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Abstract

Human language is often multimodal, which

comprehends a mixture of natural language,

facial gestures, and acoustic behaviors. How-

ever, two major challenges in modeling such

multimodal human language time-series data

exist: 1) inherent data non-alignment due

to variable sampling rates for the sequences

from each modality; and 2) long-range depen-

dencies between elements across modalities.

In this paper, we introduce the Multimodal

Transformer (MulT) to generically address the

above issues in an end-to-end manner with-

out explicitly aligning the data. At the heart

of our model is the directional pairwise cross-

modal attention, which attends to interactions

between multimodal sequences across distinct

time steps and latently adapt streams from one

modality to another. Comprehensive experi-

ments on both aligned and non-aligned multi-

modal time-series show that our model outper-

forms state-of-the-art methods by a large mar-

gin. In addition, empirical analysis suggests

that correlated crossmodal signals are able to

be captured by the proposed crossmodal atten-

tion mechanism in MulT.

1 Introduction

Human language possesses not only spoken words

but also nonverbal behaviors from vision (facial

attributes) and acoustic (tone of voice) modali-

ties (Gibson et al., 1994). This rich information

provides us the benefit of understanding human

behaviors and intents (Manning et al., 2014). Nev-

ertheless, the heterogeneities across modalities of-

ten increase the difficulty of analyzing human lan-

guage. For example, the receptors for audio and

vision streams may vary with variable receiving

frequency, and hence we may not obtain optimal

mapping between them. A frowning face may re-

late to a pessimistically word spoken in the past.

That is to say, multimodal language sequences

Figure 1: Example video clip from movie reviews. [Top]:
Illustration of word-level alignment where video and audio
features are averaged across the time interval of each spoken
word. [Bottom] Illustration of crossmodal attention weights
between text (“spectacle”) and vision/audio.

often exhibit “unaligned” nature and require in-

ferring long term dependencies across modalities,

which raises a question on performing efficient

multimodal fusion.

To address the above issues, in this paper we

propose the Multimodal Transformer (MulT), an

end-to-end model that extends the standard Trans-

former network (Vaswani et al., 2017) to learn rep-

resentations directly from unaligned multimodal

streams. At the heart of our model is the cross-

modal attention module, which attends to the

crossmodal interactions at the scale of the entire

utterances. This module latently adapts streams

from one modality to another (e.g., vision →
language) by repeated reinforcing one modality’s

features with those from the other modalities, re-

gardless of the need for alignment. In compari-

son, one common way of tackling unaligned mul-

timodal sequence is by forced word-aligning be-

fore training (Poria et al., 2017; Zadeh et al.,



2018a,b; Tsai et al., 2019; Pham et al., 2019;

Gu et al., 2018): manually preprocess the vi-

sual and acoustic features by aligning them to

the resolution of words. These approaches would

then model the multimodal interactions on the (al-

ready) aligned time steps and thus do not directly

consider long-range crossmodal contingencies of

the original features. We note that such word-

alignment not only requires feature engineering

that involves domain knowledge; but in practice,

it may also not always be feasible, as it entails

extra meta-information about the datasets (e.g.,

the exact time ranges of words or speech utter-

ances). We illustrate the difference between the

word-alignment and the crossmodal attention in-

ferred by our model in Figure 1.

For evaluation, we perform a comprehensive set

of experiments on three human multimodal lan-

guage benchmarks: CMU-MOSI (Zadeh et al.,

2016), CMU-MOSEI (Zadeh et al., 2018b), and

IEMOCAP (Busso et al., 2008). Our experi-

ments show that MulT achieves the state-of-the-

art (SOTA) results in not only the commonly eval-

uated word-aligned setting but also the more chal-

lenging unaligned scenario, outperforming prior

approaches by a margin of 5%-15% on most of the

metrics. In addition, empirical qualitative analysis

further suggests that the crossmodal attention used

by MulT is capable of capturing correlated signals

across asynchronous modalities.

2 Related Works

Human Multimodal Language Analysis. Prior

work for analyzing human multimodal language

lies in the domain of inferring representations

from multimodal sequences spanning language,

vision, and acoustic modalities. Unlike learning

multimodal representations from static domains

such as image and textual attributes (Ngiam et al.,

2011; Srivastava and Salakhutdinov, 2012), hu-

man language contains time-series and thus re-

quires fusing time-varying signals (Liang et al.,

2018; Tsai et al., 2019). Earlier work used

early fusion approach to concatenate input fea-

tures from different modalities (Lazaridou et al.,

2015; Ngiam et al., 2011) and showed improved

performance as compared to learning from a sin-

gle modality. More recently, more advanced mod-

els were proposed to learn representations of hu-

man multimodal language. For example, Gu et al.

(2018) used hierarchical attention strategies to

learn multimodal representations, Wang et al.

