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Abstract—In this paper, we propose a price-driven Nash
Bargaining game solution to maximize Quality of Experience
(QoE) with cache content optimization in wireless multimedia
communications. By leveraging the cached multimedia content
and the Smart Media Pricing (SMP) concept through device-to-
device (D2D) communications, the economic-quality equilibrium
is established between Service Provider (SP) and End Devices
(EDs). The contribution of this paper is as follows. First,
referring to the importance of multimedia packets, we develop
a price-driven method to allocate cached multimedia resource
on the seller EDs. Then a Nash Bargaining game is formu-
lated between the seller and buyer EDs considering multimedia
packet importance and content popularity. Referring to the
two-player Nash Bargaining game theoretic model, a buying-
caching-reselling strategy for multimedia content is proposed by
deriving the Nash Bargaining Solution (NBS). Simulation results
demonstrate that the proposed SMP cache allocation method has
high efficiency and fairness in quality-driven wireless multimedia
communications, leading to desirable utilities towards Pareto
optimality.

Index Terms—Smart Media Pricing, Quality of Experi-
ence, Cache Content Allocation

I. INTRODUCTION

As the Quality of Experience (QoE) becomes an increas-
ing important issue for wireless multimedia communication,
leveraging cached content in an economics-friendly fashion
becomes critically essential in future wireless networks [1]
[2]. Device-to-device (D2D) strategy is widely studied for
increasing the network throughput and transmission quality
of service (QoS) of mobile devices that were located in a
short distance area [3] [4]. In [5], authors examined the D2D
transmissions in Wi-Fi by using different frequencies or time-
sharing the channel. Experiment results shown that network
performance gets significant improving, especially in dense
environment. While the rational decisions for devices, when
facing problems such as whether to cooperate with others or
how to allocate the traffic load and available radio resources is
one urgent problem need to be solved when considering D2D
transmission. Extremely, a selfish device would exclusively
occupy its resources to maximize its own profit rather than
cooperative with others [6].

In addition, game theory has been recognizing as an impor-
tant tool in studying, modeling and analyzing the interactions
in different layers among mobile users [7] [8]. Lots of research

work based on game theory has been published in the litera-
ture. For instance, to tackle the selfish device problem, authors
in [9] proposed a low-complexity distributed device selection
and power control scheme based on Stackelberg game. The
proposed strategy combines base station and devices (acting
reluctant because of limited energy and possible delays for
their own data) together by providing profits to devices. In
[10], authors investigated the utility maximization problem for
carrier and payment minimization for end users. The interac-
tions between end users are formulated as a non-cooperative
game and system performed the optimality by deriving the
sub-game Nash equilibrium. Both research results presented
in [9] and [10] were based on non-cooperative game solution.
Their model consists of two operators which controlled by
multiple players and the objective is to prove the uniqueness
and existence of equilibrium.

Cooperative games are also widely studied in the wireless
transmission field. A fair scheme to allocate subcarrier, rate
and power for multiuser OFDMA system is proposed in [11].
The new scheme considers a generalized proportional fairness
based on Nash Bargaining solutions and coalition games. In
cognitive radio wireless network, how to efficiency allocate
the spectrum to mobile devices is discussed in [12] [14].
Authors in [12] proposed a novel multi-winner spectrum
auction game. Attar A et.al developed an optimum resource
allocation strategy which guarantees the primarys QoS request
and allocate suitable rate to secondary by using cooperative
game in [13]. A new spectrum access protocol is presented
in [14] to address the problem where nodes in a multi-
hop wireless network need to agree on a fair allocation of
spectrum. Similar to the spectrum resource, storage space is
another resource need to be considered for mobile devices.
In [15], authors proposed the unequal error protection (UEP)
based resource allocation method to optimize the energy using
and channel coding rate. Authors in [16] presented frame
level algorithm based on frame importance and dependency
to determine the encryption block length, since the storage
space was limited on wireless sensors. The importance level
of multimedia has been considered in wireless multimedia
communication and QoE resource allocations [21] [22].

