
This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the

2019 USENIX Annual Technical Conference

is sponsored by USENIX.

E3: Energy-Efficient Microservices
on SmartNIC-Accelerated Servers

Ming Liu, University of Washington; Simon Peter, The University of Texas at Austin;

Arvind Krishnamurthy, University of Washington;

Phitchaya Mangpo Phothilimthana, University of California, Berkeley

https://www.usenix.org/conference/atc19/presentation/liu-ming

E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers

Ming Liu
University of Washington

Simon Peter
The University of Texas at Austin

Arvind Krishnamurthy
University of Washington

Phitchaya Mangpo Phothilimthana∗

University of California, Berkeley

Abstract

We investigate the use of SmartNIC-accelerated servers to

execute microservice-based applications in the data center.

By offloading suitable microservices to the SmartNIC’s low-

power processor, we can improve server energy-efficiency

without latency loss. However, as a heterogeneous computing

substrate in the data path of the host, SmartNICs bring several

challenges to a microservice platform: network traffic routing

and load balancing, microservice placement on heterogeneous

hardware, and contention on shared SmartNIC resources.

We present E3, a microservice execution platform for

SmartNIC-accelerated servers. E3 follows the design philoso-

phies of the Azure Service Fabric microservice platform and

extends key system components to a SmartNIC to address

the above-mentioned challenges. E3 employs three key tech-

niques: ECMP-based load balancing via SmartNICs to the

host, network topology-aware microservice placement, and

a data-plane orchestrator that can detect SmartNIC overload.

Our E3 prototype using Cavium LiquidIO SmartNICs shows

that SmartNIC offload can improve cluster energy-efficiency

up to 3× and cost efficiency up to 1.9× at up to 4% latency

cost for common microservices, including real-time analytics,

an IoT hub, and virtual network functions.

1 Introduction

Energy-efficiency has become a major factor in data cen-

ter design [80]. U.S. data centers consume an estimated 70

billion kilowatt-hours of energy per year (about 2% of to-

tal U.S. energy consumption) and as much as 57% of this

energy is used by servers [22, 74]. Improving server energy-

efficiency is thus imperative [17]. A recent option is the inte-

gration of low-power processors in server network interface

cards (NICs). Examples are the Netronome Agilio-CX [59],

Mellanox BlueField [51], Broadcom Stingray [13], and Cav-

ium LiquidIO [15], which rely on ARM/MIPS-based proces-

sors and on-board memory. These SmartNICs can process

∗The author is now at Google.

microsecond-scale client requests but consume much less en-

ergy than server CPUs. By sharing idle power and the chassis

with host servers, SmartNICs also promise to be more energy

and cost efficient than other heterogeneous or low-power clus-

ters. However, SmartNICs are not powerful enough to run

large, monolithic cloud applications, preventing their offload.

Today, cloud applications are increasingly built as mi-

croservices, prompting us to revisit SmartNIC offload in the

cloud. A microservice-based workload comprises loosely cou-

pled processes, whose interaction is described via a dataflow

graph. Microservices often have a small enough memory foot-

print for SmartNIC offload and their programming model

efficiently supports transparent execution on heterogeneous

platforms. Microservices are deployed via a microservice

platform [3–5, 40] on shared datacenter infrastructure. These

platforms abstract and allocate physical datacenter computing

nodes, provide a reliable and available execution environment,

and interact with deployed microservices through a set of

common runtime APIs. Large-scale web services already use

microservices on hundreds of thousands of servers [40, 41].

In this paper, we investigate efficient microservice execu-

tion on SmartNIC-accelerated servers. Specifically, we are

exploring how to integrate multiple SmartNICs per server

into a microservice platform with the goal of achieving better

energy efficiency at minimum latency cost. However, trans-

parently integrating SmartNICs into microservice platforms is

non-trivial. Unlike traditional heterogeneous clusters, Smart-

NICs are collocated with their host servers, raising a number

of issues. First, SmartNICs and hosts share the same MAC

address. We require an efficient mechanism to route and

load-balance traffic to hosts and SmartNICs. Second, Smart-

NICs sit in the host’s data path and microservices running

on a SmartNIC can interfere with microservices on the host.

Microservices need to be appropriately placed to balance

network-to-compute bandwidth. Finally, microservices can

contend on shared SmartNIC resources, causing overload. We

need to efficiently detect and prevent such situations.

We present E3, a microservice execution platform for

SmartNIC-accelerated servers that addresses these issues. E3

USENIX Association 2019 USENIX Annual Technical Conference 363

follows the design philosophies of the Azure Service Fabric

microservice platform [40] and extends key system compo-

nents to allow transparent offload of microservices to a Smart-

NIC. To balance network request traffic among SmartNICs

and the host, E3 employs equal-cost multipath (ECMP) load

balancing at the top-of-rack (ToR) switch and provides high-

performance PCIe communication mechanisms between host

and SmartNICs. To balance computation demands, we intro-

duce HCM, a hierarchical, communication-aware microser-

vice placement algorithm, combined with a data-plane orches-

trator that can detect and eliminate SmartNIC overload via

microservice migration. This allows E3 to optimize server en-

ergy efficiency with minimal impact on client request latency.

We make the following contributions:

• We show why SmartNICs can improve energy efficiency

over other forms of heterogeneous computation and how

they should be integrated with data center servers and mi-

croservice platforms to provide efficient and transparent

microservice execution (§2).

• We present the design of E3 (§3), a microservice runtime

on SmartNIC-accelerated server systems. We present its

implementation within a cluster of Xeon-based servers with

up to 4 Cavium LiquidIO-based SmartNICs per server (§4).

• We evaluate energy and cost-efficiency, as well as client-

observed request latency and throughput for common mi-

croservices, such as a real-time analytics framework, an

IoT hub, and various virtual network functions, across var-

ious homogeneous and heterogeneous cluster configura-

tions (§5). Our results show that offload of microservices

to multiple SmartNICs per server with E3 improves cluster

energy-efficiency up to 3× and cost efficiency up to 1.9×

at up to 4% client-observed latency cost versus all other

cluster configurations.

2 Background

Microservices simplify distributed application development

and are a good match for low-power SmartNIC offload. To-

gether, they are a promising avenue for improving server

energy efficiency. We discuss this rationale, quantify the po-

tential benefits, and outline the challenges of microservice

offload to SmartNICs in this section.

2.1 Microservices

Microservices have become a critical component of today’s

data center infrastructure with a considerable and diverse

workload footprint. Microsoft reports running microservices

24/7 on over 160K machines across the globe, including

Azure SQL DB, Skype, Cortana, and IoT suite [40]. Google

reports that Google Search, Ads, Gmail, video processing,

flight search, and more, are deployed as microservices [41].

These microservices include large and small data and code

footprints, long and short running times, billed by run-time

Spike

Server

API Gateway SQL store

Recommend

Sensor logging Data analytics

Microservice platform (Service Fabric, E3, …)

Authentication

Server

EMA

Spike
API Gateway SQL store

Recommend

EMA

………

Figure 1: Thermostat analytics as DAG of microservices. The

platform maps each DAG node to a physical computing node.

and by remote procedure call (RPC) [28]. What unifies these

services is their software engineering philosophy.

Microservices use a modular design pattern, which simpli-

fies distributed application design and deployment. Microser-

vices are loosely-coupled, communicating through a set of

common APIs, invoked via RPCs [86], and maintain state

via reliable collections [40]. As a result, developers can take

advantage of languages and libraries of their choice, while

not having to worry about microservice placement, communi-

cation mechanisms, fault tolerance, or availability.

Microservices are also attractive to datacenter operators as

they provide a way to improve server utilization. Microser-

vices execute as light-weight processes that are easier to scale

and migrate compared with a monolithic development ap-

proach. They can be activated upon incoming client requests,

execute to request completion, and then swapped out.

A microservice platform, such as Azure Service Fabric

[40], Amazon Lambda [3], Google Application Engine [4], or

Nirmata [5], is a distributed system manager that enables iso-

lated microservice execution on shared datacenter infrastruc-

ture. To do so, microservice platforms include the following

components (cf. [40]): 1. federation subsystem, abstracting

and grouping servers into a unified cluster that holds deployed

applications; 2. resource manager, allocating computation re-

sources to individual microservices based on their execution

requirements; 3. orchestrator, dynamically scheduling and mi-

grating microservices within the cluster based on node health

information, microservice execution statistics, and service-

level agreements (SLAs); 4. transport subsystem, providing

(secure) point-to-point communication among various mi-

croservices; 5. failover manager, guaranteeing high availabil-

ity/reliability through replication; 6. troubleshooting utilities,

which assist developers with performance profiling/debugging

and understanding microservice co-execution interference.

A microservice platform usually provides a number of

programming models [10] that developers adhere to, like

dataflow and actor-based. The models capture the execution

requirements and describe the communication relationship

among microservices. For example, the data-flow model (e.g.

Amazon Datapipe [6], Google Cloudflow [29], Azure Data

364 2019 USENIX Annual Technical Conference USENIX Association

Factory [55]) requires programmers to assemble microser-

vices into a directed acyclic graph (DAG): nodes contain mi-

croservices that are interconnected via flow-controlled, loss-

less dataflow channels. These models bring attractive benefits

for a heterogeneous platform since they explicitly express con-

currency and communication, enabling the platform to trans-

parently map it to the available hardware [68, 70]. Figure 1

shows an IoT thermostat analytics application [54] consisting

of microservices arranged in 3 stages: 1. Thermostat sensor

updates are authenticated by the API gateway; 2. Updates are

logged into a SQL store sharded by a thermostat identifier;

3. SQL store updates trigger data analytic tasks (e.g, spike

detection, moving average, and recommendation) based on

thresholds. The dataflow programming model allows the SQL

store sharding factor to be dynamically adjusted to scale the

application with the number of thermostats reporting. Reli-

able collections ensure state consistency when re-sharding

and the microservice platform automatically migrates and

deploys DAG nodes to available hardware resources.