(2019) adjusted the word representations using ac-

companying non-verbal behaviors, Pham et al.

(2019) learned robust multimodal representations

using a cyclic translation objective, and Dumpala

et al. (2019) explored cross-modal autoencoders

for audio-visual alignment. These previous ap-

proaches relied on the assumption that multimodal

language sequences are already aligned in the res-

olution of words and considered only short-term

multimodal interactions. In contrast, our proposed

method requires no alignment assumption and de-

fines crossmodal interactions at the scale of the en-

tire sequences.

Transformer Network. Transformer net-

work (Vaswani et al., 2017) was first introduced

for neural machine translation (NMT) tasks,

where the encoder and decoder side each lever-

ages a self-attention (Parikh et al., 2016; Lin

et al., 2017; Vaswani et al., 2017) transformer.

After each layer of the self-attention, the encoder

and decoder are connected by an additional

decoder sublayer where the decoder attends to

each element of the source text for each element

of the target text. We refer the reader to (Vaswani

et al., 2017) for a more detailed explanation of

the model. In addition to NMT, transformer

networks have also been successfully applied to

other tasks, including language modeling (Dai

et al., 2018; Baevski and Auli, 2019), semantic

role labeling (Strubell et al., 2018), word sense

disambiguation (Tang et al., 2018), learning

sentence representations (Devlin et al., 2018), and

video activity recognition (Wang et al., 2018).

This paper absorbs a strong inspiration from

the NMT transformer to extend to a multimodal

setting. Whereas the NMT transformer focuses

on unidirectional translation from source to tar-

get texts, human multimodal language time-series

are neither as well-represented nor discrete as

word embeddings, with sequences of each modal-

ity having vastly different frequencies. Therefore,

we propose not to explicitly translate from one

modality to the others (which could be extremely

challenging), but to latently adapt elements across

modalities via the attention. Our model (MulT)

therefore has no encoder-decoder structure, but it

is built up from multiple stacks of pairwise and

bidirectional crossmodal attention blocks that di-

rectly attend to low-level features (while remov-

ing the self-attention). Empirically, we show that
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Figure 2: Overall architecture for MulT on modalities
(L, V,A). The crossmodal transformers, which suggests
latent crossmodal adaptations, are the core components of
MulT for multimodal fusion.

our proposed approach improves beyond standard

transformer on various human multimodal lan-

guage tasks.

3 Proposed Method

In this section, we describe our proposed Multi-

modal Transformer (MulT) (Figure 2) for mod-

eling unaligned multimodal language sequences.

At the high level, MulT merges multimodal time-

series via a feed-forward fusion process from mul-

tiple directional pairwise crossmodal transform-

ers. Specifically, each crossmodal transformer

(introduced in Section 3.2) serves to repeatedly

reinforce a target modality with the low-level

features from another source modality by learn-

ing the attention across the two modalities’ fea-

tures. A MulT architecture hence models all pairs

of modalities with such crossmodal transformers,

followed by sequence models (e.g., self-attention

transformer) that predicts using the fused features.

The core of our proposed model is crossmodal

attention module, which we first introduce in Sec-

tion 3.1. Then, in Section 3.2 and 3.3, we present

in details the various ingredients of the MulT ar-

chitecture (see Figure 2) and discuss the difference

between crossmodal attention and classical multi-

modal alignment.

3.1 Crossmodal Attention

We consider two modalities α and β, with two

(potentially non-aligned) sequences from each of

them denoted Xα ∈ R
Tα×dα and Xβ ∈ R

Tβ×dβ ,

respectively. For the rest of the paper, T(·) and d(·)
are used to represent sequence length and feature

dimension, respectively. Inspired by the decoder

transformer in NMT (Vaswani et al., 2017) that

translates one language to another, we hypothesize

a good way to fuse crossmodal information is pro-

viding a latent adaptation across modalities; i.e., β
to α. Note that the modalities consider in our pa-

per may span very different domains such as facial

attributes and spoken words.

We define the Querys as Qα = XαWQα , Keys

as Kβ = XβWKβ
, and Values as Vβ = XβWVβ

,

where WQα ∈ R
dα×dk ,WKβ

∈ R
dβ×dk and

WVβ
∈ R

dβ×dv are weights. The latent adapta-

tion from β to α is presented as the crossmodal

attention Yα := CMβ→α(Xα, XB) ∈ R
Tα×dv :

Yα = CMβ→α(Xα, Xβ)

= softmax

(
QαK

�
β√

dk

)
Vβ

= softmax

(
XαWQαW

�
Kβ

X�
β√

dk

)
XβWVβ

.

