

a journal of mathematics

Edge-transitive graphs and combinatorial designs

Heather A. Newman, Hector Miranda, Adam Gregory and Darren A. Narayan

Edge-transitive graphs and combinatorial designs

Heather A. Newman, Hector Miranda, Adam Gregory and Darren A. Narayan

(Communicated by Anant Godbole)

A graph is said to be edge-transitive if its automorphism group acts transitively on its edges. It is known that edge-transitive graphs are either vertex-transitive or bipartite. We present a complete classification of all connected edge-transitive graphs on less than or equal to 20 vertices. We investigate biregular bipartite edge-transitive graphs and present connections to combinatorial designs, and we show that the Cartesian products of complements of complete graphs give an additional family of edge-transitive graphs.

1. Introduction

A graph is vertex-transitive (edge-transitive) if its automorphism group acts transitively on its vertex (edge) set. We note the alternative definition given in [Andersen et al. 1992].

Theorem 1 (Andersen, Ding, Sabidussi, and Vestergaard). A finite simple graph G is edge-transitive if and only if $G - e_1 \cong G - e_2$ for all pairs of edges e_1 and e_2 .

We also mention the following well-known result, which appears as Proposition 15.1 in [Biggs 1974].

Proposition 2. If G is an edge-transitive graph, then G is either vertex-transitive or bipartite; in the latter case, vertices in a given part belong to the same orbit of the automorphism group of G on vertices.

Given a graph G we will denote its vertex set by V(G) and edge set by E(G). We will use K_n to denote the complete graph with n vertices, and $K_{m,n}$ to denote the complete bipartite graph with m vertices in one part and n in the other. The path on n vertices will be denoted by P_n and the cycle on n vertices by C_n . The disjoint union of t copies of a graph H will be denoted by tH. The cube on t vertices will be denoted by t will be denoted by t. For any undefined notation, please see [West 2001].

MSC2010: 05C25.

Keywords: edge-transitive, combinatorial designs.

Definition 3. A graph is regular if all of its vertices have the same degree. A bipartite graph is said to be biregular if all vertices on the same side of the bipartition have the same degree. Particularly, we refer to a bipartite graph with parts of size m and n as an (r, s)-biregular subgraph of $K_{m,n}$ if the m vertices in the same part each have degree s.

It follows from Proposition 2 that bipartite edge-transitive graphs are biregular.

Definition 4. Given a group G and generating set S, the Cayley graph $\Gamma(G, S)$ is a graph with vertex set $V(\Gamma)$ and edge set

$$E(\Gamma) = \{\{x, y\} \mid x, y \in V(\Gamma), \text{ there exists an integer } s \text{ in } S \text{ such that } y = xs\}.$$

It is known that all Cayley graphs are vertex-transitive. Next we recall a specialized class of Cayley graphs known as circulant graphs.

Definition 5. A circulant graph $C_n(L)$ is a graph on vertices v_1, v_2, \ldots, v_n where each v_i is adjacent to $v_{(i+j) \pmod n}$ and $v_{(i-j) \pmod n}$ for each j in a list L. Algebraically, circulant graphs are Cayley graphs of finite cyclic groups. For a list L containing m items, we refer to $C_n(L)$ as an m-circulant. We say an edge e is a chord of length k when $e = v_i v_j$, $|i - j| \equiv k \pmod n$.

In our next definition we present another family of vertex-transitive graphs.

Definition 6. A wreath graph, denoted by W(n, k), has n sets of k vertices each, arranged in a circle where every vertex in set i is adjacent to every vertex in bunches i+1 and i-1. More precisely, its vertex set is $\mathbb{Z}_n \times \mathbb{Z}_k$ and its edge set consists of all pairs of the form $\{(i, r), (i+1, s)\}$.

It was proved in [Onkey 1995] that all wreath graphs are edge-transitive. We next recall the definition of the line graph which we use later to show that certain graph families are edge-transitive.

Definition 7. Given a graph G, the line graph L(G) is a graph where V(L(G)) = E(G) and two vertices in V(L(G)) are adjacent in L(G) if and only if their corresponding edges are incident in G.

Finally we recall the operation of the Cartesian product of graphs.

Definition 8. Given two graphs H and K, with vertex sets V(H) and V(K), the Cartesian product $G = H \times K$ is a graph where

$$V(G) = \{(u_i, v_i) \mid u_i \in V(H) \text{ and } v_i \in V(K)\}$$

and $\{(u_i, v_j), (u_k, v_l)\} \in E(G)$ if and only if i = k and v_j and v_l are adjacent in K or j = l and u_i and u_k are adjacent in H.

