J-||||"-|.| BEN

Al

usenix
.o THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

E3: Energy-Efficient Microservices
on SmartNIC-Accelerated Servers

Ming Liu, University of Washington; Simon Peter, The University of Texas at Austin;
Arvind Krishnamurthy, University of Washington;
Phitchaya Mangpo Phothilimthana, University of California, Berkeley

https://www.usenix.org/conference/atc19/presentation/liu-ming

This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.
July 10-12, 2019 « Renton, WA, USA
ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference
is sponsored by USENIX.




E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers

Ming Liu
University of Washington

Simon Peter
The University of Texas at Austin

Arvind Krishnamurthy
University of Washington

Phitchaya Mangpo Phothilimthana*
University of California, Berkeley

Abstract

We investigate the use of SmartNIC-accelerated servers to
execute microservice-based applications in the data center.
By offloading suitable microservices to the SmartNIC’s low-
power processor, we can improve server energy-efficiency
without latency loss. However, as a heterogeneous computing
substrate in the data path of the host, SmartNICs bring several
challenges to a microservice platform: network traffic routing
and load balancing, microservice placement on heterogeneous
hardware, and contention on shared SmartNIC resources.

We present E3, a microservice execution platform for
SmartNIC-accelerated servers. E3 follows the design philoso-
phies of the Azure Service Fabric microservice platform and
extends key system components to a SmartNIC to address
the above-mentioned challenges. E3 employs three key tech-
niques: ECMP-based load balancing via SmartNICs to the
host, network topology-aware microservice placement, and
a data-plane orchestrator that can detect SmartNIC overload.
Our E3 prototype using Cavium LiquidIO SmartNICs shows
that SmartNIC offload can improve cluster energy-efficiency
up to 3x and cost efficiency up to 1.9 at up to 4% latency
cost for common microservices, including real-time analytics,
an IoT hub, and virtual network functions.

1 Introduction

Energy-efficiency has become a major factor in data cen-
ter design [80]. U.S. data centers consume an estimated 70
billion kilowatt-hours of energy per year (about 2% of to-
tal U.S. energy consumption) and as much as 57% of this
energy is used by servers [22, 74]. Improving server energy-
efficiency is thus imperative [17]. A recent option is the inte-
gration of low-power processors in server network interface
cards (NICs). Examples are the Netronome Agilio-CX [59],
Mellanox BlueField [51], Broadcom Stingray [13], and Cav-
ium LiquidIO [15], which rely on ARM/MIPS-based proces-
sors and on-board memory. These SmartNICs can process

*The author is now at Google.

microsecond-scale client requests but consume much less en-
ergy than server CPUs. By sharing idle power and the chassis
with host servers, SmartNICs also promise to be more energy
and cost efficient than other heterogeneous or low-power clus-
ters. However, SmartNICs are not powerful enough to run
large, monolithic cloud applications, preventing their offload.

Today, cloud applications are increasingly built as mi-
croservices, prompting us to revisit SmartNIC offload in the
cloud. A microservice-based workload comprises loosely cou-
pled processes, whose interaction is described via a dataflow
graph. Microservices often have a small enough memory foot-
print for SmartNIC offload and their programming model
efficiently supports transparent execution on heterogeneous
platforms. Microservices are deployed via a microservice
platform [3-5,40] on shared datacenter infrastructure. These
platforms abstract and allocate physical datacenter computing
nodes, provide a reliable and available execution environment,
and interact with deployed microservices through a set of
common runtime APIs. Large-scale web services already use
microservices on hundreds of thousands of servers [40,41].

In this paper, we investigate efficient microservice execu-
tion on SmartNIC-accelerated servers. Specifically, we are
exploring how to integrate multiple SmartNICs per server
into a microservice platform with the goal of achieving better
energy efficiency at minimum latency cost. However, trans-
parently integrating SmartNICs into microservice platforms is
non-trivial. Unlike traditional heterogeneous clusters, Smart-
NICs are collocated with their host servers, raising a number
of issues. First, SmartNICs and hosts share the same MAC
address. We require an efficient mechanism to route and
load-balance traffic to hosts and SmartNICs. Second, Smart-
NIGCs sit in the host’s data path and microservices running
on a SmartNIC can interfere with microservices on the host.
Microservices need to be appropriately placed to balance
network-to-compute bandwidth. Finally, microservices can
contend on shared SmartNIC resources, causing overload. We
need to efficiently detect and prevent such situations.

We present E3, a microservice execution platform for
SmartNIC-accelerated servers that addresses these issues. E3
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follows the design philosophies of the Azure Service Fabric

microservice platform [40] and extends key system compo-

nents to allow transparent offload of microservices to a Smart-

NIC. To balance network request traffic among SmartNICs

and the host, E3 employs equal-cost multipath (ECMP) load

balancing at the top-of-rack (ToR) switch and provides high-
performance PCle communication mechanisms between host
and SmartNICs. To balance computation demands, we intro-
duce HCM, a hierarchical, communication-aware microser-
vice placement algorithm, combined with a data-plane orches-
trator that can detect and eliminate SmartNIC overload via
microservice migration. This allows E3 to optimize server en-
ergy efficiency with minimal impact on client request latency.
We make the following contributions:

o We show why SmartNICs can improve energy efficiency
over other forms of heterogeneous computation and how
they should be integrated with data center servers and mi-
croservice platforms to provide efficient and transparent
microservice execution (§2).

e We present the design of E3 (§3), a microservice runtime
on SmartNIC-accelerated server systems. We present its
implementation within a cluster of Xeon-based servers with
up to 4 Cavium LiquidIO-based SmartNICs per server (§4).

o We evaluate energy and cost-efficiency, as well as client-
observed request latency and throughput for common mi-
croservices, such as a real-time analytics framework, an
IoT hub, and various virtual network functions, across var-
ious homogeneous and heterogeneous cluster configura-
tions (§5). Our results show that offload of microservices
to multiple SmartNICs per server with E3 improves cluster
energy-efficiency up to 3x and cost efficiency up to 1.9 x
at up to 4% client-observed latency cost versus all other
cluster configurations.

2 Background

Microservices simplify distributed application development
and are a good match for low-power SmartNIC offload. To-
gether, they are a promising avenue for improving server
energy efficiency. We discuss this rationale, quantify the po-
tential benefits, and outline the challenges of microservice
offload to SmartNICs in this section.

2.1 Microservices

Microservices have become a critical component of today’s
data center infrastructure with a considerable and diverse
workload footprint. Microsoft reports running microservices
24/7 on over 160K machines across the globe, including
Azure SQL DB, Skype, Cortana, and IoT suite [40]. Google
reports that Google Search, Ads, Gmail, video processing,
flight search, and more, are deployed as microservices [41].
These microservices include large and small data and code
footprints, long and short running times, billed by run-time
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Figure 1: Thermostat analytics as DAG of microservices. The
platform maps each DAG node to a physical computing node.

and by remote procedure call (RPC) [28]. What unifies these
services is their software engineering philosophy.