Motivated by the aforementioned work, a Smart Media
Pricing (SMP) [2] [20] based cache content Nash Bargaining
game-theoretic solution is proposed to improve the multimedia

978-1-7281-1856-7/19/$31.00 ©2019 IEEE



QoE of end devices (EDs) in wireless networks in this paper.
For instance, considering the scenario shown in Figure 1,
one service provider (SP) and two EDs are formulated in the
model. First, SP serves EDs with same data price. But each
ED gets different QoS because of their varying physical condi-
tions, i.e., transmission distance and channel states. Then ED1
(who gets the better data service) caches certain popular data
contents and prepares to resell the cached data for extra profits.
Powered by the D2D scheme [17], we assume that ED1 resells
data to ED2 through the D2D communication which operated
in unlicensed spectrum. We first propose an unequal weight
proportion method to allocate the storage space efficiency for
EDI1. It makes the data-selling decision be simple for primary
player and ensures the data service quality at the same time.
Second, the Nash bargaining game in proposed between the
primary player (ED1) and secondary player (ED2). The degree
of cooperation is decided by how much data to be sold between
EDs. We prove the two-player bargaining game can be solved
based on the Nash bargaining solution (NBS) when certain
conditions are satisfied. This way, our proposed cross layer
strategy can achieve an optimal system utility while keeping
fairness and efficiency among players. The analyzing results
are demonstrated by the computer simulations.
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Fig. 1. Economic cache content Nash Bargaining in smart media pricing-
driven wireless multimedia resource allocations.

The rest of this paper is organized as follows. Section II
presents the system model and defines the utility functions for
EDs. In section III, the unequal weight proportion method is
proposed first. Then the cooperative game theory is addressed
to help EDs find out their proper consuming data contents
based on NBS. The simulation results which demonstrate the
effectiveness of the proposed strategy are presented in section
IV. We conclude this paper in section V. The key notations
and nomenclature in this paper is summarized in TABLE 1.

II. SYSTEM MODEL

In this part, we construct our system model based on the
scenario shown in Fig. 1. We consider single SP and two EDs

TABLE I
SUMMARY OF KEY NOTATIONS

Symbol Comments

Uy,Us2 Utility of EDI and ED2.

e Selling strategies of ED1. When ¢ —th frame
is resold to ED2, m1 = 1.

N The total number of packets sold by SP.

L; The length of ¢ — th frame.

Lpap Length of data that transmitted through D2D
communication.

Q Summation of frames distortion reduction.

«, System parameters in utility function.

M Number of frames ED1 loads from SP.

K Number of frames ED2 buys from SP.

C e Costs coefficient for ED1 when providing
data service.

Di Packet error rate of ¢ — th frame.

R; Dependency set of ¢ — th frame.

D; Distortion reduction of ¢ — th frame.

w(i) Importance level of frame <.

H Descendent frame set for ¢ frame.

Ny Number of importance level.

s Parameter for Zipfian distribution.

in our system to start. Let U;,U; denote the utility of ED1
and ED2, respectively. Our system goal can be mathematically
described as

{miliz1.2,...n)} = argmaz {Uy, Uz} (D
where m; € {0,1}. When EDI resells ¢ — th packet to ED2,
we set m; = 1, otherwise m; = 0. The N denotes the total

number of packets sold by SP. Let L; denote the length of
1 —th packet that ED1 loads from SP. The QoE maximization
problem could be solved by determining how much data being
sold (the degree of cooperation) between EDs.

SP transmits multimedia data to EDs by broadcasting
through downlinks, charging EDs at price (o). Due to different
channel conditions between SP and EDs, EDI1 (the closer
one to SP) gets better data service and consumes L; data
content in total. While for ED2, it consumes Lo data content
with lower data service since the longer transmission distance
(causes highly signal fading or bit error rate). To make up the
inferior situation of ED2, we assume ED1 would take D2D
communication scheme to resell certain amount of popular
data with price y(1) (y1) < Y(0))) to ED2. Let 8 denote
the benefit gain per unit of multimedia quality of EDI1. C
represents the incurred cost factor when EDI1 sells data to
ED2. ¢ denotes the SPs commission coefficient when ED2
purchases data through D2D communication. Lpsp denotes
the length of data that ED1 resells to ED2.

N
LDQD:ZLiﬂ'i (2)
i=1
Then, the utility function of U; is given as

Uy = BlgQ1 +yu)yLp2p—

: 3)
M Yo)L(spiy —CLpap —€yyLp2p



The utility of EDI is presented as the summation of its
multimedia quality gain and profits from selling data to ED2,
subtracted by the its cost which includes three parts: costs on
buying data from SP, incurred cost to provide the D2D service,
and commission to SP. The ), here represents the summation
of frames distortion reduction, more details about ()1 will be
discussed later.