The properties vertex-transitive and edge-transitive are distinct. This is clear with the following examples:

- K_n , $n \ge 2$, is both vertex-transitive and edge-transitive.
- $C_n(1,2)$, $n \ge 6$, is vertex-transitive, but not edge-transitive.
- $K_{1,n-1}$ is not vertex-transitive, but is edge-transitive.
- P_n , $n \ge 4$, is neither vertex-transitive nor edge-transitive.

However the two properties are linked, as is evident from the following proposition, which is a consequence of results of [Whitney 1932; Sabidussi 1961].

Proposition 9. A connected graph is edge-transitive if and only if its line graph is vertex-transitive.

Note, however, that a graph may not be the line graph of some original graph. For example, $K_{1,3} \times C_4$ is vertex-transitive, but it follows by a theorem of [Beineke 1968] that this graph is not the line graph of some graph.

We used the databases from Brendan McKay¹ to obtain all connected edge-transitive graphs on 20 vertices or less. We then reported the number of edge-transitive graphs up to 20 vertices to the Online Encyclopedia of Integer Sequences, and they are listed under sequence #A095424. The full classification of these graphs is given in the online supplement. We can extrapolate much from this data and these results are presented in this paper. It was recently brought to our attention that Marston Conder and Gabriel Verret independently determined the edge-sets of the connected edge-transitive bipartite graphs on up to 63 vertices² using the Magma system, and a complete list of all connected edge-transitive graphs on up to 47 vertices³ with their edge sets.⁴ In our paper we provide additional details about these graphs, allowing us to generalize some cases to infinite families of graphs.

We note the following graph families are edge-transitive: K_n , $n \ge 2$; C_n , $n \ge 3$; $K_{n,n}$ minus a perfect matching; K_{2n} minus a perfect matching; and all complete bipartite graphs $K_{t,n-t}$, $1 \le t \le \lfloor \frac{n}{2} \rfloor$. Wreaths [Onkey 1995] and Kneser graphs [Godsil and Royle 2001, pp. 135–161] are also edge-transitive. Besides these predictable and apparent cases, we can identify other infinite families of edge-transitive graphs, using the data up through 20 vertices.

We say that H is an (r, s)-biregular subgraph of $K_{m,n}$ if H is bipartite graph with degrees r and s. In Section 2 of this paper we begin by exploring the problem of

¹http://users.cecs.anu.edu.au/~bdm/data/graphs.html

² https://www.math.auckland.ac.nz/~conder/AllSmallETBgraphs-upto63-summary.txt

³ https://www.math.auckland.ac.nz/~conder/AllSmallETgraphs-upto47-summary.txt

⁴ https://www.math.auckland.ac.nz/~conder/AllSmallETgraphs-upto47-full.txt

determining which values of m, n, r, s, where mr = ns, result in a (connected) (r, s)-biregular subgraph of $K_{m,n}$ that is edge-transitive. In Section 2.1, we investigate bipartite edge-transitive graphs where one of the two vertex degrees in G is 2.

Connections between balanced incomplete block designs and graphs are well-known. For some recent papers, see [Abueida and Pike 2013; Mamut et al. 2004; McKay and Pike 2007]. In Section 2.2, we investigate connections between edge-transitive graphs and balanced incomplete block designs.

2. Connected bipartite graphs

Given positive integers m and n, we first describe which values of r and s are possible for an (r, s)-biregular subgraph of $K_{m,n}$. Note that if gcd(m, n) = 1, the only biregular subgraph of $K_{m,n}$ is $K_{m,n}$.

Proposition 10. An (r, s)-biregular subgraph of $K_{m,n}$ satisfies

$$mr = ns,$$

 $r = \frac{n}{\gcd(m, n)}k, \quad k = 1, 2, \dots, \gcd(m, n).$

Proof. We know

$$s = \frac{mr}{n} = \frac{m/\gcd(m, n)}{n/\gcd(m, n)}r,$$

and since

$$\gcd\!\left(\frac{m}{\gcd(m,n)},\frac{n}{\gcd(m,n)}\right) = 1,$$

r is a multiple of $n/\gcd(m,n)$ (and is less than or equal to n).

Corollary 11. If gcd(m, n) = 2, there are only two possible pairs (r, s), namely, $(r, s) = \left(\frac{n}{2}, \frac{m}{2}\right)$ and (r, s) = (n, m). The latter case is the complete bipartite graph $K_{m,n}$.

We now introduce a construction for generating nontrivial edge-transitive (connected) bipartite subgraphs of $K_{m,n}$ for gcd(m,n) > 2. This construction involves a process of extending a nontrivial edge-transitive (connected) bipartite graph to a larger one, which we describe in the following lemma.