A microservice can be stateful or stateless. Stateless mi-

croservices have no persistent storage and only keep state

within request context. They are easy to scale, migrate, and

replicate, and they usually rely on other microservices for

stateful tasks (e.g., a database engine). Stateful microservices

use platform APIs to access durable state, allowing the plat-

form full control over data placement. For example, Service

Fabric provides reliable collections [40], a collection of data

structures that automatically persist mutations. Durable stor-

age is typically disaggregated for microservices and accessed

over the network. The use of platform APIs to maintain state

allows for fast service migration compared with traditional

virtual machine migration [19], as the stateful working set

is directly observed by the platform. All microservices in

Figure 1 are stateful. We describe further microservices in §4.

2.2 SmartNICs

SmartNICs have appeared on the market [15, 51, 59] and

in the datacenter [25]. SmartNICs include computing units,

memory, traffic managers, DMA engines, TX/RX ports, and

several hardware accelerators for packet processing, such as

cryptography and pattern matching engines. Unlike traditional

accelerators, SmartNICs integrate the accelerator with the

NIC. This allows them to process network requests in-line, at

much lower latency than other types of accelerators.

Two kinds of SmartNIC exist: (1) general-purpose, which

allows transparent microservice offload and is the architecture

we consider. For example, Mellanox BlueField [51] has 16

ARMv8 A72 cores with 2×100GE ports and Cavium Liq-

uidIO [15] has 12 cnMIPS cores with 2×10GE ports. These

SmartNICs are able to run full operating systems, but also

ship with lightweight runtime systems that can provide kernel-

bypass access to the NIC’s IO engines. (2) FPGA and ASIC

based SmartNICs target highly specialized applications. Ex-

amples include match-and-action processing [25, 43] for net-

work dataplanes, NPUs [26], and TPUs [39] for deep neural

network inference acceleration. FPGAs and ASICs do not

support transparent microservice offload. However, they can

be combined with general-purpose SmartNICs.

A SmartNIC-accelerated server is a commodity server with

one or more SmartNICs. Host and SmartNIC processors do

not share thermal, memory, or cache coherence domains, and

communicate via DMA engines over PCIe. This allows them

to operate as independent, heterogeneous computers, while

sharing a power domain and its idle power.

SmartNICs hold promise for improving server energy-

efficiency when compared to other heterogeneous computing

approaches. For example, racks populated with low-power

servers [8] or a heterogeneous mix of servers, suffer from

high idle energy draw, as each server requires energy to

power its chassis, including fans and devices, and its own ToR

switch port. System-on-chip designs with asymmetric perfor-

mance, such as ARM’s big.LITTLE [38] and DynamIQ [2]

architectures, and AMD’s heterogeneous system architecture

(HSA) [7], which combines a GPU with a CPU on the same

die, have scalability limits due to the shared thermal design

point (TDP). These architectures presently scale to a max-

imum of 8 cores, making them more applicable to mobile

than to server applications. GPGPUs and single instruction

multiple threads (SIMT) architectures, such as Intel’s Xeon

Phi [36] and HP Moonshot [34], are optimized for compu-

tational throughput and the extra interconnect hop prevents

these accelerators from running latency-sensitive microser-

vices efficiently [57]. SmartNICs are not encumbered by these

problems and can thus be used to balance the power draw of

latency-sensitive services efficiently.

2.3 Benefits of SmartNIC Offload

We quantify the potential benefit of using SmartNICs for mi-

croservices on energy efficiency and request latency. To do

so, we choose two identical commodity servers and equip one

with a traditional 10GbE Intel X710 NIC and the other with a

10GbE Cavium LiquidIO SmartNIC. Then we evaluate 16 dif-

ferent microservices (detailed in §4) on these two servers with

synthetic benchmarks of random 512B requests. We measure

request throughput, wall power consumed at peak throughput

(defined as the knee of the latency-throughput graph, where

queueing delay is minimal) and when idle, as well as client-

observed, average/tail request latency in a closed loop. We use

host cores on the traditional server and SmartNIC cores on the

SmartNIC server for microservice execution. We use as many

identical microservice instances, CPUs, and client machines

as necessary to attain peak throughput and put unused CPUs

to their deepest sleep state. The SmartNIC does not support

per-core low power states and always keeps all 12 cores active,

diminishing SmartNIC energy efficiency results somewhat.

The SmartNIC microservice runtime system uses a kernel-

USENIX Association 2019 USENIX Annual Technical Conference 365

Microservice
Host (Linux) Host (DPDK) SmartNIC

RPS W C L 99% RPJ RPS W C L 99% RPJ % RPS W L 99% RPJ ×

IPsec 821.3K 117.0 12 1.8 6.6 7.0K 911.9K 112.1 12 1.7 5.2 8.1K 15.9 1851.1K 23.4 0.2 0.8 79.0K 9.7

BM25 91.9K 116.4 12 40.3 205.8 0.8K 99.5K 110.0 12 30.7 155.6 0.9K 14.5 394.1K 19.2 4.1 12.4 20.6K 22.8

NIDS 1781.1K 111.0 12 0.06 0.2 16.1K 1841.1K 106.8 12 0.05 0.15 17.2K 7.4 1988.8K 23.4 0.03 0.1 84.8K 4.9

Recommend 3.6K 109.4 12 86.6 477.0 0.03K 4.1K 111.7 12 78.7 358.6 0.04K 11.6 12.8K 18.9 21.3 123.6 0.7K 18.4

NATv4 1889.6K 72.1 8 0.04 0.1 26.2K 1917.5K 52.1 4 0.04 0.1 36.8K 40.4 2053.1K 23.6 0.03 0.09 86.9K 2.4

Count 1960.8K 68.1 6 0.07 0.1 28.8K 1960.0K 48.6 4 0.03 0.1 40.3K 40.0 2016.8K 21.0 0.03 0.09 96.1K 2.4

EMA 1966.1K 72.7 8 0.04 0.2 27.0K 2009.2K 52.1 4 0.03 0.09 38.6K 42.8 2052.0K 22.0 0.03 0.08 93.5K 2.4

KVS 1946.2K 48.6 8 0.04 0.1 40.0K 2005.0K 33.6 2 0.04 0.1 59.6K 49.0 2033.4K 21.6 0.03 0.1 97.1K 1.6

Flow mon. 1944.1K 70.9 8 0.04 0.1 27.4K 2014.4K 49.8 4 0.03 0.09 40.4K 47.4 2032.6K 24.3 0.03 0.08 83.6K 2.1

DDoS 1989.5K 111.2 12 0.05 0.2 17.9K 1844.8K 105.7 12 0.05 0.2 17.4K -3.0 1952.5K 24.3 0.03 0.1 80.4K 4.6

KNN 42.2K 118.3 12 53.7 163.4 0.4K 42.4K 110.4 12 45.8 161.3 0.4K 7.5 29.9K 20.0 20.6 80.3 1.5K 3.9

Spike 91.9K 112.5 12 29.3 94.5 0.8K 104.3K 112.3 12 25.7 83.0 0.9K 13.7 73.8K 23.5 9.0 50.3 3.1K 3.4

Bayes 12.1K 113.9 12 82.0 406.5 0.1K 13.7K 112.0 12 80.6 400.5 0.1K 14.8 1.6K 19.5 41.9 164.7 0.08K 0.7

API gw 1537.6K 108.5 12 0.9 3.2 14.2K 1584.3K 110.6 12 0.8 2.7 14.3K 1.1 124.5K 24.7 8.5 403.6 5.0K 0.4

Top ranker 711.9K 119.7 12 4.0 15.0 5.9K 771.9K 109.2 12 3.5 12.3 7.1K 18.9 14.8K 20.3 31.1 154.9 0.7K 0.1

SQL 463.3K 114.7 12 6.9 31.1 4.0K 528.0K 113.0 12 6.7 29.5 4.7K 15.7 39.5K 18.8 29.5 104.2 2.1K 0.4

Table 1: Microservice comparison among host (Linux and DPDK) and SmartNIC. RPS = Throughput (requests/s), W = Active power

(W), C = Number of active cores, L = Average latency (ms), 99% = 99th percentile latency, RPJ = Energy efficiency (requests/Joule).

 0

 2

 4

 6

 8

 10

 12

 14

64 128 256 512 1024 1500

S
m

a
rt

N
IC

:H
o

s
t

(D
P

D
K

)
R

P
J

Request Size [B]

Flow monitor
DDoS

IPv4

NIDS
IPsec

Figure 2: Request size impact on SmartNIC RPJ benefits.

bypass network stack (cf. §4). To break out kernel overheads

from the host experiments, we run all microservices on the

host in two configurations: 1. Linux kernel network stack; 2.

kernel-bypass network stack [63], based on Intel’s DPDK [1].

Table 1 presents measured peak request throughput, active

power (wall power at peak throughput minus idle wall power),

number of active cores, (tail-)latency, and energy efficiency,

averaged over 3 runs. Active power allows a direct comparison

of host to SmartNIC processor power draw. Energy efficiency

equals throughput divided by active power.

Kernel overhead. We first analyze the overhead of in-

kernel networking on the host (Linux versus DPDK). As

expected, the kernel-bypass networking stack performs bet-

ter than the in-kernel one. On average, it improves energy

efficiency by 21% (% column in Table 1) and reduces tail la-

tency by 16%. Energy efficiency improves because (1) DPDK

achieves similar throughput with fewer cores; (2) at peak

server CPU utilization, DPDK delivers higher throughput.

SmartNIC performance. SmartNIC execution improves

the energy efficiency of 12 of the measured microservices

by a geometric mean of 6.5× compared with host execution

using kernel bypass (× column in Table 1). The SmartNIC

consumes at most 24.7W active power to execute these mi-

croservices while the host processor consumes up to 113W.