Let « denote the benefit gain per unit of multimedia quality
of ED2. We model the utility of ED2 as follows:

K

Z lgQs — Zy(O)L(SP,i) —ywyLp2p 4)
SeSP,ED i=1

UQZOé*

where S € SP, ED implies that multimedia quality gain of
ED2 contains two parts. Qsp denotes the ED2s multimedia
gain from SP and Q)gp denotes the multimedia gain from
EDI1. Qgp equals 0 if ED2 does not buy any data from ED1
(that means Lpop = 0). The utility of ED2 is represented
as its multimedia quality subtracted by it costs. The multi-
media quality @ in Equation (2) and (3) is represented as
the summation of the distortion reduction of each individual
multimedia frame, multiplied by the probability that it is
successfully transmitted and decoded with regards to the frame
encoding dependency inherited from the video codec [18]. The
calculation of @ is shown as follows:

N

Q=>_Di(1—p) [[ O =pwxs) 5)

i=1 KeR;

where D; denotes reduction distortion of i — th frame. p;
represents the packet error rate of ¢ —th frame. Here we define
R; as the frame dependence set of ¢ — th frame. For example,
considering in a multimedia flow, P1 represents I frame (Intra
frame), P2 represents the B frame (Bidirectional frame) right
after P1 and P3 represents the P frame (Predicted frame) right
after P2. I frame is least compressible and does not require
other video frames to decode at the receiver. While for P and B
frames, it is necessary to ensure the previous dependent frames
successfully transmitted when decoding them. So we get the
P3’s dependence set {P;} and P2’s dependence set { Py, Ps}.
Let BER imply the bit error rate in physical channel. The
packet error rate is explained as:

pi=1—(1—BER)™ (6)

where L; represents the length of ¢ — th frame.

To maximize the utilities of EDs, we address the problem
with a strategy which can determine how to allocate the
reasonable quantity of data Lpop that ED1 sells to ED2.
The main contribution of this paper includes: First we take
unequal weight proportion method to allocate the multimedia
data cached at EDI. Second we formulate the data contents
reselling progress as a bargaining game and our goal is to
prove the existence and uniqueness of NBS.

III. COOPERATIVE CACHE NASH BARGAINING
GAME

In the proposed system, ED1 loads multimedia data with
high quality and resells it to its neighbors. With the constraint
of storage limitation on device, we propose the unequal weight
proportion method to cache popular data (the popularity is
determined by frames distortion reduction) from SP. The
neighbor, we consider ED2, purchases certain data content
with price y(;). We formulate Nash bargaining game between
EDI1 and ED2, to decide how much data should be sold for
keeping optimality utility of both seller and buyer. The non-
uniform storage allocation method and Bash bargaining game
will be discussed in detail in the following sections.

A. Unequal Weight Proportion Method for Caching

The priority of frames in Group Of Picture (GOP) is
determined by their video distortion reduction and reference
relationship. The high priority frames mean better media
quality and play a major role in term of users utility (according
to Equations 3 and 4). The first contribution of our work is to
propose the unequal weight proportion scheme when ranking
and caching frames in the limited memory. Similar to [16], let
w,; denote the perceptional importance level of frame ¢ in the
GOP. H; represents descendent frame set for ¢ frame in the
decoding dependency graph. We get w; expressed as

wi= Y D, (7)

Vili€H )

When EDI1 loads multiple multimedia streams from SP,
we calculate the importance level for each frame based on
Equation (7) repeatedly. We consider there are many GOPs
in each stream. Then, we allocate storage space for cached
multimedia data according to the importance level, details are
shown in Fig. 2.

Importance Level 1 1 3

BNJ,— Device Storage 3

B, = Bx f(i;s,N )

Fig. 2. The ranking and caching scheme of multimedia data storage based
on Zipfan distribution.

Let B denote the device’s storage capacity. Here we take
the empirical law (Zipfian distribution) to make full use of
storage resource [19]. In Figure 2, f(i;s, Ny) represents the
probability of the ¢ — th element being requested by at least
one user, which is defined as:
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where Ny is the number of perceptional importance level
we calculated before. s denotes the parameter of the exponent
characterizing the distribution. We unevenly separate the stor-
age space into N blocks based on the data importance level.
In this way, it is ensured that theres enough space for highly
distortion reduction data. It is worth noting that when EDI1
resells data to ED2, the highly ranked data in storage space
should be sold first, for the purpose of keeping ED2 gets the
best data service.

