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ing sensors; second, reconstruction of traffic flow. Most existing studies concerned about
identifying completely malfunctioning sensors whose data should be discarded. In this pa-
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Data correction Moments (GMM) based estimation approach to determine the parameters of systematic

and random errors of traffic sensors in a road network. The proposed method allows flex-
ible data aggregation that ameliorates identification and accuracy. The estimates regarding
both systematic and random errors are utilized to conduct hypothesis test on sensor health
and to estimate true traffic flows with observed counts. The results of three network ex-
amples with different scales demonstrate the applicability of the proposed method in a
large variety of scenarios.
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1. Introduction

In modern transportation systems, reliable sensor data is heavily relied on to produce effective planning and operational
strategies in coping with almost all important issues, including road congestion, traffic safety, pollutant emission control and
energy consumption. A major challenge pertaining to sensor data is to deal with corrupted data or even completely missing
data that frequently and widely occurs in most established traffic monitoring systems. Many empirical case studies have
evidenced that data conflicts and missing records exist in a large amount of road traffic sensors. For example, it was reported
that about one third of the freeway sensors in PeMs (California Performance Measurements), a broadly referenced data
system, were not working properly (Rajagopal and Varaiya, 2007). Quality control for archived data management systems
(ADMS) has also been identified as a high-priority task recommended to the Federal Highway Administration (Turner, 2007).

Research efforts devoted to traffic sensor data quality in the last few decades can be divided into two categories. The first
one attempts to address the issues of assessing data quality and identifying completely malfunctioning sensors. It is usually
referred to as sensor health problem and predominantly treated as a pure engineering task that merely requires traffic
domain expertise. The second category focuses on remedying the corrupted data in a systematic manner using all available
data. The solutions to these problems are usually data oriented and statistical learning based without fully considering
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traffic data structure. The literature suggests both the importance of having a solid statistical basis to infer sensor quality
from a network perspective as well as the necessity of assimilating useful knowledge on data rectification. On account of
those matters, this article spans over the two categories via developing a statistical inference approach for data quality
assessment and reconstruction based on a transportation network model.

Most existing works on sensor health problems focused on identifying completely malfunctioning sensors whose data
should be directly discarded, but few paid attention to moderately malfunctioning ones whose data are significantly erro-
neous yet still endow useful information. The pioneer endeavors among them mainly depend on setting allowable range for
observed values and checking consistency among volumes, occupancy and speeds. Over the years studies following the same
school of thoughts have evolved to include more complicated validity criteria combinations (Turochy and Smith, 2000; Hu
et al., 2001; Chen et al., 2003, and Turner et al., 2004). Nowadays, they are still prevailing in practice due to its convenient
implementation in a conventional database management system. The other branch of works leverages the mutual depen-
dency of traffic data from closely located sensors and adjacent time intervals. Spatially, the correlation of traffic counts are
modeled based on neighboring lane similarity (Dailey, 1993), upstream and downstream consistency (Nihan, 1997), macro-
scopic traffic flow conservation (Vanajakshi and Rilett, 2004) and simply proximity in distance (Kwon et al., 2004). Recently,
Sun et al. (2016) pointed out the limitation of earlier studies which did not fully exploit spatial correlations on the network
level and proposed a new approach to identify malfunctioning sensors of all possible reasons whose data are supposed to
be significantly inconsistent against data from others. This paper shares a similar network perspective in defining spatial
dependency but in a more flexible manner that requires much weaker assumption to establish. The major distinction of this
work from previous studies in this area is the capability of telling the magnitude of data corruption and identifying partially
malfunctioning sensors. This virtue is of evident practical value because it is beneficial for practitioners to be able to utilize
information from those sensors to reconstruct traffic data.

Till date, the majority of research efforts in the area of data remediation is to handle completely missing data on the basis
of uncorrupted data from other sensors. In many cases, data imputation methods based on time-series analyses and machine
learning approaches are applied only after all susceptible data from malfunctioning sensors have been completely removed.
Li et al. (2014)’s review pointed out that traditional prediction methods using time series model such as ARIMA to map
historical and future values of traffic data failed to fully utilize the observed data succeeding to missing data occurrence.
Interpolation using spatially and temporally adjacent records is prevailing in highway agencies, but forcing counts to be
close to each other may underestimate the traffic variation in the corresponding dimensions. A large body of recent literature
utilizes learning algorithms in searching for a pattern of traffic data, including for example, Probabilistic Principal Component
Analysis in Qu et al. (2009), Fuzzy C-means Clustering in Tang et al. (2015) and Deep Learning in Duan et al. (2016). To the
best of our knowledge, though being diverse in terms of employed learning models, none of those studies considers the
possibility of systematic errors in the observation datasets, which could potentially mislead the learning outcomes.

According to Traffic Detector Handbook published by the US Federal Highway Administration (Klein et al., 2006), there
exist different levels of sensor problems, ranging from most obvious ones such as zero call or constant call, to modest
but less detectable errors, such as unbalanced sensitivity. Sensor data that are systematically deviated from the real traffic
volume, out of the reasons such as counting neighboring lane traffic, missing motorcycles, more than one count for long
vehicles, may still be valuable in revealing important information on the traffic flow that it is actually monitoring as well as
on the other flows in the network. In order to take advantage of those sensors’ data, the health monitoring task is not only
to pinpoint the malfunctioning detectors, but to measure their respective levels of sensor health. It is equally important to
actually carry such obtained knowledge into the steps of reconstructing traffic flow.

In this paper, the health of a sensor is represented by its measurement error, which can be modeled mathematically and
characterized by its inferred statistics. Measurement errors are usually divided into two components (Dunn, 1989). System-
atic error is determined by the inaccuracy that is involved inherently in the observation process. It can be used to measure
the level of sensor health problem and to rectify observed values. Random error is, however, natural to any type of measure-
ment. Even with a perfectly functioning detector, the traffic counts can be ostensibly different from true values. Hence, it
should not be an indicator of sensor health problem unless its scale is abnormally large, but its related knowledge is impor-
tant in deriving estimator’s properties and conducting statistical inference. Therefore, by integrating a sensor measurement
error model and a transportation network model, we propose a Generalized Method of Moments (GMM) based estimation
approach to determine the parameters of systematic and random errors of traffic sensors in a road network. The roles and
functionalities of the problem discussed in this paper are illustrated in Fig. 1 and highlighted in blue. Steps 1 and 2 are the
detection of completely and partially malfunctioning sensors, respectively. Step 3 represents standard denoising procedure.
Step 4 is to correct systematically erroneous data. Step 5 is to impute missing data.

The rest of the paper is organized as follows. The second section provides the detail of sensor measurement error model
and describes the way that flow balance law fits into structural equations which serves as a foundation to estimation. The
third section introduces a main GMM approach that provides unique and statistically consistent estimates of systematic
error parameters. The fourth section discusses the estimation of random error parameters and their uses on sensor health
monitoring and traffic data correction. The fifth section first uses a small walk-though example, then demonstrates the
numeric robustness of the method with respect to various factors, and finally employs a large scale case study to examine
the scalability. The sixth section concludes the paper with discussion and future extensions.
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Fig. 1. Sensor data processing chart.