IPSec, BM25, Recommend, and NIDS particularly benefit

from various SmartNIC hardware accelerators (crypto copro-

cessor, fetch-and-add atomic units, floating point engines, and

pattern matching units). NATv4, Count, EMA, KVS, Flow

monitor, and DDoS can take advantage of the computational

bandwidth and fast memory interconnect of the SmartNIC.

In these cases, the energy efficiency comes not just from the

lower power consumed by the SmartNIC, but also from peak

throughput improvements versus the host processor. KNN

and Spike attain lower throughput on the SmartNIC. How-

ever, since the SmartNIC consumes less power, the overall

energy efficiency is still better than the host. For all of these

microservices, the SmartNIC also improves client-observed

latency. This is due to the hardware accelerated packet buffers

and the elimination of PCIe bus traversals. SmartNICs can

reduce average and tail latency by a geometric mean of 45.3%

and 45.4% versus host execution, respectively.

The host outperforms the SmartNIC for Top ranker, Bayes

classifier, SQL, and API gateway by a geometric mean of 4.1×

in energy efficiency, 41.2% and 30.0% in average and tail la-

tency reduction. These microservices are branch-heavy with

large working sets that are not handled well by the simpler

cache hierarchy of the SmartNIC. Moreover, the API gate-

way uses double floating point numbers for the rate limiter

implementation, which the SmartNIC emulates in software.

Request size impact. SmartNIC performance depends also

on request size. To demonstrate this, we vary the request size

of our synthetic workload and evaluate SmartNIC energy ef-

ficiency benefits of 5 microservices versus host execution.

Figure 2 shows that with small (≤128B) requests, SmartNIC

benefit of IPSec, NIDS, and DDoS is smaller. Small requests

are more computation intensive and we are limited by the

SmartNIC’s wimpy cores. SmartNIC offload hits a sweet-spot

at 256–512B request size, where the benefit almost doubles.

Here, network and compute bandwidth utilization are bal-

anced for the SmartNIC. At larger request sizes, we are net-

work bandwidth limited, allowing us to put host CPUs to sleep

and SmartNIC benefits again diminish. This can be seen in

particular for IPsec, which outperforms on the SmartNIC due

366 2019 USENIX Annual Technical Conference USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128 256 512 1024

R
T

T
 (

u
s
)

Payload size (B)

Host-Host-Linux
Host-Host-DPDK

SmartNIC-SmartNIC
SmartNIC-Host

Figure 3: Average RTT (3 runs) of different communication

mechanisms in a SmartNIC-accelerated server.

to hardware cryptography acceleration, but still diminishes

with larger request sizes. We conclude that request size has a

major impact on the benefit of SmartNIC offload. Measuring

it is necessary to make good offload choices.

We conclude that SmartNIC offload can provide large en-

ergy efficiency and latency benefits for many microservices.

However, it is not a panacea. Computation and memory in-

tensive microservices are more suitable to run on the host

processor. We need an efficient method to define and monitor

critical SmartNIC offload criteria for microservices.

2.4 Challenges of SmartNIC Offload

While there are quantifiable benefits, offloading microservices

to SmartNICs brings a number of additional challenges:

• SmartNICs share the same Ethernet MAC address with the

host server. Layer 2 switching is not enough to route traffic

between SmartNICs and host servers. We require a different

switching scheme that can balance traffic and provide fault

tolerance when a server equips multiple SmartNICs.

• Microservice platforms assume uniform communication

performance among all computing nodes. However, Fig-

ure 3 shows that SmartNIC-Host (via PCIe) and SmartNIC-

SmartNIC (via ToR switch) communication round-trip-

time (RTT) is up to 83.3% and 86.2% lower than host-host

(via ToR switch) kernel-bypass communication. We have to

consider this topology effect to achieve good performance.

• Microservices share SmartNIC resources and contend with

SmartNIC firmware for cache and memory bandwidth. This

can create a head-of-line blocking problem for network

packet exchange with both SmartNIC and host. Prolonged

head-of-line blocking can result in denial of service to un-

related microservices and is more severe than transient

sources of interference, such as network congestion. We

need to sufficiently isolate SmartNIC-offloaded microser-

vices from firmware to guarantee quality of service.

3 E3 Microservice Platform

We present the E3 microservice platform for SmartNIC-

accelerated servers. Our goal is to maximize microservice

energy efficiency at scale. Energy efficiency is the ratio of

Host

processor (s)
SmartNIC

T
O

R

(a). SmartNIC-accelerated server

PCIe

SmartNIC

Host server

SmartNIC
Host

processor (s)

QPI

NIC processor cores
…

Microservices

Tra c

manager

TX

RX

(b). SmartNIC block diagram

Orchestrator

agent

To
/F

ro
m

 P
C

Ie
Figure 4: Hardware and software architecture of E3.

microservice throughput and cluster power draw. Power draw

is determined by our choice of SmartNIC-acceleration, while

E3 focuses on maximizing microservice throughput on this

heterogeneous architecture. We describe how we support mi-

croservice offload to a SmartNIC and address the request

routing, microservice placement, and scheduling challenges.

E3 overview. E3 is a distributed microservice execution

platform. We follow the design philosophies of Azure Service

Fabric [40] but add energy efficiency as a design requirement.

Figure 4 shows the hardware and software architecture of E3.

E3 runs in a typical datacenter, where servers are grouped into

racks, with a ToR switch per rack. Each server is equipped

with one or more SmartNICs, and each SmartNIC is con-

nected to the ToR. This creates a new topology where host

processors are reachable via any of the SmartNICs (Figure 4-

a). SmartNICs within the same server also have multiple

communication options—via the ToR or PCIe (§3.1).

Programming model. E3 uses a dataflow programming

model. Programmers assemble microservices into a DAG of

microservice nodes interconnected via channels in the direc-

tion of RPC flow (cf. Figure 1). A channel provides lossless

data communication between nodes. A DAG in E3 describes

all RPC and execution paths of a single microservice applica-

tion, but multiple DAGs may coexist and execute concurrently.

E3 is responsible for mapping DAGs to computational nodes.

Software stack. E3 employs a central, replicated cluster re-

source controller [40] and a microservice runtime on each host

and SmartNIC. The resource controller includes four compo-

nents: (1) traffic control, responsible for routing and load bal-

ancing requests between different microservices; (2) control-

plane manager, placing microservice instances on cluster

nodes; (3) data-plane orchestrator, dynamically migrates mi-

croservices across cluster nodes; (4) failover/replication man-

ager, providing failover and node membership management

using consistent hashing [75]. The microservice runtime in-

cludes an execution engine, an orchestrator agent, and a com-

munication subsystem, described next.

Execution engine. E3 executes each microservice as a

multi-threaded process, either on the SmartNIC or on the

host. The host runs Linux. The SmartNIC runs a lightweight

firmware. Microservices interact only via microservice APIs,

USENIX Association 2019 USENIX Annual Technical Conference 367

allowing E3 to abstract from the OS. SmartNIC and host sup-

port hardware virtual memory for microservice confinement.

E3 is work-conserving and runs requests to completion. It

leverages a round-robin policy for steering incoming requests

to cores, context switching cores if needed.

Orchestrator agent. Each node runs an orchestrator agent

to periodically monitor and report runtime execution charac-

teristics to the resource controller. The information is used by

(1) the failover manager to determine cluster health and (2) the

data-plane orchestrator to monitor the execution performance

of each microservice and make migration decisions. On the

host, the agent runs as a separate process. On the SmartNIC,

the agent runs on dedicated cores (blue in Figure 4-b) and a

traffic manager hardware block exchanges packets between

the NIC MAC ports and the agent. For each packet, the agent

determines the destination (network, host, or SmartNIC core).

3.1 Communication Subsystem

E3 leverages various communication mechanisms, depending

on where communicating microservices are located.

Remote communication. When communicating among

host cores across different servers, E3 uses the Linux network

stack. SmartNIC remote communication uses a user-level

network stack [63].

Local SmartNIC-host communication. SmartNIC and

host cores on the same server communicate via PCIe. Prior

work has extensively explored communication channels via

PCIe [47,48,60], and we adopt their design. High-throughput

messaging for PCIe interconnects requires leveraging multi-

ple DMA engines in parallel. E3 takes advantage of the eight

DMA engines on the LiquidIO, which can concurrently issue

scatter/gather requests.

Local SmartNIC-SmartNIC communication. Smart-

NICs in the same host can use three methods for commu-

nication. 1. Using the host to relay requests, involving two

data transfers over PCIe and pointer manipulation on the

host, increasing latency. 2. PCIe peer-to-peer [23], which

is supported on most SmartNICs [15, 51, 59]. However, the

bandwidth of peer-to-peer PCIe communication is capped in

a NUMA system when the communication passes between

sockets [57]. 3. ToR switch. We take the third approach and

our experiments show that this approach incurs lower latency

and achieves higher bandwidth than the first two.

3.2 Addressing and Routing

Since SmartNICs and their host servers share Ethernet MAC

addresses, we have to use an addressing/routing scheme to dis-

tinguish between these entities and load balance across them.

For illustration, assume we have a server with two SmartNICs;

each NIC has one MAC port. If remote microservices com-

municate with this server, there will be two possible paths

and each might be congested.

We use equal-cost multi-path (ECMP) [84] routing on the

ToR switch to route and balance load among these ports.

We assign each SmartNIC and the host its own IP. We then

configure the ToR switch to route to SmartNICs directly via

the attached ToR switch port and an ECMP route to the host

IP via any of the ports. The E3 communication subsystem

on each SmartNIC differentiates by destination IP address

whether an incoming packet is for the SmartNIC or the host.