(1)

Note that Yα has the same length as Qα (i.e.,

Tα), but is meanwhile represented in the feature

space of Vβ . Specifically, the scaled (by
√
dk)

softmax in Equation (1) computes a score matrix

softmax (·) ∈ R
Tα×Tβ , whose (i, j)-th entry mea-

sures the attention given by the i-th time step of

modality α to the j-th time step of modality β.

Hence, the i-th time step of Yα is a weighted sum-

mary of Vβ , with the weight determined by i-th
row in softmax(·). We call Equation (1) a single-
head crossmodal attention, which is illustrated in

Figure 3(a).

Following prior works on transform-

ers (Vaswani et al., 2017; Chen et al., 2018;

Devlin et al., 2018; Dai et al., 2018), we add

a residual connection to the crossmodal atten-

tion computation. Then, another positionwise

feed-forward sublayer is injected to complete

a crossmodal attention block (see Figure 3(b)).

Each crossmodal attention block adapts directly

from the low-level feature sequence (i.e., Z
[0]
β in

Figure 3(b)) and does not rely on self-attention,

which makes it different from the NMT encoder-

decoder architecture (Vaswani et al., 2017; Shaw

et al., 2018) (i.e., taking intermediate-level

features). We argue that performing adaptation

from low-level feature benefits our model to

preserve the low-level information for each

modality. We leave the empirical study for

adapting from intermediate-level features (i.e.,

Z
[i−1]
β ) in Ablation Study in Section 4.3.
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Figure 3: Architectural elements of a crossmodal transformer between two time-series from modality α and β.

3.2 Overall Architecture
Three major modalities are typically involved in

multimodal language sequences: language (L),

video (V ), and audio (A) modalities. We de-

note with X{L,V,A} ∈ R
T{L,V,A}×d{L,V,A} the in-

put feature sequences (and the dimensions thereof)

from these 3 modalities. With these notations, in

this subsection, we describe in greater details the

components of Multimodal Transformer and how

crossmodal attention modules are applied.

Temporal Convolutions. To ensure that each el-

ement of the input sequences has sufficient aware-

ness of its neighborhood elements, we pass the

input sequences through a 1D temporal convolu-

tional layer:

X̂{L,V,A} = Conv1D(X{L,V,A}, k{L,V,A}) ∈ R
T{L,V,A}×d

(2)

where k{L,V,A} are the sizes of the convolutional

kernels for modalities {L, V,A}, and d is a com-

mon dimension. The convolved sequences are

expected to contain the local structure of the se-

quence, which is important since the sequences

are collected at different sampling rates. More-

over, since the temporal convolutions project the

features of different modalities to the same di-

mension d, the dot-products are admittable in the

crossmodal attention module.

Positional Embedding. To enable the se-

quences to carry temporal information, follow-

ing (Vaswani et al., 2017), we augment positional

embedding (PE) to X̂{L,V,A}:

Z
[0]
{L,V,A} = X̂{L,V,A} + PE(T{L,V,A}, d) (3)

where PE(T{L,V,A}, d) ∈ R
T{L,V,A}×d computes

the (fixed) embeddings for each position index,

and Z
[0]
{L,V,A} are the resulting low-level position-

aware features for different modalities. We leave

more details of the positional embedding to Ap-

pendix A.

Crossmodal Transformers. Based on the cross-

modal attention blocks, we design the crossmodal

transformer that enables one modality for receiv-

ing information from another modality. In the fol-

lowing, we use the example for passing vision (V )

information to language (L), which is denoted by

“V → L”. We fix all the dimensions (d{α,β,k,v})

for each crossmodal attention block as d.

Each crossmodal transformer consists of D lay-

ers of crossmodal attention blocks (see Figure

3(b)). Formally, a crossmodal transformer com-

putes feed-forwardly for i = 1, . . . , D layers:

Z
[0]
V→L = Z

[0]
L

Ẑ
[i]
V→L = CM

[i],mul
V→L (LN(Z

[i−1]
V→L),LN(Z

[0]
V )) + LN(Z

[i−1]
V→L)

Z
[i]
V→L = f

θ
[i]
V →L

(LN(Ẑ
[i]
V→L)) + LN(Ẑ

[i]
V→L)

(4)

where fθ is a positionwise feed-forward sublayer

parametrized by θ, and CM
[i],mul
V→L means a multi-

head (see (Vaswani et al., 2017) for more details)

version of CMV→L at layer i (note: d should be

divisible by the number of heads). LN means layer

normalization (Ba et al., 2016).

In this process, each modality keeps updating its

sequence via low-level external information from

the multi-head crossmodal attention module. At

every level of the crossmodal attention block, the

low-level signals from source modality are trans-

formed to a different set of Key/Value pairs to in-

teract with the target modality. Empirically, we

find that the crossmodal transformer learns to cor-

relate meaningful elements across modalities (see
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Section 4 for details). The eventual MulT is based

on modeling every pair of crossmodal interactions.

