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ABSTRACT

Authoritative DNS servers are susceptible to being leveraged in
denial of service attacks in which the attacker sends DNS queries
while masquerading as a victim—and hence causing the DNS server
to send the responses to the victim. This reflection off innocent DNS
servers hides the attackers identity and often allows the attackers
to amplify their traffic by employing small requests to elicit large
responses. Several challenge-response techniques have been pro-
posed to establish a requester’s identity before sending a full answer.
However, none of these are practical in that they do not work in the
face of “resolver pools”—or groups of DNS resolvers that work in
concert to lookup records in the DNS. In these cases a challenge
transmitted to some resolver R1 may be handled by a resolver R2,
hence leaving an authoritative DNS server wondering whether R2

is in fact another resolver in the pool or a victim. We offer a prac-
tical challenge-response mechanism that uses challenge chains to
establish identity in the face of resolver pools. We illustrate that the
practical cost of our scheme in terms of added delay is small.
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1. INTRODUCTION
The Domain Name System (DNS) is an essential component of

the Internet infrastructure that plays a vital role in most Internet
transactions. DNS most commonly uses UDP’s connectionless
transport to facilitate quick transactions. However, this opens the
system to abuse as a conduit of denial-of-service (DoS) attacks. In
particular, consider an attacker A that spoofs a DNS request from
a victim V to some DNS server S. This will cause S to send the
response to V achieving both (i) reflection—effectively hiding the
true source of the attack, A—and (ii) amplification—given that
DNS responses are generally larger than DNS requests [26, 21].
DNS was the second largest attack vector in DDoS attacks in the
first quarter of 2017 [6].

There are multiple entry points into the DNS for an attacker to
leverage—from open recursive resolvers to home routers that for-
ward DNS requests. These are accidental security problems in that
there is wide agreement that most of these should be closed off
from all but their own local client populations. Our work concen-
trates on the fundamental entry point that cannot simply be closed
down: authoritative servers. Previous work shows that the natural
∗This work is supported in part by NSF grants CNS-1237265, CNS-
1647126 and CNS-1647145.

disparity between request and response sizes provides an attacker
that coaxes authoritative servers to help with an attack a significant
amount of amplification potential [30, 23]. To defend against DNS
amplification attacks, several challenge-response schemes have been
proposed (see § 2). These call for an authoritative DNS (ADNS)
server to send a challenge to requester before sending the ultimate
response. When the requester successfully answers this challenge
the ADNS will furnish the response. This mechanism works much
like TCP’s three-way handshake in that it establishes the requester’s
identity. Further, the size of the challenge is similar to the size of the
request, therefore offering an attacker no advantage if they coax the
ADNS to send the challenge to a victim. Unfortunately, prior work
[10, 28, 8] shows that modern DNS resolvers (RDNS) are sometimes
not single machines, but organized as pools of resolvers (RDNS
pools). Therefore, without any malice a response to a challenge may
come from a different resolver than an ADNS challenged.

In this paper we first show the problem posed by RDNS pools is
non-trivial and renders simple challenge-response practically use-
less. Consequently, we design a challenge-response scheme that
works in the presence of RDNS pools. Our basic mechanism is
a challenge chain—i.e., we challenge an RDNS pool until we get
an acceptable response. We encode the challenge history in the
challenge itself such that the scheme is stateless at the ADNS. Since
a long challenge chain can add delay to transactions we also provide
a number of ways an ADNS can safely reduce the chain length. We
show that our techniques are feasible and their impact on the traffic
and DNS resolution process is slight. To our knowledge, ours is the
first practical challenge-response mechanism that (i) allows ADNS
operators to nearly ensure their servers cannot be used as an instru-
ment in an amplification attack, (ii) works in the presence of RDNS
pools and (iii) can be employed by ADNS unilaterally, without any
modifications to other components of the DNS ecosystem.

2. RELATED WORK
Previous work includes a number of proposals to apply the con-

cept of challenge-response to DNS traffic.
The DNS protocol provides two mechanisms for authoritative

servers to redirect querying resolvers instead of answering a query.
A “canonical name” (CNAME) response indicates a name that the
querying RDNS must resolve to determine the ultimate IP address.
E.g., a lookup for “www.foo.com” may return a CNAME for “www-
server-14.foo.com” which then must be resolved to an IP address
before a client can initiate communication with the host behind the
“www.foo.com” name. A second redirection method involves the NS
record—which informs the querying resolver to contact a different
nameserver for the given record. Previous DNS challenge-response
schemes leverage both CNAME records [29] and NS records [16,
17]. The crucial problem with the previous work is that none of the
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mechanisms deal with RDNS pools—which we find to be pervasive
(see § 3). While [17] attempts to handle RDNS pools, the mechanism
makes an unrealistic assumption that “quiet periods” without any
spoofing-based attacks can be leveraged to build (and refresh) an
ADNS’ understanding of RDNS pools.

DNS-over-TCP [31] has been proposed to solve some of the
same issues we address. In this case TCP’s three-way handshake
becomes the challenge-response mechanism. A limitation of this
scheme is that some resolvers cannot use TCP—often due to mid-
dlebox blocking—and therefore results in more resolution failures
compared to UDP [22, 13, 18].

The “DNS cookie” scheme calls for resolvers and authorita-
tive servers to exchange IP address-based cookies within optional
records in DNS messages [14]. This allows all parties to a transac-
tion to gain confidence that the various actors are legitimate parties
to the lookup process (as opposed to arbitrary victims of a reflec-
tion attack). Further, cookies protect an entire zone, whereas our
challenge-response scheme operates on individual names (see § 4).
DNS cookies require adoption from both hosts in a transaction and
therefore an ADNS must rely on help from clients to thwart amplifi-
cation attacks. An ADNS could force resolvers that do not support
cookies1 to fallback to TCP, but this would bring DNS-over-TCP
limitations mentioned earlier. Alternatively, an ADNS could fall
back to challenge-response when cookies are not present in requests.