2. Mathematical model

Considering the wide range of types and levels of sensor malfunction, it is difficult, if at all possible, to find a universal
mathematical model to explain all possible data errors of a roadway sensor. Traffic agencies have extensively conducted
univariate tests that use simple but reliable filters to identify completely broken sensors based on their individual outputs.
Complementary to those existing efforts, we focus on failure types that are more subtle for two reasons. First, such failure
is typically not as easily identifiable as completely broken ones thus needing more in-depth investigation. Second, data
generated by those sensors may be erroneous but still can be informative if systematic error can be identified to correct
these data.

In this section, we first explain basic assumptions for sensor error generation mechanism and develop mathematical
models, from general to specific, for measurement errors. Then we discuss how the important network relation, i.e. flow
balance law, should be utilized in the model setting. In preparation of sensor error estimation, a system of structural equa-
tions is generated by integrating the measurement model and flow balance conditions.

2.1. Measurement errors

Suppose road traffics are continuously monitored by sensors and the number of passing vehicles is reported based on
consecutive time intervals. Let the recorded count for sth vehicle passing the detection scope of sensor a during the mea-
surement period in question be 1+ €5, where the registration error € is a random variable. Note that € is by nature dis-
crete since a passing vehicle either correctly incurs one count or mistakenly zero or more counts. Then for a measurement
interval the aggregated traffic count of sensor a is expressed as,

Zq
Vo=Za+) €, (2.1)
s=1
where Z; is the true value of traffic volume, and V; is the measured count. Then the total error is expressed as the sum of
systematic error and random error,

Zg
ZGZ =Vuy —Zy = (ElValZa] — Zo) + (Vo — E[VLl|Z4)) - (2.2)

s=1

systematic error random error

The basic assumption is that the measurement error generation mechanism is invariant among all the time intervals. It
is not hard to justify by restricting estimation horizon to have a suitable time duration. Hence, the parameters that control
the error generation are considered fixed over time. As a consequence, we use time independent vectors p and o for the
parameters related to systematic error and random error, respectively. Without loss of generality, we could write the first
two central moments of traffic counts conditioning on Z as deterministic functions of Z, such as,

E[ValZa] = f(Za; o) and Var[V,|Z,] = ¢ (Zy; 02). (2.3)

In this general modeling framework, the exact forms of function f and ¢ depend on the nature of the registration error €.
For example, if the variance of €} rises when traffic volume Z, becomes higher, then ¢(Zs; 62) should increase faster than
Zg.

The main emphasis of this work is to introduce a statistical method of estimating error and reconstructing flows using
networked data. Instead of delving into the detailed discussion of the choices for f and ¢, we bring an additional assumption
to narrow our focus to a specific model. Assume that € is independent identically distributed (i.i.d.) with mean p, and og,
we obtain the statistics of the traffic counts, that is,

E[ValZa] = Za + [taZa and Var[Vu|Za] = 02Z,. (2.4)
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Hence, [4Z, is the systematic error of the measurement. Let U, = V; — E(V4|Zy) denote the random error of the measurement
and Var(U,|Z,) = Var(V4|Zg). Because now the moments are linear functions of Z, we also call y, the systematic error ratio
and o2 the random error ratio.

A practical concern worth noting is that a road segment typically consists of multiple lanes. For sensors like video cam-
eras or weight tubes, only one sensor unit is needed at a location to capture vehicles on all the lanes. For sensors like
inductive loop detectors, multiple detectors are typically embedded in parallel across the road to capture vehicles on all the
lanes. Here, we make a simplification that sensors installed on multiple lanes across a road section are considered as one
single sensor integrally, referred to as a link-level sensor set. Consequently, all variables in the measurement error estima-
tion model are link specific, indexed by a subscript a. Though link a may have sensors in completely different conditions
(for example, one lane may have an overly sensitive sensor that mistakenly records vehicles passing on an adjacent lane,
while another lane may have a sensor that fails to count), the model in (2.3) is able to capture the mixed effect of multiple
Sensors.

2.2. Network structure

Now let us turn to an important spatial relation between measurements that should be utilized. Consider a traffic net-
work abstracted into a directed graph G = {N, A}. The flow balance law, i.e. the total flow entering an intermediate node i
should be equal to the total flow exiting that node, can be written as,

ZaeA+(1‘) Za — ZQGA—“‘) Zy=0, Viel, (2.5)

where Z c NV is the sets of intermediate nodes. AT (i) and A~ (i) are the set of entering links and exiting links, respectively.
Let P be the node-link adjacency matrix, whose element on ith row and ath column p;, =1 if a € A" (i), -1 if a € A (i),
and O otherwise. The size of matrix P is m x n with n = |A| and m = |Z|. The operation |-| counts the number of elements
in its argument. The vector-matrix form of the above equation is

PZ =0, (2.6)

where Z = [Zg] € R
Due to the temporal change in traffic intensity and the presence of congestion shockwaves passing along the paths, the
discrepancy between upstream and downstream flow in a time interval may exist, and the flow balance is violated, as

ZaeA+(1‘) Za— ZaeA*(i) Zo=m;. Viel (27)

For a well defined observation interval, 7; is a random variable with a zero mean and a relatively small scale compared to
true traffic volume. The flow imbalance ratio is defined as 7; = 21;/(3_qc 4+ (i) Za + >aca- (i) Za)- From statistics perspective,
it is straightforward to understand that the flow imbalance ratio should approach zero as the time interval of observations
extends. It means that flow imbalance is of less concern when the observation interval is long enough. From traffic charac-
teristics, nearly all traffic should be cleared over an observation interval of 24 h. Therefore, in sensor data studies, link counts
are often aggregated to a daily observation to make sure that flow balance law holds to an almost perfect level (for example,
in Sun et al. (2016) and Yin et al. (2017)). The disadvantage of cumulating traffic counts by day is that the data sample size
might be too small to conduct a proper estimation of sensor error. However, in those studies, it is critical to have nearly
zero n;'s because traffic flows in the entire network may be related at the same equation. Clearly, it is much less probable
to have link flows on the different edges of a large network conforming flow balance law with marginal discrepancy, though
such equations can be derived via linear transformation of P. In statistics, it is easy to comprehend that link flows that are
geographically apart with dozens of intermediate nodes in between may have a notably significant discrepancy, since it is
equal to the sum of several n;’s which have very likely positive correlation that enhances the imbalance.

In this paper, it is acceptable to divide the entire observation horizon into finer intervals (such as hourly window) and
to have flow balance hold in an imperfect but satisfactory level. The first reason is that we use nodal balance law directly
at its original form without any affine transformation of Z so that only a single n; exists in a structural equation that relates
neighboring traffic flows. Second, in the estimation method proposed in the subsequent section, n; can be absorbed into
random measurement error and does not affect the identification of systematic error ratios except slight influence on the
efficiency of their estimators. This statement will be further illustrated using a numerical experiment in Section 5.2.4.

2.3. Structural equations

We wish to conduct estimation for the parameter vector u = [4q] € R" which is critical in evaluating sensor health
and correcting traffic counts. In doing so we need to prepare flow balance equations in a form that the chosen estimation
principle can be conveniently applied to.