On the host, we take advantage of NIC teaming [56] (also

know as port trunking) to bond all related SmartNIC ports

into a single logical interface, and then apply the dynamic

link aggregation policy (supporting IEEE 802.3ad protocol).

ECMP automatically balances connections to the host over

all available ports. If a link or SmartNIC fails, ECMP will

automatically rebalance new connections via the remaining

links, improving host availability.

3.3 Control-plane Manager

The control-plane manager is responsible for energy-efficient

microservice placement. This is a computing intensive oper-

ation due to the large search space with myriad constraints.

Hence, it is done on the control plane. Service Fabric uses

simulated annealing, a well-known approximate algorithm,

to solve microservice placement. It considers three types of

constraints: (1) currently available resources of each com-

puting node (memory, disk, CPU, network bandwidth); (2)

computing node runtime statistics (aggregate outstanding mi-

croservice requests); (3) individual microservice execution

behavior (average request size, request execution time and

frequency, diurnal variation, etc.). Service Fabric ignores net-

work topology and favors spreading load over multiple nodes.

E3 extends this algorithm to support bump-in-the-wire

SmartNICs, considering network topology. We categorize

computing nodes (host or SmartNIC processors) into different

levels of communication distance and perform a search from

the closest to the furthest. We present the HCM algorithm (Al-

gorithm 1). HCM takes as input the microservice DAG G and

source nodes Vsrc, as well as the cluster topology T , includ-

ing runtime statistics for each computing node (as collected).

HCM performs a breadth-first traversal of G to map microser-

vices to cluster computing nodes (MS_DAG_TRAVERSE).

If not already deployed (get_deployed_node), HCM (via

MS_DAG_TRAVERSE) assigns a microservice V to a com-

puting node N via the find_first_fit function (lines 9-11) and

deploys it via set_deployed_node. find_first_fit is a greedy

algorithm that returns the first computing node that satis-

fies the microservice constraints (via its resource and runtime

statistics) without considering communication cost. If no such

node is found, it returns a node closest to the constraints. Next,

368 2019 USENIX Annual Technical Conference USENIX Association

Algorithm 1 HCM microservice placement algorithm

1: G : microservice DAG graph

2: Vsrc : source microservice node(s) o f the DAG

3: T : server cluster topology graph

4: procedure MS_DAG_TRAVERSE(G,Vsrc,T)

5: Q.enqueue(Vsrc) ⊲ Let Q be a queue

6: while Q is not empty do

7: V ← Q.dequeue()
8: N← get_deployed_node(V)
9: if N is NULL then

10: N← f ind_ f irst_ f it(V,T)
11: set_deployed_node(V,N)

12: for W in all direct descendants o f V in G do

13: NW ←MS_PLACE(W,N,T)
14: set_deployed_node(W,NW)
15: Q.enqueue(W)

16:

17: V : microservice to place

18: N : computational node o f V ′s ancestor

19: T : server cluster topology graph

20: procedure MS_PLACE(V,N,T)

21: Topo← get_hierarchical_topo(N,T)
22: for L in all Topo.Levels do

23: N← f ind_best_ f it(V,Topo.node_list(L))
24: if N is not NULL then

25: return N

26: return f ind_ f irst_ f it(V,T) ⊲ Ignore topology

for the descendant microservices of a node V (lines 12-15),

HCM assigns them to computing nodes based on their com-

munication distance to V (MS_PLACE). To do so, HCM first

computes the hierarchical topology representation of com-

puting node N via get_hierarchical_topo. Each level in the

hierarchical topology includes computing nodes that require a

similar communication mechanism, starting with the closest.

For example, in a single rack there are four levels in this order:

1. The same computing node as V ; 2. An adjacent computing

node on the same server; 3. A SmartNIC computing node on

an adjacent server; 4. A host computing node on an adjacent

server. If there are multiple nodes in the same level, HCM

uses find_best_fit to find the best fit, according to resource

constraints. If no node in the hierarchical topology fits the

constraints, we fall back to find_first_fit.

3.4 Data-plane Orchestrator

The data-plane orchestrator is responsible for detecting load

changes and migrating microservices in response to these

changes among computational nodes at run-time. To do so,

we piggypack several measurements onto the periodic node

health reports made by orchestrator agents to the resource

controller: This approach is lightweight and integrates well

with runtime execution. We believe that our proposed methods

can also be used in other microservice schedulers [33, 62, 66].

In this section, we introduce the additional techniques im-

plemented in our data-plane orchestrator to mitigate issues of

SmartNIC overload caused by compute-intensive microser-

vices. These can interfere with the SmartNIC’s traffic man-

ager, starving the host of network packets. They can also

simply execute too slowly on the SmartNIC to be able to

catch up with the incoming request rate.

Host starvation. This issue is caused by head-of-line block-

ing of network traffic due to microservice interference with

firmware on SmartNIC memory/cache. It is typically caused

by a single compute-intensive microservice overloading the

SmartNIC. To alleviate this problem, we monitor the incom-

ing/outgoing network throughput and packet queue depth at

the traffic manager. If network bandwidth is under-utilized,

but there is a standing queue at the traffic manager, the Smart-

NIC is overloaded, and we need to migrate microservices.

Microservice overload. This issue is caused by microser-

vices in aggregate requiring more computational bandwidth

than the SmartNIC can offer, typically because too many mi-

croservices are placed on the same SmartNIC. To detect this

problem, we periodically monitor the execution time of each

microservice and compare to its exponential moving aver-

age. When the difference is negative and larger than 20%,

we assume a microservice overload and trigger microservice

migration. The threshold was determined empirically.

Microservice migration. For either issue, the orchestrator

will migrate the microservice with the highest CPU utilization

to the host. To do so, it uses a cold migration approach, sim-

ilar to other microservice platforms. Specifically, when the

orchestrator makes a migration decision, it will first push the

microservice binary to the new destination, and then notify

the runtime of the old node to (1) remove the microservice

instance from the execution engine; (2) clean up and free any

local resources; (3) migrate the working state, as represented

by reliable collections [40], to the destination. After the or-

chestrator receives a confirmation from the original node, it

will update connections and restart the microservice execution

on the new node.

3.5 Failover/Replication Manager

Since SmartNICs share the same power supply as their host

server, our failover manager treats all SmartNICs and the

host to be in the same fault domain [40], avoiding replica

placement within the same. Replication for fault tolerance is

typically done across different racks of the same datacenter

or across datacenters, and there is no impact from placing

SmartNICs in the same failure domain as hosts.

USENIX Association 2019 USENIX Annual Technical Conference 369

Microservice S Description

IPsec Authenticates (SHA-1) & encrypts (AES-CBC-128) NATv4 [42]
BM25 Search engine ranking function [85], e.g., ElasticSearch
NATv4 IPv4 network address translation using DIR-24-8-BASIC [32]
NIDS Network intrusion detection w/ aho-corasick parallel match [81]
Count X Item frequency counting based on a bitmap [42]
EMA X Exponential moving average (EMA) for data streams [83]
KVS X Hashtable-based in-memory key-value store [24]
Flow mon. X Flow monitoring system using count-min sketch [42]
DDoS X Entropy-based DDoS detection [58]
Recommend X Recommendation system using collaborative filtering [82]
KNN Classifier using the K-nearest neighbours algorithm [87]
Spike X Spike detector from a data stream using Z-score [72]
Bayes Naive Bayes classifier based on maximum a posteriori [49]
API gw X API rate limiter and authentication gateway [9]
Top Ranker X Top-K ranker using quicksort [78]
SQL X In-memory SQL database [52]

Table 2: 16 microservices implemented on E3. S = Stateful.

Application Description N Microservices

NFV-FIN Flow monitoring [42, 64] 72 Flow mon., IPsec, NIDS

NFV-DIN Intrusion detection [64, 88] 60 DDoS, NATv4, NIDS

NFV-IFID IPsec gateway [42, 88] 84 NATv4, Flow mon., IPsec, DDoS

RTA-PTC Twitter analytics [78] 60 Count, Top Ranker, KNN

RTA-SF Spam filter [35] 96 Spike, Count, KVS, Bayes

RTA-SHM Server health mon. [37] 84 Count, EMA, SQL, BM25

IOT-DH IoT data hub [77] 108 API gw, Count, KNN, KVS, SQL

IOT-TS Thermostat [54] 108 API,EMA,Spike,Recommend,SQL

Table 3: 8 microservice applications. N = # of DAG nodes.

4 Implementation

Host software stack. The E3 resource controller and host

runtime are implemented in 1,287 and 3,617 lines of C (LOC),

respectively, on Ubuntu 16.04. Communication among co-

located microservices uses per-core, multi-producer, single-

consumer FIFO queues in shared memory. Our prototype uses

UDP for all network communication.

SmartNIC runtime. The E3 SmartNIC runtime is built in

3,885 LOC on top of the Cavium CDK [16], with a user-

level network stack. Each microservice runs on a set of non-

preemptive hardware threads. Our implementation takes ad-

vantage of a number of hardware accelerator libraries. We use

(1) a hardware managed memory manager to store the state of

each microsevice, (2) the hardware traffic controller for Ether-

net MAC packet management, and (3) atomic fetch-and-add

units to gather performance statistics. We use page protection

of the cnMIPS architecture to confine microservices.

Microservices. We implemented 16 popular microservices

on E3, as shown in Table 2, in an aggregate 6,966 LOC. Six of

the services are stateless or use read-only state that is modified

only via the cluster control plane. The remaining services are

stateful and use reliable collections to maintain their state.