Finally, another scheme aiming to limit ADNS’s culpability in
DoS attacks is Response Rate Limiting (RRL) [20], which attempts
to discover patterns in arriving queries—e.g., a high-volume stream
of requests for a single name from a single IP address—and, when
problematic, limit the rate of replies. While RRL can reduce
the effectiveness of reflection and amplification attacks, challenge-
response offers three key advantages over RRL. First, challenge-
response does not require a high-rate query stream and/or a savvy
pattern discovery process to detect problematic requests. In particu-
lar, an attacker could spread spoofed queries across a large number
of ADNS servers to defeat RRL. Second, RRL uses a coarse-grained
mechanism to limit an ADNS’ contribution to an attack, which can
impact legitimate requests. However, challenge-response precisely
adjudicates each DNS query and therefore prevents collateral dam-
age to legitimate queries. Finally, while RRL offers a coping mech-
anism for large attacks, it also opens a new attack vector whereby
an attacker can spoof a high-rate stream of requests to try to coax
an ADNS to reduce the response rate to a legitimate RDNS server.

3. ASSESSING THE RDNS POOL ISSUE
We first aim to roughly understand the prevalence of RDNS

pools. We deploy our own ADNS and scan the IPv4 address space
with lookup requests for names within our DNS zone. Our ADNS
responds to queries with a CNAME that includes the requesters’
IP address. We then detect RDNS pools when a request to resolve
the CNAME arrives from a different IP address.2 We conducted
our scan via PlanetLab nodes from March 20 to April 2, 2016.
We received answers from 10.3 million open DNS resolvers across
20K ASes and 221 countries. As we know from previous work, most
of these are simple forwarders—generally cheap home routers—
which blindly forward requests on to an actual recursive resolver
(RDNS) rather than conducting recursive lookup themselves [28].
The 10.3 million open resolvers forwarded the lookups to roughly

1We find 0.15% of the requests arriving at one instance of A root
over 24 hours in April 2018 contain cookies [5].
2We do not claim to detect all RDNS pools, but only those that
spread requests to our ADNS across multiple hosts within the pool.
However, these are precisely the kinds of pools that are problematic
for challenge-response schemes.

85K RDNSes across 13K ASes and 210 countries, which then sent
queries to our ADNS. We detect RDNS pools in use for 24% of the
open forwarders. Further, we find over 900 organizations deploying
RDNS pools in some fashion. While we do not know whether
the open resolver population gives us a biased view of the relative
prevalence of RDNS pools, we do know that the absolute number of
pools represents millions of homes and this is significant enough to
indicate that any challenge-response scheme must be able to work
correctly in the presence of resolver pools.

4. THE BASIC MECHANISM
Previous simple challenge-response mechanisms are left in a

quandary when faced with RDNS pools. Consider challenge-response
mechanisms faced with two situations:
Case 1: A benign RDNS pool sends a query from R1 to ADNS Z

for a name N . Z then responds with a challenge CN . The RDNS
pool then sends Z a query for CN from a second resolver R2.

Case 2: An attacker sends ADNS Z a request for N from its own
IP address A. Z responds with a challenge CN . The attacker
then queries Z for CN from a spoofed victim address V .
The only difference in these two cases is intent—which Z cannot

determine. Thus, in this situation, (i) Z has established that the
original requests for N—from R1 and A—are not spoofed because
they received CN and responded; (ii) if Z decides to return the ulti-
mate response at this point, this process roughly halves the attack’s
amplification factor because A must now send two requests instead
of one to coax Z into sending a response to a victim; and (iii) Z
is left unable to determine whether the query for CN comes from
a benign resolver in an RDNS pool (i.e., R2 in case 1) or from an
attacker spoofing a victim’s address (i.e., V in case 2). We address
the threat posed by (iii) through the following two strategies.
Challenge Chains: Our first strategy involves multiple rounds of
challenge-response when the responses return from unexpected IP
addresses—which we refer to as a challenge chain. For instance,
the two cases above would continue with a second challenge, CN2,
sent to R2 and V , respectively. Further, each challenge includes all
IP addresses observed in the chain thus far. Therefore, in case 1,
CN would contain R1 and CN2 would contain R1 and R2. We
can then determine that the challenge response comes from a valid,
non-spoofed address if its source address is among any of the IP
addresses encoded in the challenge. Indeed, since all these addresses
have been challenged they all must have explicitly played a part in
the arrival of the current challenge response. Although this approach
ensures that the challenge chain will eventually terminate for any
finite-size RDNS pool, large pools may lead to long chains and high
delays in obtaining the ultimate answer, hence our second strategy.
Traffic Nullification: Our second strategy stems from the original
problem we are addressing: preventing amplification. Since each
challenge requires the attacker to send another query, the amount of
amplification an attacker can obtain is inversely proportional to the
length of the challenge chain. There is a point when an attacker has
been forced to answer enough challenges such that these effectively
nullify any amplification possible by coaxing an ADNS to send the
ultimate—and potentially large—DNS response to a victim. There-
fore, an ADNS can terminate a challenge chain when amplification
is no longer possible even though the challenge responses have all
been from unexpected IP addresses. In calculating nullification, one
can count the attacker’s outbound traffic due to queries or bidirec-
tional traffic due to both queries and replies (challenges). There are
arguments to be made for either accounting method; to be conserva-
tive, we only account for attacker’s outbound traffic throughout the
experiments in this paper.