Let us denote the n x 1 nonnegative vector V = [V,]. V0 and Z() are the traffic counts and true flows respectively in
observation interval t. The likelihood of u given the sequence of observed data VD, ... V(D js

L VD, yD)y :/ / p(V®,... v z0 =70 70 =20 1)dz® ... dz D, (2.8)
Pz(H=0 Pz =0
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where p(-) denotes the joint probability density of traffic counts and true flow. Self-evidently, explicitly handling latent
variables Z in the estimation model would require excessive knowledge to characterize the stochasticity of Z. The mutual
dependence among link flows Z both spatially and temporally is not merely a result from flow balance but governed by
travel demand generation and assignment processes that are interrelated and complicated.

In order to obviate directly dealing with latent Z, we substitute it by observable V and another latent variable U in (2.5).
Hence, the coupling of measurement error model and flow balance relation results in a system of structural equations,

Y fi'Va—Uspta) = Y fi'(Va—Usipta) =0, VieL (2.9)
ac A+ (i) acA-(i)

To continue the derivation, we have to concentrate on one specific model under the big umbrella (2.3). With the i.i.d.
assumption of €; among all s, the equations (2.9) become

Vq Va Z U, Z Uq .
> - > = - , Viel (2.10)
acA* (i) 1+ Ha acA- (i) 1+ pa ae A+ (i) 1+ Ha aeA- (i) 1+ Ha

To simplify this expression, let 8 = [B4] = [1/(1 + 1q)], S0 Ba (Vg — Ug) = 24, then a concise form of (2.9) is given by
P(Vop)=P®Uo p). (2.11)

The operator o is the Hadamard product.! Both sides of (2.11) involve unknown systematic error ratio 8. The left hand side
contains observables V instead of any latent Z, and the right hand side entails random error U = [U;] € R™.

The system of structural equations (2.11) provides the fundamental relation for GMM principle to estimate systematic
error. In this model, p is strictly greater than —1, because it is meaningless to conduct error estimation for sensors with no
counts, which should be a completely broken case. Thus, the parameter space for vector 8 is R" . The case that B; =1 or
Mq = 0 indicates that the sensor on link a does not have any systematic error.

3. Generalized method of moment estimation

Having developed a model combining sensor measurement errors and flow balance law, we now propose an adaptable
estimation framework based on GMM principle, which includes both classic moment matching and generalized least square
(GLS). The primary concern of this section is whether it is possible to obtain the “correct” estimate of parameter . There
are two important issues to be addressed: essentially, parameter identifiability, which is to ensure the resulting method has
a unique estimate without ambiguity; furthermore, estimator consistency, which is to ascertain the estimates approaching
to the true ones when the data size is sufficiently large.

3.1. Estimation framework

We define a zero-mean vector-valued stochastic function g(8) using relation (2.11). In GMM framework, the estimate
of B is found by minimizing a vector norm of g(f). Adopting Euclidean distance, we will obtain a minimization problem
formulated as

Ip)igg(ﬁ)TWg(ﬁ ), (3.1)

where W is a positive-definite weighing matrix, which only affects the rate of estimator’s quality improvement against the
data sample size. According to GMM theory, the optimal weighting matrix that achieves an efficient estimator of 8 with
minimum variance is the inverse of variance-covariance matrix of random function g(8), Cov[g(f8)], denoted as 2. We will
further investigate the specification and the updating scheme of W in the next section on statistical inference.

Under this paradigm, a specific statistical estimation method to estimate 8 is determined by the way that g(8) is con-
structed. For each measurement interval t, we know

P(VO o) =PUDcB), t=1.... T (32)

Then the classic method of moments computes the average from all the observations and solves parameters by matching
population moments with their sample analogs, i.e.,

T
g(B) =P %Zv“)oﬂ : (3.3)
t=1

then the dimension of g(f8) is m x 1. Compressing data into its first moment greatly reduces the number of elements in g(f)
and thereof restricts the amount of information used for estimating . Oppositely, the GLS method minimizes the sum of

1 This binary operation takes two matrices/vectors of the same dimensions, and produces another matrix/vector where each element i, j is the product
of elements i, j of the original two matrices/vectors.
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squared residuals of PV{)8 in all intervals, which utilizes all the observations without any transformation. The generalized
moment conditions in this case are now

g =[P o) . (PP op) ] (3.4)

then the dimension of g(8) is Tm x 1. In a more flexible manner, it is possible to aggregate observation data for estimation
to reduce the problem scale without losing much structural information. First, traffic counts collected from different time
intervals are assigned into K groups, 7 (k),k =1,.,K based on their similarity. Each observation v(t) in the same group does
not have to be temporally adjacent. The exact choice of an clustering approach, for instance, K-nearest neighbors, is not
critical in this framework. In fact, simply grouping observations based on time-of-day could be a proper choice. Finally, the
g(B) functions are constructed as

T T

_ 1 ® 1 ® 3
g(B) P |T(l)|[§1)v Bl ... |T(1<)|[§0V B . (35)

with (3.3) and (3.4) being its special cases when K =1 and K =T, respectively. The number of elements in g(8) is Km
then. In the following subsections, the advantages and disadvantages of different grouping strategies will be explained and
compared in terms of parameter identification and estimator consistency.

3.2. Parameter identification

From an algebraic perspective, the minimization problem (3.1) is to solve a homogeneous system of equations with only
strictly positive solution permitted as

Alll

W'2AB =0, where A= | : | eRf™" Al = pdiag % > vO ) ermn, (3.6)
AlK] teT (k)

W e RKmxKm should have a block structure where each nontrivial sub-matrix WKl corresponds to group k located on its
diagonal. In the case where the rank of A is less than its number of columns n, the constrained homogeneous system
admits infinitely many solutions. Precisely, the solution set is the intersection of strictly positive orthant and the null space
of A. Thus, no unique estimate of 8 can be found by solving (3.1). In the case A has full column rank, since only the trivial
solution solves equations (3.6), the Euclidean norm of the estimate using (2.9), ||3]||,. will be extremely close to zero. In
spite of the fact that the unique estimate theoretically exists, it is of little use to our estimation problem, because then
H— oo and Z— 0 regardless actual values in the dataset. Thus, we are not able to obtain unique and meaningful estimate
unless additional information is incorporated.

For a concrete problem, there usually exist a large variety of constraints that can be formulated into problem (3.1) based
on knowledge and beliefs towards sensor quality. Here we simply choose a way that is commonly applicable and effective
in finding an estimate. When there is a set of sensors recently installed or calibrated in the network, denoted as A; C A4,
these can be treated as free of systematic error, i.e. g = 0. The corresponding constraints are expressed as

Ba=1Vace A, (3.7)

The set of the remaining sensors is denoted Ay = A — .4;. We now create an indicator matrix My for .4y by removing rows
that are not associated with Ay from an n x n identity matrix. Similarly, M; is made for 4;. For an arbitrary n x 1 vector x,
Xo = Mox and x; = Myx. For an arbitrary X with n columns, Xo = XM and X; = XM].