Microservices use a modular design pattern, which simpli-
fies distributed application design and deployment. Microser-
vices are loosely-coupled, communicating through a set of
common APIs, invoked via RPCs [86], and maintain state
via reliable collections [40]. As a result, developers can take
advantage of languages and libraries of their choice, while
not having to worry about microservice placement, communi-
cation mechanisms, fault tolerance, or availability.

Microservices are also attractive to datacenter operators as
they provide a way to improve server utilization. Microser-
vices execute as light-weight processes that are easier to scale
and migrate compared with a monolithic development ap-
proach. They can be activated upon incoming client requests,
execute to request completion, and then swapped out.

A microservice platform, such as Azure Service Fabric
[40], Amazon Lambda [3], Google Application Engine [4], or
Nirmata [5], is a distributed system manager that enables iso-
lated microservice execution on shared datacenter infrastruc-
ture. To do so, microservice platforms include the following
components (cf. [40]): 1. federation subsystem, abstracting
and grouping servers into a unified cluster that holds deployed
applications; 2. resource manager, allocating computation re-
sources to individual microservices based on their execution
requirements; 3. orchestrator, dynamically scheduling and mi-
grating microservices within the cluster based on node health
information, microservice execution statistics, and service-
level agreements (SLAS); 4. transport subsystem, providing
(secure) point-to-point communication among various mi-
croservices; 5. failover manager, guaranteeing high availabil-
ity/reliability through replication; 6. troubleshooting utilities,
which assist developers with performance profiling/debugging
and understanding microservice co-execution interference.

A microservice platform usually provides a number of
programming models [10] that developers adhere to, like
dataflow and actor-based. The models capture the execution
requirements and describe the communication relationship
among microservices. For example, the data-flow model (e.g.
Amazon Datapipe [6], Google Cloudflow [29], Azure Data
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Factory [55]) requires programmers to assemble microser-
vices into a directed acyclic graph (DAG): nodes contain mi-
croservices that are interconnected via flow-controlled, loss-
less dataflow channels. These models bring attractive benefits
for a heterogeneous platform since they explicitly express con-
currency and communication, enabling the platform to trans-
parently map it to the available hardware [68, 70]. Figure |
shows an IoT thermostat analytics application [54] consisting
of microservices arranged in 3 stages: 1. Thermostat sensor
updates are authenticated by the API gateway; 2. Updates are
logged into a SQL store sharded by a thermostat identifier;
3. SQL store updates trigger data analytic tasks (e.g, spike
detection, moving average, and recommendation) based on
thresholds. The dataflow programming model allows the SQL
store sharding factor to be dynamically adjusted to scale the
application with the number of thermostats reporting. Reli-
able collections ensure state consistency when re-sharding
and the microservice platform automatically migrates and
deploys DAG nodes to available hardware resources.

A microservice can be stateful or stateless. Stateless mi-
croservices have no persistent storage and only keep state
within request context. They are easy to scale, migrate, and
replicate, and they usually rely on other microservices for
stateful tasks (e.g., a database engine). Stateful microservices
use platform APIs to access durable state, allowing the plat-
form full control over data placement. For example, Service
Fabric provides reliable collections [40], a collection of data
structures that automatically persist mutations. Durable stor-
age is typically disaggregated for microservices and accessed
over the network. The use of platform APIs to maintain state
allows for fast service migration compared with traditional
virtual machine migration [19], as the stateful working set
is directly observed by the platform. All microservices in
Figure | are stateful. We describe further microservices in §4.

2.2 SmartNICs

SmartNICs have appeared on the market [15, 51, 59] and
in the datacenter [25]. SmartNICs include computing units,
memory, traffic managers, DMA engines, TX/RX ports, and
several hardware accelerators for packet processing, such as
cryptography and pattern matching engines. Unlike traditional
accelerators, SmartNICs integrate the accelerator with the
NIC. This allows them to process network requests in-line, at
much lower latency than other types of accelerators.

Two kinds of SmartNIC exist: (1) general-purpose, which
allows transparent microservice offload and is the architecture
we consider. For example, Mellanox BlueField [51] has 16
ARMVvS8 A72 cores with 2x100GE ports and Cavium Lig-
uidIO [15] has 12 cnMIPS cores with 2x 10GE ports. These
SmartNICs are able to run full operating systems, but also
ship with lightweight runtime systems that can provide kernel-
bypass access to the NIC’s IO engines. (2) FPGA and ASIC
based SmartNICs target highly specialized applications. Ex-

amples include match-and-action processing [25,43] for net-
work dataplanes, NPUs [26], and TPUs [39] for deep neural
network inference acceleration. FPGAs and ASICs do not
support transparent microservice offload. However, they can
be combined with general-purpose SmartNICs.

A SmartNIC-accelerated server is a commodity server with
one or more SmartNICs. Host and SmartNIC processors do
not share thermal, memory, or cache coherence domains, and
communicate via DMA engines over PCle. This allows them
to operate as independent, heterogeneous computers, while
sharing a power domain and its idle power.

SmartNICs hold promise for improving server energy-
efficiency when compared to other heterogeneous computing
approaches. For example, racks populated with low-power
servers [8] or a heterogeneous mix of servers, suffer from
high idle energy draw, as each server requires energy to
power its chassis, including fans and devices, and its own ToR
switch port. System-on-chip designs with asymmetric perfor-
mance, such as ARM’s big. LITTLE [38] and DynamIQ [2]
architectures, and AMD’s heterogeneous system architecture
(HSA) [7], which combines a GPU with a CPU on the same
die, have scalability limits due to the shared thermal design
point (TDP). These architectures presently scale to a max-
imum of 8 cores, making them more applicable to mobile
than to server applications. GPGPUs and single instruction
multiple threads (SIMT) architectures, such as Intel’s Xeon
Phi [36] and HP Moonshot [34], are optimized for compu-
tational throughput and the extra interconnect hop prevents
these accelerators from running latency-sensitive microser-
vices efficiently [57]. SmartNICs are not encumbered by these
problems and can thus be used to balance the power draw of
latency-sensitive services efficiently.