The allocation process of unequal weight proportion method
is shown in algorithm 1. First, based on the distortion reduction
and reference relationship, the importance level is determined
for each individual GOP. The importance level is a vital factor
for the storage allocation. In step 7, we choose the maximum
number of importance level in all GOPs, as it ensures all data
contents have chance to be stored for future reselling. In step
10, we take the Zipfian distribution to allocate storage resource
based on the frame ranking sequence. It is worth pointing out
when the parameter s > 4, more than 90 percent storage space
is occupied by most important data (within the importance
level 1), which satisfies the strictly quality-driven transmission
case very well. Under proper parameter s, we can achieve the
resource allocating process with highly efficiency and fairness.

flizs,Ny) = ®)

Algorithm 1 The Unequal Weight Proportion Algorithm for

ED
1: Imputs: (1) The distortion reduction D; of frames in each GOP. (2)
The reference relationship among frames. (3) Other parameters such as
the number of GOP (denoted as N_G), the storage capacity B, the
parameter s for Zipfian distribution.
2: Outputs: (1) The importance level (1 ~ Ny) of frames. (2) The storage
allocation strategy.
For i=1:N_G
4: Calculate the w(;y for each frame based on its reference relationship
and Equation (7).
Rank frames based on w;), record the importance level N(;y. The
N(;) maybe different since it varies from GOP.
End For
Set the global importance level Ny = maxN;. Record Ny for next step.
For j=1:Ny
Based on the Equation (8) and input parameter s, calculate the
probability of f(i;s, Ny).
10: Taking B; = B f(i;s, Ny) to calculate subspace for storing data
contents which belong to importance level j.
11: End For
12: Check the w;) for each GOP and output the storage allocation strategy.

W [95]
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The sorting and caching problem of popular data contents
has been solved by means of unequal weight proportion
method. With the non-uniform allocation method, ED1 would
keep providing high quality data service. Next, we will discuss
the transmission work between EDs in high level, which
directly affects the overall system performance.

B. Cooperative Game Approach

Cooperative games request players in games to reach an
agreement on how to fairly and efficiently share the avail-
able resources. First, we will briefly review the fundamental

concepts and theorems for Nash Bargaining game and axioms
which ensure the existence of Nash Bargaining Solution. Then
we will discuss how to implement the bargaining game in our
work.

Definition 1: The state of source allocation (uq, ..., ug) is
Pareto optimality, if and only if there is no other source
allocation w; such that u; > wu;, Vi, and u}f > uy,dyj, ie.,
there does not exist other allocation to make any one individual
player better off without making at least one another player
worse off.

The Pareto optimality axiom must be satisfied when seeking
NBS. But there might be more than one allocation set of Pareto
optimality. We need further axioms to select a bargaining result
which considering the fairness for each player and providing a
unique Pareto optimal operation allocation simultaneously. For
convenience, we consider the two-player bargaining game in
our following definition and theorem (study case shown in Fig.
1), while it can be extended more players straightforwardly.
Let U denote the feasibility set, it is the set of all possible
source allocation (uf,ub)y =1, . n]. The initial of negotiation
process denoted by (u?,u9), which represents no bargaining
game between two players.

Definition 2: Source allocation (uj = u}) is said to be
NBS. The solution should satisfy following axioms [7][11].

1) Individual rationality: u} > Y and u} > u).

2) Feasibility set: (uj > uj) € U

3) Pareto optimality: If (uy,us), (ul,ub) € U, Vi, and u; >
ul, ug > ub. Then (u1,us) = (uj,ub)

4) Symmetry: The allocation strategies are symmetric in
the feasibility set. i.e., (u1,uz) € U < (uz,uy) € U.
And if u§ = uY, then uj = uj.

5) Independence of irrelevant alternatives: If (uf,u}) €
U' C U, then (u},u}) is also the NBS in U,

6) Invariant to affine transformations: We consider the in-
dependence of linear transformations, let U, be obtained
from U by the linear transformation u§ = c;u§ + ¢2 and
u§ = c3ud—+cy with ¢1, ¢z > 0. Then, (c1uf+ca, c3us+
¢4) is the NBS on U.