Let 81 be the subvector of parameters corresponding to those good sensors. B is the subvector that is still unknown.
Substituting 8; = 1 into the homogeneous system and moving the constant terms to the right hand side, we will acquire a
different system of linear equations as follows

W]/onﬁo = Wl/zb, with b = —A1 ,31 € RKmX]. (38)

In order to claim that (3.8) is a non-homogeneous system of equations, we only need two simple justifications. First,
the good sensors are involved in flow balance relation, so P; contains at least one non-zero entry. Then there are traf-

T T T
fic counts recorded on those sensors. Vl(t), t=1,..., T are not all zeros. Now we express A; = [A[1k] ..... A[1k] | with
A[lk] =P diag<zteT(k) V](t)), k=1,...,K. Given that at least one element in all Vl(t), t=1,...,T is strictly positive, A; is non-

trivial. Since B; =1, b is not of all zeros. Therefore, without the positiveness constraint which is rarely bounded in practice,
by the first order conditions of problem (3.1), the estimate of S is the solution of the non-homogeneous system (3.8) and
given as

. -
Boum = (AgWAg)  AgWh, (3.9)

if Ag has a full column rank.
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If Ag is column rank deficient, this linear system is underdetermined and the minimization problem (3.1) admits infinitely
many solutions with the same objective values. So let us take a further look at whether this important condition holds for
all different aggregation strategies. If none of the elements in vector 7, Vo(t) is zero, the rank of each block Ag‘) is
equivalent to the rank of Py, which is bounded above by the number of intermediate nodes m. Typically m is less than
the number of links n minus n; = |.4;| in a general network, so A(()k) is not full rank and yields insufficient information to
identify B by itself. On account of the variability of V) across the observation sets, the stack-up matrix Ag is possibly full
rank. With K groups specified, the rank of Ay is bounded above by the less value between mK and ng = n — ny. The actual
rank should be positively correlated with K.

For the extreme strategy K = 1, regardless data sample size T, classic moment matching with only the first moments of
V is most likely not capable to identify this measurement error model unless m > ng. Albeit it is possible to improve identifi-
cation by incorporating second moment conditions (See Section 4.1), those equations involve unknown nuisance parameters
and render the optimization problem notably harder to solve.

Besides the column rank of Ag, we need to note that it is also critical to examine the numerical stability of the estimation
problem. This relates to the way of selecting group members. If the grouped means are very close, the resulting matrix Ag
will have singular values with very small magnitude. Consequently, the matrix AgWAO is ill conditioned and the solution
to (3.9) is numerically unstable. Therefore, K-mean clusters and simply grouping based on time-of-day are sound choices to
have distinct group means.

3.3. Estimator consistency

The next immediate task is to verify that the unique estimate is statistically consistent, in other words, the estimated
values will approach the true ones when the number of observations grows infinitely. Although moment matching method
K =1 provides limited information to estimate B, it always provides consistent estimator once the model is identified. In
contrast, the resultant least square method from K =T is able to provide nq linearly independent equations as long as the
traffic counts vary enough, but its estimates suffer from “error-in-variable” model and do not converge to true ones even
with an infinitely large data sample. This issue generally arises when the correlation between observed values or error terms

is significant. In our problem, this is due to the existence of measurement errors in traffic counts, such as Cov[Va(t), Ua(t)] # 0.

As VO =z djag(B)~1 +U® t =1,..., T, we can expand

A = Cdiag(B)~! + D, (3.10)
where
ctl pl1l
C=| : | dY¥=pdiag| > z®) and D=| : |, DM=Prdiag Y U®
Clk] teT (k) DIK] teT (k)
Also let Ikl :Allk]ﬂ1, k=1,..., K. Now let us focus on the case (K =T) least square estimation. Because Cov[Z®),U®] =0
and
PV = Rz diag(Bo) ' + RUY  and  PV® =Pz + PUY = Rz + RUY, (3.11)

we obtain the formulas for the following statistics among T observations

T . T
ET[Ag> W<f>b<f>] =dlag(ﬂ)*1ET[Cét) W<f>cg‘)],
. . . (3.12)
ET[Ag” w<f>Ag>] :diag(ﬁ)-z(ET[cg“ W<f>q§”]+ET[Dg> W“)Dg)]),

where Eg is the expectation across all time intervals when T— oco. Therefore, by Slutsky’s theorem, when the sample size
increases infinitely, the least square estimate of 8y should converge almost surely to a vector that is distinct from Bg such
as

N -1
Bis 2 B(E: [ WOC |+ Er [ DY WODP |) B[ TW O] £ o (3.13)

The exact correction approach for least square estimates requires parameters for both systematic and random errors. Let
09 = Mypo. Since the second moments of the error term on interval t can be expressed as

E[Pougf) (Pougf))T |z<f>] = Pydiag(Z)")diag(00)’F; . (3.14)

the extra term in (3.13) is the average of those moments across all time intervals,

T T
ET[Dg“TW(f)Dg)]:%Podiag 329 | diag (o)) &%podiag S VO o By | diag(o)2Py. (3.15)

t=1 t=1
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Therefore, the corrected least square estimate is given by

T
Beris = (Ag WA, — Pydiag (Z Vo ﬂ0> diag(o9)*P;] ) “TAJWh. (3.16)

t=1

A comprehensive overview on linear error-in-variable models and a variety of remedial means can be found in
Gillard (2010). However, most of them require either additional data (instrumental variable) or information (maximum likeli-
hood). Among all practical approaches that do not rely on knowledge about 8 or o, the most competing one for our specific
problem is total least square (TLS). It typically involves a separate numerical procedure (See Golub and Van Loan, 1980 for
details) other than using a simple quadratic minimization problem. Oppositely, our novel approach is naturally embedded
in GMM estimation methods and can be dealt within the same optimization framework. In fact, it is simply achieved by
aggregating data to maximize the variation of group means.

On one hand, when data is aggregated by K groups, the second order statistics Ex of group means converges to that of
pure traffic counts Ey

Ex [Cg"“wlklcg"l] s E, [cg”TW@cg”]. (3.17)
Here Eg[-] is the expectation across all K groups as K— oo given the growth of K is slower than T. On the other hand,
Ty kp] as, Ke FooT ®
EK[DO‘ W[‘]DO‘] = =Er| Dy wODy |. (318)
The estimate with aggregated data is approaching to S, as K/T diminishes, since
o T K T T
Bowm > ﬁ(ET [Cg” w<f>q§”] + 7Er [Dg> W(t)Dg”])*‘ET [Cg“ Wmcg”]. (3.19)

4. Statistical inference

As the previous section focuses merely on attaining a unique and consistent estimate of systematic error parameters,
we now delve into the way to improve estimation efficiency against sample size, conduct hypothesis tests to infer biased
sensors and ultimately reconstruct traffic flows using estimated parameters. For those purposes, we first have to estimate
nuisance parameter o for random measurement error scale. Based on that, we construct optimal weighting matrix and
derive the large sample properties for 8 estimator. Finally, a maximum likelihood estimation of Z() in each interval t is
proposed together with an updating algorithm summarizing the efficient estimation of both 8 and o.