We have designed and implemented a challenge-response mecha-
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nism that utilizes both challenge chains and nullification. We use
CNAME resource records as a conduit for challenges. While our
changes are consistent with the operational DNS ecosystem, they
deviate from the letter of the DNS specifications. For instance,
RFC 2181 [15] prohibits returning CNAMEs at the apex of a zone.
However, we note that these sorts of deviations already happen. As
an example, CNAME, NS, MX and A records simultaneously exist
at the apex of the adpop-1.com zone. Further, we configured our
own ADNS to return challenges per our mechanism and we were
able to retrieve correct responses via a local bind [19] installation
and eleven public DNS resolvers,3 suggesting that our approach is
not problematic for recursive resolvers in the wild. However, a 2014
Cloudflare trial shows that CNAME records at a zone apex cause
issues in corner cases [12]. While our experiments show no current
issues, operators wishing to avoid using a CNAME at the apex of
a zone could instead aim to keep the records at the apex small to
avoid being used in amplification attacks.

Another practical issue is ensuring a CNAME can encode a suf-
ficiently long challenge chain to nullify large DNS responses in
the face of large RDNS pools. We find that seven challenges are
sufficient to nullify nearly all DNS responses (see § 5.3). Consider
forming a challenge from (i) the 99th percentile query string length
(51 bytes) from our ICSI dataset (see § 5), (ii) an HMAC to ensure
challenge integrity as we discuss below (five bytes) and (iii) seven
IP addresses encoded as eight character strings of hexadecimal digits
(56 bytes). This will result in a challenge with a length of 112 bytes
(without considering separators)—or, less than half the allowable
query string size (255 bytes). Therefore, even if this precise en-
coding is not used and/or a longer challenge chain is necessary, the
query string limit does not present a practical barrier for including
enough IP addresses to meet the nullification threshold—even in the
face of large RDNS pools.

Our approach includes two additional facets:
Statelessness: Our design requires no ADNS state. We encode all
required state to implement both challenge chains and nullification
in the challenges themselves. We include a list of RDNSes observed
thus far in the current chain. This implicitly conveys the length of
the chain so the ADNS can determine when nullification happens.
Further, each challenge includes a short HMAC4 that covers the
challenge and is salted with a secret key.5 This prevents an attacker
from fabricating a valid challenge response. By making the entire
mechanism stateless we not only keep the ADNS complexity to a
minimum, but also do not open the ADNS to state holding attacks.
Replay Prevention: Attackers may gain an advantage by reusing
challenges. Consider an attacker that coaxes an ADNS to issue
enough challenges to terminate the chain via nullification (e.g.,
using a botnet). Now, the attacker possesses a challenge which
will trigger a large response and can be repeatedly presented to
the ADNS from any spoofed address. Using only the state in this
challenge, the ADNS will conclude nullification has happened and
send the ultimate—likely large—DNS response to the victim even
though the victim’s address is not in the list of valid addresses in

3Google, Verisign, AT&T, OpenDNS, Quad9, UUNET, Level3,
DNSWatch, Norton ConnectSafe, DYN, and SafeDNS.
4We use a 5 byte HMAC in our implementation as it need not be
strong due to frequent key rotations.
5Since the contents of the challenge need only be understood
by the ADNS that issues the challenge, the precise encoding of
the challenges is immaterial to our findings. However, as an ex-
ample, a challenge CNAME for “www.foo.com” may look like
“c0011c5ic001ca5e.hmac.www.foo.com”, where the first 16 char-
acters encode two IP addresses, the second label is the protecting
HMAC and the remainder is the actual query string. Note, exceeding
the maximum label length results in adding a label.

the challenge itself. Unfortunately, in a stateless system replay
cannot be eliminated because the ADNS does not know how many
times a challenge response has arrived. To mitigate the replay
attack without accruing state about each transaction, we change the
secret key used to calculate the HMAC every three seconds.6 A
challenge response with an expired HMAC triggers a fresh challenge
chain. We additionally retain the two previous secret keys to validate
incoming requests. This process confines the replay vulnerability to
a small time window and therefore mitigates the possible impact.

An ADNS can further limit the impact of replay at the expense of
relaxing the requirement to operate stateless. Specifically, an ADNS
can track the challenges issued within the time window we sketch
above. At this point, replay can be prevented by answering a query
with a given challenge only once, and starting a fresh challenge chain
for any replayed query. Such a policy would lengthen transactions
that experience loss and therefore must rely on retransmitting a
query. Therefore, an ADNS may tune the number of times a specific
challenge will be answered to balance the additional delay imposed
on retransmissions with the susceptibility to replay attacks. Note,
since the blocking would be enacted individually for each specific
challenge, this approach does not expose the ADNS to some general
DoS attack whereby an attacker can coax the ADNS into wholesale
blocking of a legitimate RDNS (pool). We also note that the attack
signal generated by challenge replay is quite strong: once a specific
challenge has been received more than a few times the purpose is
clearly an attack and the IP addresses encoded in the challenge—
but not the potentially spoofed source IP address from which the
challenge arrived—are complicit and can be blocked by the ADNS
or an associated IDS/IPS.

Finally, we note that our scheme does not directly address re-
flection attacks. We do not prevent a DNS request with a spoofed
source of V from triggering a DNS response to V (a challenge in
our case). Rather, our scheme aims to remove the amplification ad-
vantage by making it more costly for an attacker to coax an ADNS
into sending a large number of bytes to a victim than it would be
for the attacker to send those bytes itself (using spoofing to hide
its identity). This means that DNSSEC poses a problem for our
scheme. Since responses protected by DNSSEC are large relative
to the queries, an attacker could use the amplification available in
a DNSSEC-protected challenge to gain an advantage. As currently
defined, DNSSEC and our challenge-response scheme are incom-
patible and an operator must choose between the two schemes. We
discuss DNSSEC further in a longer version of this paper [7].