When running on the SmartNIC, IPsec and API gateway can

use the crypto coprocessor (105 LOC), while Recommend and

NIDS can take advantage of the deterministic finite automata

unit (65 LOC). For Count, EMA, KVS, and Flow monitor,

our compiler automatically uses the dedicated atomic fetch-

and-add units on the SmartNIC. When performing single-

precision floating-point computations (EMA, KNN, Spike,

System/Cluster Cost [$] BC WC Mem Idle Peak Bw

Beefy 4,500 12 0 64 83 201 20

Wimpy 2,209 0 32 2 79 95 20

Type1-SmartNIC 4,650 12 12 68 98 222 20

Type2-SmartNIC 6,750 16 48 144 145 252 40

SuperBeefy 12,550 24 0 192 77 256 80

4×Beefy 18,000 48 0 256 332 804 80

4×Wimpy 8,836 0 128 8 316 380 80

2×B.+2×W. 13,018 24 64 132 324 592 80

2×Type2-SmartNIC 13,500 32 96 288 290 504 80

1×SuperBeefy 12,550 24 0 192 77 256 80

Table 4: Evaluated systems and clusters. BC = Beefy cores, WC

= Wimpy cores, Mem = Memory (GB), Idle and Peak power

(W), Bw = Network bandwidth (Gb/s).

Bayes), our compiler generates FPU code on the SmartNIC.

Double-precision floating-point calculations (API gateway)

are software emulated. E3 reliable collections currently only

support hashtables and arrays, preventing us from migrating

the SQL engine. We thus constrain the control-plane manager

to pin SQL instances to host processors.

Applications. Based on these microservices, we develop

eight applications across three application domains: (1) Dis-

tributed real-time analytics (RTA), such as Apache Storm [78],

implemented as a dataflow processing graph of workers that

pass data tuples in real time to trigger computations; (2) Net-

work function (NF) virtualization (NFV) [61], which is used

to build cloud-scale network middleboxes, software switches,

and enterprise IT networks, by chaining NFs; (3) An IoT hub

(IOT) [53], which gathers sensor data from edge devices and

generates events for further processing (e.g., spike detection,

classifier) [?, 77]. To maximize throughput, applications may

shard and replicate microservices, resulting in a DAG node

count larger than the involved microservice types. Table 3

presents the microservice types involved in each application,

the deployed DAG node count, and references the workloads

used for evaluation. The workloads are trace-based and syn-

thetic benchmarks, validated against realistic scenarios. The

average and maximum node fanouts among our applications

are 6 and 12, respectively. Figure1 shows IOT-TS as an ex-

ample. IOT-TS is sharded into 6×API, 12×SQL, 12×EMA,

12×Spike, and 12×recommend and each microservice has

one backup replica.

5 Evaluation

Our evaluation aims to answer the following questions:

1. What is the energy efficiency benefit of microservice

SmartNIC-offload? Is it proportional to client load?

What is the latency cost? (§5.1)

2. Does E3 overcome the challenges of SmartNIC-offload?

(§5.2, §5.3, §5.4)

3. Do SmartNIC-accelerated servers provide better total

cost of ownership than other cluster architectures? (§5.5)

4. How does E3 perform at scale? (§5.6)

370 2019 USENIX Annual Technical Conference USENIX Association

Experimental setup. Our experiments run on a set of clus-

ters (Table 4 presents the server and cluster configurations),

attached to an Arista DCS-7050S ToR switch. Beefy is a

Supermicro 1U server, with a 12-core E5-2680 v3 processor

at 2.5GHz, and a dual-port 10Gbps Intel X710 NIC. Wimpy

is ThunderX-like, with a CN6880 processor (32 cnMIPS64

cores running at 1.2GHz), and a dual-port 10Gbps NIC. Su-

perBeefy is a Supermicro 2U machine, with a 24-core Xeon

Platinum 8160 CPU at 2.1GHz, and a dual-port 40Gbps Intel

XL710 NIC. Our SmartNIC is the Cavium LiquidIOII [15],

with one OCTEON processor with 12 cnMIPS64 cores at

1.2GHz, 4GB memory, and two 10Gbps ports. Based on this,

we build two SmartNIC servers: Type1 is Beefy, but swaps

the X710 10Gbps NIC with the Cavium LiquidIOII; Type2

is a 2U server with two 8-core Intel E5-2620 processors at

2.1GHz, 128GB memory, and 4 SmartNICs. All servers have

a Seagate HDD. We build the clusters such that each has the

same amount of aggregate network bandwidth. This allows

us to compare energy efficiency based on the compute band-

width of the clusters, without varying network bandwidth. We

also exclude the switch from our cost and energy evaluations,

as each cluster uses an identical number of switch ports.

We measure server power consumption using the servers’

IPMI data center management interface (DCMI), cross-

checked by a Watts Up wall power meter. Throughput and

average/tail latency across 3 runs are measured from clients

(Beefy machines), of which we provide as many as necessary.

We enable hyper-threading and use the Intel_pstate gover-

nor for power management. All benchmarks in this section

report energy efficiency as throughput over server/cluster wall

power (not just active power).

5.1 Benefit and Cost of SmartNIC-Offload

Peak utilization. We evaluate the latency and energy ef-

ficiency of using SmartNICs for microservice applications,

compared to homogeneous clusters. We compare 3×Beefy to

3×Type1-SmartNIC, to ensure that microservices also com-

municate remotely. We focus first on peak utilization, which is

desirable for energy efficiency, as it amortizes idle power draw.

To do so, we deploy as many instances of each application and

apply as much client load as necessary to maximize request

throughput without overloading the cluster, as determined by

the knee of the latency-throughput curve.

Figure 5 shows that Type1-SmartNIC achieves an average

2.5×, 1.3×, and 1.3× better energy efficiency across the NFV,

RTA, and IOT application classes, respectively. This goes

along with 43.3%, 92.3%, and 80.4% average latency savings

and 35.5%, 90.4%, 88.6% 99th percentile latency savings,

respectively. NFV-FIN gains the most—3× better energy

efficiency—because E3 is able to run all microservices on

the SmartNICs. RTA-PTC benefits the least—12% energy

efficiency improvement at 4% average and tail latency cost—

as E3 only places the Count microservice on the SmartNIC

and migrates the rest to the host.

Power proportionality. This experiment evaluates the

power proportionality of E3 (energy efficiency at lower than

peak utilization). Using 3×Type1-SmartNIC, we choose an

application from each class (NFV-FIN, RTA-SHM, and IOT-

TS) and vary the offered request load between idle and peak

via a client side request limiter. Figure 8 shows that RTA-

SHM and IOT-TS are power proportional. NFV-FIN is not

power proportional but also draws negligible power. NFV-

FIN runs all microservices on the SmartNICs, which have low

active power, but the cnMIPS architecture has no per-core

sleep states.

We conclude that applications can benefit from E3’s mi-

croservice offload to SmartNICs, in particular at peak cluster

utilization. Peak cluster utilization is desirable for energy

efficiency and microservices make it more common due to

light-weight migration. However, transient periods of low

load can occur and E3 draws power proportional to request

load. We can apply insights from Prekas, et al. [65] to reduce

polling overheads and improve power proportionality further.

5.2 Avoiding Host Starvation

We show that E3’s data-plane orchestrator prevents host star-

vation by identifying head-of-line blocking of network traffic.

To do so, we use 3×Type1-SmartNIC and place as many

microservices on the SmartNIC as fit in memory. E3 iden-

tifies the microservices that cause interference (Top Ranker

in RTA-PTC, Spike in RTA-SF, API gateway in IOT-DH and

IOT-TS) and migrates them to the host. As shown in Figure 7,

our approach achieves up to 29× better energy efficiency and

up to 89% latency reduction across RTA-PTC, RTS-SF, IOT-

DH, and IOT-TS. For the other applications, our traffic engine

has little effect because the initial microservice assignment

already put the memory intensive microservices on the host.

5.3 Sharing SmartNIC and Host Bandwidth

This experiment evaluates the benefits of sharing SmartNIC

network bandwidth with the host. We compare two Type2-

SmartNIC configurations: 1. Sharing aggregate network band-

width among host and SmartNICs, using ECMP to balance

host traffic over SmartNIC ports; 2. Replacing one SmartNIC

with an Intel X710 NIC used exclusively to route traffic to

the host. To emphasize the load balancing benefits, we al-

ways place the client-facing microservices on the host server.

Note that SmartNIC-offloaded microservices still exchange

network traffic (when communicating remotely or among

SmartNICs) and interfere with host traffic.

Figure 9 shows that load balancing improves application

throughput up to 2.9× and cluster energy efficiency up to

2.7× (NFV-FIN). Available host network bandwidth when

sharing SmartNICs can be up to 4× that of the dedicated

USENIX Association 2019 USENIX Annual Technical Conference 371

 0

 5

 10

 15

 20

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

K
R

P
J
)

Type1-SmartNIC Beefy

(a) Energy-efficiency

 0

 2

 4

 6

 8

 10

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

A
v
g

.
L

a
te

n
c
y
 (

m
s
)

Type1-SmartNIC Beefy

(b) Average latency

 0

 10

 20

 30

 40

 50

 60

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

T
a

il
L

a
te

n
c
y
 (

m
s
)

Type1-SmartNIC Beefy

(c) 99th-percentile latency

Figure 5: Energy-efficiency, average/tail latency comparison between Type1-SmartNIC and Beefy at peak utilization.

Cluster NFV-FIN RTA-SHM IOT-TS

4×Beefy 5.1 1.9 2.7

4×Wimpy 29.9 0.4 0.1

2×B.+2×W. 8.2 1.4 1.9

2×Type2-SmartNIC 29.0 4.5 6.1

1×SuperBeefy 8.8 2.9 5.0

Table 5: Energy efficiency across five clusters (KRPJ).

NIC, which balances better with the host compute bandwidth.

With a dedicated NIC, host processors can starve for network

bandwidth. IOT-TS is compute-bound and thus benefits the

least from sharing. In terms of latency, all cases behave the

same since the request execution flows are the same.