4.1. Estimating random errors

The estimation of o resides in the same GMM framework as for 8 except that the second order conditions are in use
instead. According to the structural equations (2.10),

E <Z p,-aﬂav;”> > piaBaVa”

acA(i) acA(j) acA(i) acA(j)

zZ0 | =E (Z PiaBUL | D PPl )20 |. (41)

After the terms on the right hand side is rearranged, we obtain

S0 pubieBaBE[URULZO]) = > piapjaBVar[UL|20], (4.2)
acA(i) @' e A(j) ac A(DHNA())

because of the mutual independence of random error generation process in each sensor. We substitute the formula for
Var[Uét) |Z(f)] = UGZZ(SO and express the second moment condition in a matrix form

E[Pdiag(B oV ®)?PT|z"] = Pdiag(B o 0')*diag(z®)P". (4.3)
Because E[V® o 8|1Z®] =Z® the moment condition becomes
E[Pdiag(B)diag(V")?P" — Pdiag(f o o')*diag(B o V®)PT] =0. (4.4)

We avoid requiring unknown Z®) in this combined condition. In the estimation of o with K groups, we would like all
elements in the following vector function to simultaneously become zero,

vech(Pdiag(B) (17 Leerr) diag(V®)?)PT — Pdiag(B o o')*diag(B o rriry; Xeerr) V)PT)
h(o; B) = : . (4.5)
vech(Pdiag(ﬂ)(m]T)‘ Yot diag(V©)?)PT — Pdiag(f o o )diag( o ﬁ Sterao V©O)PT)
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Here vech(-), the half vectorization of an m x m square matrix, returns an x 1 vector containing all the elements of
the lower triangular portion. The nuisance parameter o becomes the only unknown in this relation after 8 is estimated.
It is clear that h(o; B) is linear in . The GMM estimate of o is found by solving a quadratic problem that minimizes
[|h(o; B)| |§. Although the total number of entries in h is KM, there are much less valid equations that can be used to
identify o because the coefficients of 62’s in some equations are all zeros. From the relation (4.2), we know both sides of
equations are simply zero if nodes i and j are not directly connected by one link. Therefore, the number of valid equations
that associate two different nodes is equal to the number of non-leaf links. Because the number of leaf links is equivalent to
that of nodes with degree one (M — m), we should have n — (|| — m) equations for non-trivial covariance of node relation.
We know that m equations are given for the variance of nodal relation. In sum, after removing all useless equations, h would
have K(n — |N| + 2m) entries.

m(m+1)
2

4.2. Efficient estimator and infer sensor health

Next we develop a general formula for the optimal choice of weighting matrix W. For any two elements i and j in g(g),
if i and j are two nodes that belong to the same aggregation group k, then

1
E[gi(ﬁ)gj(ﬂ)] = ToPE Z Z Piapjaafﬂgvam, (4.6)
teT (k) ac A(D)NA(j)

by assuming random error U from different intervals are independent. If i and j are not from the same group, Elgi(B)gi(B)]
is simply zero. The corresponding matrix form of all elements covariance 2 is then made of K blocks:

o Zeeray Pdiag(V®)diag(o )*diag(B)*PT .- 0
Q= : :

0 R Lier k) Pdiag(v©)diag (o) diag(B)°PT
(4.7)

Thus, in method of moments estimation, the covariance matrix is just one single block, while in GLS, it is a block diagonal
matrix of T non-trivial blocks. Knowing 8, or not does not make any difference to the formula of Q(8).

One important characteristic of statistical inference of systematic error is to provide evidence for the costly decision of
replacing/recalibrating installed sensors. For a particular sensor a, the null hypothesis, Hy, is that the sensor a does not have
any systematic measurement error, i.e., 8, = 1. The alternative hypothesis is that 84 # 1. Thus, a marginal two-sided location
test should come in handy. First of all, according to the GMM theory, the estimator B, converges in distribution as T arises
infinitely

VK(Bo — Bo) S (0. (A WA)) " AJW QWA (AgWAG) ™). (4.8)
In the case that W % Q-1 the formula collapses to a simpler expression,
VKB - B) S (0.3). where X = (AJQ1Ao) . (4.9)

and the variance-covariance matrix of estimator using Q-1 is proven to be the smallest among all results using any possible
positive definite matrices W. Therefore, with the most efficient estimator, the standard error of B estimates is denoted by
Ba is then

se(Ba) = v/ Zaa/K. (4.10)
where X4 is the diagonal entry of X corresponding to B,. Hence, the test statistics is simply

Pa—1

se(Ba)

Then it is compared with the critical values of a standard normal distribution (asymptotic) at any chosen level of significance
to infer whether f§, is statistically significantly different from one.

(4.11)

4.3. Algorithm: estimation and recovery

The algorithm to implement the proposed estimation method for 8 is outlined as follow
Step 0. Split the observations into K groups; set initial weighting matrix to be W = I.

Step 1. Find B34 using (3.9).

Step 2. Find 6 = argming ||h(o; B3

Step 3. Construct 2 using A% and 6; update W = Q.

Step 4. Find Bge" using (3.9).
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Fig. 2. Network 1: a segment of freeway corridor.

Step 5. Check if || ge" — 381d|| < tol. If not, let B4 = B and go to step 3. Otherwise, Bo = Boew and stop.

It is noteworthy that in Step 1 and 4, we basically ignore the positiveness constraints and apply the analytical formula
directly, because the estimate is not supposed to get close to those boundary unless sensors are completely malfunctioning.

This algorithm can be casted as a typical iteratively reweighed unconstrained least square. The convergence of such
algorithms has been proved and discussed in depth in classical work, such as Osborne (1985) and state-of-art research, for
example Daubechies et al. (2010).

We now apply maximum likelihood estimation to find the remedied flows based on observed counts. The likelihood of
observations on interval t conditioning on the true traffic flows is given by

v _ 702
LEZO:p,olVO)=1(PZ0 =0) [ —— (—( a = ( +(ff“) a )7, (4.12)
aeA 27T0azZ¢§t) 0iZ,
Then traffic counts can be corrected by maximizing the loglikelihood which is expressed as
) _ (t)\2
¢ZO; 1, o VO = 1(PZ® = 0) =2 In27r — > (Inoa+ 1 Inz® + Vo = A+ Ka)Za )7 ) (413)
2 2 o270
acA a“a

Dropping the constant terms, we have the following nonlinear constrained optimization problem to tackle with,

;5 1 VY — (1 + f10)Za)?

24} =argminy" ~InZy + 6320“” “ s.t. PZ =0, (414)

T acA

Although the problem is highly nonlinear and appears hard to solve in nature, fortunately it is for one time interval and
involves only n variables. The number of sensors in a large size regional transportation network rarely exceeds a thousand.
It is not considered as a computationally challenging task given the current development of optimization techniques. We
have employed a gradient descent based algorithm to solve the problem in all the numerical experiments.