4.1 Performance Impact
We now turn to assessing the cost of our challenge-response

mechanism via trace-driven simulation. Our analysis is based on
one week—September 15–21, 2016—of passive observation at the
shared access link of Case Connection Zone (CCZ), an experimental
network that connects roughly 100 homes to the Internet via bi-
directional 1 Gbps fiber-optic links [1]. The Bro traffic monitor [4]
records all DNS transactions between the homes and the CCZ’s
RDNS servers, as well as summaries for all TCP connections. We
aim to study the added delay TCP connections initiated by CCZ
users would experience if all authoritative DNS servers involved in
every DNS lookup adopted our challenge-response mechanism.7

6Note, for ADNSes with multiple instances—e.g., anycast replicas—
the secret key will need to be aligned via synchronized clocks and
keys generated from a pseudorandom function with a common
starting point.
7While our challenge-response mechanism certainly could impact
non-TCP transactions, we focus on TCP in this initial assessment
because we find that TCP carries 95% of the traffic volume that
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Figure 1: Response time distribution for cache misses

The DNS logs contain 8.8M DNS transactions. We exclude 750K
transactions that contain no resource records in the response and
50K transactions related to DNSSEC, which cannot benefit from our
scheme. The remaining 8M DNS transactions resolve 137K unique
hostnames. Our TCP logs contain summaries of 13.3M connections.
We exclude 4.4M connections that likely stem from scanning or
backscatter as they do not complete TCP’s three-way handshake
to establish a connection.8 We couple each TCP connection with
the most recent non-expired DNS response that includes the remote
IP address used in the TCP connection to the given local CCZ
host. Of the 8.9M valid TCP connections, we find 7.8M TCP
connections leverage 3.7M DNS lookups, which is similar to our
previous findings in this environment [27].

Since our vantage point is between the homes and the RDNS, we
do not observe the iterative resolution process the RDNS performs
for each query. Therefore, to understand the delays in performing
each component of the lookup process we conducted an active
measurement study whereby we iteratively looked up each hostname
found in our logs via dig from a host within the CCZ—i.e., the same
vantage point where we collect passive data—from October 10–12,
2016. These measurements yield: (i) the iterative steps involved in
looking up each hostname, (ii) the time required to perform each
step of the lookup process, (iii) the size of all responses and (iv)
the TTL of all involved resource records.

We then simulate the RDNS behavior, including all iterative steps
involved in each lookup, based on the workload observed from the
actual CCZ clients. Our trace-driven simulation technique is similar
to that used in our previous work [27]. To bound the estimated
impact of our mechanism, we simulate a best and worst case, as
follows. The best case is when a single RDNS handles all lookups
(i.e., there is no RDNS pool). In this case, our challenge-response
scheme turns each request to an ADNS server into two requests:
one for the desired resource record and one to respond to the ADNS’
challenge. The worst case involves simulating an RDNS that is
implemented as an infinite pool of resolvers such that challenges are
never answered from any of the previously observed RDNS servers
and the chain is ultimately terminated via nullification. In both cases
we simulate an RDNS cache with entries expiring after the TTL
obtained in our active measurements. In the simulation of the worst
case, we assume the pool uses a shared DNS cache—a la Google’s
public DNS platform [2] (although there is evidence that Google’s
cache is not global). In both the best and worst cases, the simulated
resolution time for each iterative step is the number of required
rounds of challenge-responses required for nullification multiplied
by the resolution time obtained during our active measurements.

Figure 1 shows the duration of DNS resolutions with a baseline
that does not include challenge-response, as well as our challenge-
response scheme, under the best- and worst-case scenarios we sketch

leverages DNS responses.
8The connection failure rate agrees with previous work (e.g., [9]).
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Figure 2: Distribution of delay imposed on TCP connections

above. We include resolutions that are both (i) subsequently used
by a TCP connection (3.7M) and (ii) not fully resolvable from
the RDNS’ cache (i.e., with a cache miss for at least one iterative
step). With the hit rate of 54% we observe in our simulation, this
encompasses 1.7M DNS transactions. Both challenge-response
simulations show longer lookup times than the base case—which
we clearly expected because the challenges add extra transactions
to complete a lookup. The best case shows an increase of roughly
31 msec at the median point (a 2x increase over current DNS). The
worst case adds 57 msec to current DNS at the median point.

We next aim to understand how meaningful this increase is to
TCP connections that ultimately use DNS results. In this initial
work we focus on individual TCP connections. In cases where TCP
connections are dependent on one another—which is non-trivial
to determine—any added delays imposed by challenge-response
may accumulate across connections. Given our results we believe
this effect is likely low; however, addressing this case will be the
subject of future work. We calculate the delay imposed on each TCP
connection as: D = DNSstart+DNSlookup−TCPstart, where
DNSstart is the time the client started the DNS lookup found in
our passive logs, DNSlookup is the simulated time required for the
DNS resolution and TCPstart is the time from our passive logs
when the client initiates the given TCP connection. When D is less
than zero, the simulated DNS transaction concludes before the TCP
connection begins, hence the TCP connection is not delayed. Our
simulations begin with an empty cache, leading to overestimating
the delay and therefore a conservative impact assessment.

Figure 2 shows the distribution of D—the amount each TCP
connection is delayed in our simulations. We show a CCDF with
reversed x-axis: for a given delay value on x-axis, the y-axis shows
the fraction of connections with higher delay. We truncated the plot
such that TCP connections that are not delayed by our scheme are
not included. The plot shows that in the worst case 79% of the TCP
connections are not delayed by our scheme and only 10% of the
connections are delayed by more than 65 msec. The best case is
strictly better with just over 4% of the connections being delayed
by more than 65 msec. Our results illustrate that clients often make
DNS requests well in advance of actually using the DNS results
to establish TCP connections. This prefetching behavior has been
noted in previous work (e.g., [11]). We conclude that the increased
DNS lookup time we introduce in our scheme is modest in terms of
its overall impact on end-user communication and therefore does not
present a hindrance to deployment. However, there are cases where
the challenge-response mechanism impedes subsequent transactions.
Hence, in the next section we introduce extensions to our basic
scheme to safely reduce the DNS lookup costs.