Therefore, with 3 modalities (i.e., L, V,A) in con-

sideration, we have 6 crossmodal transformers in

total (see Figure 2).

Self-Attention Transformers and Prediction.
As a final step, we concatenate the outputs from

the crossmodal transformers that share the same

target modality to yield Z{L,V,A} ∈ R
T{L,V,A}×2d.

For example, ZL = [Z
[D]
V→L;Z

[D]
A→L]. Each of

them is then passed through a sequence model to

collect temporal information to make predictions.

We choose the self-attention transformer (Vaswani

et al., 2017). Eventually, the last elements of the

sequences models are extracted to pass through

fully-connected layers to make predictions.

3.3 Discussion about Attention & Alignment
When modeling unaligned multimodal language

sequences, MulT relies on crossmodal atten-

tion blocks to merge signals across modalities.

While the multimodal sequences were (manually)

aligned to the same length in prior works be-

fore training (Zadeh et al., 2018b; Liang et al.,

2018; Tsai et al., 2019; Pham et al., 2019; Wang

et al., 2019), we note that MulT looks at the non-

alignment issue through a completely different

lens. Specifically, for MulT, the correlations be-

tween elements of multiple modalities are purely

based on attention. In other words, MulT does not

handle modality non-alignment by (simply) align-

ing them; instead, the crossmodal attention en-

courages the model to directly attend to elements

in other modalities where strong signals or rele-

vant information is present. As a result, MulT can

capture long-range crossmodal contingencies in a

way that conventional alignment could not eas-

ily reveal. Classical crossmodal alignment, on the

other hand, can be expressed as a special (step di-

Table 1: Results for multimodal sentiment analysis on
CMU-MOSI with aligned and non-aligned multimodal se-
quences. h means higher is better and � means lower is better.
EF stands for early fusion, and LF stands for late fusion.

Metric Acch7 Acch2 F1h MAE� Corrh

(Word Aligned) CMU-MOSI Sentiment

EF-LSTM 33.7 75.3 75.2 1.023 0.608

LF-LSTM 35.3 76.8 76.7 1.015 0.625

RMFN (Liang et al., 2018) 38.3 78.4 78.0 0.922 0.681

MFM (Tsai et al., 2019) 36.2 78.1 78.1 0.951 0.662

RAVEN (Wang et al., 2019) 33.2 78.0 76.6 0.915 0.691
MCTN (Pham et al., 2019) 35.6 79.3 79.1 0.909 0.676

MulT (ours) 40.0 83.0 82.8 0.871 0.698

(Unaligned) CMU-MOSI Sentiment

CTC (Graves et al., 2006) + EF-LSTM 31.0 73.6 74.5 1.078 0.542

LF-LSTM 33.7 77.6 77.8 0.988 0.624

CTC + MCTN (Pham et al., 2019) 32.7 75.9 76.4 0.991 0.613

CTC + RAVEN (Wang et al., 2019) 31.7 72.7 73.1 1.076 0.544

MulT (ours) 39.1 81.1 81.0 0.889 0.686

Table 2: Results for multimodal sentiment analysis on (rel-
atively large scale) CMU-MOSEI with aligned and non-
aligned multimodal sequences.

Metric Acch7 Acch2 F1h MAE� Corrh

(Word Aligned) CMU-MOSEI Sentiment

EF-LSTM 47.4 78.2 77.9 0.642 0.616

LF-LSTM 48.8 80.6 80.6 0.619 0.659

Graph-MFN (Zadeh et al., 2018b) 45.0 76.9 77.0 0.71 0.54

RAVEN (Wang et al., 2019) 50.0 79.1 79.5 0.614 0.662

MCTN (Pham et al., 2019) 49.6 79.8 80.6 0.609 0.670

MulT (ours) 51.8 82.5 82.3 0.580 0.703

(Unaligned) CMU-MOSEI Sentiment

CTC (Graves et al., 2006) + EF-LSTM 46.3 76.1 75.9 0.680 0.585

LF-LSTM 48.8 77.5 78.2 0.624 0.656

CTC + RAVEN (Wang et al., 2019) 45.5 75.4 75.7 0.664 0.599

CTC + MCTN (Pham et al., 2019) 48.2 79.3 79.7 0.631 0.645

MulT (ours) 50.7 81.6 81.6 0.591 0.694

agonal) crossmodal attention matrix (i.e., mono-

tonic attention (Yu et al., 2016)). We illustrate

their differences in Figure 4.

4 Experiments

In this section, we empirically evaluate the Multi-

modal Transformer (MulT) on three datasets that

are frequently used to benchmark human multi-

modal affection recognition in prior works (Pham

et al., 2019; Tsai et al., 2019; Liang et al., 2018).

