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Abstract—In this paper, we propose a price-driven Nash
Bargaining game solution to maximize Quality of Experience
(QoE) with cache content optimization in wireless multimedia
communications. By leveraging the cached multimedia content
and the Smart Media Pricing (SMP) concept through device-to-
device (D2D) communications, the economic-quality equilibrium
is established between Service Provider (SP) and End Devices
(EDs). The contribution of this paper is as follows. First,
referring to the importance of multimedia packets, we develop
a price-driven method to allocate cached multimedia resource
on the seller EDs. Then a Nash Bargaining game is formu-
lated between the seller and buyer EDs considering multimedia
packet importance and content popularity. Referring to the
two-player Nash Bargaining game theoretic model, a buying-
caching-reselling strategy for multimedia content is proposed by
deriving the Nash Bargaining Solution (NBS). Simulation results
demonstrate that the proposed SMP cache allocation method has
high efficiency and fairness in quality-driven wireless multimedia
communications, leading to desirable utilities towards Pareto
optimality.

Index Terms—Smart Media Pricing, Quality of Experi-
ence, Cache Content Allocation

I. INTRODUCTION

As the Quality of Experience (QoE) becomes an increas-

ing important issue for wireless multimedia communication,

leveraging cached content in an economics-friendly fashion

becomes critically essential in future wireless networks [1]

[2]. Device-to-device (D2D) strategy is widely studied for

increasing the network throughput and transmission quality

of service (QoS) of mobile devices that were located in a

short distance area [3] [4]. In [5], authors examined the D2D

transmissions in Wi-Fi by using different frequencies or time-

sharing the channel. Experiment results shown that network

performance gets significant improving, especially in dense

environment. While the rational decisions for devices, when

facing problems such as whether to cooperate with others or

how to allocate the traffic load and available radio resources is

one urgent problem need to be solved when considering D2D

transmission. Extremely, a selfish device would exclusively

occupy its resources to maximize its own profit rather than

cooperative with others [6].

In addition, game theory has been recognizing as an impor-

tant tool in studying, modeling and analyzing the interactions

in different layers among mobile users [7] [8]. Lots of research

work based on game theory has been published in the litera-

ture. For instance, to tackle the selfish device problem, authors

in [9] proposed a low-complexity distributed device selection

and power control scheme based on Stackelberg game. The

proposed strategy combines base station and devices (acting

reluctant because of limited energy and possible delays for

their own data) together by providing profits to devices. In

[10], authors investigated the utility maximization problem for

carrier and payment minimization for end users. The interac-

tions between end users are formulated as a non-cooperative

game and system performed the optimality by deriving the

sub-game Nash equilibrium. Both research results presented

in [9] and [10] were based on non-cooperative game solution.

Their model consists of two operators which controlled by

multiple players and the objective is to prove the uniqueness

and existence of equilibrium.

Cooperative games are also widely studied in the wireless

transmission field. A fair scheme to allocate subcarrier, rate

and power for multiuser OFDMA system is proposed in [11].

The new scheme considers a generalized proportional fairness

based on Nash Bargaining solutions and coalition games. In

cognitive radio wireless network, how to efficiency allocate

the spectrum to mobile devices is discussed in [12] [14].

Authors in [12] proposed a novel multi-winner spectrum

auction game. Attar A et.al developed an optimum resource

allocation strategy which guarantees the primarys QoS request

and allocate suitable rate to secondary by using cooperative

game in [13]. A new spectrum access protocol is presented

in [14] to address the problem where nodes in a multi-

hop wireless network need to agree on a fair allocation of

spectrum. Similar to the spectrum resource, storage space is

another resource need to be considered for mobile devices.

In [15], authors proposed the unequal error protection (UEP)

based resource allocation method to optimize the energy using

and channel coding rate. Authors in [16] presented frame

level algorithm based on frame importance and dependency

to determine the encryption block length, since the storage

space was limited on wireless sensors. The importance level

of multimedia has been considered in wireless multimedia

communication and QoE resource allocations [21] [22].

