similar magni-

tude to wave-driven flows over rough coral canopies (Rogers et al., 2016). Therefore, it is not surprising that

we see canopy flow dynamics, for example, a strong near-bed wave-inducedmomentum flux and hyperbolic

tangent velocity profile. While many models (e.g., Styles et al., 2017) can be applied to roughness values

of A∕kb < 1, they will not resolve those canopy flow features, highlighting the need for a wave-current

boundary layer model that can be applied over an arbitrarily rough canopy-like bed.

Despite the dominance of thewavemomentum flux, TKE dissipationwas still reasonably balanced by turbu-

lence production near the bed. This can be partially attributed to the dissipation calculation method, which

was based on the high-frequency velocity spectra. Finally, we compared different methods of estimating the

friction velocity, u*, and found that while the estimations were consistent outside the wave boundary layer,

the measured shear stress at the bed was not well approximated by any of the estimation techniques, mainly

due to unresolved canopy flow dynamics and wave momentum fluxes. These deficiencies could lead to crit-

ical errors in sediment transport models, the predictive capabilities of which are determined in large part

by whether or not the bed shear stress is accurately estimated. Our measurements indicate that flat plate

boundary layer theory can fall short in this regard.
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