Our goal is to compare MulT with prior compet-

itive approaches on both word-aligned (by word,

which almost all prior works employ) and un-
aligned (which is more challenging, and which

MulT is generically designed for) multimodal lan-

guage sequences.

4.1 Datasets and Evaluation Metrics

Each task consists of a word-aligned (processed in

the same way as in prior works) and an unaligned
version. For both versions, the multimodal



Table 3: Results for multimodal emotions analysis on IEMOCAP with aligned and non-aligned multimodal sequences.

Task Happy Sad Angry Neutral

Metric Acch F1h Acch F1h Acch F1h Acch F1h

(Word Aligned) IEMOCAP Emotions

EF-LSTM 86.0 84.2 80.2 80.5 85.2 84.5 67.8 67.1

LF-LSTM 85.1 86.3 78.9 81.7 84.7 83.0 67.1 67.6

RMFN (Liang et al., 2018) 87.5 85.8 83.8 82.9 85.1 84.6 69.5 69.1

MFM (Tsai et al., 2019) 90.2 85.8 88.4 86.1 87.5 86.7 72.1 68.1

RAVEN (Wang et al., 2019) 87.3 85.8 83.4 83.1 87.3 86.7 69.7 69.3

MCTN (Pham et al., 2019) 84.9 83.1 80.5 79.6 79.7 80.4 62.3 57.0

MulT (ours) 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7

(Unaligned) IEMOCAP Emotions

CTC (Graves et al., 2006) + EF-LSTM 76.2 75.7 70.2 70.5 72.7 67.1 58.1 57.4

LF-LSTM 72.5 71.8 72.9 70.4 68.6 67.9 59.6 56.2

CTC + RAVEN (Wang et al., 2019) 77.0 76.8 67.6 65.6 65.0 64.1 62.0 59.5
CTC + MCTN (Pham et al., 2019) 80.5 77.5 72.0 71.7 64.9 65.6 49.4 49.3

MulT (ours) 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7

features are extracted from the textual (GloVe

word embeddings (Pennington et al., 2014)), vi-

sual (Facet (iMotions, 2017)), and acoustic (CO-

VAREP (Degottex et al., 2014)) data modalities.

A more detailed introduction to the features is in-

cluded in Appendix D.

For the word-aligned version, following (Zadeh

et al., 2018a; Tsai et al., 2019; Pham et al., 2019),

we first use P2FA (Yuan and Liberman, 2008)

to obtain the aligned timesteps (segmented w.r.t.

words) for audio and vision streams, and we then

perform averaging on the audio and vision fea-

tures within these time ranges. All sequences in

the word-aligned case have length 50. The pro-

cess remains the same across all the datasets. On

the other hand, for the unaligned version, we keep

the original audio and visual features as extracted,

without any word-segmented alignment or man-

ual subsampling. As a result, the lengths of each

modality vary significantly, where audio and vi-

sion sequences may contain up to > 1, 000 time

steps. We elaborate on the three tasks below.

CMU-MOSI & MOSEI. CMU-MOSI (Zadeh

et al., 2016) is a human multimodal sentiment

analysis dataset consisting of 2,199 short mono-

logue video clips (each lasting the duration of a

sentence). Acoustic and visual features of CMU-

MOSI are extracted at a sampling rate of 12.5 and

15 Hz, respectively (while textual data are seg-

mented per word and expressed as discrete word

embeddings). Meanwhile, CMU-MOSEI (Zadeh

et al., 2018b) is a sentiment and emotion analy-

sis dataset made up of 23,454 movie review video

clips taken from YouTube (about 10× the size

of CMU-MOSI). The unaligned CMU-MOSEI se-

quences are extracted at a sampling rate of 20 Hz

for acoustic and 15 Hz for vision signals.

For both CMU-MOSI and CMU-MOSEI, each

sample is labeled by human annotators with a

sentiment score from -3 (strongly negative) to 3

(strongly positive). We evaluate the model per-

formances using various metrics, in agreement

with those employed in prior works: 7-class ac-

curacy (i.e., Acc7: sentiment score classification

in Z ∩ [−3, 3]), binary accuracy (i.e., Acc2: pos-

itive/negative sentiments), F1 score, mean abso-

lute error (MAE) of the score, and the correlation

of the model’s prediction with human. Both tasks

are frequently used to benchmark models’ ability

to fuse multimodal (sentiment) information (Po-

ria et al., 2017; Zadeh et al., 2018a; Liang et al.,

2018; Tsai et al., 2019; Pham et al., 2019; Wang

et al., 2019).