For real-time online applications using streaming data, an alternative least square based Z estimation formulation is also
stated as,

ths) = arg r}1>1(r)1 Z(Va(t) — (14 [ig)Z)? s.t. PZ=0, (4.15)
T aeA

which can be handled by simple least square solvers.
5. Numerical examples
5.1. An illustrative example using a freeway corridor

The purview of the first example is to demonstrate the process of utilizing the proposed method to identify malfunction-
ing sensors and correct erroneous data. In lieu of the display convenience of estimation results, Test Network 1 is a freeway
segment consisting of five directed links, including one on-ramp, one off-ramp and three mainline links, as shown in Fig. 2.
Out of six nodes in this network graph, four of them are origin or destination nodes, where traffic flows enter or exit; and
the other two are intermediate ones, where flow balance law is supposed to hold, so m = 2. Each link is equipped with a
traffic loop detector that counts all passing vehicles. Therefore, P is a 2 x 5 matrix as illustrated next to the network graph.

The true systematic and random error parameters for five sensors are given in Table 1. The sensor on link 4 is recently
calibrated so that both 4 and o4 are known. We now simulate 100 samples of traffic data to conduct a Monte Carlo exper-
iment. Each sample consists of 365 x 24 hourly traffic counts. Origin-destination demand in each hour is a normal variable
with parameters specified only for that interval of days. Means for weekends and holidays are discounted on the basis of
that of weekdays. Fig. 3 presents the true traffic flows of mainline corridor and ramp respectively in a sample year. Then the
observed flows for each hour are generated with true hourly volumes and the previously stated sensor measurement error
model with the listed parameters.
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Table 1
True parameters of Network 1.

Link 1 Link 2 Link 3 Link 4 Link 5

u 150 —-.150 —.350 .000* —-.200
B .869 1176 1.538 1.000* 1.250
o .300 .200 .500 .500* .300

6000 — 700 —
5000 600 —
g =500-
= 4000 =
= <400 -
é 3000 é
2 2 300 -
E 2000 E i
1000 100 - 365
= 274
0 — (o - 183
02 4 ¢ g 00 T 9 D 3 4 § g 92
6 8 10 12 14 16 18' P S ‘ 6 8 10 12 14 ¢ 18/
) 20 22 94 1 Day of year 20 22 94 1 Day of year
Hour of day Hour of day
(a) Mainline Traffic Flow (b) Ramp Traffic Flow

Fig. 3. Daily traffic profile of Network 1.

Table 2
Means (and standard deviations) of B estimates.

Hh Ha H3 Hs
True value 150 —-.150 -.350 —.200
GMM .151(.005) —.149(.003)  —.349(.003) —.199(.003)
GLS .274(.033)  —.100(.018) —.276(.019) —.118(.021)
TLS .180(.013) —.159(.012) —.331(.007) —.179(.008)
crGLS .151(.003) —.150(.002) —.350(.002)  —.199(.002)

In data aggregation, the total 8760 hourly observations of traffic flow were grouped by the hours of a day, so K = 24. In
Table 2, we present the mean and standard deviation in parentheses of estimated § using the proposed GMM method in
comparison with GLS, a straightforward approach but with inconsistent estimator, and TLS, a generic means to handle error-
in-variable model issue. All the estimates are found without the knowledge of the random error ratios. The GLS estimates
that are corrected using true o, crGLS, are also shown at last as a benchmark to assess estimation performances. Evidenced
by the sample mean and sample standard errors, the GMM estimates without knowing os’ are much more accurate and
precise compared to ungrouped GLS and TLS. Its precision is only slightly worse than that of crGLS since the latter uses true
values of parameters o.

Concerning the GMM estimation results with different sample sizes, we conduct the same experiment using data that
span one month, three months, half year and one year, respectively. In Fig. 4, the solid lines denote the finite sample distri-
bution of B estimates normally fitted using repeated simulation experiment results, while the dashed lines are asymptotic
distribution constructed using all true parameters for the corresponding sample sizes. With only one month data, the peak
(mean) of estimate differs from the true parameter due to a small sample size. As the number of observations grows, ex-
pectedly those two distributions tend to collide. The shrinkage rate of estimates’ standard deviations is about +/T.

In order to demonstrate the inferential procedure after obtaining estimates of 8, we pick the fiftieth sample among a total
of one hundred based on the order of their 8 estimates accuracy, measured by the average of relative mean squared errors.
First, the generalized moment dispersion matrix 2 is computed using estimated o as shown in Table 3 and illustrated by
showing its first two blocks that correspond to the first two groups k = 1, 2. Then the estimate variance-covariance matrix
¥ is found and used to find standard errors. Note they are slightly different than those of asymptotic distribution shown
in Fig. 4, because they are computed using true parameters instead of one particular sample estimate. Finally, the absolute
values of test statistics are much larger than critical values at a significance level of.01. Therefore, it is statistically significant
to reject the null hypotheses that those sensors do not have systematic errors.
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Fig. 4. Distribution of 8 estimates over sample size T.

Table 3
Statistical inference results of Network 1.
Group, - - - -
Node 1,1 1,2 2,1 2,2 e Link 1 Link2 Link3 Link5
' : Estimated 8 .869 1.173 1.538 1.250
328 -.251 0 0 s
i’ é 951 404 ! 0 0 b Estimated o 295 218 494 299
’ B g Standard Error  .00199  .00313 .00368 .00273
21 0 0 A% =391 0 Test statistic -65.87 55.33 146.31 91.58
2,2 0 0 -399 554 ! 9 . . . :

0 0 v . 01 is +2.58.

I

I
******** ======-=-4-= *The critical value of a two-sided Wald test at the a significance level of

. . |
Ilustration of Q Matrix of Network 1
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Fig. 5. Corrected traffic flow of Network 1.

Next we compare the observed hourly counts, corrected flows using LS or MLE in Fig. 5 against true traffic flows. We
are particularly interested in comparing the performances of correcting flows on mainline versus ramp sensors as well as
uncalibrated malfunctioning versus calibrated sensors. For the sake of clarity, we randomly select ten percent of sample
points to show on the scatter plots. From all three graphs, it is manifest that MLE corrected flows with relatively accurate
estimates of o are more reliable than those of LS. Although the existing random errors of the mainline sensor are higher
than that of ramp sensors as shown by green dots, the mean squared errors of MLE estimates for mainline sensor is actually
smaller as shown by blue dots. In short, the correction results on the mainline sensor appear better than that on ramp
sensors in this example. This is mainly due to the dominant magnitude of mainline flows. For calibrated ramp sensor 4,
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Fig. 6. Modified Nguyen-Dupuis network.

Table 4
Random error parameters.

Sensor Group 1 1 6 11 16 21 26 31 36 41 46

True o 20 05 20 30 35 40 05 15 40 .20
Sensor Group 2 2 7 12 17 22 27 32 37 42 47
True o 30 .10 30 20 40 .05 20 30 30 40
Sensor Group 3 3 8 13 18 23 28 33 38 43 48
True o .05 .15 .10 25 15 05 40 35 15 15
Sensor Group 4 4 9 14 19 24 29 34 39 44 49
True o 15 20 40 10 30 .10 25 05 35 15
Sensor Group 5 5 10 15 20 25 30 35 40 45 50
True o .10 25 .05 10 40 40 30 35 .05 .10

the MLE corrected flows have a similar error scale with the original observed counts. It indicates that MLE approach does
not have a significant improvement on eliminating random error for this particular sensor. This could be ascribed to the
fact that, unlike mainline link that connects two intermediate nodes, ramp link is only associated with one nodal balance
equation.