Lemma 12. Let G be an edge-transitive (connected) (r,s)-biregular subgraph of $K_{m,n}$. Then, for any positive integers a,b, and r, the subgraph G can be extended to an edge-transitive (connected) (ra,sb)-biregular subgraph of $K_{mb,na}$.

Proof. It suffices to show that, by letting G be a (connected) edge-transitive (r, s)-biregular subgraph of $K_{m,n}$, we can build a (connected) edge-transitive graph H that is an (r, 2s)-biregular subgraph of $K_{2m,n}$. Let G consist of partite sets A, B,

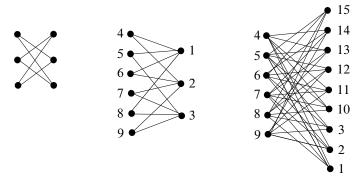


Figure 1. An example of the construction in the theorem, with vertices drawn in the same color being vertices that are connected to the graph in the same way.

where $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$. Now create the set $A' = \{a_1, a_2, \dots, a_m, a'_1, a'_2, \dots, a'_m\}$ and create a graph H with partite sets A' and B as follows. For each a_i , let $N_H(a_i) = N_G(a_i)$. For each a'_i , let $N_H(a'_i) = N_G(a_i)$. Then by construction, H is a (connected) (r, 2s)-biregular subgraph of $K_{2m,n}$. Since G is edge-transitive, H is edge-transitive by construction. \square

It turns out we can use the results above to state the following general theorem.

Theorem 13. Let gcd(m, n) > 2. Then there exists a noncomplete edge-transitive (connected) subgraph of $K_{m,n}$.

Proof. We appeal to the construction in the preceding lemma, and consider the following two cases. It may be helpful to refer to Figure 1.

<u>Case 1</u>: $m \mid n$. Then n = mk for some positive integer k. Let G be the graph that results from removing a perfect matching from $K_{m,m}$. Then G is connected, biregular, and edge-transitive but not complete. Repeating the construction in the lemma k-1 times, we obtain a subgraph of $K_{m,mk} = K_{m,n}$ that is connected, biregular, edge-transitive, and not complete.

Case 2: $m \nmid n$. Let $l = \gcd(m, n)$ and $m = k_1 l$, $n = k_2 l$. Let G be the graph that results from removing a perfect matching from $K_{l,l}$. Then G is connected, biregular, and edge-transitive but not complete. Following the construction in the lemma, increase the left partite set by l vertices $k_1 - 1$ times and the right partite set by l vertices $k_2 - 1$ times. The resulting graph will be a connected, biregular, and edge-transitive subgraph of $K_{k_1 l, k_2 l} = K_{m,n}$ but not complete.

Remark 14. Theorem 13 gives rise to the following observations/questions:

• When gcd(m, n) = 1, the only possible (connected) biregular subgraph is the complete graph $K_{m,n}$.

- When gcd(m, n) = 2, the method fails because the only connected, biregular subgraph of $K_{2,2}$ is $K_{2,2}$, and we seek a noncomplete bipartite graph.
- When gcd(m, n) = 2, under what additional conditions does the theorem still hold?
- **2.1.** Edge-transitive (connected) (r, 2)-biregular subgraphs of $K_{m,n}$. We now investigate bipartite edge-transitive graphs where one of the two vertex degrees in G is 2. We will provide a construction for some graphs in this family. As pointed out by a referee, such a graph G can be obtained by subdividing every edge of another multigraph F. Here F is formed by taking a complete graph on m vertices and "cloning" each of its edges a fixed number of times. Let F be the graph with m vertices and t edges between each pair of distinct vertices. This forms a multigraph with m vertices and $s = t {m \choose 2}$ edges. Subdividing each edge yields a bipartite subgraph of $K_{m,s}$ with degrees (t(m-1), 2). We could also create F by taking other arc-transitive graphs and cloning each of the edges a fixed number of times.

Using this construction, in general G is edge-transitive if and only if F is arctransitive. In these arc-transitive multigraphs, every edge must have the same multiplicity, hence reducing this case to the study of arc-transitive graphs. We formalize these ideas in the following theorem.

Theorem 15. G is an edge-transitive connected (r, 2)-biregular subgraph of $K_{m,n}$ if and only if there exists an arc-transitive graph F such that F is obtained by contracting every edge of G.

Proof. Let G is an edge-transitive connected (r, 2)-biregular subgraph of $K_{m,n}$. Then any two edges e_1 and e_2 incident to the same vertex in the part of size n are indistinguishable. Then contracting the P_3 with edges e_1 and e_2 results in an edge between vertices in F that is indistinguishable in either direction. Hence F is arc-transitive. For the other direction, using reasoning similar to the above, note that subdividing edges of an arc-transitive graph results in a graph that is edge-transitive.