5. COPING WITH RDNS POOLS
As we discuss in § 3, our experiments show that 24% of open

resolvers leverage RDNS pools. To understand the length of the
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Chain Basic Explicit RDNS Implicit RDNS

length scheme (%) pool tracking (%) pool tracking (%)

1 76.2 99.7 92.7
2 81.0 99.9 98.9
3 84.1 99.9 ∼100
4 86.4 ∼100
5 88.2
6 90.4
7 91.5

8+ 100

Table 1: Cumulative distribution of challenge chain lengths

challenge chains these pools cause, we extend the probing of open
DNS resolvers we sketch in § 3. In particular, we implemented
our challenge-response mechanism in the MaraDNS server [3].
Then, from several PlanetLab nodes we scan the entire Internet
with lookups for names within our own zone—which is served by
our challenge-response-enabled ADNS. Our implementation uses a
single DNS label for the challenge and given our encoding scheme,
this is creates a limit on the chain length of seven challenges—which
is less than DNS’ query string would ideally support (see § 4). If
our ADNS has not received a challenge response from a previously
seen IP address after seven challenges, we return the requested DNS
resource record.9 Our goal is to assess the possible size of challenge
chains and therefore we did not use nullification in this experiment.

The first two columns in Table 1 show the cumulative distribution
of the challenge chain lengths we find in our Internet scan. We find
that 76% of the queries require a single challenge as the response to
the challenge arrives from the same RDNS as the original request.
On the other hand, 24% of the queries involve 5.3K RDNS pools
(we describe the method of determining pools in § 5.1). We find
that nearly 8.5% of the queries require more than seven challenges—
indicating these queries come from large RDNS pools. Further,
roughly 98% of these long chains come from Google RDNSes.
Google is known to have a complex DNS infrastructure [2] and
therefore this finding is unsurprising. While Google is responsible
for the longest challenge chains, we find only 14% of the 5.3K
RDNS pools to involve only Google resolvers. We find over 900 or-
ganizations are leveraging RDNS pools in some fashion.

An obvious way ADNSes can cope with RDNS pools is to set
policy limits on the challenge-response process to trade protection
for imposing lower delays on users’ DNS lookups. Examples of
such policies might include: (i) limiting the time the process can last,
(ii) opting to reduce possible amplification rather than eliminating
it via a lower threshold for nullification (e.g., the resolver may pay
for only two-thirds of the response bytes with requests bytes) or
(iii) imposing limits based on previous behavior or knowledge (e.g.,
requiring a successful challenge chain to be completed only once per
resolver per time period). These policy knobs give ADNS operators
latitude to shape the tradeoff between user experience and being
co-opted into an attack. The rest of this section sketches ways to
reduce challenge-response delays without weakening protection.

5.1 Developing Understanding of RDNS Pools
Our first extension calls for relaxing the requirement that our

scheme be completely stateless for the ADNSes. Rather, we in-
vestigate the efficacy of allowing each ADNS to use the challenge
chains to develop an understanding of RDNS pools. This knowledge
is then used when future requests arrive to determine whether the
challenge response is valid. For instance, the arrival of a challenge
response encoding a challenge chain with two resolvers—R1 and
R2—indicates a legitimate RDNS pool that includes both resolvers.
Indeed, this query signifies that both R1 and R2 have acted as ex-

9Seven challenges is enough to nullify over 97% of the responses
that arrived at ICSI’s DNS resolvers on September 26, 2016.

pected upon receiving their respective challenges, and therefore
neither R1 nor R2 has been spoofed. Consider the case when the
ADNS subsequently receives a request from R1 and so issues a
challenge to R1. If the response to the challenge comes from R2,
the ADNS can accept the challenge immediately without continuing
the chain because the ADNS has previously established that R2

is in the same RDNS pool as R1.10 As the ADNS interacts with
RDNS infrastructure, the ADNS will build an increasingly accurate
understanding of RDNS pools and therefore will be able to reduce
the challenge chain length for normal DNS lookups. When a chal-
lenge response arrives and carries a proper HMAC, all IP addresses
encoded in the query have been verified to belong to the same RDNS
pool, and we refer to the enclosed chain as a validated chain.

A first challenge is how to group resolvers into RDNS pools. We
have explored several variants of the process but all perform simi-
larly (and well, per results below). Therefore, we focus on a simple
algorithm that groups RDNSes from validated chains with a com-
mon first resolver into an RDNS pool. E.g., consider encountering
the following sets of RDNSes in three validated challenge chains:
(Ra,Rb), (Ra,Rc) and (Rb,Rd). The ADNS would conclude there
are two RDNS pools: (i) (Ra,Rb,Rc) based on the first two chains
that both begin with Ra, and (ii) (Rb,Rd) based on the third chain
that starts with Rb. Since both pools share Rb it would seem natural
to consider all four resolvers to be within the same pool. We instead
use a strategy that keys on the first resolver in the chain because this
makes finding the pool candidate for a given chain efficient.11

To assess the benefits of this enhancement, we run a trace-driven
simulation using the logs of challenge chains from our Internet scan
collected at our ADNS. Initially, the ADNS has no understanding
of RDNS pools and therefore challenges the requesters using our
basic mechanism from § 4. As these challenge chains proceed, we
update our understanding of the RDNS pools based on the validated
challenge responses. This RDNS pool understanding is then used to
shorten future challenge chains. We randomly shuffle the queries
from our original scan to factor out the specific order of the queries
in our results. The simulation run we report is consistent with four
additional runs we conducted.