Motivated by the aforementioned work, a Smart Media

Pricing (SMP) [2] [20] based cache content Nash Bargaining

game-theoretic solution is proposed to improve the multimedia
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QoE of end devices (EDs) in wireless networks in this paper.

For instance, considering the scenario shown in Figure 1,

one service provider (SP) and two EDs are formulated in the

model. First, SP serves EDs with same data price. But each

ED gets different QoS because of their varying physical condi-

tions, i.e., transmission distance and channel states. Then ED1

(who gets the better data service) caches certain popular data

contents and prepares to resell the cached data for extra profits.

Powered by the D2D scheme [17], we assume that ED1 resells

data to ED2 through the D2D communication which operated

in unlicensed spectrum. We first propose an unequal weight

proportion method to allocate the storage space efficiency for

ED1. It makes the data-selling decision be simple for primary

player and ensures the data service quality at the same time.

Second, the Nash bargaining game in proposed between the

primary player (ED1) and secondary player (ED2). The degree

of cooperation is decided by how much data to be sold between

EDs. We prove the two-player bargaining game can be solved

based on the Nash bargaining solution (NBS) when certain

conditions are satisfied. This way, our proposed cross layer

strategy can achieve an optimal system utility while keeping

fairness and efficiency among players. The analyzing results

are demonstrated by the computer simulations.

Fig. 1. Economic cache content Nash Bargaining in smart media pricing-
driven wireless multimedia resource allocations.

The rest of this paper is organized as follows. Section II

presents the system model and defines the utility functions for

EDs. In section III, the unequal weight proportion method is

proposed first. Then the cooperative game theory is addressed

to help EDs find out their proper consuming data contents

based on NBS. The simulation results which demonstrate the

effectiveness of the proposed strategy are presented in section

IV. We conclude this paper in section V. The key notations

and nomenclature in this paper is summarized in TABLE I.

II. SYSTEM MODEL

In this part, we construct our system model based on the

scenario shown in Fig. 1. We consider single SP and two EDs

TABLE I
SUMMARY OF KEY NOTATIONS

Symbol Comments
U1, U2 Utility of ED1 and ED2.
πi Selling strategies of ED1. When i−th frame

is resold to ED2, π1 = 1.
N The total number of packets sold by SP.
Li The length of i− th frame.
LD2D Length of data that transmitted through D2D

communication.
Q Summation of frames distortion reduction.
α, β System parameters in utility function.
M Number of frames ED1 loads from SP.
K Number of frames ED2 buys from SP.
C, ε Costs coefficient for ED1 when providing

data service.
pi Packet error rate of i− th frame.
Ri Dependency set of i− th frame.
Di Distortion reduction of i− th frame.
w(i) Importance level of frame i.
H(i) Descendent frame set for i frame.

Nf Number of importance level.
s Parameter for Zipfian distribution.

in our system to start. Let U1,U2 denote the utility of ED1

and ED2, respectively. Our system goal can be mathematically

described as

{
πi[i=1,2,...,N ]

}
= argmax {U1, U2} (1)

where πi ∈ {0, 1}. When ED1 resells i − th packet to ED2,

we set πi = 1, otherwise πi = 0. The N denotes the total

number of packets sold by SP. Let Li denote the length of

i− th packet that ED1 loads from SP. The QoE maximization

problem could be solved by determining how much data being

sold (the degree of cooperation) between EDs.

SP transmits multimedia data to EDs by broadcasting

through downlinks, charging EDs at price y(0). Due to different

channel conditions between SP and EDs, ED1 (the closer

one to SP) gets better data service and consumes L1 data

content in total. While for ED2, it consumes L2 data content

with lower data service since the longer transmission distance

(causes highly signal fading or bit error rate). To make up the

inferior situation of ED2, we assume ED1 would take D2D

communication scheme to resell certain amount of popular

data with price y(1) (y(1) ≤ y(0))) to ED2. Let β denote

the benefit gain per unit of multimedia quality of ED1. C
represents the incurred cost factor when ED1 sells data to

ED2. ε denotes the SPs commission coefficient when ED2

purchases data through D2D communication. LD2D denotes

the length of data that ED1 resells to ED2.