2.3 Benefits of SmartNIC Offload

We quantify the potential benefit of using SmartNICs for mi-
croservices on energy efficiency and request latency. To do
so, we choose two identical commodity servers and equip one
with a traditional 10GbE Intel X710 NIC and the other with a
10GbE Cavium LiquidIO SmartNIC. Then we evaluate 16 dif-
ferent microservices (detailed in §4) on these two servers with
synthetic benchmarks of random 512B requests. We measure
request throughput, wall power consumed at peak throughput
(defined as the knee of the latency-throughput graph, where
queueing delay is minimal) and when idle, as well as client-
observed, average/tail request latency in a closed loop. We use
host cores on the traditional server and SmartNIC cores on the
SmartNIC server for microservice execution. We use as many
identical microservice instances, CPUs, and client machines
as necessary to attain peak throughput and put unused CPUs
to their deepest sleep state. The SmartNIC does not support
per-core low power states and always keeps all 12 cores active,
diminishing SmartNIC energy efficiency results somewhat.
The SmartNIC microservice runtime system uses a kernel-
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Microservice Host (Linux) Host (DPDK) SmartNIC

RPS W C L  99% RPJ RPS W C L  99% RPJ % RPS w L  99% RPJ X
1Psec 821.3K 117.0 12 1.8 6.6 7.0K 911.9K 112.1 12 1.7 52 81K 159 1851.1K 234 0.2 0.8 79.0K 9.7
BM25 919K 1164 12 403 2058 0.8K 99.5K 110.0 12 30.7 1556 09K 145| 3941K 19.2 4.1 124 20.6K 228
NIDS 1781.1K  111.0 12 0.06 02 16.1K | 1841.1K 106.8 12 0.05 0.15 172K 7.4 | 1988.8K 234 0.03 0.1 848K 49
Recommend 36K 1094 12 86.6 477.0 0.03K 41K 1117 12 787 358.6 0.04K 11.6 128K 189 213 1236 0.7K 184
NATv4 1889.6K  72.1 8 004 0.1 262K | 1917.5K  52.1 4 0.04 0.1 368K 404 | 2053.1K 236 0.03 0.09 86.9K 2.4
Count 1960.8K  68.1 6 007 0.1 288K | 1960.0K 486 4 0.03 0.1 403K 40.0| 2016.8K 21.0 0.03 0.09 96.1K 2.4
EMA 1966.1K  72.7 8 004 0.2 27.0K | 2009.2K 52.1 4 0.03 0.09 38.6K 42.8| 2052.0K 22.0 0.03 0.08 93.5K 2.4
KVS 1946.2K  48.6 8 004 0.1 40.0K | 2005.0K 33.6 2 004 0.1 59.6K 49.0| 20334K 21.6 0.03 0.1 97.1K 1.6
Flow mon. 1944.1K 709 8 004 0.1 274K | 20144K 49.8 4 0.03 0.09 404K 474 2032.6K 243 0.03 0.08 83.6K 2.1
DDoS 1989.5K 111.2 12 0.05 0.2 179K | 1844.8K 105.7 12 0.05 02 174K -3.0 | 1952.5K 243 0.03 0.1 80.4K 4.6
KNN 422K 1183 12 537 1634 04K 424K 1104 12 458 1613 04K 75 299K 200 206 80.3 1.5K 3.9
Spike 919K 1125 12 293 945 0.8K 104.3K 1123 12 257 83.0 09K 137 738K 235 9.0 503 3.1K 34
Bayes 121K 1139 12 82.0 4065 0.1K 137K 1120 12 80.6 4005 0.1K 14.8 1.6K 195 419 1647 0.08K 0.7
API gw 1537.6K 108.5 12 0.9 32 142K | 15843K 1106 12 0.8 27 143K 1.1 124.5K 247 85 403.6 50K 0.4
Top ranker 711.9K 119.7 12 4.0 150 59K 7719K 109.2 12 35 123  7.1K 189 148K 203 31.1 1549 07K 0.1
SQL 463.3K 1147 12 6.9 31.1 40K 528.0K 113.0 12 6.7 29.5 47K 157 395K 188 295 1042 21K 0.4

Table 1: Microservice comparison among host (Linux and DPDK) and SmartNIC. RPS = Throughput (requests/s), W = Active power
(W), C = Number of active cores, L. = Average latency (ms), 99% = 99th percentile latency, RPJ = Energy efficiency (requests/Joule).
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Figure 2: Request size impact on SmartNIC RP]J benefits.

bypass network stack (cf. §4). To break out kernel overheads
from the host experiments, we run all microservices on the
host in two configurations: 1. Linux kernel network stack; 2.
kernel-bypass network stack [63], based on Intel’s DPDK [1].

Table | presents measured peak request throughput, active
power (wall power at peak throughput minus idle wall power),
number of active cores, (tail-)latency, and energy efficiency,
averaged over 3 runs. Active power allows a direct comparison
of host to SmartNIC processor power draw. Energy efficiency
equals throughput divided by active power.

Kernel overhead. We first analyze the overhead of in-
kernel networking on the host (Linux versus DPDK). As
expected, the kernel-bypass networking stack performs bet-
ter than the in-kernel one. On average, it improves energy
efficiency by 21% (% column in Table 1) and reduces tail la-
tency by 16%. Energy efficiency improves because (1) DPDK
achieves similar throughput with fewer cores; (2) at peak
server CPU utilization, DPDK delivers higher throughput.

SmartNIC performance. SmartNIC execution improves
the energy efficiency of 12 of the measured microservices
by a geometric mean of 6.5x compared with host execution
using kernel bypass (x column in Table 1). The SmartNIC
consumes at most 24.7W active power to execute these mi-
croservices while the host processor consumes up to 113W.
IPSec, BM25, Recommend, and NIDS particularly benefit

from various SmartNIC hardware accelerators (crypto copro-
cessor, fetch-and-add atomic units, floating point engines, and
pattern matching units). NATv4, Count, EMA, KVS, Flow
monitor, and DDoS can take advantage of the computational
bandwidth and fast memory interconnect of the SmartNIC.
In these cases, the energy efficiency comes not just from the
lower power consumed by the SmartNIC, but also from peak
throughput improvements versus the host processor. KNN
and Spike attain lower throughput on the SmartNIC. How-
ever, since the SmartNIC consumes less power, the overall
energy efficiency is still better than the host. For all of these
microservices, the SmartNIC also improves client-observed
latency. This is due to the hardware accelerated packet buffers
and the elimination of PCle bus traversals. SmartNICs can
reduce average and tail latency by a geometric mean of 45.3%
and 45.4% versus host execution, respectively.

The host outperforms the SmartNIC for Top ranker, Bayes
classifier, SQL, and API gateway by a geometric mean of 4.1 x
in energy efficiency, 41.2% and 30.0% in average and tail la-
tency reduction. These microservices are branch-heavy with
large working sets that are not handled well by the simpler
cache hierarchy of the SmartNIC. Moreover, the API gate-
way uses double floating point numbers for the rate limiter
implementation, which the SmartNIC emulates in software.