5.4 Communication-aware Placement

To show the effectiveness of communication-aware microser-

vice placement, we evaluate HCM on E3 without data-plane

orchestrator. In this case, all microservices are stationary after

placement. We avoid host starvation and microservice over-

load by constraining problematic microservices to the host.

Using 3×Type1-SmartNIC and all placement constraints

of Service Fabric [40] (described in §3.3), we compare HCM

with both simulated annealing and an integer linear program

(ILP). HCM places the highest importance on minimizing mi-

croservice communication latency. Simulated annealing and

ILP use a cost function with the highest weight on minimizing

co-execution interference. Hence, HCM tries to co-schedule

communicating microservices on proximate resources, while

the others will spread them out. ILP attempts to find the best

configuration, while simulated annealing approximates. Fig-

ure 6 shows that compared to simulated annealing and ILP,

HCM improves energy efficiency by up to 35.2% and 22.0%,

and reduces latency by up to 24.0% and 18.6%, respectively.

HCM’s short communication latency benefits outweigh inter-

ference from co-execution.

5.5 Energy Efficiency = Cost Efficiency

While SmartNICs benefit energy efficiency and thus poten-

tially bring cost savings, can they compete with other forms

of heterogeneous clusters, especially when factoring in the

capital expense to acquire the hardware? In this experiment,

we evaluate the cost efficiency, in terms of request throughput

over total cost and time of ownership, of using SmartNICs

for microservices, compared with four other clusters (see Ta-

ble 4). Assuming that clusters are usually at peak utilization,

we use the cost efficiency metric T hroughput×T

CAPEX+(Power×T×Electricity) ,

where T hroughput is the measured average throughput at

peak utilization for each application, as executed by E3 on

each cluster, T is elapsed time, CAPEX is the capital expense

to purchase the cluster including all hardware components ($),

Power is the elapsed peak power draw of the cluster (Watts),

and Electricity is the price of electricity ($/Watts). The clus-

ter cost and power data is shown in Table 4 and we use the

average U.S. electricity price [31] of $0.0733/kWh. Figure 10

reports results for three applications of very different points

in the workload space, extrapolated over time of ownership

by our cost efficiency metric.

We make three observations. First, in the long term (>1

year of ownership), cost efficiency is increasingly dominated

by energy efficiency. This highlights the importance of energy

efficiency for data center design, where servers are typically

replaced after several years to balance CAPEX [12]. Second,

when all microservices are able to run on a low power plat-

form (NFV-FIN), both 4×Wimpy and 2×Type2-SmartNIC

clusters are the most cost efficient. After 5 years, 4×Wimpy is

14.1% more cost efficient than 2×Type2-SmartNIC because

of the lower power draw. Third, when a microservice applica-

tion contains both compute and IO-intensive microservices

(RTA-SHM, IOT-TS), the 2×Type2-SmartNIC cluster is up

to 1.9× more cost efficient after 5 years of ownership than

the next best cluster configuration (4×Beefy in both cases).

Table 5 presents the measured energy-efficiency, which

shows cost efficiency in the limit (over very long time of own-

ership). We can see that 4×Wimpy is only 3% more energy

efficient (but has lower CAPEX) than 2×Type2-SmartNIC

for NFV-FIN. 2×Type2-SmartNIC is on average 2.37× more

energy-efficient (but has higher CAPEX) than 1×SuperBeefy,

which is the second-best cluster in terms of energy-efficiency.

5.6 Performance at Scale

We evaluate and discuss the scalability of E3 along three

axes: 1. Mechanism performance scalability; 2. Tail-latency;

3. Energy-efficiency.

372 2019 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

 0

 5

 10

 15

 20
E

n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

K
R

P
J
)

L
a
te

n
c
y
 (

m
s
)

EE w/ HCM
EE w/ annealing

EE w/ ILP
Lat. w/ HCM

Lat. w/ annealing
Lat. w/ ILP

Figure 6: Communication-aware microservice placement.

 0

 5

 10

 15

 20

NFV-FIN

NFV-D
IN

NFV-IF
ID

RTA-P
TC

RTA-S
F

RTA-S
HM

IO
T-D

H

IO
T-TS

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

K
R

P
J
)

L
a
te

n
c
y
 (

m
s
)

EE w/o HS
EE w HS

Lat. w/o HS
Lat. w HS

Figure 7: Avoiding host starvation (HS).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3N
o
rm

a
liz

e
d
 I
d
le

 P
o
w

e
r

Throughput (Mop/s)

NFV-FIN
RTA-SHM

IOT-TS

Figure 8: Power draw of 3 applications normalized to idle

power of 3×Type1-SmartNIC, varying request load.

 0.1

 1

 10

 100

NFV-FIN RTA-SF IOT-TS
 10

 100

 1000

 10000

E
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

K
R

P
J
)

T
h
ro

u
g
h
p
u
t
(K

R
P

S
)EE w/ ECMP

EE w/o ECMP
Th. w/ ECMP

Th. w/o ECMP

Figure 9: ECMP-based SmartNIC sharing (log y scale).

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

C
o

s
t

e
ff

ic
ie

n
c
y
 (

B
o

p
s
/$

)

Time of ownership (years)

(a) NFV-FIN

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

C
o

s
t

e
ff

ic
ie

n
c
y
 (

B
o

p
s
/$

)

Time of ownership (years)

4xBeefy
4xWimpy

2xB.+2xW.
2xType2-SmartNIC

1xSuperBeefy

(b) RTA-SHM

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

C
o

s
t

e
ff

ic
ie

n
c
y
 (

B
o

p
s
/$

)

Time of ownership (years)

(c) IOT-TS

Figure 10: Cost efficiency of 3 applications across the cluster configurations from Table 4.

Servers→ 100 200 400 600 800 1,000

HCM 4.85 8.31 19.83 34.32 74.39 263.46

Annealing 3.15 4.73 7.43 15.64 23.50 61.42

ILP 7.64 19.43 84.83 361.85 ≫ 1s ≫ 1s

Table 6: Per-microservice deployment time (ms) scalability.

Mechanism scalability. At scale, pressure on the control-

plane manager and data-plane orchestrator increases. We eval-

uate the performance scalability of both mechanisms with an

increasing number of Type2-SmartNIC servers in a simulated

FatTree [30] topology with 40 servers per rack. To avoid host

starvation and microservice overload, E3’s data-plane orches-

trator receives one heartbeat message (16B) every 50ms from

each SmartNIC that reports the queue length of the traffic

manager and the SmartNIC’s microservice execution times.

The orchestrator parses the heartbeat message and makes a mi-

gration decision (§3.4). Figure 11 shows that the time taken

to transmit the message and make a decision with a large

number of servers stays well below the time taken to migrate

the service (on the order of 10s-100s of ms) and is negligi-

bly impacted by the number of deployed microservices. This

is because the heartbeat message contributes only 1Kbps of

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

0.1K 1K 10K 20K 30K 40K 50KT
im

e
 t

o
 m

ig
ra

te
 (

m
s
)

Number of servers

1K services
10K services
50K services

100K services

Figure 11: Orchestrator migration decision time scalability.

traffic, even with 50K servers.

E3 uses HCM in the control-plane manager. We compare it

to simulated annealing and ILP, deploying 10K microservices

on an increasing number of servers. Table 6 shows that while

HCM does not scale as well as simulated annealing, it can

deploy new microservices in a reasonable time span (<<1s)

at scale. ILP fails to deliver acceptable performance.

Tail latencies. At scale, tail latencies dominate [20]. While

SmartNICs can introduce high tail latency for some microser-

vices (§2.3), E3 places these microservices on the host to en-

sure that application-level tail-latency inflation is minimized

USENIX Association 2019 USENIX Annual Technical Conference 373

(§5.1). The tail-latency impact of SmartNIC offload is reduced

at scale, as baseline communication latency increases with

increasing inter-rack distance.

Energy-efficiency and power budgets. E3’s energy effi-

ciency benefits are constant regardless of deployment size

and power budgets. At scale, there is additional energy cost

for core and spine switches, but these are negligible compared

to racks (ToRs and servers). Within a rack, ToR switch en-

ergy consumption stays constant, as all compared systems use

the same number of switch ports. Our results show that E3

achieves up to 1.9x more throughput under the same power

budget. Conversely, operators can save 48% of power, offering

the same bandwidth.

6 Related Work

Architecture studies for microservices. Prior work has

explored the architectural implications of running microser-

vices [21, 27, 79]. It shows that wimpy servers hold potential

for microservices under low loads, as they have less cache

utilization and network virtualization overhead compared

with traditional monolithic cloud workloads. FAWN [8] ex-

plored using only low-power processor architecture for data-

intensive workloads as an energy and cost-effective alternative

to server multiprocessors. However, FAWN assumed that I/O

speeds are much lower than CPU speeds and so CPUs would

be left idle for data-intensive applications. With the advent

of fast network technologies, server CPUs are still required.

Motivated by these studies, we focus on using SmartNIC-

accelerated servers for energy efficiency.

Heterogeneous scheduling. A set of schedulers for

performance-asymmetric architectures have been proposed.

For example, Kumar et al. [44, 45] use instructions per cycle

to determine relative speedup of each thread on different types

of cores. HASS [73] introduces the architectural signature

concept as a scheduling indicator, which contains informa-

tion about memory-boundedness, available instruction-level

parallelism, etc. CAMP [71] combines both efficiency and

thread-level parallelism specialization and proposes a light-

weight technique to discover which threads could use fast

cores more efficiently. PTask [69] provides a data-flow pro-

gramming model for programmers to manage computation

for GPUs. It enables sharing GPUs among multiple processes,

parallelizes multiple tasks, and eliminates unnecessary data

movements. These approaches target long-running compu-

tations, mostly on cache coherent architectures, rather than

microsecond-scale, request-based workloads over compute

nodes that do not share memory and are hence not applicable.