LD2D =

N∑

i=1

Liπi (2)

Then, the utility function of U1 is given as

U1 = βlgQ1 + y(1)LD2D−∑M
i=1 y(0)L(SP,i) − CLD2D − εy(1)LD2D

(3)



The utility of ED1 is presented as the summation of its

multimedia quality gain and profits from selling data to ED2,

subtracted by the its cost which includes three parts: costs on

buying data from SP, incurred cost to provide the D2D service,

and commission to SP. The Q1 here represents the summation

of frames distortion reduction, more details about Q1 will be

discussed later.

Let α denote the benefit gain per unit of multimedia quality

of ED2. We model the utility of ED2 as follows:

U2 = α ∗
∑

S∈SP,ED

lgQS −
K∑

i=1

y(0)L(SP,i) − y(1)LD2D (4)

where S ∈ SP,ED implies that multimedia quality gain of

ED2 contains two parts. QSP denotes the ED2s multimedia

gain from SP and QED denotes the multimedia gain from

ED1. QED equals 0 if ED2 does not buy any data from ED1

(that means LD2D = 0). The utility of ED2 is represented

as its multimedia quality subtracted by it costs. The multi-

media quality Q in Equation (2) and (3) is represented as

the summation of the distortion reduction of each individual

multimedia frame, multiplied by the probability that it is

successfully transmitted and decoded with regards to the frame

encoding dependency inherited from the video codec [18]. The

calculation of Q is shown as follows:

Q =

N∑

i=1

Di(1− pi)
∏

K∈Ri

(1− p(K,i)) (5)

where Di denotes reduction distortion of i − th frame. pi
represents the packet error rate of i−th frame. Here we define

Ri as the frame dependence set of i− th frame. For example,

considering in a multimedia flow, P1 represents I frame (Intra

frame), P2 represents the B frame (Bidirectional frame) right

after P1 and P3 represents the P frame (Predicted frame) right

after P2. I frame is least compressible and does not require

other video frames to decode at the receiver. While for P and B

frames, it is necessary to ensure the previous dependent frames

successfully transmitted when decoding them. So we get the

P3’s dependence set {P1} and P2’s dependence set {P1, P3}.

Let BER imply the bit error rate in physical channel. The

packet error rate is explained as:

pi = 1− (1−BER)Li (6)

where Li represents the length of i− th frame.

To maximize the utilities of EDs, we address the problem

with a strategy which can determine how to allocate the

reasonable quantity of data LD2D that ED1 sells to ED2.

The main contribution of this paper includes: First we take

unequal weight proportion method to allocate the multimedia

data cached at ED1. Second we formulate the data contents

reselling progress as a bargaining game and our goal is to

prove the existence and uniqueness of NBS.

III. COOPERATIVE CACHE NASH BARGAINING

GAME

In the proposed system, ED1 loads multimedia data with

high quality and resells it to its neighbors. With the constraint

of storage limitation on device, we propose the unequal weight

proportion method to cache popular data (the popularity is

determined by frames distortion reduction) from SP. The

neighbor, we consider ED2, purchases certain data content

with price y(1). We formulate Nash bargaining game between

ED1 and ED2, to decide how much data should be sold for

keeping optimality utility of both seller and buyer. The non-

uniform storage allocation method and Bash bargaining game

will be discussed in detail in the following sections.

A. Unequal Weight Proportion Method for Caching

The priority of frames in Group Of Picture (GOP) is

determined by their video distortion reduction and reference

relationship. The high priority frames mean better media

quality and play a major role in term of users utility (according

to Equations 3 and 4). The first contribution of our work is to

propose the unequal weight proportion scheme when ranking

and caching frames in the limited memory. Similar to [16], let

wi denote the perceptional importance level of frame i in the

GOP. Hi represents descendent frame set for i frame in the

decoding dependency graph. We get wi expressed as

wi =
∑

∀j|j∈H(i)

Dj (7)

When ED1 loads multiple multimedia streams from SP,

we calculate the importance level for each frame based on

Equation (7) repeatedly. We consider there are many GOPs

in each stream. Then, we allocate storage space for cached

multimedia data according to the importance level, details are

shown in Fig. 2.