Request size impact. SmartNIC performance depends also
on request size. To demonstrate this, we vary the request size
of our synthetic workload and evaluate SmartNIC energy ef-
ficiency benefits of 5 microservices versus host execution.
Figure 2 shows that with small (<128B) requests, SmartNIC
benefit of IPSec, NIDS, and DDoS is smaller. Small requests
are more computation intensive and we are limited by the
SmartNIC’s wimpy cores. SmartNIC offload hits a sweet-spot
at 256-512B request size, where the benefit almost doubles.
Here, network and compute bandwidth utilization are bal-
anced for the SmartNIC. At larger request sizes, we are net-
work bandwidth limited, allowing us to put host CPUs to sleep
and SmartNIC benefits again diminish. This can be seen in
particular for IPsec, which outperforms on the SmartNIC due
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Figure 3: Average RTT (3 runs) of different communication
mechanisms in a SmartNIC-accelerated server.

to hardware cryptography acceleration, but still diminishes
with larger request sizes. We conclude that request size has a
major impact on the benefit of SmartNIC offload. Measuring
it is necessary to make good offload choices.

We conclude that SmartNIC offload can provide large en-
ergy efficiency and latency benefits for many microservices.
However, it is not a panacea. Computation and memory in-
tensive microservices are more suitable to run on the host
processor. We need an efficient method to define and monitor
critical SmartNIC offload criteria for microservices.

2.4 Challenges of SmartNIC Offload

While there are quantifiable benefits, offloading microservices

to SmartNICs brings a number of additional challenges:

o SmartNICs share the same Ethernet MAC address with the
host server. Layer 2 switching is not enough to route traffic
between SmartNICs and host servers. We require a different
switching scheme that can balance traffic and provide fault
tolerance when a server equips multiple SmartNICs.

e Microservice platforms assume uniform communication
performance among all computing nodes. However, Fig-
ure 3 shows that SmartNIC-Host (via PCle) and SmartNIC-
SmartNIC (via ToR switch) communication round-trip-
time (RTT) is up to 83.3% and 86.2% lower than host-host
(via ToR switch) kernel-bypass communication. We have to
consider this topology effect to achieve good performance.

e Microservices share SmartNIC resources and contend with
SmartNIC firmware for cache and memory bandwidth. This
can create a head-of-line blocking problem for network
packet exchange with both SmartNIC and host. Prolonged
head-of-line blocking can result in denial of service to un-
related microservices and is more severe than transient
sources of interference, such as network congestion. We
need to sufficiently isolate SmartNIC-offloaded microser-
vices from firmware to guarantee quality of service.

3 E3 Microservice Platform

We present the E3 microservice platform for SmartNIC-
accelerated servers. Our goal is to maximize microservice
energy efficiency at scale. Energy efficiency is the ratio of

Host server Q‘ NIC processor cores
——————— PCle "~ Host ~ 1| ¥ 7™
s "o v 1| 2~ M 0 O O
o e 1processor (s), | 3 < Orchestrator Microservices
——————— o
21— SmartNic | J_QPI 3 agent
______ ———d-___| &
| | {  Host _ -
LHETNG 1processor (s) | LTX
————— manager

(@). SmartNIC-accelerated server (b). SmartNIC block diagram

Figure 4: Hardware and software architecture of E3.

microservice throughput and cluster power draw. Power draw
is determined by our choice of SmartNIC-acceleration, while
E3 focuses on maximizing microservice throughput on this
heterogeneous architecture. We describe how we support mi-
croservice offload to a SmartNIC and address the request
routing, microservice placement, and scheduling challenges.

E3 overview. E3 is a distributed microservice execution
platform. We follow the design philosophies of Azure Service
Fabric [40] but add energy efficiency as a design requirement.
Figure 4 shows the hardware and software architecture of E3.
E3 runs in a typical datacenter, where servers are grouped into
racks, with a ToR switch per rack. Each server is equipped
with one or more SmartNICs, and each SmartNIC is con-
nected to the ToR. This creates a new topology where host
processors are reachable via any of the SmartNICs (Figure 4-
a). SmartNICs within the same server also have multiple
communication options—yvia the ToR or PCle (§3.1).

Programming model. E3 uses a dataflow programming
model. Programmers assemble microservices into a DAG of
microservice nodes interconnected via channels in the direc-
tion of RPC flow (cf. Figure 1). A channel provides lossless
data communication between nodes. A DAG in E3 describes
all RPC and execution paths of a single microservice applica-
tion, but multiple DAGs may coexist and execute concurrently.
E3 is responsible for mapping DAGs to computational nodes.

Software stack. E3 employs a central, replicated cluster re-
source controller [40] and a microservice runtime on each host
and SmartNIC. The resource controller includes four compo-
nents: (1) traffic control, responsible for routing and load bal-
ancing requests between different microservices; (2) control-
plane manager, placing microservice instances on cluster
nodes; (3) data-plane orchestrator, dynamically migrates mi-
croservices across cluster nodes; (4) failover/replication man-
ager, providing failover and node membership management
using consistent hashing [75]. The microservice runtime in-
cludes an execution engine, an orchestrator agent, and a com-
munication subsystem, described next.

Execution engine. E3 executes each microservice as a
multi-threaded process, either on the SmartNIC or on the
host. The host runs Linux. The SmartNIC runs a lightweight
firmware. Microservices interact only via microservice APIs,
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allowing E3 to abstract from the OS. SmartNIC and host sup-
port hardware virtual memory for microservice confinement.
E3 is work-conserving and runs requests to completion. It
leverages a round-robin policy for steering incoming requests
to cores, context switching cores if needed.

Orchestrator agent. Each node runs an orchestrator agent
to periodically monitor and report runtime execution charac-
teristics to the resource controller. The information is used by
(1) the failover manager to determine cluster health and (2) the
data-plane orchestrator to monitor the execution performance
of each microservice and make migration decisions. On the
host, the agent runs as a separate process. On the SmartNIC,
the agent runs on dedicated cores (blue in Figure 4-b) and a
traffic manager hardware block exchanges packets between
the NIC MAC ports and the agent. For each packet, the agent
determines the destination (network, host, or SmartNIC core).

3.1 Communication Subsystem

E3 leverages various communication mechanisms, depending
on where communicating microservices are located.

Remote communication. When communicating among
host cores across different servers, E3 uses the Linux network
stack. SmartNIC remote communication uses a user-level
network stack [63].

Local SmartNIC-host communication. SmartNIC and
host cores on the same server communicate via PCle. Prior
work has extensively explored communication channels via
PCle [47,48,60], and we adopt their design. High-throughput
messaging for PCle interconnects requires leveraging multi-
ple DMA engines in parallel. E3 takes advantage of the eight
DMA engines on the LiquidIO, which can concurrently issue
scatter/gather requests.