Theorem 1: There is a unique NBS (uj, u}) which satisfies
all the axioms above. And it is given by

(u)lk? 'LL;) = argmax(ul - u?)(UQ - ug)[(u’{,u;)EU,ul >uf uz—ud)
€))

Next, we will discuss how to implement NBS into our work.
As we can notice from Equations (1) and (9), the cooperative
(Nash bargaining) game between ED1 and ED2 can be defined
as follows. Both players have their objective functions, i.e.,
Equations (2) and (3). The goal of our model is to maximize
all EDs simultaneously.The (u{,u3) = (Uy,Us)|Lp2p =0
represents the minimal performance and is called the initial
agreement status of bargaining game. Furthermore, we define

U= {Lﬂi[izl,...,N]‘Wz‘ = 1,Ui > U%”é > Ug} (10)



as the feasible set. The problem is simplified to choose the
proper reselling strategy in U for ED1 and ED2, such that
both players get maximum utility (QoE). The Nash bargaining
between ED1 and ED2 gets a unique and efficient solution
since it satisfies the six axioms.

We propose a fast algorithm between two players for the
optimization goals by iteratively increasing the data content
which ED2 purchases from EDI1, as shown in algorithm 2.
First, the initial agreement (u{,u9) is on the table to start the
bargaining game. Then the negotiating process is illustrated
from step 3 to step 10. The most high quality data will be sold
in the first or second iteration due to the advanced property
of Zipfs law.

Algorithm 2 The Unequal Weight Proportion Algorithm for
ED1

1: Inputs: (1) Initial agreement (u?, ug) (2) The feasible set U. (3) Else
parameters we defined in Equations (2) and (3).
Outputs: (1) The Nash Bargaining Solution (u,u3}).
For i=1:N
If number of frame > 1
Gradually adding data frame into current agreement (uf, u);
Calculate U? based on function U = (ud —uf)(ul —ul);
Let U = max{U* }
End if
If U? < U1, it means U cannot be increased by updating the
wy and wus. The iteration ends and return U~ 1;
10: End for
11: It is worth mentioning that if U still keep rising when ED1 sells out all
its cached data, we consider the final agreement (uf’ , ué\f ) is the NBS.
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IV. NUMERICAL SIMULATIONS AND RESULTS

In this section, we perform our simulations to evaluate the
system performance based on the unequal weight proportion
and cooperative game model which we proposed in this paper.
The Foreman video srouce stream with H. 264 encoder is
utilized in our simulations. The Peak Signal-to-Noise Ratio
(PSNR) considered as the performance metric to evaluate the
multimedia quality. Some vital parameters and their value
ranges are shown in TABLE II.

TABLE II
PARAMETERS USED IN THE SIMULATION

Symbol | Value Comments

a, B 05~ 1 Benefits gain per unit of multimedia
quality.

€ 0.1 ~ 0.5 D2D transmission Commission coeffi-
cient for SP.

C 05~1 Incurred cost factor when EDI1 selling
data.

Y0, Y1 05~2 Purchasing price per unit length media
data.

D; 35.92 ~ 36.27 | Distortion reduction of frames.

e 10~7 ~ 10~° | Channel bit error rate.

N 30 Number of frames.

First, we evaluate the performance of the proposed unequal
weight proportion method. We take streams [ PPPIPPP...
and IPBIPB... into our simulation to explore the effects
of different reference relationships. Sequence /PBIPB... is

more complex comparing with the previous one, the results are
shown in Fig. 3 and Fig. 4. From the results we can notice
that when the multimedia frames have highly dependency (in
Fig. 3), the smaller parameter s for Zipfian distribution serves
the media quality request better. The rationale behind this
result is that with highly dependency, the multimedia gain is
leveraged into each frame. When s = 0, the storage space
will be allocated evenly. It is the special case called equal
weight proportion method in the simulation. P or B frame
keep nearly the same multimedia gain but with shorter (one-
third or even less) packets length, which will significantly save
the bandwidth and transmission resources when providing the
same level of video service. With the smaller s, the storage
space is divided like to be evenly.

Cumulative Multimedia Quality With "IPBIBPBI.."

Multimedia quality PSNR (dB)

—=—5=08
——z=12

—=— Equal Weight Proportion

i ; i i i i
D1 2 3 4 5 & T L]
Importance level (N)

Fig. 3.  Performances of different Zipfian parameters and equal weight
proportion scheme, under complex reference relationship (with stream
IPBIBPBI)

Next, we evaluate the impacts of physical channel factors on
system performance. According to Equations (5) and (6), we
understand that the multimedia quality depends on channel Bit
Error Rate (BER). We assume the BER in D2D transmission
is lower than it is between SP and EDs. The rationale behind
this is that the BER between SP and EDs is mainly determined
by the distance and channel fading, while distance between
devices in D2D transmission is relative short and the channel
fading has rarely effects on media quality. Three scenarios are
considered in the simulation to explore the cache and non-
cache strategies performance. The BER in each scenario is
shown in TABLE III.