The cumulative distribution of the resulting challenge lengths
is shown in the third column of Table 1. Virtually all (99.7%) of
the queries require only a single challenge when leveraging the
previously developed understanding of RDNS pools. This leaves
0.3% of the queries requiring more than one challenge, in contrast
to the basic scheme (§ 4) where 24% of the queries need more
than one challenge. We thus conclude that an ADNS that retains
the understanding of RDNS pools observed through the challenge-
response process can significantly reduce the fraction of queries that
experience more than one challenge and the attendant delay.

The reduction in challenge chain length is gained at the cost of
developing and retaining state about RDNS pools. We now use a
back-of-the-envelope calculation to understand the rough magnitude
of the state requirement. First, an analysis of requests to the author-
itative servers for the com and net TLDs shows that 90% of the
requests come from 40K resolvers [25]. We make a pessimistic as-
sumption that each of these 40K resolvers represents an RDNS pool.

10Similar to the DNS cookies and all prior challenge-response ap-
proaches, we assume an off-path attacker that is unable to sniff
ADNS responses to the victim.

11Since we do not have a realistic traffic pattern we are unable to
soundly explore expiring information about RDNS pools. Therefore,
our results are the best case in that in a realistic setting information
would be expunged periodically. We implemented a crude expiration
threshold of 1–72 hours and find our results are affected by only a
few percent. Therefore, we do not believe the simulation results we
show are dramatically better than could be achieved in reality.
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Further, [8] shows that 85% of RDNS pools contain at most ten
resolvers and that the largest pool contains 317 resolvers. Therefore,
assume that 85% of the 40K pools will require 26 bytes of state: IP
address, timestamp, and a Bloom filter large enough to track ten IP
addresses. The remaining 15% of the pools will consume 346 bytes
of state to hold the same state as the small pools plus an additional
Bloom filter that can hold up to 320 IP addresses. Therefore, the
approximate amount of state a busy ADNS would use to store an
understanding of RDNS pools in less than 3 MB—which is not an
onerous requirement in modern servers.

5.2 Implicit Understanding of RDNS Pools
An alternative to explicitly retaining an understanding of RDNS

pools is to implicitly assume that if two RDNS servers fall within
the same address block they are likely working together. As an
example, we assume that if two RDNS servers are located within
the same /24 they are working together and therefore receiving a
challenge response from any IP address within any of the /24 blocks
that we challenged in the preceding rounds is acceptable. In the last
column of Table 1, our scan data shows that making this assumption
increases the instances where we need only a single challenge from
76% (the base case) to almost 93%. Further, 98.9% of the cases are
handled after two challenges when using implicit RDNS pools.

The downside of treating all hosts within an IP address block as
equivalents is that one host within the block can easily attack another
host within the block. The larger the block the more problematic
this issue becomes because there are simply more hosts to attack and
likely a more complicated topology within the block. For instance,
treating all RDNS servers within the same AS as equivalents would
make the potential for problems much larger than using /24 blocks.

We argue that at the level of /24 blocks our policy is relatively
safe. First, arbitrary attacks are not possible since an attacker needs
control of a host within the victim’s /24. Second, if an attacker
controls a host within a /24 then there are at most 255 victims
that can be attacked. Third, since a /24 is the smallest block that
can reliably be routed in the Internet we know that hosts within
a /24 are likely to be geographically and topologically close and
hence likely share fate.12 That is, if an attacker controls 1.1.1.1
and attacks 1.1.1.2 then the attack is likely to impact the Internet
connectivity of the attacker as well as the victim. Further, this sort
of shared-fate attack is possible regardless of whether we leverage
implicit RDNS pools. Indeed, since 1.1.1.1 and 1.1.1.2 share fate, an
attacker that controls 1.1.1.1 will be able to impact 1.1.1.2 without
spoofing the host but by simply saturating its own Internet link.
Thus, using implicit RDNS pools does not increase vulnerability in
this respect. Therefore, we conclude that treating all hosts within a
/24 as equivalents offers tangible benefit and little cost. We briefly
investigate shorter prefixes but find roughly the same benefits (within
1% of /24) until we get to /16 blocks. The /16 prefixes handle roughly
99% of the cases with a single challenge ( 6% more than the /24
case), bringing implicit pools roughly on par with explicit pool
tracking—but, broadens the attack surface to 64K hosts.

5.3 Probabilistic Responses
As with the other extensions in this section, our goal is to safely

reduce the challenge chain length in the face of RDNS pools. Our
next extension randomly ends the challenge chain by returning the
ultimate answer before either meeting the nullification threshold

12A natural extension is for an ADNS to leverage routing table
information to more precisely determine address blocks. While this
allows for more resolvers to be treated as equivalents, it also requires
the ADNS to keep additional state. Ultimately, the granularity each
ADNS uses is a policy decision.

n Nullification (%) Probabilistic Responses (%)

1 44.5 72.3
2 72.8 92.2
3 92.0 97.8
4 96.6 98.9
5 97.8 99.2
6 98.5 99.4
7 ∼100 ∼100

Table 2: Cumulative distribution of challenge chains with proba-
bilistic responses

or receiving an acceptable challenge response. Once an attacker
knows that an ADNS is returning the ultimate answer randomly, a
game of sorts ensues whereby at some point the attacker spoofs a
challenge response such that the ADNS will send the next response—
either the ultimate answer or another challenge—to the victim. The
attacker wins the game when the ADNS randomly chooses to return
the ultimate (large) response at the same point the attacker chooses
to spoof the source address. In this case, since the nullification
threshold has not been met, the attacker has sent fewer bytes to the
ADNS than the ADNS sends to the victim. On the other hand, the
attacker loses the game when the ADNS randomly chooses to return
a (small) challenge at the same point the attacker chooses to spoof
the source address. In this case, the attacker has sent the ADNS
more traffic across multiple requests and challenge-responses than
the ADNS sends to the victim in the form of a single challenge.
In both cases the challenge chain ends because the victim will not
respond. Our approach is to set the probability of returning the
ultimate answer such that the attacker’s wins are offset by losses
and therefore there is no amplification benefit over the large number
of transactions required to mount a DoS attack.