Local SmartNIC-SmartNIC communication. Smart-
NICs in the same host can use three methods for commu-
nication. 1. Using the host to relay requests, involving two
data transfers over PCle and pointer manipulation on the
host, increasing latency. 2. PCle peer-to-peer [23], which
is supported on most SmartNICs [15,51,59]. However, the
bandwidth of peer-to-peer PCle communication is capped in
a NUMA system when the communication passes between
sockets [57]. 3. ToR switch. We take the third approach and
our experiments show that this approach incurs lower latency
and achieves higher bandwidth than the first two.

3.2 Addressing and Routing

Since SmartNICs and their host servers share Ethernet MAC
addresses, we have to use an addressing/routing scheme to dis-
tinguish between these entities and load balance across them.

For illustration, assume we have a server with two SmartNICs;
each NIC has one MAC port. If remote microservices com-
municate with this server, there will be two possible paths
and each might be congested.

We use equal-cost multi-path (ECMP) [84] routing on the
ToR switch to route and balance load among these ports.
We assign each SmartNIC and the host its own IP. We then
configure the ToR switch to route to SmartNICs directly via
the attached ToR switch port and an ECMP route to the host
IP via any of the ports. The E3 communication subsystem
on each SmartNIC differentiates by destination IP address
whether an incoming packet is for the SmartNIC or the host.
On the host, we take advantage of NIC teaming [56] (also
know as port trunking) to bond all related SmartNIC ports
into a single logical interface, and then apply the dynamic
link aggregation policy (supporting IEEE 802.3ad protocol).
ECMP automatically balances connections to the host over
all available ports. If a link or SmartNIC fails, ECMP will
automatically rebalance new connections via the remaining
links, improving host availability.

3.3 Control-plane Manager

The control-plane manager is responsible for energy-efficient
microservice placement. This is a computing intensive oper-
ation due to the large search space with myriad constraints.
Hence, it is done on the control plane. Service Fabric uses
simulated annealing, a well-known approximate algorithm,
to solve microservice placement. It considers three types of
constraints: (1) currently available resources of each com-
puting node (memory, disk, CPU, network bandwidth); (2)
computing node runtime statistics (aggregate outstanding mi-
croservice requests); (3) individual microservice execution
behavior (average request size, request execution time and
frequency, diurnal variation, etc.). Service Fabric ignores net-
work topology and favors spreading load over multiple nodes.

E3 extends this algorithm to support bump-in-the-wire
SmartNICs, considering network topology. We categorize
computing nodes (host or SmartNIC processors) into different
levels of communication distance and perform a search from
the closest to the furthest. We present the HCM algorithm (Al-
gorithm 1). HCM takes as input the microservice DAG G and
source nodes Vj,., as well as the cluster topology T, includ-
ing runtime statistics for each computing node (as collected).
HCM performs a breadth-first traversal of G to map microser-
vices to cluster computing nodes (MS_DAG_TRAVERSE).

If not already deployed (get_deployed_node), HCM (via
MS_DAG_TRAVERSE) assigns a microservice V to a com-
puting node N via the find_first_fit function (lines 9-11) and
deploys it via set_deployed_node. find_first_fit is a greedy
algorithm that returns the first computing node that satis-
fies the microservice constraints (via its resource and runtime
statistics) without considering communication cost. If no such
node is found, it returns a node closest to the constraints. Next,
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Algorithm 1 HCM microservice placement algorithm

1: G : microservice DAG graph

2: Vg : source microservice node(s) of the DAG
3: T :server cluster topology graph

4: procedure MS_DAG_TRAVERSE(G, V., T)

5: Q.enqueue (V) > Let Q be a queue
6: while Q is not empty do
7: V < Q.dequeue()
8: N « get_deployed_node(V)
9: if N is NULL then
10: N « find_first_fit(V,T)
11: set_deployed_node(V,N)
12: for W in all direct descendants of V in G do
13: Nw < MS_PLACE(W,N,T)
14: set_deployed_node(W,Ny )
15: Q.enqueue(W)
16:

17: V : microservice to place

18: N : computational node of V's ancestor
19: T : server cluster topology graph

20: procedure MS_PLACE(V,N,T)

21: Topo < get_hierarchical_topo(N,T)
22: for L in all Topo.Levels do

23: N « find_best_fit(V,Topo.node_list(L))
24: if N is not NULL then
25: return N

26: return find_first_fit(V,T) > Ignore topology

for the descendant microservices of a node V (lines 12-15),
HCM assigns them to computing nodes based on their com-
munication distance to V (MS_PLACE). To do so, HCM first
computes the hierarchical topology representation of com-
puting node N via get_hierarchical_topo. Each level in the
hierarchical topology includes computing nodes that require a
similar communication mechanism, starting with the closest.
For example, in a single rack there are four levels in this order:
1. The same computing node as V'; 2. An adjacent computing
node on the same server; 3. A SmartNIC computing node on
an adjacent server; 4. A host computing node on an adjacent
server. If there are multiple nodes in the same level, HCM
uses find_best_fit to find the best fit, according to resource
constraints. If no node in the hierarchical topology fits the
constraints, we fall back to find_first_fit.

3.4 Data-plane Orchestrator

The data-plane orchestrator is responsible for detecting load
changes and migrating microservices in response to these
changes among computational nodes at run-time. To do so,
we piggypack several measurements onto the periodic node
health reports made by orchestrator agents to the resource
controller: This approach is lightweight and integrates well
with runtime execution. We believe that our proposed methods
can also be used in other microservice schedulers [33, 62, 66].

In this section, we introduce the additional techniques im-
plemented in our data-plane orchestrator to mitigate issues of

SmartNIC overload caused by compute-intensive microser-
vices. These can interfere with the SmartNIC’s traffic man-
ager, starving the host of network packets. They can also
simply execute too slowly on the SmartNIC to be able to
catch up with the incoming request rate.

Host starvation. This issue is caused by head-of-line block-
ing of network traffic due to microservice interference with
firmware on SmartNIC memory/cache. It is typically caused
by a single compute-intensive microservice overloading the
SmartNIC. To alleviate this problem, we monitor the incom-
ing/outgoing network throughput and packet queue depth at
the traffic manager. If network bandwidth is under-utilized,
but there is a standing queue at the traffic manager, the Smart-
NIC is overloaded, and we need to migrate microservices.

Microservice overload. This issue is caused by microser-
vices in aggregate requiring more computational bandwidth
than the SmartNIC can offer, typically because too many mi-
croservices are placed on the same SmartNIC. To detect this
problem, we periodically monitor the execution time of each
microservice and compare to its exponential moving aver-
age. When the difference is negative and larger than 20%,
we assume a microservice overload and trigger microservice
migration. The threshold was determined empirically.