Fig. 2. The ranking and caching scheme of multimedia data storage based
on Zipfan distribution.

Let B denote the device’s storage capacity. Here we take

the empirical law (Zipfian distribution) to make full use of

storage resource [19]. In Figure 2, f(i; s,Nf ) represents the

probability of the i − th element being requested by at least

one user, which is defined as:



f(i; s,Nf ) =
1/is

∑Nf

n=1 1/n
s

(8)

where Nf is the number of perceptional importance level

we calculated before. s denotes the parameter of the exponent

characterizing the distribution. We unevenly separate the stor-

age space into N blocks based on the data importance level.

In this way, it is ensured that theres enough space for highly

distortion reduction data. It is worth noting that when ED1

resells data to ED2, the highly ranked data in storage space

should be sold first, for the purpose of keeping ED2 gets the

best data service.
The allocation process of unequal weight proportion method

is shown in algorithm 1. First, based on the distortion reduction

and reference relationship, the importance level is determined

for each individual GOP. The importance level is a vital factor

for the storage allocation. In step 7, we choose the maximum

number of importance level in all GOPs, as it ensures all data

contents have chance to be stored for future reselling. In step

10, we take the Zipfian distribution to allocate storage resource

based on the frame ranking sequence. It is worth pointing out

when the parameter s ≥ 4, more than 90 percent storage space

is occupied by most important data (within the importance

level 1), which satisfies the strictly quality-driven transmission

case very well. Under proper parameter s, we can achieve the

resource allocating process with highly efficiency and fairness.

Algorithm 1 The Unequal Weight Proportion Algorithm for

ED1
1: Inputs: (1) The distortion reduction Di of frames in each GOP. (2)

The reference relationship among frames. (3) Other parameters such as
the number of GOP (denoted as N G), the storage capacity B, the
parameter s for Zipfian distribution.

2: Outputs: (1) The importance level (1 ∼ Nf ) of frames. (2) The storage
allocation strategy.

3: For i=1:N G
4: Calculate the w(i) for each frame based on its reference relationship

and Equation (7).
5: Rank frames based on w(i), record the importance level N(i). The

N(i) maybe different since it varies from GOP.
6: End For
7: Set the global importance level Nf = maxNi. Record Nf for next step.
8: For j=1:Nf

9: Based on the Equation (8) and input parameter s, calculate the
probability of f(i; s,Nf ).

10: Taking Bj = B∗f(i; s,Nf ) to calculate subspace for storing data
contents which belong to importance level j.

11: End For
12: Check the w(i) for each GOP and output the storage allocation strategy.

The sorting and caching problem of popular data contents

has been solved by means of unequal weight proportion

method. With the non-uniform allocation method, ED1 would

keep providing high quality data service. Next, we will discuss

the transmission work between EDs in high level, which

directly affects the overall system performance.

B. Cooperative Game Approach
Cooperative games request players in games to reach an

agreement on how to fairly and efficiently share the avail-

able resources. First, we will briefly review the fundamental

concepts and theorems for Nash Bargaining game and axioms

which ensure the existence of Nash Bargaining Solution. Then

we will discuss how to implement the bargaining game in our

work.

Definition 1: The state of source allocation (u1, ..., uk) is

Pareto optimality, if and only if there is no other source

allocation u∗
i such that u∗

i ≥ ui, ∀i, and u∗
j > uJ , ∃j, i.e.,

there does not exist other allocation to make any one individual

player better off without making at least one another player

worse off.

The Pareto optimality axiom must be satisfied when seeking

NBS. But there might be more than one allocation set of Pareto

optimality. We need further axioms to select a bargaining result

which considering the fairness for each player and providing a

unique Pareto optimal operation allocation simultaneously. For

convenience, we consider the two-player bargaining game in

our following definition and theorem (study case shown in Fig.

1), while it can be extended more players straightforwardly.

Let U denote the feasibility set, it is the set of all possible

source allocation (ui
1, u

i
2)[i=1,...,N ]. The initial of negotiation

process denoted by (u0
1, u

0
2), which represents no bargaining

game between two players.