Microservice scheduling. Wisp [76] enforces end-to-end

performance objectives by globally adapting rate limiters and

request schedulers based on operator policies under varying

system conditions. This work is not concerned with Smart-

NIC heterogeneity. UNO [46] is an NFV framework that can

systematically place NFs across SmartNIC and host with a

resource-aware algorithm on the control plane. E3 is a mi-

croservice platform and thus goes several steps further: (1)

E3 uses a data-plane orchestrator to detect node load and

migrates microservices if necessary; (2) HCM considers com-

munication distance during the placement. With the advent

of SmartNICs and programmable switches, researchers have

identified the potential performance benefits of applying re-

quest processing across the communication path [14]. E3 is

such a system designed for the programmable cloud and ex-

plores the energy efficiency benefits of running microservices.

Power proportionality. Power proportional systems can

vary energy use with the presented workload [50]. For exam-

ple, Prekas, et al. propose an energy-proportional system man-

agement policy for memcached [65]. While E3 can provide

energy proportionality, we are primarily interested in energy-

efficiency. Geoffrey et al. [18] propose a heterogeneous power-

proportional system. By carefully selecting component ensem-

bles, it can provide an energy-efficient solution for a particular

task. However, due to the high cost of ensemble transitions,

we believe that this architecture is not fit for high bandwidth

I/O systems. Rivoire, et al. propose a more balanced system

design (for example, a low-power, mobile processor with nu-

merous laptop disks connected via PCIe) and show that it

achieves better energy efficiency for sorting large data vol-

umes [67]. Pelican [11] presents a software storage stack on

under-provisioned hardware targeted at cold storage work-

loads. Our proposal could be viewed as a balanced-energy

approach for low-latency query-intensive server applications,

rather than cold, throughput intensive ones.

7 Conclusion

We present E3, a microservice execution platform on

SmartNIC-accelerated servers. E3 extends key system com-

ponents (programming model, execution engine, communi-

cation subsystem, scheduling) of the Azure Service Fabric

microservice platform to a SmartNIC. E3 demonstrates that

SmartNIC offload can improve cluster energy-efficiency up

to 3× and cost efficiency up to 1.9× at up to 4% latency cost

for common microservices.

Acknowledgments

This work is supported in part by NSF grants CNS-1616774,

CNS-1714508, CNS-1751231 and the Texas Systems Re-

search Consortium. We would like to thank the anonymous

reviewers and our shepherd, Ada Gavrilovska, for their com-

ments and feedback.

374 2019 USENIX Annual Technical Conference USENIX Association

References

[1] DPDK. https://www.dpdk.org/.

[2] DynamIQ. https://developer.arm.com/techno

logies/dynamiq.

[3] Amazon Lambda Serverless Computing Platform. ht

tps://aws.amazon.com/lambda/, 2018.

[4] Google App Engine. https://cloud.google.com

/appengine/, 2018.

[5] Nirmata Platform. https://www.nirmata.com/,

2018.

[6] Amazon. Amazon Data Pipeline. https://aws.am

azon.com/datapipeline/, 2018.

[7] AMD. AMD HSA. https://www.amd.com/en-us/

innovations/software-technologies/hsa, 2018.

[8] David G. Andersen, Jason Franklin, Michael Kaminsky,

Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.

FAWN: A Fast Array of Wimpy Nodes. In Proceedings

of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, 2009.

[9] Microservice Architecture. Api gateway. http://

microservices.io/patterns/apigateway.html,

2018.

[10] Microsoft Azure. Programming Model in the Azure

Service Fabric. https://docs.microsoft.com/e

n-us/azure/service-fabric/service-fabric-c

hoose-framework, 2018.

[11] Shobana Balakrishnan, Richard Black, Austin Don-

nelly, Paul England, Adam Glass, Dave Harper, Sergey

Legtchenko, Aaron Ogus, Eric Peterson, and Antony

Rowstron. Pelican: A Building Block for Exascale Cold

Data Storage. In Proceedings of the 11th USENIX Con-

ference on Operating Systems Design and Implementa-

tion, 2014.

[12] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ran-

ganathan. The Datacenter as a Computer: Designing

Warehouse-Scale Machines. Synthesis Lectures on Com-

puter Architecture, 2018.

[13] Broadcom. Broadcom Stingray SmartNICs.

https://www.broadcom.com/products/ethernet

-connectivity/smartnic/ps225, 2018.

[14] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. Be-

yond SmartNICs: Towards a fully programmable cloud.

In IEEE International Conference on High Performance

Switching and Routing, ser. HPSR, volume 18, 2018.

[15] Cavium. Cavium LiquidIO SmartNICs.

https://cavium.com/pdfFiles/LiquidIO_II_

CN78XX_Product_Brief-Rev1.pdf, 2018.

[16] Cavium. Cavium OCTEON Development Kits.

https://cavium.com/octeon-software-develop

-kit.html, 2018.

[17] Luis Ceze, Mark D Hill, and Thomas F Wenisch.

Arch2030: A vision of computer architecture research

over the next 15 years. arXiv preprint arXiv:1612.03182,

2016.

[18] Geoffrey Challen and Mark Hempstead. The Case for

Power-agile Computing. In Proceedings of the 13th

USENIX Conference on Hot Topics in Operating Sys-

tems, 2011.

[19] Christopher Clark, Keir Fraser, Steven Hand, Ja-

cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,

and Andrew Warfield. Live migration of virtual ma-

chines. In Proceedings of the 2nd Conference on Sympo-

sium on Networked Systems Design & Implementation-

Volume 2, 2005.

[20] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.

Commun. ACM, 56(2):74–80, 2013.

[21] Christina Delimitrou. The Hardware-Software Impli-

cations of Microservices and How Big Data Can Help.

2018.

[22] A. Shehabi et al. United States Data Center Energy

Usage Report. Technical report, Lawrence Berkeley

National Laboratory, 2016.

[23] Dolphin Express. Remote Peer to Peer made easy.

https://www.dolphinics.com/download/WHITEP

APERS/Dolphin_Express_IX_Peer_to_Peer_whit

epaper.pdf, 2018.

[24] Bin Fan, David G. Andersen, and Michael Kaminsky.

MemC3: Compact and Concurrent MemCache with

Dumber Caching and Smarter Hashing. In 10th USENIX

Symposium on Networked Systems Design and Imple-

mentation, 2013.

[25] Daniel Firestone, Andrew Putnam, Sambhrama Mund-

kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,

Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, Harish Kumar Chandrappa, Somesh Chaturmo-

hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,

Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,

Madhan Sivakumar, Nisheeth Srivastava, Anshuman

Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,

Kushagra Vaid, David A. Maltz, and Albert Greenberg.

USENIX Association 2019 USENIX Annual Technical Conference 375

Azure Accelerated Networking: SmartNICs in the Pub-

lic Cloud. In 15th USENIX Symposium on Networked

Systems Design and Implementation, 2018.

[26] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massen-

gill, M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams,

M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,

L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,

E. S. Chung, and D. Burger. A Configurable Cloud-

Scale DNN Processor for Real-Time AI. In 2018

ACM/IEEE 45th Annual International Symposium on

Computer Architecture, 2018.

[27] Y. Gan and C. Delimitrou. The Architectural Implica-

tions of Cloud Microservices. IEEE Computer Architec-

ture Letters, 17(2):155–158, 2018.

[28] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,

Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,

Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna

Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang

Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,

Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,

and Christina Delimitrou. An Open-Source Benchmark

Suite for Microservices and Their Hardware-Software

Implications for Cloud & Edge Systems. In Pro-

ceedings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages

and Operating Systems, 2019.

[29] Google. Google Cloud Dataflow. https://cloud.go

ogle.com/dataflow/, 2018.

[30] Albert Greenberg, James R Hamilton, Navendu Jain,

Srikanth Kandula, Changhoon Kim, Parantap Lahiri,

David A Maltz, Parveen Patel, and Sudipta Sengupta.

VL2: a scalable and flexible data center network. In

ACM SIGCOMM computer communication review, vol-

ume 54, pages 95–104, 2009.

[31] Site Selection Group. Power in the Data Center and

its Cost Across the U.S. https://info.sitesel

ectiongroup.com/blog/power-in-the-data-cen

ter-and-its-costs-across-the-united-states,

2017.

[32] Pankaj Gupta, Steven Lin, and Nick McKeown. Rout-

ing lookups in hardware at memory access speeds. In

INFOCOM’98. Seventeenth Annual Joint Conference

of the IEEE Computer and Communications Societies.

Proceedings. IEEE, 1998.

[33] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D.

Nguyen, Ricardo Bianchini, and Kathryn S. McKin-

ley. Exploiting Heterogeneity for Tail Latency and En-

ergy Efficiency. In Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitec-

ture, 2017.

[34] HP. HPE ProLiant m800 Server Cartridge. https:

//support.hpe.com/hpsc/doc/public/display?

docId=emr_na-c04500667&sp4ts.oid=6532018,

2018.

[35] Thomas Hunter II. Advanced Microservices: A Hands-

on Approach to Microservice Infrastructure and Tooling.

2017.

[36] Intel. Intel Xeon Phi Coprocessor 7120A. https://

ark.intel.com/products/80555/Intel-Xeon-P

hi-Coprocessor-7120A-16GB-1238-GHz-61-core,

2018.

[37] Rajkumar Jalan, Swaminathan Sankar, and Gurudeep

Kamat. Distributed system to determine a server’s

health, 2018. US Patent 9,906,422.

[38] Brian Jeff. Ten Things to Know About big. LITTLE.

ARM Holdings, 2013.

[39] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-

terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,

Suresh Bhatia, Nan Boden, Al Borchers, et al. In-

datacenter performance analysis of a tensor processing

unit. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, 2017.