We use this theorem for small cases of |V(G)|. We first consider the case where m=4. Assume that G is an (r,2)-biregular subgraph of $K_{4,n}$. Then F is an arctransitive multigraph of order 4 with degrees equal to r. Since the only arc-transitive graphs of order 4 are K_4 , C_4 , and $2P_2$, we know F must be one of these three graphs with each edge cloned a fixed number of times. This will give a complete classification for G. This method can be generalized for cases where all of the arc-transitive graphs of a given order are known.

We next use the same procedure on graphs of up to nine vertices. A list of all of the arc-transitive graphs for small orders (with a minor correction) is found on MathWorld [Weisstein]:

- |V(G)| = 2:
 - P_2 with edges cloned $t \ge 2$ times gives a (t, 2)-biregular subgraph of $K_{2,t}$.
- |V(G)| = 3:
 - C_3 with edges cloned $t \ge 2$ times gives a (2t, 2)-biregular subgraph of $K_{3,3t}$.
- |V(G)| = 4:
 - K_4 with edges cloned $t \ge 2$ times gives a (3t, 2)-biregular subgraph of $K_{4,6t}$.
 - C_4 with edges cloned $t \ge 2$ times gives a (2t, 2)-biregular subgraph of $K_{4,4t}$.
- |V(G)| = 5:
 - K_5 with edges cloned $t \ge 2$ times gives a (4t, 2)-biregular subgraph of $K_{5,10t}$.
 - C_5 with edges cloned $t \ge 2$ times gives a (2t, 2)-biregular subgraph of $K_{5,5t}$.
- |V(G)| = 6:
 - K_6 with edges cloned $t \ge 2$ times gives a (5t, 2)-biregular subgraph of $K_{6,15t}$.
 - C_6 with edges cloned $t \ge 2$ times gives a (2t, 2)-biregular subgraph of $K_{6,6t}$.
 - $C_6(1,2)$ with edges cloned $t \ge 2$ times gives a (4t,2)-biregular subgraph of $K_{6,12t}$.
 - $K_{3,3}$ with edges cloned $t \ge 2$ times gives a (3t,2)-biregular subgraph of $K_{9,9t}$.
- |V(G)| = 7:
 - K_7 with edges cloned $t \ge 2$ times gives a (6t, 2)-biregular subgraph of $K_{7,21t}$.
 - C_7 with edges cloned $t \ge 2$ times gives a (4,2)-biregular subgraph of $K_{7,7t}$.
- |V(G)| = 8:
 - K_8 with edges cloned $t \ge 2$ times gives a (7t, 2)-biregular subgraph of $K_{8,28t}$.
 - C_8 with edges cloned $t \ge 2$ times gives a (4, 2)-biregular subgraph of $K_{8,8t}$.
 - $C_8(2,4)$ with edges cloned $t \ge 2$ times gives a (4t,2)-biregular subgraph of $K_{8.16t}$.
 - $C_8(1,2,3)$ with edges cloned $t \ge 2$ times gives a (6t,2)-biregular subgraph of $K_{8,24t}$.
 - Q_8 doubled gives a (3t, 2)-biregular subgraph of $K_{8,12t}$.
 - $K_{4,4}$ doubled gives a (4t, 2)-biregular subgraph of $K_{8,16t}$.
- |V(G)| = 9:
 - K_9 with edges cloned $t \ge 2$ times gives a (8t, 2)-biregular subgraph of $K_{9,36t}$.
 - C_9 with edges cloned $t \ge 2$ times gives a (4,2)-biregular subgraph of $K_{9,9t}$.
 - $C_3 \times C_3$ doubled gives a (4t, 2)-biregular subgraph of $K_{9,18t}$.
 - $K_{3,3,3}$ doubled gives a (8,2t)-biregular subgraph of $K_{9,36t}$.

We can also state a result of a general nature. For every positive integer n, K_n and C_n are arc-transitive graphs. As a result, we can double K_n to obtain an (n-1,2)-biregular subgraph of K_{n,n^2-n} and double C_n to obtain a (4,2)-biregular subgraph of $K_{n,2n}$. For even n we can double $K_{\frac{n}{2},\frac{n}{2}}$ to obtain an (n,2)-biregular subgraph of $K_{n,2n^2}$. Other graphs will depend on the prime factorization of n.

2.2. Edge-transitive graphs and combinatorial designs. We now explore regular and biregular edge-transitive bipartite graphs, where the valences can be larger than 2. In fact we will provide constructions of edge-transitive bipartite graphs where the valences can be made arbitrarily large. We investigate connections between biregular bipartite edge-transitive graphs and combinatorial designs. Here the edge incidences arise directly from the combinatorial structure. We begin by recalling the definition of a balanced incomplete block design (BIBD).