Microservice migration. For either issue, the orchestrator
will migrate the microservice with the highest CPU utilization
to the host. To do so, it uses a cold migration approach, sim-
ilar to other microservice platforms. Specifically, when the
orchestrator makes a migration decision, it will first push the
microservice binary to the new destination, and then notify
the runtime of the old node to (1) remove the microservice
instance from the execution engine; (2) clean up and free any
local resources; (3) migrate the working state, as represented
by reliable collections [40], to the destination. After the or-
chestrator receives a confirmation from the original node, it
will update connections and restart the microservice execution
on the new node.

3.5 Failover/Replication Manager

Since SmartNICs share the same power supply as their host
server, our failover manager treats all SmartNICs and the
host to be in the same fault domain [40], avoiding replica
placement within the same. Replication for fault tolerance is
typically done across different racks of the same datacenter
or across datacenters, and there is no impact from placing
SmartNICs in the same failure domain as hosts.

USENIX Association

2019 USENIX Annual Technical Conference 369



Microservice S Description System/Cluster Cost [$] BC WC Mem Idle Peak Bw
IPsec Authenticates (SHA-1) & encrypts (AES-CBC-128) NATv4 [42] Beefy 4,500 12 0 64 83 201 20
BM25 Search engine ranking function [85], e.g., ElasticSearch Wimpy 2,209 0 32 2 79 95 20
NATv4 IPv4 network address translation using DIR-24-8-BASIC [32] Typel-SmartNIC 4,650 12 12 68 98 222 20
NIDS Network intrusion detection w/ aho-corasick parallel match [81] Type2-SmartNIC 6,750 16 48 144 145 252 40
Count v’ Item frequency counting based on a bitmap [42] SuperBeefy 12,550 24 0 192 77 256 80
EMA v Exponential moving average (EMA) for data streams [83] 4xBeefy 18,000 48 0 256 332 804 80
KVS v Hashtable-based in-memory key-value store [24] 4xWimpy 8,836 0 128 8 316 380 80
Flow mon. v Flow monitoring system using count-min sketch [42] 2%B.42XW. 13,018 24 64 132 324 592 80
DDoS v Entropy-based DDoS detection [58] 2xType2-SmartNIC 13,500 32 96 288 290 504 80
Recommend v Recommendation system using collaborative filtering [82] 1 x SuperBeefy 12,550 24 0 192 77 256 80
KNN Classifier using the K-nearest neighbours algorithm [87]

Spike v Spike detector from a data stream using Z-score [72]

B[z)lyes Nr;ive Bayes classifier based on maximgum a posteriori [49] Table 4: Evaluated systems and clusters. BC = Beefy cores, WC
API gw v API rate limiter and authentication gateway [9] = Wimpy cores, Mem = Memory (GB), Idle and Peak power
Top Ranker v* Top-K ranker using quicksort [78] _ .

SOL ¥ Tnmemory SQL database [52] (W), Bw = Network bandwidth (Gb/s).

Table 2: 16 microservices implemented on E3. S = Stateful.

Application Description N Microservices

NFV-FIN Flow monitoring [42,64] 72 Flow mon., IPsec, NIDS

NFV-DIN Intrusion detection [64,88] 60 DDoS, NATv4, NIDS

NFV-TIFID  IPsec gateway [42,88] 84 NATv4, Flow mon., IPsec, DDoS
RTA-PTC  Twitter analytics [78] 60 Count, Top Ranker, KNN
RTA-SF Spam filter [35] 96 Spike, Count, KVS, Bayes

RTA-SHM  Server health mon. [37] 84 Count, EMA, SQL, BM25
IOT-DH IoT data hub [77] 108 API gw, Count, KNN, KVS, SQL
I0T-TS Thermostat [54] 108 APILEMA,Spike,Recommend,SQL

Table 3: 8 microservice applications. N = # of DAG nodes.

4 Implementation

Host software stack. The E3 resource controller and host
runtime are implemented in 1,287 and 3,617 lines of C (LOC),
respectively, on Ubuntu 16.04. Communication among co-
located microservices uses per-core, multi-producer, single-
consumer FIFO queues in shared memory. Our prototype uses
UDP for all network communication.

SmartNIC runtime. The E3 SmartNIC runtime is built in
3,885 LOC on top of the Cavium CDK [16], with a user-
level network stack. Each microservice runs on a set of non-
preemptive hardware threads. Our implementation takes ad-
vantage of a number of hardware accelerator libraries. We use
(1) a hardware managed memory manager to store the state of
each microsevice, (2) the hardware traffic controller for Ether-
net MAC packet management, and (3) atomic fetch-and-add
units to gather performance statistics. We use page protection
of the cnMIPS architecture to confine microservices.

Microservices. We implemented 16 popular microservices
on E3, as shown in Table 2, in an aggregate 6,966 LOC. Six of
the services are stateless or use read-only state that is modified
only via the cluster control plane. The remaining services are
stateful and use reliable collections to maintain their state.
When running on the SmartNIC, [Psec and API gateway can
use the crypto coprocessor (105 LOC), while Recommend and
NIDS can take advantage of the deterministic finite automata
unit (65 LOC). For Count, EMA, KVS, and Flow monitor,
our compiler automatically uses the dedicated atomic fetch-
and-add units on the SmartNIC. When performing single-
precision floating-point computations (EMA, KNN, Spike,

Bayes), our compiler generates FPU code on the SmartNIC.
Double-precision floating-point calculations (API gateway)
are software emulated. E3 reliable collections currently only
support hashtables and arrays, preventing us from migrating
the SQL engine. We thus constrain the control-plane manager
to pin SQL instances to host processors.

Applications. Based on these microservices, we develop
eight applications across three application domains: (1) Dis-
tributed real-time analytics (RTA), such as Apache Storm [78],
implemented as a dataflow processing graph of workers that
pass data tuples in real time to trigger computations; (2) Net-
work function (NF) virtualization (NFV) [61], which is used
to build cloud-scale network middleboxes, software switches,
and enterprise IT networks, by chaining NFs; (3) An IoT hub
(I0T) [53], which gathers sensor data from edge devices and
generates events for further processing (e.g., spike detection,
classifier) [?,77]. To maximize throughput, applications may
shard and replicate microservices, resulting in a DAG node
count larger than the involved microservice types. Table 3
presents the microservice types involved in each application,
the deployed DAG node count, and references the workloads
used for evaluation. The workloads are trace-based and syn-
thetic benchmarks, validated against realistic scenarios. The
average and maximum node fanouts among our applications
are 6 and 12, respectively. Figurel shows IOT-TS as an ex-
ample. IOT-TS is sharded into 6 x API, 12xSQL, 12xEMA,
12 xSpike, and 12xrecommend and each microservice has
one backup replica.