5.2. Numerical tests using a general network

We performed a series of numerical tests using a general network in Fig. 6. It consists of 6 origin/destination (shown with
double circles), 19 intermediate nodes and 50 directed links. Instead of having a fixed structure like in unidirectional freeway
corridor, this general network is bidirectional with asymmetric flows. One hundred samples of road traffic are simulated by
randomizing flows on 50 different paths jointly and available for download.?

Sensors are deployed on all the links. In order to analyze method’s performance for sensors of different levels of system-
atic measurement errors and to mitigate the effect caused by link location in the network (e.g. connecting to one or two
intermediate nodes), we divide sensors into five groups: (1) u = —.3 (severely under-counting), (2) i« = —.1 (mildly under-
couting), (3) u# = 0 (accurately counting), (4)  =.1 (mildly over-counting), and (5) u = .3 (severely over-counting). Each
group is assigned with ten sensors and illustrated using different colors in Fig. 6. The calibrated sensors are on link 3, 8 and
13. The random error parameter o are given in Table 4.

There are three types of measures used to assess the estimation quality. From each data sample, estimation error of u
for sensor a is calculated as,

estimation error ™! = 3™ _ ;i g e A, smpl=1,....S, (5.1)

where S is the number of samples. Average estimation bias and standard error among all sensors are expressed as

. 1 1vS 7; smpl

average bias = 11 Laea | § Lampict Aa™ — 1. (5.2)
S ~ smpl S 75 smpl ’

average standard error = |]7| D aea \/ slﬁ Zsmpl:l (Hvzmp - % Zsmpl=1 g )2'

5.2.1. Aggregation group size
The first experiment compares those quality measures using different group sizes for aggregating observations. In the
last example, the aggregation strategy is based on the hour of day. This matches the data generation setup that each hourly

2 https://github.com/yudiaspen/sensor-bias-estimation/nguyen-depuis.
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Fig. 8. The effect of aggregation group size.

traffic is sampled from a different population. For the current network, without exploiting this feature, we adopt K-means
clustering technique, a more generic way to partition observations. The clustering approach adopted in this paper is based
on Euclidean distance between V's. Fig. 7 demonstrates the results of K-means clustering for K = 24. The color of a cell
represents the probability of each hour (column) observations fall in a cluster (row): a warmer color indicates a higher
probability and vice versa. Most of clusters tend to scatter over several time periods during daytime, while other clusters
concentrate on several night hours, since traffic flows at that time are considerably lower than that in daytime.

We start from K = 6 in Fig. 8, since estimation problem with fewer group does not allow a numerically stable solution
due to lack of information. On one hand, as more independent equations are supplied, the average standard error drops
rapidly as the group size doubles from 6 to 12. The effect of incorporating new equations gradually vanishes after K is
greater than 12. On the other hand, having smaller groups enlarges the random error in (!X and leads to a slight increase
in bias from K = 24 to K = 192. The box plots of individual estimation errors echo the observations made on the average
measures. They shrink in size and lean towards the positive direction as K rises.

5.2.2. Random error scale
In this experiment, we are interested in examining the effect of random error scale on the estimates of systematic error
ratio. The magnitude of random error is varied by multiplying the original value of o, given in Table 4 with a scalar, then

oSt = Ao - 0. (5.3)

We consider six scenarios Ao =0, .4,.8,1.2,1.6, and 2. Instead of directly showing Ao on the horizontal axis of the plot
in Fig. 9, we employ a more straightforward quantity to present the scale of random error, which is computed using

S T S T
Relative Random Error= " Y~ )" |Ua(t)‘smpl|/ 33>z (5.4)

smpl=1aeA t=1 smpl=1 aeA t=1

and linearly related to Ao.
In Fig. 9, average standard error has approximately a linear growth as the relative random error rises, because aver-
age standard error?octr( 2 )xtr(Q)ocAc 2. The operator tr() denotes the trace of a matrix. The curve of average bias is much
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Fig. 10. The effect of calibrated sensors.

more convex: the “attenuation bias” caused by random measurement error in Ct¥l becomes a significant problem after rel-
ative random error exceeds 8%. It is known that in this case B is underestimated, so u = 1/ — 1 is overestimated as illus-
trated by the boxes of estimation errors grouped by sensor u’s.

5.2.3. Calibrated sensors

In this paper, having a calibrated sensor indicates that there is no systematic errors and known random error scale. It
is manifest that the more calibrated sensors are there before estimation, the better the estimates should be. Therefore, we
concern about the dependence of estimate quality on the number of calibrated sensor. On one hand, the method should be
able to find a more reliable estimate of systematic error as more sensors are calibrated. On the other hand, it should reach
a satisfactory level of performance without requiring too many calibrated sensors, which would otherwise compromise the
purpose of estimation. From Fig. 10, we can tell that the proposed method excels on both aspects: the bias and standard
error decreases as the number of calibrated sensors increases; despite a substantial improvement from one sensor to two,
the marginal gain from more calibrated sensors diminishes as the number of calibrated sensors goes beyond two.

5.2.4. Unbalanced flows

It is not very likely that hourly link flows that connect to the same physical road traffic network node has significant
imbalance since the effect of shockwaves caused by queuing and dequeuing between links are probably averaged out over
such a long period of time. However, since our estimation model assumes perfect balance, it is still meaningful to examine
the robustness of the proposed approach against the different levels of flow balance law violation. The nodal relation is now
expressed as in (2.7) and the true flow is set to be

70 =7y} + AZ\[Z) 2. a € A, (5.5)

where Zg , is the adjusted flow on link a that obey balance law precisely, AZ is a disturbance parameter, and Z is a standard
normally distributed scalar.

Fig. 11 demonstrates that as AZ increases from 0 to 1 and flow imbalance ratio rises to 10% correspondingly, estima-
tion error of w only gradually increases to.l on average. This is because upon long observation interval (one hour), the
aggregation of data further mitigates the impact of flow imbalance. The use of K mean clusters also helps obviating po-
tential structural imbalance caused by queuing and dequeuing at certain link in a particular hour of day. The situation is
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Fig. 12. The effect of flow imbalance on correcting Z.

different for correcting flows. In Fig. 12, we plot the scatter points for correction quality of a data sample in six scenarios

(AZ=0,.2,...,1) against the difference between true and balanced flow, represented by mean squared error (MSE), that is
11w

MSE( Z8) = 17 Y@z, (5.6)
aeA t=1

We use Zg to denote the corrected flow when there is no flow imbalance. The shaded areas cover 95% points of their own
colors, respectively. The dotted lines represent the mean values of the MSE. Since corrected flows using imbalanced flow Z
still follow balance law strictly, the correction error (blue) between that and unbalanced true flow is increasing and reaches
around 200 when AZ = 1. But it is worth noting that such error is significantly lower than MSE(Z, Zg). In fact, among
balanced flows, Z is a better prediction of Z compared to original balanced flows Zz except in the case where flow balance
is perfectly held.