Definition 16. A (v, b, r, k, λ) -BIBD is an arrangement of v objects (varieties) into b blocks such that

- (i) each object appears in exactly r blocks,
- (ii) each block contains exactly k (k < v) objects, and
- (iii) each pair of distinct objects appear together in exactly λ blocks.

A partially balanced incomplete block design is a design where λ is not fixed.

A BIBD is called symmetric if v = b. Connections are known between the existence of symmetric BIBDs and edge-transitive graphs [Levi 1942; Yang et al. 2016]. A symmetric BIBD is defined for any block design (P, B), where P is the set of points and B is the set of blocks with every edge representing an incident point-block pair (p, B). We note that a projective plane of order n is equivalent to a bipartite graph with two parts each of size $n^2 + n + 1$, where every vertex has degree n+1, and every two vertices in the same part have a unique common neighbor. The edge-transitive Levi graphs are incidence graphs of the projective plane. Yang, W. Liu, H. Liu, and Feng [Yang et al. 2016] proved a relationship between incidence graphs and BIBDs. These showed a connection between edge-transitive regular bipartite graphs and flag transitive symmetric block designs.

We note here that connections also exist between nonsymmetric (v, b, r, k, λ) -balanced incomplete block designs and edge-transitive graphs.

Example 17. Consider the (4, 6, 3, 2, 1)-block design with blocks

$$\{y_1, y_2\}, \{y_1, y_3\}, \{y_1, y_4\}, \{y_2, y_3\}, \{y_2, y_4\}, \{y_3, y_4\}.$$

This corresponds to the graph in Figure 2 where the edges connect vertices corresponding to the different points in P and different elements of the blocks.

The edge-transitivity of this graph follows from the symmetry as the neighborhoods of the vertices on the left side are the $\binom{4}{2}$ different pairs of the vertices y_1, y_2, y_3 , and y_4 . As a result the (4, 6, 3, 2, 1)-block design corresponds to an edge-transitive (2, 3)-biregular subgraph of the complete bipartite graph $K_{6,4}$.

Example 18. Consider the (5, 10, 4, 2, 1)-block design with blocks

$$\{y_1, y_2\}, \{y_1, y_3\}, \{y_1, y_4\}, \{y_1, y_5\}, \{y_2, y_3\}, \{y_2, y_4\}, \{y_2, y_5\}, \{y_3, y_4\}, \{y_3, y_5\}, \{y_4, y_5\}.$$

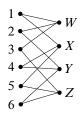


Figure 2. The bipartite graph from Example 17.

This corresponds to an edge-transitive (2, 4)-biregular subgraph of the complete bipartite graph $K_{10,5}$.

We can generalize the past two examples in the following theorem, where we consider the different subsets of size k from the set $\{y_1, y_2, \dots, y_t\}$.

Theorem 19. For any $k \in \mathbb{Z}^+$, $a(t, \binom{t}{k}, r, k, 1)$ -balanced incomplete block design forms the incidences of an edge-transitive $K_{\binom{t}{k}, t}$ graph.

Proof. The edge-transitivity of the graph follows from the fact that neighbors of the vertices on the left are the different subsets of k vertices on the right. \Box

Theorem 19 can be further generalized by replacing each y_i with multiple elements.

Example 20. Using the design from Example 17, we replace each y_i with the elements $y_{i,1}$ and $y_{i,2}$. This creates the design

$$\begin{aligned} & \big\{ \{y_{1,1}, y_{1,2}\}, \{y_{2,1}, y_{2,2}\} \big\}, & \big\{ \{y_{1,1}, y_{1,2}\}, \{y_{3,1}, y_{3,2}\} \big\}, \\ & \big\{ \{y_{1,1}, y_{1,2}\}, \{y_{4,1}, y_{4,2}\} \big\}, & \big\{ \{y_{2,1}, y_{2,2}\}, \{y_{3,1}, y_{3,2}\} \big\}, \\ & \big\{ \{y_{2,1}, y_{2,2}\}, \{y_{4,1}, y_{4,2}\} \big\}, & \big\{ \{y_{3,1}, y_{3,2}\}, \{y_{4,1}, y_{4,2}\} \big\}. \end{aligned}$$

This will correspond to a $(2t, \binom{t}{k}, \frac{(t-1)!}{(k-1)!(t-k)!}, 2k, \lambda)$ -partially balanced incomplete block design which forms the incidences of an edge-transitive $K_{\binom{t}{k}, 2t}$ graph.

In general we can replace each y_i with the elements $y_{i,1}, y_{i,2}, \ldots, y_{i,s}$ to form a larger class of edge-transitive graphs.