IEMOCAP. IEMOCAP (Busso et al., 2008)

consists of 10K videos for human emotion anal-

ysis. As suggested by Wang et al. (2019), 4 emo-

tions (happy, sad, angry and neutral) were selected

for emotion recognition. Unlike CMU-MOSI and

CMU-MOSEI, this is a multilabel task (e.g., a per-

son can be sad and angry simultaneously). Its mul-

timodal streams consider fixed sampling rate on

audio (12.5 Hz) and vision (15 Hz) signals. We

follow (Poria et al., 2017; Wang et al., 2019; Tsai

et al., 2019) to report the binary classification ac-

curacy and the F1 score of the predictions.

4.2 Baselines

We choose Early Fusion LSTM (EF-LSTM) and

Late Fusion LSTM (LF-LSTM) as baseline mod-

els, as well as Recurrent Attended Variation

Embedding Network (RAVEN) (Wang et al.,

2019) and Multimodal Cyclic Translation Net-

work (MCTN) (Pham et al., 2019), that achieved

SOTA results on various word-aligned human



Figure 5: Validation set convergence of MulT when com-
pared to other baselines on the unaligned CMU-MOSEI task.

multimodal language tasks. To compare the mod-

els comprehensively, we adapt the connection-
ist temporal classification (CTC) (Graves et al.,

2006) method to the prior approaches (e.g., EF-

LSTM, MCTN, RAVEN) that cannot be applied

directly to the unaligned setting. Specifically,

these models train to optimize the CTC alignment

objective and the human multimodal objective si-

multaneously. We leave more detailed treatment

of the CTC module to Appendix B. For fair com-

parisons, we control the number of parameters of

all models to be approximately the same. The hy-

perparameters are reported in Appendix C. 1

4.3 Quantitative Analysis
Word-Aligned Experiments. We first evaluate

MulT on the word-aligned sequences— the “home

turf” of prior approaches modeling human multi-

modal language (Sheikh et al., 2018; Tsai et al.,

2019; Pham et al., 2019; Wang et al., 2019). The

upper part of the Table 1, 2, and 3 show the results

of MulT and baseline approaches on the word-

aligned task. With similar model sizes (around

200K parameters), MulT outperforms the other

competitive approaches on different metrics on all

tasks, with the exception of the “sad” class results

on IEMOCAP.

Unaligned Experiments. Next, we evaluate

MulT on the same set of datasets in the unaligned

setting. Note that MulT can be directly applied to

unaligned multimodal stream, while the baseline

models (except for LF-LSTM) require the need of

additional alignment module (e.g., CTC module).

The results are shown in the bottom part of Ta-

ble 1, 2, and 3. On the three benchmark datasets,

MulT improves upon the prior methods (some

1All experiments are conducted on 1 GTX-1080Ti
GPU. The code for our model and experiments can
be found in https://github.com/yaohungt/
Multimodal-Transformer

Table 4: An ablation study on the benefit of MulT’s cross-
modal transformers using CMU-MOSEI.).

(Unaligned) CMU-MOSEI

Description Sentiment

Acch7 Acch2 F1h MAE� Corrh

Unimodal Transformers

Language only 46.5 77.4 78.2 0.653 0.631

Audio only 41.4 65.6 68.8 0.764 0.310

Vision only 43.5 66.4 69.3 0.759 0.343

Late Fusion by using Multiple Unimodal Transformers

LF-Transformer 47.9 78.6 78.5 0.636 0.658

Temporally Concatenated Early Fusion Transformer

EF-Transformer 47.8 78.9 78.8 0.648 0.647

Multimodal Transfomers

Only [V,A → L] (ours) 50.5 80.1 80.4 0.605 0.670

Only [L,A → V ] (ours) 48.2 79.7 80.2 0.611 0.651

Only [L, V → A] (ours) 47.5 79.2 79.7 0.620 0.648

MulT mixing intermediate-

level features (ours)
50.3 80.5 80.6 0.602 0.674

MulT (ours) 50.7 81.6 81.6 0.591 0.691

with CTC) by 10%-15% on most attributes. Em-

pirically, we find that MulT converges faster to

better results at training when compared to other

competitive approaches (see Figure 5). In addi-

tion, while we note that in general there is a per-

formance drop on all models when we shift from

the word-aligned to unaligned multimodal time-

series, the impact MulT takes is much smaller than

the other approaches. We hypothesize such perfor-

mance drop occurs because the asynchronous (and

much longer) data streams introduce more diffi-

culty in recognizing important features and com-

puting the appropriate attention.

Ablation Study. To further study the influence

of the individual components in MulT, we per-

form comprehensive ablation analysis using the

unaligned version of CMU-MOSEI. The results

are shown in Table 4.

First, we consider the performance for only

using unimodal transformers (i.e., language, au-

dio or vision only). We find that the language

transformer outperforms the other two by a large

margin. For example, for the Acch2 metric, the

model improves from 65.6 to 77.4 when compar-

ing audio only to language only unimodal trans-

former. This fact aligns with the observations in

prior work (Pham et al., 2019), where the authors

found that a good language network could already

achieve good performance at inference time.