[40] Gopal Kakivaya, Lu Xun, Richard Hasha,

Shegufta Bakht Ahsan, Todd Pfleiger, Rishi Sinha,

Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi,

et al. Service fabric: a distributed platform for building

microservices in the cloud. In Proceedings of the

Thirteenth EuroSys Conference, 2018.

[41] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,

Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon

Wei, and David Brooks. Profiling a Warehouse-scale

Computer. In Proceedings of the 42Nd Annual Interna-

tional Symposium on Computer Architecture, 2015.

[42] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-

becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV

Service Chains at the True Speed of the Underlying

Hardware. In 15th USENIX Symposium on Networked

Systems Design and Implementation, 2018.

[43] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,

Thomas Anderson, and Arvind Krishnamurthy. High

Performance Packet Processing with FlexNIC. In Pro-

ceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages

and Operating Systems, 2016.

[44] Rakesh Kumar, Keith I Farkas, Norman P Jouppi,

Parthasarathy Ranganathan, and Dean M Tullsen.

Single-ISA heterogeneous multi-core architectures: The

376 2019 USENIX Annual Technical Conference USENIX Association

potential for processor power reduction. In Microar-

chitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, 2003.

[45] Rakesh Kumar, Dean M Tullsen, Parthasarathy Ran-

ganathan, Norman P Jouppi, and Keith I Farkas. Single-

ISA heterogeneous multi-core architectures for multi-

threaded workload performance. In Computer Archi-

tecture, 2004. Proceedings. 31st Annual International

Symposium on, 2004.

[46] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin

Wang, Aditya Akella, Michael M Swift, and TV Laksh-

man. UNO: uniflying host and smart NIC offload for

flexible packet processing. In Proceedings of the 2017

Symposium on Cloud Computing, 2017.

[47] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng,

Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng

Cheng, and Enhong Chen. Clicknp: Highly flexible

and high performance network processing with recon-

figurable hardware. In Proceedings of the 2016 ACM

SIGCOMM Conference, 2016.

[48] Felix Xiaozhu Lin and Xu Liu. Memif: Towards Pro-

gramming Heterogeneous Memory Asynchronously. In

Proceedings of the Twenty-First International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, 2016.

[49] Jianxiao Liu, Zonglin Tian, Panbiao Liu, Jiawei Jiang,

and Zhao Li. An approach of semantic web service clas-

sification based on Naive Bayes. In Services Computing,

2016 IEEE International Conference on, 2016.

[50] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André

Barroso, and Christos Kozyrakis. Towards energy pro-

portionality for large-scale latency-critical workloads.

In Computer Architecture, 2014 ACM/IEEE 41st Inter-

national Symposium on, 2014.

[51] Mellanox. Mellanox BlueField Platforms. http://ww

w.mellanox.com/related-docs/npu-multicore

-processors/PB_BlueField_Ref_Platform.pdf,

2018.

[52] MemSQL. In-memory SQL database. https://www.

memsql.com, 2018.

[53] Microsoft. Azure IoT hub. https://azure.micros

oft.com/en-us/services/iot-hub/, 2018.

[54] Microsoft. Honeywell Case Study. https:

//blogs.msdn.microsoft.com/azureservicefab

ric/2018/03/20/service-fabric-customer-pro

file-honeywell/, 2018.

[55] Microsoft. Microsoft Data Factory. https://azure.

microsoft.com/en-us/services/data-factory/,

2018.

[56] Microsoft. NIC Teaming. https://docs.microso

ft.com/en-us/windows-server/networking/tec

hnologies/nic-teaming/nic-teaming, 2018.

[57] Changwoo Min, Woonhak Kang, Mohan Kumar, Sanid-

hya Kashyap, Steffen Maass, Heeseung Jo, and Taesoo

Kim. Solros: A Data-centric Operating System Archi-

tecture for Heterogeneous Computing. In Proceedings

of the Thirteenth EuroSys Conference, 2018.

[58] Jelena Mirkovic and Peter Reiher. A taxonomy of

DDoS attack and DDoS defense mechanisms. ACM SIG-

COMM Computer Communication Review, 34(2):39–53,

2004.

[59] Netronome. Netronome Agilio SmartNIC. https://

www.netronome.com/products/agilio-cx/, 2018.

[60] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,

Yury Audzevich, Sergio López-Buedo, and Andrew W.

Moore. Understanding pcie performance for end host

networking. In Proceedings of the 2018 Conference of

the ACM Special Interest Group on Data Communica-

tion, 2018.

[61] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,

Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott

Shenker. E2: A Framework for NFV Applications. In

Proceedings of the 25th Symposium on Operating Sys-

tems Principles, 2015.

[62] Jun Woo Park, Alexey Tumanov, Angela Jiang,

Michael A. Kozuch, and Gregory R. Ganger. 3Sigma:

Distribution-based Cluster Scheduling for Runtime Un-

certainty. In Proceedings of the Thirteenth EuroSys

Conference, 2018.

[63] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,

Doug Woos, Arvind Krishnamurthy, Thomas Anderson,

and Timothy Roscoe. Arrakis: The Operating System is

the Control Plane. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Imple-

mentation, 2014.

[64] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and

Sylvia Ratnasamy. SafeBricks: Shielding Network Func-

tions in the Cloud. In 15th USENIX Symposium on

Networked Systems Design and Implementation, 2018.

[65] George Prekas, Mia Primorac, Adam Belay, Christos

Kozyrakis, and Edouard Bugnion. Energy Proportion-

ality and Workload Consolidation for Latency-critical

Applications. In Proceedings of the Sixth ACM Sympo-

sium on Cloud Computing, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 377

[66] Hang Qu, Omid Mashayekhi, Chinmayee Shah, and

Philip Levis. Decoupling the Control Plane from Pro-

gram Control Flow for Flexibility and Performance in

Cloud Computing. In Proceedings of the Thirteenth

EuroSys Conference, 2018.

[67] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ran-

ganathan, and Christos Kozyrakis. JouleSort: A Bal-

anced Energy-efficiency Benchmark. In Proceedings of

the 2007 ACM SIGMOD International Conference on

Management of Data, 2007.

[68] Christopher J Rossbach, Jon Currey, Mark Silberstein,

Baishakhi Ray, and Emmett Witchel. PTask: operat-

ing system abstractions to manage GPUs as compute

devices. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles, 2011.

[69] Christopher J. Rossbach, Jon Currey, Mark Silberstein,

Baishakhi Ray, and Emmett Witchel. PTask: Operat-

ing System Abstractions to Manage GPUs As Compute

Devices. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles, 2011.

[70] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-

Philippe Martin, and Dennis Fetterly. Dandelion: a

compiler and runtime for heterogeneous systems. In

Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, 2013.

[71] Juan Carlos Saez, Manuel Prieto, Alexandra Fedorova,

and Sergey Blagodurov. A comprehensive scheduler for

asymmetric multicore systems. In Proceedings of the

5th European conference on Computer systems, 2010.

[72] Felix Scholkmann, Jens Boss, and Martin Wolf. An effi-

cient algorithm for automatic peak detection in noisy pe-

riodic and quasi-periodic signals. Algorithms, 5(4):588–

603, 2012.

[73] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey

Jeffery, Alexandra Fedorova, Nestor Perez, Zhi Feng

Huang, Sergey Blagodurov, and Viren Kumar. HASS: a

scheduler for heterogeneous multicore systems. ACM

SIGOPS Operating Systems Review, 43(2):66–75, 2009.

[74] SPEC. Trends in Server Efficiency and Power Usage

in Data Centers. https://www.spec.org/event

s/beijing2016/slides/015-Trends_in_Server_

Efficiency_and_Power_Usage_in_Data_Centers

%20-%20Sanjay%20Sharma.pdf, 2016.

[75] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan. Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications.

In Proceedings of the 2001 Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communications, 2001.
[76] Lalith Suresh, Peter Bodik, Ishai Menache, Marco

Canini, and Florin Ciucu. Distributed resource man-

agement across process boundaries. In Proceedings of

the 2017 Symposium on Cloud Computing, 2017.

[77] Mesh Systems. Mesh Systems. http://www.mesh-s

ystems.com, 2018.

[78] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik

Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason

Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.

Storm@ twitter. In Proceedings of the 2014 ACM SIG-

MOD international conference on Management of data,

2014.

[79] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara.

Workload characterization for microservices. In 2016

IEEE international symposium on workload characteri-

zation (IISWC), 2016.

[80] Leendert van Doorn. Microsoft’s datacenters. In Pro-

ceedings of the 1st Workshop on Hot Topics in Data

Centers, 2016.

[81] Wikipedia. Aho-Corasick Algorithm.

https://en.wikipedia.org/wiki/Aho%E2%80%

93Corasick_algorithm, 2018.

[82] Wikipedia. Collaborative filtering. https://en.w

ikipedia.org/wiki/Collaborative_filtering,

2018.

[83] Wikipedia. Ema. https://en.wikipedia.org/wik

i/Moving_average, 2018.

[84] Wikipedia. Equal-cost multi-path routing.

https://en.wikipedia.org/wiki/Equal-cos

t_multi-path_routing, 2018.

[85] Wikipedia. Okapi BM25. https://en.wikipedia

.org/wiki/Okapi_BM25, 2018.

[86] Wikipedia. Representational State Transfer Architec-

ture. https://en.wikipedia.org/wiki/Represen

tational_state_transfer, 2018.

[87] Wikipedia. k-nearest neighbors algorithm.

https://en.wikipedia.org/wiki/K-nearest_n

eighbors_algorithm, 2019.

[88] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei

Hua, Jiayi Meng, and Lishan Yang. G-NET: Effective

GPU Sharing in NFV Systems. In 15th USENIX Sympo-

sium on Networked Systems Design and Implementation,

2018.

378 2019 USENIX Annual Technical Conference USENIX Association