5 Evaluation

Our evaluation aims to answer the following questions:

1. What is the energy efficiency benefit of microservice
SmartNIC-offload? Is it proportional to client load?
What is the latency cost? (§5.1)

2. Does E3 overcome the challenges of SmartNIC-offload?
(85.2,85.3,85.4)

3. Do SmartNIC-accelerated servers provide better total
cost of ownership than other cluster architectures? (§5.5)

4. How does E3 perform at scale? (§5.6)
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Experimental setup. Our experiments run on a set of clus-
ters (Table 4 presents the server and cluster configurations),
attached to an Arista DCS-7050S ToR switch. Beefy is a
Supermicro 1U server, with a 12-core E5-2680 v3 processor
at 2.5GHz, and a dual-port 10Gbps Intel X710 NIC. Wimpy
is ThunderX-like, with a CN6880 processor (32 cnMIPS64
cores running at 1.2GHz), and a dual-port 10Gbps NIC. Su-
perBeefy is a Supermicro 2U machine, with a 24-core Xeon
Platinum 8160 CPU at 2.1GHz, and a dual-port 40Gbps Intel
XL710 NIC. Our SmartNIC is the Cavium LiquidIOII [15],
with one OCTEON processor with 12 cnMIPS64 cores at
1.2GHz, 4GB memory, and two 10Gbps ports. Based on this,
we build two SmartNIC servers: Typel is Beefy, but swaps
the X710 10Gbps NIC with the Cavium LiquidIOII; Type2
is a 2U server with two 8-core Intel E5-2620 processors at
2.1GHz, 128GB memory, and 4 SmartNICs. All servers have
a Seagate HDD. We build the clusters such that each has the
same amount of aggregate network bandwidth. This allows
us to compare energy efficiency based on the compute band-
width of the clusters, without varying network bandwidth. We
also exclude the switch from our cost and energy evaluations,
as each cluster uses an identical number of switch ports.

We measure server power consumption using the servers’
IPMI data center management interface (DCMI), cross-
checked by a Watts Up wall power meter. Throughput and
average/tail latency across 3 runs are measured from clients
(Beefy machines), of which we provide as many as necessary.
We enable hyper-threading and use the Intel_pstate gover-
nor for power management. All benchmarks in this section
report energy efficiency as throughput over server/cluster wall
power (not just active power).

5.1 Benefit and Cost of SmartNIC-Offload

Peak utilization. We evaluate the latency and energy ef-
ficiency of using SmartNICs for microservice applications,
compared to homogeneous clusters. We compare 3 xBeefy to
3xTypel-SmartNIC, to ensure that microservices also com-
municate remotely. We focus first on peak utilization, which is
desirable for energy efficiency, as it amortizes idle power draw.
To do so, we deploy as many instances of each application and
apply as much client load as necessary to maximize request
throughput without overloading the cluster, as determined by
the knee of the latency-throughput curve.

Figure 5 shows that Typel-SmartNIC achieves an average
2.5%,1.3x%, and 1.3 x better energy efficiency across the NFV,
RTA, and IOT application classes, respectively. This goes
along with 43.3%, 92.3%, and 80.4% average latency savings
and 35.5%, 90.4%, 88.6% 99th percentile latency savings,
respectively. NFV-FIN gains the most—3Xx better energy
efficiency—because E3 is able to run all microservices on
the SmartNICs. RTA-PTC benefits the least—12% energy
efficiency improvement at 4% average and tail latency cost—
as E3 only places the Count microservice on the SmartNIC

and migrates the rest to the host.

Power proportionality. This experiment evaluates the
power proportionality of E3 (energy efficiency at lower than
peak utilization). Using 3 x Typel-SmartNIC, we choose an
application from each class (NFV-FIN, RTA-SHM, and I0OT-
TS) and vary the offered request load between idle and peak
via a client side request limiter. Figure 8 shows that RTA-
SHM and IOT-TS are power proportional. NFV-FIN is not
power proportional but also draws negligible power. NFV-
FIN runs all microservices on the SmartNICs, which have low
active power, but the cnMIPS architecture has no per-core
sleep states.

We conclude that applications can benefit from E3’s mi-
croservice offload to SmartNICs, in particular at peak cluster
utilization. Peak cluster utilization is desirable for energy
efficiency and microservices make it more common due to
light-weight migration. However, transient periods of low
load can occur and E3 draws power proportional to request
load. We can apply insights from Prekas, et al. [65] to reduce
polling overheads and improve power proportionality further.

5.2 Avoiding Host Starvation

We show that E3’s data-plane orchestrator prevents host star-
vation by identifying head-of-line blocking of network traffic.
To do so, we use 3 xTypel-SmartNIC and place as many
microservices on the SmartNIC as fit in memory. E3 iden-
tifies the microservices that cause interference (Top Ranker
in RTA-PTC, Spike in RTA-SF, API gateway in IOT-DH and
IOT-TS) and migrates them to the host. As shown in Figure 7,
our approach achieves up to 29 x better energy efficiency and
up to 89% latency reduction across RTA-PTC, RTS-SF, IOT-
DH, and IOT-TS. For the other applications, our traffic engine
has little effect because the initial microservice assignment
already put the memory intensive microservices on the host.

5.3 Sharing SmartNIC and Host Bandwidth

This experiment evaluates the benefits of sharing SmartNIC
network bandwidth with the host. We compare two Type2-
SmartNIC configurations: 1. Sharing aggregate network band-
width among host and SmartNICs, using ECMP to balance
host traffic over SmartNIC ports; 2. Replacing one SmartNIC
with an Intel X710 NIC used exclusively to route traffic to
the host. To emphasize the load balancing benefits, we al-
ways place the client-facing microservices on the host server.
Note that SmartNIC-offloaded microservices still exchange
network traffic (when communicating remotely or among
SmartNICs) and interfere with host traffic.

Figure 9 shows that load balancing improves application
throughput up to 2.9 and cluster energy efficiency up to
2.7x (NFV-FIN). Available host network bandwidth when
sharing SmartNICs can be up to 4 x that of the dedicated
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Figure 5: Energy-efficiency, average/tail latency comparison between Typel-SmartNIC and Beefy at peak utilization.

Cluster NFV-FIN RTA-SHM IOT-TS
4 xBeefy 5.1 1.9 2.7
4x Wimpy 29.9 0.4 0.1
2xB.A2XW. 8.2 1.4 1.9
2 x Type2-SmartNIC 29.0 4.5 6.1
1xSuperBeefy 8.8 29 5.0

Table 5: Energy efficiency across five clusters (KRP)J).