Theorem 21. For integers $k \ge 1$ and $s \ge 0$ a $\left(st, {t \choose k}, \frac{(t-1)!}{(k-1)!}, sk, \lambda\right)$ -partially balanced incomplete block design forms the incidences of an edge-transitive $K_{{s \choose k},kt}$ graph.

In Example 18 we provided an example of a (2, 4)-biregular subgraph of the complete bipartite graph $K_{10,5}$ that corresponded a (5, 10, 4, 2, 1)-block design. We can form a second (2, 4)-biregular subgraph of the complete bipartite graph $K_{10,5}$ (nonisomorphic to the first) by starting with a different block design. Let the

blocks of this design be

$$B_1 = \{y_1, y_3\}, \quad B_3 = \{y_1, y_5\}, \quad B_5 = \{y_2, y_3\}, \quad B_7 = \{y_2, y_4\}, \quad B_9 = \{y_4, y_5\},$$

 $B_2 = \{y_1, y_3\}, \quad B_4 = \{y_1, y_5\}, \quad B_6 = \{y_2, y_3\}, \quad B_8 = \{y_2, y_4\}, \quad B_{10} = \{y_4, y_5\}.$

This is a $(5, 10, 4, 2, \lambda)$ -block design whose structure represents the incidences of the Folkman graph.

For designs where there is an initial block and other blocks can be obtained by a linear transformation, it is straightforward to show that the resulting graph is edge-transitive. However if this is not the case, the graph may not be edge-transitive as shown below.

Consider a (9, 18, 8, 4, 3)-BIBD whose incidences form a biregular bipartite graph, but the resulting graph is not edge-transitive. Consider the design

$$(0, 1, 2, 4),$$
 $(6, 7, 8, 1),$ $(3, 6, 7, 1),$ $(1, 2, 3, 5),$ $(7, 8, 0, 2),$ $(4, 7, 8, 2),$ $(2, 3, 4, 6),$ $(8, 0, 1, 3),$ $(5, 8, 0, 3),$ $(3, 4, 5, 7),$ $(0, 3, 4, 7),$ $(6, 0, 1, 4),$ $(4, 5, 6, 8),$ $(1, 4, 5, 8),$ $(7, 1, 2, 5),$ $(5, 6, 7, 0),$ $(2, 5, 6, 0),$ $(8, 2, 3, 6)$

[Bose 1939]. This corresponds to a (4,8)-biregular subgraph of $K_{18,9}$ with the incidences

$$x_1 : y_0, y_1, y_2, y_4,$$
 $x_7 : y_6, y_7, y_8, y_1,$ $x_{13} : y_3, y_6, y_7, y_1,$ $x_2 : y_1, y_2, y_3, y_5,$ $x_8 : y_7, y_8, y_0, y_2,$ $x_{14} : y_4, y_7, y_8, y_2,$ $x_3 : y_2, y_3, y_4, y_6,$ $x_9 : y_8, y_0, y_1, y_3,$ $x_{15} : y_5, y_8, y_0, y_3,$ $x_4 : y_3, y_4, y_5, y_7,$ $x_{10} : y_0, y_3, y_4, y_7,$ $x_{16} : y_6, y_0, y_1, y_4,$ $x_5 : y_4, y_5, y_6, y_8,$ $x_{11} : y_1, y_4, y_5, y_8,$ $x_{17} : y_7, y_1, y_2, y_5,$ $x_6 : y_5, y_6, y_7, y_0,$ $x_{12} : y_2, y_5, y_6, y_0,$ $x_{18} : y_8, y_2, y_3, y_6,$

However, the graph G is not edge-transitive, as $G - x_1y_1$ is not isomorphic to $G - x_{18}y_6$. Verification of this fact is far from trivial. Using Mathematica we found that $G - x_1y_1$ has 172924 cycles of length 10 and $G - x_{18}y_6$ has 172926 cycles of length 10. Hence by Theorem 1, G is not edge-transitive.

We also note that there can exist an edge-transitive (r, k)-biregular subgraph of the complete bipartite graph $K_{v,b}$ where the incidences are not a (v, b, r, k, λ) -BIBD design.

For example, consider the blocks

$$B_1 = \{y_1, y_2, y_7, y_8\}, \quad B_3 = \{y_5, y_6, y_7, y_8\}, \quad B_5 = \{y_1, y_3, y_5, y_7\},$$

 $B_2 = \{y_3, y_4, y_5, y_6\}, \quad B_4 = \{y_1, y_2, y_3, y_4\}, \quad B_6 = \{y_2, y_4, y_6, y_8\}.$

This is not a design as the pair $\{y_1, y_5\}$ does not appear in any block. However the incidences give rise to an edge-transitive (4,3)-biregular subgraph of the complete bipartite graph $K_{6,8}$. We used Mathematica to show that this graph is edge-transitive and is nonisomorphic to the graph in Example 17. Both graphs are noted in the online supplement.