Definition 2: Source allocation (u∗
1 = u∗

2) is said to be

NBS. The solution should satisfy following axioms [7][11].

1) Individual rationality: u∗
1 > u0

1 and u∗
2 > u0

2.

2) Feasibility set: (u∗
1 > u0

1) ∈ U
3) Pareto optimality: If (u1, u2), (u

i
1, u

i
2) ∈ U, ∀i, and u1 >

ui
1, u2 > ui

2. Then (u1, u2) = (u∗
1, u

∗
2)

4) Symmetry: The allocation strategies are symmetric in

the feasibility set. i.e., (u1, u2) ∈ U ⇔ (u2, u1) ∈ U .

And if u0
1 = u0

2, then u∗
1 = u∗

2.

5) Independence of irrelevant alternatives: If (u∗
1, u

∗
2) ∈

U
′ ⊂ U , then (u∗

1, u
∗
2) is also the NBS in U

′
.

6) Invariant to affine transformations: We consider the in-

dependence of linear transformations, let Uc be obtained

from U by the linear transformation uc
1 = c1u

0
1+c2 and

uc
2 = c3u

0
2+c4 with c1, c3 > 0. Then, (c1u

∗
1+c2, c3u

∗
2+

c4) is the NBS on Uc

Theorem 1: There is a unique NBS (u∗
1, u

∗
2) which satisfies

all the axioms above. And it is given by

(u∗
1, u

∗
2) = argmax(u1−u0

1)(u2−u0
2)[(u∗

1 ,u
∗
2)∈U,u1>u0

1,u2−u0
2]

(9)

Next, we will discuss how to implement NBS into our work.

As we can notice from Equations (1) and (9), the cooperative

(Nash bargaining) game between ED1 and ED2 can be defined

as follows. Both players have their objective functions, i.e.,

Equations (2) and (3). The goal of our model is to maximize

all EDs simultaneously.The (u0
1, u

0
2) = (U1, U2)|LD2D = 0

represents the minimal performance and is called the initial

agreement status of bargaining game. Furthermore, we define

U = {Liπi[i=1,...,N ]|πi = 1, ui
1 > u0

1, u
i
2 > u0

2} (10)



as the feasible set. The problem is simplified to choose the

proper reselling strategy in U for ED1 and ED2, such that

both players get maximum utility (QoE). The Nash bargaining

between ED1 and ED2 gets a unique and efficient solution

since it satisfies the six axioms.

We propose a fast algorithm between two players for the

optimization goals by iteratively increasing the data content

which ED2 purchases from ED1, as shown in algorithm 2.

First, the initial agreement (u0
1, u

0
2) is on the table to start the

bargaining game. Then the negotiating process is illustrated

from step 3 to step 10. The most high quality data will be sold

in the first or second iteration due to the advanced property

of Zipfs law.

Algorithm 2 The Unequal Weight Proportion Algorithm for

ED1
1: Inputs: (1) Initial agreement (u0

1, u
0
2). (2) The feasible set U . (3) Else

parameters we defined in Equations (2) and (3).
2: Outputs: (1) The Nash Bargaining Solution (u∗

1, u
∗
2).

3: For i=1:N
4: If number of frame > 1
5: Gradually adding data frame into current agreement (ui

1, u
i
2);

6: Calculate U i‘ based on function U = (ui
1 − u0

1)(u
i
2 − u0

2);

7: Let U i = max{U i‘}
8: End if
9: If U i < U i−1, it means U cannot be increased by updating the

u1 and u2. The iteration ends and return U i−1;
10: End for
11: It is worth mentioning that if U still keep rising when ED1 sells out all

its cached data, we consider the final agreement (uN
1 , uN

2 ) is the NBS.

IV. NUMERICAL SIMULATIONS AND RESULTS

In this section, we perform our simulations to evaluate the

system performance based on the unequal weight proportion

and cooperative game model which we proposed in this paper.