Consider the case when an attacker is simulating an RDNS pool
that uses distinct IP addresses to respond to challenges from an
ADNS. Let n be the number of challenges sent by the ADNS and
answered by the attacker in a given challenge chain. Also, let Sq and
Sa be the size of the original DNS query and the ultimate answer,
respectively. Including the original query, the attacker has sent a
total of T = Sq · (n+ 1) bytes.13 At this point, assume the attacker
has decided to spoof a challenge response such that the ADNS will
send the subsequent response to the victim of the attack. The ADNS
will send the ultimate answer (Sa bytes) with probability P and
another challenge (Sq bytes) with probability 1 − P . To balance
wins and losses, we must choose a P that satisfies equation 1, which
we subsequently re-arrange (after substituting T with its expression
above) as a calculation of P in equation 2.

T = P · Sa + (1− P ) · Sq (1)

P =
Sq · n

Sa − Sq

(2)

Note that the ADNS always sends at least one challenge as P = 0
when no challenges have been completed (i.e., when n = 0).

To evaluate the probabilistic approach we use trace-driven simula-
tion that leverages all DNS queries from ICSI’s recursive resolvers
to remote ADNSes on September 26, 2016. Our simulations make
the worst case assumption that ICSI uses infinite RDNS pools that
never query from the same IP address twice. Table 2 shows the
cumulative percentage of queries that complete after a given chal-
lenge chain length, for both basic nullification (column 2) and our
probabilistic approach (column 3). The table shows that the prob-

13In our implementation, the size of the challenges are larger than
the original DNS request as they slowly grow with the length of the
challenge chain. We performed an analysis taking this in account and
the results are very close to those using the simplifying assumption
that all requests are of size Sq bytes.
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abilistic approach significantly increases the fraction of queries
that complete after only short challenge chains. The probabilistic
scheme increases the percentage of queries that require only a single
challenge by nearly 28% (from 44.5% to 72.3%) and at most two
challenges by over 19% (from 72.8% to 92.2%). While the prob-
abilistic approach provides further benefits on longer chains, the
benefits become smaller as most queries are terminated via nullifica-
tion before reaching these chain lengths. E.g., 92% of the queries
are answered after at most three challenges via nullification, leaving
relatively few queries to optimize as the chain length grows.

5.4 Request Padding
The extensions we discuss above are designed to allow an ADNS

to safely and unilaterally shorten challenge chains. In this section
we take a different approach and also involve the resolvers in the
process. In particular, we note that by padding requests a resolver
can reduce the time required to nullify a response. As an illustrative
example, consider an idealized resolver that (somehow) knows a
request of 30 bytes to a given ADNS will yield a 100 byte response.
By including 70 bytes of padding in the request (e.g., using the
EDNS(0) Padding Option [24]), the resolver will meet the nulli-
fication threshold without any challenges—and hence negate the
delay imposed by challenge-response on the resolver’s users.14 Of
course, the size of a response is generally unknown to the resolver
and therefore we offer two padding variants to cope:
Explicit Padding: Using this variant, the ADNS returns the size of
the ultimate response—in an OPT record—in the first challenge. A
resolver answering from a different IP address than sent the original
request can meet the nullification test in the first challenge response
by padding the request accordingly. This scheme therefore bounds
to penalty imposed by the challenge-response to one RTT.
Implicit Padding: The second variant calls for resolvers to pad
requests without concrete knowledge of the size of the ultimate
response. This removes the need for explicit coordination between
resolvers and ADNSes, but also makes the benefit more nebulous
since we can no longer bound the length of the challenge chains as
we can with the explicit approach. Still, the resolvers do not have to
operate completely blind. One approach is for resolvers to simply
pad requests to the size of the current MTU to “pay for” as large
responses as possible. Alternatively, resolvers can use the history in
their logs to gain a rough understanding of how much padding to use.
For instance, analyzing one day of DNS transactions between ICSI’s
resolvers and the queried ADNSes shows that padding requests by
70 bytes would immediately nullify 50% of the responses. Each
resolver could adopt a padding policy that strikes a balance between
the amount of padding and the fraction of transactions the resolver
wishes to nullify without being challenged.

A final note is that the resolvers (and hence their users) incurring
the most penalty from the basic challenge-response mechanism are
those within complex resolver pools. We expect that since these
resolvers already have highly customized behavior they will be in a
better position to implement padding than singular local resolvers.