3. Complements of Cartesian products

Recall that some previously known infinite families of vertex-transitive graphs are wreath graphs and Kneser graphs. We identify an additional infinite family of edge-transitive graphs that are vertex-transitive, stated in terms of Cartesian products.

Theorem 22. The graph $\overline{K_m \times K_n}$ is edge-transitive.

Proof. It may be helpful to refer to Figure 3. The graph $\overline{K_m \times K_n}$ is precisely the graph $\overline{L(K_{m,n})}$, that is, the complement of the line graph of $K_{m,n}$ [Weisstein and Wagon]. First, we observe the structure of $L(K_{m,n})$. Let the partite sets of $K_{m,n}$ be $A = \{a_1, a_2, ..., a_m\}$ and $B = \{b_1, b_2, ..., b_n\}$. The graph $L(K_{m,n})$ consists of m sets of n vertices, which we denote by V_1, V_2, \dots, V_m . The n vertices in each V_i correspond to the edges incident to a_i in the graph of $K_{m,n}$. Specifically, $V_i =$ $\{v_{i,1}, v_{i,2}, \dots, v_{i,n}\}$, where $v_{i,k}$ corresponds to the edge $a_i b_k$ in the graph $K_{m,n}$. By construction, all of the vertices in a given set V_i are adjacent to each other, since these vertices correspond to all edges incident to a_i in $K_{m,n}$. Additionally, each $v_{i,k}$ is adjacent to $v_{j,k}$ for all $j \neq i$, since these vertices correspond to all edges incident to b_k in $K_{m,n}$. This completes the construction of $L(K_{m,n})$. To construct $\overline{L(K_{m,n})}$, we retain the vertex sets V_1, \ldots, V_m . However, now we have an m-partite graph, since none of the edges in V_i are connected to each other in $\overline{L(K_{m,n})}$. Each $v_{i,k}$ is connected to $v_{i,l}$ for all $j \neq i$ and all $l \neq k$. In other words, all possible edges of the m-partite graph exist except for edges of the form $v_{i,k}v_{i,k}$. It is clear from this description that $\overline{L(K_{m,n})}$ is edge-transitive. This follows from

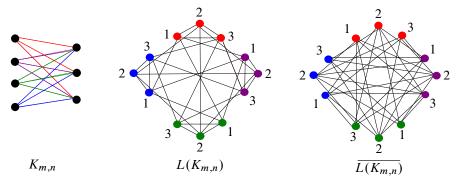


Figure 3. An example of the construction in the proof of Theorem 22 for m = 4, n = 3.

the fact every vertex in a given partite set is indistinguishable from every other vertex in that set, and the fact that each partite set is indistinguishable from every other partite set. Hence $\overline{K_m \times K_n} = \overline{L(K_{m,n})}$.

4. Conclusion

In Section 2.2 we explored (r, 2)-bipartite subgraphs of $K_{m,n}$. More results of this type can be obtained by determining all arc-transitive graphs of order larger than 9. It would be an interesting but challenging problem to explore the family of (r, k) and determine which graphs are edge-transitive and determine the number of nonisomorphic graphs of this form.

Acknowledgements

We would like to thank Stanisław Radziszowski for useful discussion and for processing graph data on edge-transitive graphs up to 20 vertices. Research was supported by National Science Foundation Research Experiences for Undergraduates Site Award #1659075.

References

[Abueida and Pike 2013] A. A. Abueida and D. A. Pike, "Cycle extensions of BIBD block-intersection graphs", *J. Combin. Des.* **21**:7 (2013), 303–310. MR Zbl

[Andersen et al. 1992] L. D. Andersen, S. K. Ding, G. Sabidussi, and P. D. Vestergaard, "Edge orbits and edge-deleted subgraphs", *Graphs Combin.* 8:1 (1992), 31–44. MR Zbl

[Beineke 1968] L. W. Beineke, "On derived graphs and digraphs", pp. 17–23 in *Beiträge zur Graphentheorie* (Manebach, East Germany, 1967), edited by H. Sachs et al., B. G. Teubner, Leipzig, 1968. Zbl

[Biggs 1974] N. Biggs, *Algebraic graph theory*, Cambridge Tracts in Mathematics **67**, Cambridge University Press, 1974. MR Zbl

[Bose 1939] R. C. Bose, "On the construction of balanced incomplete block designs", *Ann. Eugenics* **9** (1939), 353–399. MR Zbl

[Godsil and Royle 2001] C. Godsil and G. Royle, *Algebraic graph theory*, Graduate Texts in Mathematics **207**, Springer, 2001. MR Zbl