5.2.5. Stochastic error generation

As explained in Section 2.1, the relative strong assumption we impose to obtain a linear measurement error model is
that the error generation mechanism is consistent in all time intervals and does not depend on the flow variables. We now
examine how our model performs when such constant error generation assumption does not hold true.

In this test, we suppose that systematic error p to be a random vector that is normally distributed

Ha= a1+ ApZ),ae A, (5.7)

where [i, is a constant and has the same meaning with p in the fixed linear model, A is a multiplier that controls
the variation of all u,'s and Z is a standard normal variable. In Fig. 13, the value of Au is given from 0 to.3 with a
step of.05. The shaded region is the 95% probabilistic range of true systematic error ratios resulted from stochastic error
generation, while the monochromatic region is the 95% probabilistic range of estimated systematic error ratios. For those
severely malfunctioning sensors, the range of [ is much smaller than wu, indicating a significant effect of variance reduction.
For the healthy sensors, & does not vary and the range of [ is relatively small. For sensors that are mildly functioning,
those two regions are approximately the same and the one for [ is slightly tilted up due to estimation bias accounted for
this additional randomness. Although error generation is stochastic now and our model is indeed misspecified, as shown in
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Fig. 14. The effect of stochastic error on correcting Z.

violin plots of Fig. 14, the relative correction error of Z is marginal and only reaches 5% when Au = .3. In this figure, each
diagram is made of T x |.A| = 438000 points from a single data sample. Colored shape and boxes insides cover 95% and 50%
of them respectively.

5.3. A large-scale case

The North Orange county freeway network shown in Fig. 15 is to demonstrate the scalability of this proposed method.
On the OpenStreet map, the graph constituted by blue links is the example network. It is consisted of 494 nodes (92 ori-
gin/destination nodes and 402 intermediates nodes) and 674 links (362 mainline segments, 56 interfreeway ramps, 128 on
ramps, and 128 off ramps). The connectivity data as well as simulated traffic flows and observation are available online.?

Out of the 674 sensors, there are 274 healthy ones with pq = 0, but only 5 of them are recently calibrated, so the number
of known elements in p is only 5. Systematic error ratios w, for the other 400 problematic sensors is randomly drawn from
a uniform distribution between —.5 and 0.5. Random error ratios o, for all the sensors are randomly drawn from a uniform
distribution between 0.05 and 0.45. We still have the same 365 x 24 hourly data over a year. K-means clustering is used to
group observations with K = 24. Fig. 16 shows that the estimates (blue) of w for 669 sensors of 100 simulated data samples
are exceptionally good with a very narrow 95% range (red) along the diagonal line which indicates perfect estimation. To
ensure that the scatter plot for Z is readable, we only present Z in one day from just a single sample (16176 data points) in
Fig. 17, which clearly demonstrates the correction benefits via comparing Z (blue) with observed V (green).

6. Conclusion
In this paper, we have developed a GMM-based statistical model to identify sensor measurement errors in a network

context. We translate nodal flow balance law into structural equations, whose first moments are employed to estimate
the systematic error ratio of sensors. The proposed framework allows a flexible data aggregation strategy, for which the

3 https://github.com/yudiaspen/sensor-bias-estimation/north-orange.
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Fig. 15. North orange county freeway network.
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traditional MOM and GLS are extreme cases. With such strategy, it is possible, without knowing random error ratios, to
improve parameter identification by separating observations to more groups or to amend estimator consistency by clustering
observations to fewer groups. Then we leverage the second generalized moments to obtain the estimates of random error
ratios. It results in a simple quadratic minimization problem with systematic error ratios estimate known-a-priori. There
are multiple uses of such nuisance parameters: first, to construct the optimal weighting matrix in order to refine estimator
precision with a fixed sample size; second, to infer sensor health by conducting Wald tests; third, to derive MLE estimates
for true traffic flow given observed counts.

The major contribution of this paper is two-fold. First, the proposed method is capable of evaluating the level of data
issue and correcting traffic flow data in addition to identifying malfunctioning sensors, while most previous sensor health
studies concerned only the latter. Second, it utilizes network structure of traffic monitoring system, while many previous
studies that focused on spatial relation gave attention only to those immediately neighboring sensors on a corridor. Com-
pared to the works in Sun et al. (2016) and Yin et al. (2017), which also exploited the network feature, our method lessens
their requirement of flow balance on the entire network, which may take several hours to establish. Instead, the way of flow
balance equations (2.5) being used in our method, only concerns the adjacent sensors at one time and requires much less
time to establish. Thus, it is possible for users to choose much shorter time interval and obtain larger sample within a fixed
total observation time. It is also interesting to notice that the network flow balance equations are also widely considered
in the studies of other related estimation problems, for instance, link flow inference and path or O-D flow reconstruction



38 Y. Yang, H. Yang and Y. Fan/Transportation Research Part B 122 (2019) 20-39

= i - .
(=R Lo e .
e Estimated Flow T
* Observed Flow
=
S |
S
NS
o
S |
<N g
=
S |
S
Q
o 4
T T T T I
0 2000 4000 6000 8000
V4

Fig. 17. Z correction result in North Orange county network.

(Cascetta, 1984; Hazelton, 2000). In those problems, such knowledge is used to infer unknown variables based on unbiased
observations. However in this problem, even the bias and random ratios of the observed data are both unknown, thus we
creatively construct relation between unknown variables, true flows based on such knowledge.

The estimation method in this paper is somewhat exemplary in the sense that it provides a conservative statistical ap-
proach to a novel problem. It only considers the most well-examined data type, traffic counts as well as probably most
commonly accepted measurement error and network models. In practice, there are multiple types of sensor data available,
such as flow, density, and speed. Also, other than having proportional measurement errors, an error model that can exactly
capture the error generation mechanisms of different sensor issues could probably result in a better fit of real data. Besides
flow balance law based on network graph, other useful transportation domain knowledge including speed-density relation-
ship and macroscopic traffic flow models can certainly provide additional information, which should be incorporated to an
error identification model in the future. Finally, it is also convenient to formulate common beliefs on sensor health, such as
fewest malfunctioning sensors and least total systematic errors, using regularization techniques. In light of the highly adapt-
able nature of the proposed framework, we foresee no obstacle in extending the existing approach using supplementary
data and knowledge types and alternative model specifications.

More interesting and important research opportunities are available when we are open to discuss technical details of
constructing the network graph. The absence of sensors in certain links creates a situation that requires non-adjacent links
to form a nodal flow balance relation. It must be handled with caution in order to avoid unnecessary bias introduced by
relating too distant sensors. A promising way to do so is to build a new sensor network graph focusing on the spatial relation
of sensors. Another issue is about sensor aggregation. In this paper, we consider a detector station as a sensor. However, it
will be practically more useful to monitor the health of an individual detection unit in each lane of a multi-lane roadway,
so we can narrow down to the one that needs calibration. In fact, this challenge can be handled as a natural extension of
this proposed framework by splitting a road based link into multiple lane based links and augmenting a network graph to
a multi-graph (multiple arc connecting two adjacent nodes). The resulting mathematical model is expected to be larger but
only in a linear growth rate. Even with the same amount of available data, we may still be able to identify the model with
only some small loss in estimation reliability.
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