6. CONCLUSION
DNS has been widely exploited in DDoS attacks largely because

(i) the connectionless nature allows attackers to readily spoof the
query source and (ii) the disparity between request and response
sizes offers attackers a way to amplify their attacks. We offer a
practical challenge-response mechanism that ADNSes can use to

14Unlike DNS cookies [14], which require resolvers’ participation
to mitigate amplification attacks, request padding is an optional
optimization that does not affect the defense efficacy of our scheme.

establish the identity of requesters and nearly ensure the ADNS is
not coaxed into being an instrument in DNS amplification attacks.
To our knowledge, our mechanism is the first such defense measure
that (i) requires no changes to the DNS protocol or resolvers and
clients and (ii) is capable of working in the face of RDNS pools—
a common way to organize DNS resolver infrastructure. Further,
we show that the basic cost of our scheme—increasing delay for
legitimate lookups—can be managed and is ultimately small in most
cases. We therefore conclude that our mechanism adds a valuable
and practical tool to ADNS operators’ arsenal.
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Appendix: Aggressive Probabilistic Responses

As we show in § 5.3, an ADNS can randomly shorten challenge
chains to benefit legitimate clients while providing no aggregate ben-
efit to an attacker. We do this via carefully setting the probability of
shortening the challenge chain. We now consider an extension to the
scheme in § 5.3 that makes the probability setting more aggressive,
while still ensuring an attacker garners no advantage across the large
number of transactions required for a DoS attack. We describe this
extension here because we find it to be too complex for the resulting
benefits in the general case. E.g., the aggressive scheme we describe
here increases the fraction of queries that complete with up to two
rounds of challenge-responses by 3.5% (from 92.2 to 95.7%), and
provides a less than 1% boost for queries requiring more rounds.
However, as we will show, the more aggressive scheme provides
larger benefits for large records and in the face of large RDNS pools.

The basic formulation in § 5.3 considers a game whereby an at-
tacker wins by coaxing an ADNS to send a large record to a victim
before nullification and loses when the ADNS sends a small chal-
lenge to a victim. In setting the probability of returning the ultimate
(large) answer we carefully consider the traffic within a challenge
chain such that an attacker’s wins are offset by losses. However, we
now take into account another way the attacker loses the game. Con-
sider the case when n challenges have been answered by the attacker
using addresses the attacker controls—i.e., no spoofing a victim to
this point—and the ADNS randomly decides to return the ultimate
answer. This terminates the challenge chain, representing a loss for
the attacker in that the attacker sent n+ 1 queries to the ADNS and
yet the ADNS sent no traffic to a victim. Our observation is that this
challenge chain ends, but we can use the traffic volume the attacker
expended in its futile effort to offset more frequent transmission
of the actual DNS answers. Essentially, we can increase the traffic
bank T and as a result P will also increase.

To get an intuition for the aggressive scheme, consider a DoS
attack whereby an attacker controls a large number of hosts and
never uses the same IP address twice within a given challenge chain.
Initially the attacker sends Q0 queries to an ADNS. These trigger
Q0 challenges from the ADNS. When the Q0 challenge responses
arrive we can leverage the basic probabilistic strategy to calculate
P1 via equation 2. The ADNS then returns the ultimate answer
in response to P1 · Q0 of the challenge responses—which also
terminates the challenge chains. This leaves Q1 = (1− P1) ·Q0

chains to further challenge. The ADNS will next receive challenge
responses indicating two rounds of challenge response have been
completed (i.e., n = 2). We expect Q1 of these challenge responses
to arrive at the ADNS. On average, for each round 2 query, there
must have been one round 1 query to which we responded with a
challenge, but these only represent a 1− P1 fraction of all round 1
queries. The remainder of the round 1 queries were given the
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Figure 3: Improvement in cumulative probability of aggressive
scheme compared over basic scheme

ultimate answer and hence did not issue queries i in round 2. Thus,
there must have been on average 1/(1− P1) total round 1 queries,

costing the attacker 2Sq

1−P1
bytes. Therefore, for each round 2 query

we can bank Sq +
2Sq

1−P1
bytes, which is greater than the 3Sq bytes

the basic scheme uses. Further, we use equation 1 to compute the
probability P2 of answering the current challenge responses with
the ultimate DNS answer.

More generally, if we receive a challenge response that encodes a
chain of n challenges, we can assume that on average, there must
have been 1/1−Pn−1 queries in round n−1, 1/{(1−Pn−2)(1−
Pn−1)} queries in round n − 2, and so on. This gives rise to
the following iterative computation of probability of returning the
ultimate answer, Pn:

Pn =



















Sq

Sa−Sq
if n = 1

Sq

Sa−Sq

[

2
(1−P1)·(1−P2)·...·(1−Pn−1)

+
n−1
∑

i=2

1
(1−Pi)·...·(1−Pi+1)

]

if n ≥ 2

(3)

While not of significant benefit in general, our aggressive ap-
proach provides relatively more help when dealing with large records
and large RDNS pools compared to the basic variant. As an example,
we use the DNS transaction with the biggest amplification factor
from DNS transactions initiated by ICSI’s RDNS servers on Septem-
ber 26, 2016. In this case, Sq = 33 bytes and Sa = 3587 bytes,
hence nullification happens at n = 109. Assuming an infinite
RDNS pool without resolver reuse, the cumulative probability of
returning the actual answer reaches 100% by n = 16 for the ag-
gressive scheme and n = 33 for the basic scheme. Figure 3 shows
the increase in the cumulative probability of returning an answer
within a given number of rounds n of the aggressive scheme over
the basic scheme. The figure shows the two schemes perform simi-
larly (within 1%) until n = 6. At this point the aggressive scheme
shows growing improvement and reaches the greatest improvement
at n = 15 rounds, when the aggressive scheme completes 27% more
chains than the basic scheme. The aggressive scheme out paces the
basic scheme by at least 10% for n = [11, 21].

Our conclusion is that while the aggressive scheme can shorten
the resolution process for some legitimate lookups, there are several
caveats: (i) the probability calculation is more complex (as we move
from a simple closed-form equation to an iterative calculation); (ii)
the aggressive scheme only provides significant benefit for lookups
of large records (the benefit of the aggressive scheme is at most
3.5% over all lookups in our ICSI log); and (iii) the benefits of the
aggressive scheme only manifest when large RDNS pools are in
use (the benefit is < 1% for challenge chains that end within six
rounds). Therefore we conclude that at present the complexity is
likely only worthwhile in specialized situations.
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