[Levi 1942] F. W. Levi, Finite geometrical systems, University of Calcutta, 1942. MR Zbl

[Mamut et al. 2004] A. Mamut, D. A. Pike, and M. E. Raines, "Pancyclic BIBD block-intersection graphs", *Discrete Math.* **284**:1-3 (2004), 205–208. MR Zbl

[McKay and Pike 2007] N. A. McKay and D. A. Pike, "Existentially closed BIBD block-intersection graphs", *Electron. J. Combin.* **14**:1 (2007), Research Paper 70. MR Zbl

[Onkey 1995] R. Onkey, "On the edge-transitivity of circulant graphs", preprint, 1995, http://jan.ucc.nau.edu/~ns46/student/1995/Richard_Onkey.pdf.

[Sabidussi 1961] G. Sabidussi, "Graph derivatives", Math. Z. 76 (1961), 385–401. MR Zbl

[Weisstein] E. Weisstein, "Arc-transitive graph", from MathWorld, http://mathworld.wolfram.com/Arc-TransitiveGraph.html.

[Weisstein and Wagon] E. Weisstein and S. Wagon, "Rook graph", from MathWorld, http://mathworld.wolfram.com/RookGraph.html.

[West 2001] D. B. West, *Introduction to graph theory*, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2001. Zbl

[Whitney 1932] H. Whitney, "Congruent graphs and the connectivity of graphs", *Amer. J. Math.* **54**:1 (1932), 150–168. MR Zbl

[Yang et al. 2016] X. Yang, W. Liu, H. Liu, and L. Feng, "Incidence graphs constructed from *t*-designs", *Appl. Anal. Discrete Math.* **10**:2 (2016), 457–478. MR Zbl

Received: 2019-01-28 Revised: 2019-05-15 Accepted: 2019-06-10

Princeton, NJ, United States

Bethlehem, PA, United States

adamgregory@ufl.edu Department of Mathematics, University of Florida,

Gainesville, FL, United States

dansma@rit.edu School of Mathematical Sciences, Rochester Institute

of Technology, Rochester, NY, United States

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	William Call and High	Robert B. Lund	Cl
	Williams College, USA		Clemson University, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Gaven J. Martin	Massey University, New Zealand
Martin Bohner	Missouri U of Science and Technology, US	, ,	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia M	Iohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	YF. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA
Chi-Kwong Li	College of William and Mary, USA		, <u>-</u>

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US \$195/year for the electronic version, and \$260/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2019 Mathematical Sciences Publishers

On the zero-sum group-magicness of cartesian products	1261
ADAM FONG, JOHN GEORGES, DAVID MAURO, DYLAN SPAGNUOLO,	
JOHN WALLACE, SHUFAN WANG AND KIRSTI WASH	
The variable exponent Bernoulli differential equation	1279
KAREN R. RÍOS-SOTO, CARLOS E. SEDA-DAMIANI AND ALEJANDRO	
VÉLEZ-SANTIAGO	
The supersingularity of Hurwitz curves	1293
ERIN DAWSON, HENRY FRAUENHOFF, MICHAEL LYNCH, AMETHYST	
PRICE, SEAMUS SOMERSTEP, ERIC WORK, DEAN BISOGNO AND RACHEL	
Pries	
Multicast triangular semilattice network	1307
Angelina Grosso, Felice Manganiello, Shiwani Varal and	
EMILY ZHU	
Edge-transitive graphs and combinatorial designs	1329
HEATHER A. NEWMAN, HECTOR MIRANDA, ADAM GREGORY AND	
Darren A. Narayan	
A logistic two-sex model with mate-finding Allee effect	1343
ELIZABETH ANDERSON, DANIEL MAXIN, JARED OTT AND GWYNETH	
Terrett	
Unoriented links and the Jones polynomial	1357
Sandy Ganzell, Janet Huffman, Leslie Mavrakis, Kaitlin	
TADEMY AND GRIFFIN WALKER	
Nonsplit module extensions over the one-sided inverse of $k[x]$	1369
ZHEPING LU, LINHONG WANG AND XINGTING WANG	
Split Grothendieck rings of rooted trees and skew shapes via monoid	1379
representations	
DAVID BEERS AND MATT SZCZESNY	
On the classification of Specht modules with one-dimensional summands	1399
AUBREY PIPER COLLINS AND CRAIG J. DODGE	
The monochromatic column problem with a prime number of colors	1415
LORAN CROWELL AND STEVE SZABO	
Total Roman domination edge-critical graphs	1423
CHLOE LAMPMAN, KIEKA (C. M.) MYNHARDT AND SHANNON OGDEN	