Second, we consider 1) a late-fusion trans-

former that feature-wise concatenates the last

elements of three self-attention transformers;

and 2) an early-fusion self-attention trans-

former that takes in a temporal concatenation of

three asynchronous sequences [X̂L, X̂V , X̂A] ∈
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Figure 6: Visualization of sample crossmodal attention weights from layer 3 of [V → L] crossmodal transformer on CMU-
MOSEI. We found that the crossmodal attention has learned to correlate certain meaningful words (e.g., “movie”, “disappoint-
ing”) with segments of stronger visual signals (typically stronger facial motions or expression change), despite the lack of
alignment between original L/V sequences. Note that due to temporal convolution, each textual/visual feature contains the
representation of nearby elements.

R
(TL+TV +TA)×dq (see Section 3.2). Empirically,

we find that both EF- and LF-Transformer (which

fuse multimodal signals) outperform unimodal

transformers.

Finally, we study the importance of individ-

ual crossmodal transformers according to the tar-

get modalities (i.e., using [V,A → L], [L,A →
V ], or [L, V → A] network). As shown in

Table 4, we find crossmodal attention modules

consistently improve over the late- and early-

fusion transformer models in most metrics on un-

aligned CMU-MOSEI. In particular, among the

three crossmodal transformers, the one where

language(L) is the target modality works best.

We also additionally study the effect of adapt-

ing intermediate-level instead of the low-level fea-

tures from source modality in crossmodal atten-

tion blocks (similar to the NMT encoder-decoder

architecture but without self-attention; see Sec-

tion 3.1). While MulT leveraging intermediate-

level features still outperform models in other ab-

lative settings, we empirically find adapting from

low-level features works best. The ablations sug-

gest that crossmodal attention concretely benefits

MulT with better representation learning.

4.4 Qualitative Analysis

To understand how crossmodal attention works

while modeling unaligned multimodal data, we

empirically inspect what kind of signals MulT

picks up by visualizing the attention activations.

Figure 6 shows an example of a section of the

crossmodal attention matrix on layer 3 of the V →
L network of MulT (the original matrix has di-

mension TL × TV ; the figure shows the attention

corresponding to approximately a 6-sec short win-

dow of that matrix). We find that crossmodal at-

tention has learned to attend to meaningful signals

across the two modalities. For example, stronger

attention is given to the intersection of words that

tend to suggest emotions (e.g., “movie”, “disap-

pointing”) and drastic facial expression changes in

the video (start and end of the above vision se-

quence). This observation advocates one of the

aforementioned advantage of MulT over conven-

tional alignment (see Section 3.3): crossmodal

attention enables MulT to directly capture po-

tentially long-range signals, including those off-

diagonals on the attention matrix.

5 Discussion

In the paper, we propose Multimodal Trans-

former (MulT) for analyzing human multimodal

language. At the heart of MulT is the cross-

modal attention mechanism, which provides a la-

tent crossmodal adaptation that fuses multimodal

information by directly attending to low-level fea-

tures in other modalities. Whereas prior ap-

proaches focused primarily on the aligned multi-

modal streams, MulT serves as a strong baseline

capable of capturing long-range contingencies, re-

gardless of the alignment assumption. Empiri-

cally, we show that MulT exhibits the best perfor-

mance when compared to prior methods.

We believe the results of MulT on unaligned

human multimodal language sequences suggest

many exciting possibilities for its future appli-

cations (e.g., Visual Question Answering tasks,

where the input signals is a mixture of static and

time-evolving signals). We hope the emergence

of MulT could encourage further explorations on

tasks where alignment used to be considered nec-

essary, but where crossmodal attention might be

an equally (if not more) competitive alternative.
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A Positional Embedding

A purely attention-based transformer network is

order-invariant. In other words, permuting the or-

der of an input sequence does not change trans-

former’s behavior or alter its output. One solution

to address this weakness is by embedding the posi-

tional information into the hidden units (Vaswani

et al., 2017).

Following (Vaswani et al., 2017), we encode the

positional information of a sequence of length T
via the sin and cos functions with frequencies dic-

tated by the feature index. In particular, we de-

fine the positional embedding (PE) of a sequence

X ∈ R
T×d (where T is length) as a matrix where:

PE[i, 2j] = sin

(
i

10000
2j
d

)

PE[i, 2j + 1] = cos

(
i

10000
2j
d

)

for i = 1, . . . , T and j = 0, �d2�. Therefore,

each feature dimension (i.e., column) of PE are

positional values that exhibit a sinusoidal pat-

tern. Once computed, the positional embedding is

added directly to the sequence so that X + PE en-

codes the elements’ position information at every

time step.

B Connectionist Temporal Classification

Connectionist Temporal Classification

(CTC) (Graves et al., 2006) was first pro-

posed for unsupervised Speech to Text alignment.