TABLE III
PARAMETERS FOR THERE SCENARIOS
Scenario 1 2 3
BER(SP — ED) e=10"% e=10"° e=10"F
BER(ED — ED) e=10"" e=10"0 e=10""7
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Fig. 4. Media quality performances under simple reference relationship (with
stream I[PPPIPPP)

Simulation results of the PSNR in varying BER are shown
in Fig. 5. We observe that ED2 gets better multimedia if it
buys data from EDI instead of SP. Scenario 3 shows the best
performance since its BER is the smallest. In further simula-
tions, we will choose the optimal parameters, i.e., e = 106
and e = 107 for SP-ED, ED-ED scenarios respectively.

T e P ANF L A5 SR ST o e
n e
T2
.
g
3
5 15
—e—BER =10%7
: : ——BER = 10%8
I SRR, dosmnummrmed e e > BER = 105 |
i . i
00 00 Mo 400 500
Consumed data af end devicas{Khits)
Fig. 5. ED2s media quality gains in cache (ED2 buys data from ED1) and

non-cache (ED2 buys data from SP) cases

We set up simulations with « = 0.8, 3 =1, =0.2,C =1,
and y(g) = 2 for two EDs scenario to test the utility perfor-
mance. In Fig. 6 and Fig. 7, we show utility of individual end
device versus the D2D transmission data with different buying-
selling prices. Referring to the proposed system model, the

utilities of EDs are decided by factors such as BER, buying-
selling price, data content sold through D2D etc. Because the
optimal BER (10~ and 10~7) is implemented in simulations,
EDs get almost same multimedia quality no matter from SP or
D2D. Experimental results in this section explore the effects of
buying-selling price ratio on EDs’ utilities. As we can notice
from the figures, as the primary end device, ED1 gets more
benefit (in terms of utility) when reselling cached important
data with higher price. But for ED2, his overall gain decreases
with the higher selling price. This is because as the secondary
ED, the cost of ED2 to experience high quality data service is
buying data from ED1. The cheaper reselling price EDI sets,
the better gain ED2 gets.

o8 ] T T H T 1 T
—=— Selling/Buying = 0.25
=== Selling/Buying = 0.50
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= ; =
b
ot o
O
A e
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005 [&] 015 0z 025 03 035 04 045 05 055

Length of D2D transmission data (Mbits)

Fig. 6. Utility gain of EDI versus quantity of D2D transmission data, under
different reselling price strategies.

It can be concluded from the previous simulations that both
EDs have different trends to choose the reselling strategies.
i.e., EDI trends to choose higher reselling price to improve
its profit, which will decrease ED2s utility. Thats the reason
a Nash bargaining model is presented in this paper. During
the bargaining process, individual players have the opportunity
to reach a mutually beneficial agreement even though they
have conflicts of interest. In Fig. 8, we show the system
utility performance starts at the first agreement (u}, ul) where
Lpop = 0.0171Mbits. When EDs do not cooperate (Lpsp =
0), (uf —uf)* (ub —u3) is always equals zero, since both EDs’
utilities will be the initial agreement (u§,u3). With varying
reselling strategies in the feasible set, as we can notice from
the figure, objective function U = (uf —ul)*(ub—uJ) achieves
the NBS when selling data around 0.45 Mbits .

V. CONCLUSION

In this paper, an economic price-driven Nash Bargaining
game solution is proposed to improve the QoE of EDs in
wireless multimedia resource allocation. By leveraging SMP
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concept, the proposed scheme achieves close to globally opti-
mum performance. First an unequal weight proportion method
is presented for efficiency resource allocation based on media
quality. Then a cooperative game model is formulated between
two EDs. Under the help of Nash bargaining game, the cooper-
ative data reselling strategy based on NBS is presented in this
paper. The simulation results demonstrate that the proposed
proportion method addressed the complex frames dependency
problem and satisfied the quality-driven data service requests.
Results also show that both players in the bargaining game
benefit from the proposed strategy and get the best utilities at
the NBS.

VI. FUTURE WORK

It is worth noting that possible extensions of this work
include: grouping more EDs in the cooperation game to
maximize their individual utility. The objective function could
be redesigned if there are more EDs. The existence and
uniqueness of NBS for multiple EDs should also be proved
through the six axioms. Furthermore, based on the unequal
weight proportion method, gradually increasing the reselling
price of cached data from less important level to high level is
another way to improve profit. More complex system modeling
and utility functions are needed for the future work extension.
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