The Foreman video srouce stream with H. 264 encoder is

utilized in our simulations. The Peak Signal-to-Noise Ratio

(PSNR) considered as the performance metric to evaluate the

multimedia quality. Some vital parameters and their value

ranges are shown in TABLE II.

TABLE II
PARAMETERS USED IN THE SIMULATION

Symbol Value Comments
α, β 0.5 ∼ 1 Benefits gain per unit of multimedia

quality.
ε 0.1 ∼ 0.5 D2D transmission Commission coeffi-

cient for SP.
C 0.5 ∼ 1 Incurred cost factor when ED1 selling

data.
y0, y1 0.5 ∼ 2 Purchasing price per unit length media

data.
Di 35.92 ∼ 36.27 Distortion reduction of frames.

e 10−7 ∼ 10−5 Channel bit error rate.
N 30 Number of frames.

First, we evaluate the performance of the proposed unequal

weight proportion method. We take streams IPPPIPPP...
and IPBIPB... into our simulation to explore the effects

of different reference relationships. Sequence IPBIPB... is

more complex comparing with the previous one, the results are

shown in Fig. 3 and Fig. 4. From the results we can notice

that when the multimedia frames have highly dependency (in

Fig. 3), the smaller parameter s for Zipfian distribution serves

the media quality request better. The rationale behind this

result is that with highly dependency, the multimedia gain is

leveraged into each frame. When s = 0, the storage space

will be allocated evenly. It is the special case called equal

weight proportion method in the simulation. P or B frame

keep nearly the same multimedia gain but with shorter (one-

third or even less) packets length, which will significantly save

the bandwidth and transmission resources when providing the

same level of video service. With the smaller s, the storage

space is divided like to be evenly.

Fig. 3. Performances of different Zipfian parameters and equal weight
proportion scheme, under complex reference relationship (with stream
IPBIBPBI)

Next, we evaluate the impacts of physical channel factors on

system performance. According to Equations (5) and (6), we

understand that the multimedia quality depends on channel Bit

Error Rate (BER). We assume the BER in D2D transmission

is lower than it is between SP and EDs. The rationale behind

this is that the BER between SP and EDs is mainly determined

by the distance and channel fading, while distance between

devices in D2D transmission is relative short and the channel

fading has rarely effects on media quality. Three scenarios are

considered in the simulation to explore the cache and non-

cache strategies performance. The BER in each scenario is

shown in TABLE III.

TABLE III
PARAMETERS FOR THERE SCENARIOS

Scenario 1 2 3

BER(SP − ED) e = 10−4 e = 10−5 e = 10−6

BER(ED − ED) e = 10−5 e = 10−6 e = 10−7



Fig. 4. Media quality performances under simple reference relationship (with
stream IPPPIPPP )

Simulation results of the PSNR in varying BER are shown

in Fig. 5. We observe that ED2 gets better multimedia if it

buys data from ED1 instead of SP. Scenario 3 shows the best

performance since its BER is the smallest. In further simula-

tions, we will choose the optimal parameters, i.e., e = 10−6

and e = 10−7 for SP-ED, ED-ED scenarios respectively.

Fig. 5. ED2s media quality gains in cache (ED2 buys data from ED1) and
non-cache (ED2 buys data from SP) cases

We set up simulations with α = 0.8, β = 1, ε = 0.2, C = 1,

and y(0) = 2 for two EDs scenario to test the utility perfor-

mance. In Fig. 6 and Fig. 7, we show utility of individual end

device versus the D2D transmission data with different buying-

selling prices. Referring to the proposed system model, the

utilities of EDs are decided by factors such as BER, buying-

selling price, data content sold through D2D etc. Because the

optimal BER (10−6 and 10−7) is implemented in simulations,

EDs get almost same multimedia quality no matter from SP or

D2D. Experimental results in this section explore the effects of

buying-selling price ratio on EDs’ utilities. As we can notice

from the figures, as the primary end device, ED1 gets more

benefit (in terms of utility) when reselling cached important

data with higher price. But for ED2, his overall gain decreases

with the higher selling price. This is because as the secondary

ED, the cost of ED2 to experience high quality data service is

buying data from ED1. The cheaper reselling price ED1 sets,

the better gain ED2 gets.