Particularly, CTC is often combined with the

output of recurrent neural network, which enables

the model to train end-to-end and simultaneously

infer speech-text alignment without supervision.

For the ease of explanation, suppose the CTC

module now are aiming at aligning an audio

signal sequence [a1, a2, a3, a4, a5, a6] with length

6 to a textual sequence “I am really really happy”

with length 5. In this example, we refer to

audio as the source and texts as target signal,

noting that the sequence lengths may be different

between the source to target; we also see that the

output sequence may have repetitive element (i.e.,

“really”). The CTC (Graves et al., 2006) module

we use comprises two components: alignment

predictor and the CTC loss.

First, the alignment predictor is often chosen as

a recurrent networks such as LSTM, which per-

forms on the source sequence then outputs the

possibility of being the unique words in the tar-

get sequence as well as a empty word (i.e., x).

In our example, for each individual audio sig-

nal, the alignment predictor provides a vector of

length 5 regarding the probability being aligned to

[x, ‘I’, ‘am’, ‘really’, ‘happy’].

Next, the CTC loss considers the negative log-

likelihood loss from only the proper alignment for

the alignment predictor outputs. The proper align-

ment, in our example, can be results such as

i) [x, ‘I’, ‘am’, ‘really’, ‘really’, ‘happy’];

ii) [‘I’, ‘am’, x, ‘really’, ‘really’, ‘happy’];

iii) [‘I’, ‘am’, ‘really’, ‘really’, ‘really’, ‘happy’];

iv) [‘I’, ‘I’, ‘am’, ‘really’, ‘really’, ‘happy’]

In the meantime, some examples of the subopti-

mal/failure cases would be

i) [x, x, ‘am’, ‘really’, ‘really’, ‘happy’];

ii) [‘I’, ‘am’, ‘I’, ‘really’, ‘really’, ‘happy’];

iii) [‘I’, ‘am’, x, ‘really’, x, ‘happy’]

When the CTC loss is minimized, it implies the

source signals are properly aligned to target sig-

nals.

To sum up, in the experiments that adopting

the CTC module, we train the alignment predic-

tor while minimizing the CTC loss. Then, ex-

cluding the probability of blank words, we mul-

tiply the probability outputs from the alignment

predictor to source signals. The source signal

is hence resulting in a pseudo-aligned target sin-

gal. In our example, the audio signal is then

transforming to a audio signal [a′1, a′2, a′3, a′4, a′5]

with sequence length 5, which is pseudo-aligned

to [’I’, ’am’, ’really’, ’really’, ’happy’].

C Hyperparameters

Table 5 shows the settings of the various MulTs

that we train on human multimodal language

tasks. As previously mentioned, the models are

contained at roughly the same sizes as in prior

works for the purpose of fair comparison. For hy-

perparameters such as the dropout rate and number

of heads in crossmodal attention module, we per-

form a basic grid search. We decay the learning

rate by a factor of 10 when the validation perfor-

mance plateaus.



Table 5: Hyperparameters of Multimodal Transformer (MulT) we use for the various tasks. The “# of Crossmodal Blocks”
and “# of Crossmodal Attention Heads” are for each transformer.

CMU-MOSEI CMU-MOSI IEMOCAP

Batch Size 16 128 32

Initial Learning Rate 1e-3 1e-3 2e-3

Optimizer Adam Adam Adam

Transformers Hidden Unit Size d 40 40 40

# of Crossmodal Blocks D 4 4 4

# of Crossmodal Attention Heads 8 10 10

Temporal Convolution Kernel Size (L/V /A) (1 or 3)/3/3 (1 or 3)/3/3 3/3/5

Textual Embedding Dropout 0.3 0.2 0.3

Crossmodal Attention Block Dropout 0.1 0.2 0.25

Output Dropout 0.1 0.1 0.1

Gradient Clip 1.0 0.8 0.8

# of Epochs 20 100 30

D Features

The features for multimodal datasets are extracted

as follows:

- Language. We convert video transcripts

into pre-trained Glove word embeddings

(glove.840B.300d) (Pennington et al., 2014).

The embedding is a 300 dimensional vector.

- Vision. We use Facet (iMotions, 2017) to in-

dicate 35 facial action units, which records

facial muscle movement (Ekman et al., 1980;

Ekman, 1992) for representing per-frame ba-

sic and advanced emotions.

- Audio. We use COVAREP (Degottex et al.,

2014) for extracting low level acoustic fea-

tures. The feature includes 12 Mel-frequency

cepstral coefficients (MFCCs), pitch track-

ing and voiced/unvoiced segmenting fea-

tures, glottal source parameters, peak slope

parameters and maxima dispersion quotients.

Dimension of the feature is 74.