Fig. 6. Utility gain of ED1 versus quantity of D2D transmission data, under
different reselling price strategies.

It can be concluded from the previous simulations that both

EDs have different trends to choose the reselling strategies.

i.e., ED1 trends to choose higher reselling price to improve

its profit, which will decrease ED2s utility. Thats the reason

a Nash bargaining model is presented in this paper. During

the bargaining process, individual players have the opportunity

to reach a mutually beneficial agreement even though they

have conflicts of interest. In Fig. 8, we show the system

utility performance starts at the first agreement (u1
1, u

1
2) where

LD2D = 0.0171Mbits. When EDs do not cooperate (LD2D =
0), (ui

1−u0
1)∗(ui

2−u0
2) is always equals zero, since both EDs’

utilities will be the initial agreement (u0
1, u

0
2). With varying

reselling strategies in the feasible set, as we can notice from

the figure, objective function U = (ui
1−u0

1)∗(ui
2−u0

2) achieves

the NBS when selling data around 0.45 Mbits .

V. CONCLUSION

In this paper, an economic price-driven Nash Bargaining

game solution is proposed to improve the QoE of EDs in

wireless multimedia resource allocation. By leveraging SMP



Fig. 7. Utility gain of ED2, in different reselling strategies and length of
consumed data.

Fig. 8. Value of (u1 − u0
1) ∗ (u2 − u0

2) versus varying reselling strategies.

concept, the proposed scheme achieves close to globally opti-

mum performance. First an unequal weight proportion method

is presented for efficiency resource allocation based on media

quality. Then a cooperative game model is formulated between

two EDs. Under the help of Nash bargaining game, the cooper-

ative data reselling strategy based on NBS is presented in this

paper. The simulation results demonstrate that the proposed

proportion method addressed the complex frames dependency

problem and satisfied the quality-driven data service requests.

Results also show that both players in the bargaining game

benefit from the proposed strategy and get the best utilities at

the NBS.

VI. FUTURE WORK

It is worth noting that possible extensions of this work

include: grouping more EDs in the cooperation game to

maximize their individual utility. The objective function could

be redesigned if there are more EDs. The existence and

uniqueness of NBS for multiple EDs should also be proved

through the six axioms. Furthermore, based on the unequal

weight proportion method, gradually increasing the reselling

price of cached data from less important level to high level is

another way to improve profit. More complex system modeling

and utility functions are needed for the future work extension.

VII. ACKNOWLEDGEMENT

This research was support in part by National Science

Foundation Grant No. 1744182.

REFERENCES

[1] Visual Networking Index - Cisco, the complete VNI report forecasts
global IP traffic growth for mobile and fixed networks, 2018.

[2] W. Wang, Q. Wang, “Price The QoE, Not The Data: SMP-Economic
Resource Allocation in Wireless Multimedia Internet of Things,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 74-79, Sept. 2018.

[3] S. He and W. Wang, “User-Centric QoE-Driven Power and Rate Alloca-
tion for Multimedia Rebroadcasting in 5G Wireless Systems,” in Proc.
IEEE Vehicular Technology Conference (VTC), Workshop on User-Centric
Networking for 5G and Beyond, pp. 1-5, May. 2016.

[4] Y. Wu, W. Liu, S. Wang, W. Guo, and X. Chu, “Network coding in device-
to-device (D2D) communications underlaying cellular networks,” in Proc.
IEEE International Conference on Communications (ICC), pp.2072-2077,
Jun. 2015.

[5] D. Camps-Mur, A. Garcia-Saavedra and P. Serrano, “Device-to-device
communications with Wi-Fi direct: Overview and experimentation,” IEEE
Wireless Commun. Mag., vol. 20, no. 3, pp. 96-104, 2012.

[6] Z. Zhang, “A cooperation strategy based on Nash bargaining solution in
cooperative relay networks,” IEEE Trans. Veh. Technol., vol. 57, no. 4,
pp. 2570-2577, 2008.

[7] B. Wang, Y. Wu and K. J. R. Liu, “Game theory for cognitive radio
networks: an overview,” Elsevier Computer Networks, vol. 54, no. 14,
pp. 2537-2561, 2010.

[8] R. Machado and S. Tekinay, “A survey of game-theoretic approaches in
wireless sensor networks,” Elsevier Computer Networks, vol. 52, no. 16,
pp. 3047-3061, 2008.

[9] Q. Wang, W. Wang, S. Jin, H. Zhu and N. Zhang, “Quality-Optimized
Joint Source Selection and Power Control for Wireless Multimedia
D2D Communication Using Stackelberg Game,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 8, pp.3755-3769, Aug. 2015.

[10] F. Alotaibi, S. Hosny, J. Tadrous, H. E. Gamal, and A. Eryilmaz, “To-
wards a marketplace for mobile content: Dynamic pricing and proactive
caching,” in arXiv preprint arXiv:1511.07573, 2015.

[11] Z. Han , Z. Ji and K. Liu, “Fair Multiuser Channel Allocation for
OFDMA Networks Using Nash Bargaining Solutions and Coalitions,”
IEEE Trans. on Commun., vol. 53, no. 8, pp. 1366-1376, 2005.

[12] Y. Wu , B. Wang , K. J. R. Liu and T. C. Clancy, “A scalable collusion-
resistant multi-winner cognitive spectrum auction game,” IEEE Trans.
Commun., vol. 57, no. 12, pp. 3805-3816, 2009.

[13] A. Attar , M. R. Nakahi and A. H. Aghvami, “Cognitive radio game
for secondary spectrum access problem,” IEEE Trans. Wireless Commun.,
vol. 8, no. 4, pp. 2121-2131, 2008.

[14] J. E. Suris , L. A. DaSilva , Z. Han and A. B. MacKenzie, “Cooperative
game theory for distributed spectrum sharing,” in Proc. IEEE Interna-
tional Conference on Communications (ICC), pp. 5282-5287, 2007.

[15] Q. Wang, W. Wang, S. Jin and H. Zhu, “Energy-aware joint source-
channel coding control for quality-optimized wireless multimedia com-
munications,” IEEE International Conference on Wireless Communica-
tions & Signal Processing (WCSP), pp. 1-6, 2013.

[16] W. Wang, M. Hempel , D. Peng , H. Wang , H. Sharif and H.-H. Chen,
“On energy efficient encryption for video streaming in wireless sensor
networks,” IEEE Trans. On Multimedia, vol. 12, no. 5, pp. 417-426, 2010.



[17] H. Lu, Y. Wang, Y. Chen and K. J. R. Liu, “Stable Throughput
Region and Admission Control for Device-to-Device Cellular Coexisting
Networks,” IEEE Transactions on Wireless Communications, vol. 15, no.
4, pp. 2809-2824, 2016.

[18] H. Schwarz , D. Marpe and T. Wiegand, “Overview ofthe scalable video
coding extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, pp. 1103-1120, 2007

[19] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithm for
content distribution networks,” in Proc. IEEE International Conference
on Computer Communications (INFOCOM), 2010.

[20] S. He, W. Wang, “A Generalized Best-Response Smart Media Pricing
Economic Model for Wireless Multimedia Communications,” in Proc.
IEEE Consumer Communications and Networking Conference (CCNC),
Jan. 2019.

[21] W. Wang, D. Peng, H. Wang, H. Sharif, H. H. Chen, “Energy-
Constrained Quality Optimization for Secure Image Transmission in
Wireless Sensor Networks,” Advances in Multimedia (AM), vol. 2007,
Article ID 25187, 9 pages, 2007.

[22] Q. Wang, W. Wang, K. Sohraby, “Multimedia Relay Resource Allocation
for Energy Efficient Wireless Networks: High Layer Content Prioritization
with Low Layer Diversity Cooperation,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 11, pp. 10394-10405, Nov. 2017.

[23] S. He, W. Wang, “A QoE-Optimized Power Allocation Scheme for Non-
Orthogonal Multiple Access Wireless Video Services,” in Proc. IEEE
Global Communications Conference (GLOBECOM), Dec. 2018.