NIC, which balances better with the host compute bandwidth.
With a dedicated NIC, host processors can starve for network
bandwidth. IOT-TS is compute-bound and thus benefits the
least from sharing. In terms of latency, all cases behave the
same since the request execution flows are the same.

5.4 Communication-aware Placement

To show the effectiveness of communication-aware microser-
vice placement, we evaluate HCM on E3 without data-plane
orchestrator. In this case, all microservices are stationary after
placement. We avoid host starvation and microservice over-
load by constraining problematic microservices to the host.

Using 3xTypel-SmartNIC and all placement constraints
of Service Fabric [40] (described in §3.3), we compare HCM
with both simulated annealing and an integer linear program
(ILP). HCM places the highest importance on minimizing mi-
croservice communication latency. Simulated annealing and
ILP use a cost function with the highest weight on minimizing
co-execution interference. Hence, HCM tries to co-schedule
communicating microservices on proximate resources, while
the others will spread them out. ILP attempts to find the best
configuration, while simulated annealing approximates. Fig-
ure 6 shows that compared to simulated annealing and ILP,
HCM improves energy efficiency by up to 35.2% and 22.0%,
and reduces latency by up to 24.0% and 18.6%, respectively.
HCM’s short communication latency benefits outweigh inter-
ference from co-execution.

5.5 Energy Efficiency = Cost Efficiency

While SmartNICs benefit energy efficiency and thus poten-
tially bring cost savings, can they compete with other forms
of heterogeneous clusters, especially when factoring in the
capital expense to acquire the hardware? In this experiment,
we evaluate the cost efficiency, in terms of request throughput

over total cost and time of ownership, of using SmartNICs
for microservices, compared with four other clusters (see Ta-
ble 4). Assuming that clusters are usually at peak utilization,

: . T hroughput xT
we use the cost efficiency metric =z (PowerxTx Electricity)

where Throughput is the measured average throughput at
peak utilization for each application, as executed by E3 on
each cluster, T is elapsed time, CAPEX is the capital expense
to purchase the cluster including all hardware components ($),
Power is the elapsed peak power draw of the cluster (Watts),
and Electricity is the price of electricity ($/Watts). The clus-
ter cost and power data is shown in Table 4 and we use the
average U.S. electricity price [31] of $0.0733/kWh. Figure 10
reports results for three applications of very different points
in the workload space, extrapolated over time of ownership
by our cost efficiency metric.

We make three observations. First, in the long term (>1
year of ownership), cost efficiency is increasingly dominated
by energy efficiency. This highlights the importance of energy
efficiency for data center design, where servers are typically
replaced after several years to balance CAPEX [12]. Second,
when all microservices are able to run on a low power plat-
form (NFV-FIN), both 4 x Wimpy and 2 x Type2-SmartNIC
clusters are the most cost efficient. After 5 years, 4 x Wimpy is
14.1% more cost efficient than 2 x Type2-SmartNIC because
of the lower power draw. Third, when a microservice applica-
tion contains both compute and I0-intensive microservices
(RTA-SHM, IOT-TS), the 2 x Type2-SmartNIC cluster is up
to 1.9x more cost efficient after 5 years of ownership than
the next best cluster configuration (4 xBeefy in both cases).

Table 5 presents the measured energy-efficiency, which
shows cost efficiency in the limit (over very long time of own-
ership). We can see that 4 x Wimpy is only 3% more energy
efficient (but has lower CAPEX) than 2 xType2-SmartNIC
for NFV-FIN. 2 x Type2-SmartNIC is on average 2.37 X more
energy-efficient (but has higher CAPEX) than 1 x SuperBeefy,
which is the second-best cluster in terms of energy-efficiency.

5.6 Performance at Scale

We evaluate and discuss the scalability of E3 along three
axes: 1. Mechanism performance scalability; 2. Tail-latency;
3. Energy-efficiency.
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Figure 10: Cost efficiency of 3 applications across the cluster configurations from Table 4.

Servers — 100 200 400 600 800 1,000

HCM 4.85 8.31 19.83 3432 7439  263.46
Annealing  3.15 473 7.43 15.64 2350 61.42
ILP 7.64 19.43  84.83 36185 >1s >1s

Table 6: Per-microservice deployment time (ms) scalability.

Mechanism scalability. At scale, pressure on the control-
plane manager and data-plane orchestrator increases. We eval-
uate the performance scalability of both mechanisms with an
increasing number of Type2-SmartNIC servers in a simulated
FatTree [30] topology with 40 servers per rack. To avoid host
starvation and microservice overload, E3’s data-plane orches-
trator receives one heartbeat message (16B) every 50ms from
each SmartNIC that reports the queue length of the traffic
manager and the SmartNIC’s microservice execution times.
The orchestrator parses the heartbeat message and makes a mi-
gration decision (§3.4). Figure 11 shows that the time taken
to transmit the message and make a decision with a large
number of servers stays well below the time taken to migrate
the service (on the order of 10s-100s of ms) and is negligi-
bly impacted by the number of deployed microservices. This
is because the heartbeat message contributes only 1Kbps of
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Figure 11: Orchestrator migration decision time scalability.

traffic, even with 50K servers.

E3 uses HCM in the control-plane manager. We compare it
to simulated annealing and ILP, deploying 10K microservices
on an increasing number of servers. Table 6 shows that while
HCM does not scale as well as simulated annealing, it can
deploy new microservices in a reasonable time span (<<1s)
at scale. ILP fails to deliver acceptable performance.

Tail latencies. At scale, tail latencies dominate [20]. While
SmartNICs can introduce high tail latency for some microser-
vices (§2.3), E3 places these microservices on the host to en-
sure that application-level tail-latency inflation is minimized
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(8§5.1). The tail-latency impact of SmartNIC offload is reduced
at scale, as baseline communication latency increases with
increasing inter-rack distance.

Energy-efficiency and power budgets. E3’s energy effi-
ciency benefits are constant regardless of deployment size
and power budgets. At scale, there is additional energy cost
for core and spine switches, but these are negligible compared
to racks (ToRs and servers). Within a rack, ToR switch en-
ergy consumption stays constant, as all compared systems use
the same number of switch ports. Our results show that E3
achieves up to 1.9x more throughput under the same power
budget. Conversely, operators can save 48% of power, offering
the same bandwidth.

6 Related Work

Architecture studies for microservices. Prior work has
explored the architectural implications of running microser-
vices [21,27,79]. It shows that wimpy servers hold potential
for microservices under low loads, as they have less cache
utilization and network virtualization overhead compared
with traditional monolithic cloud workloads. FAWN [8] ex-
plored using only low-power processor architecture for data-
intensive workloads as an energy and cost-effective alternative
to server multiprocessors. However, FAWN assumed that I/O
speeds are much lower than CPU speeds and so CPUs would
be left idle for data-intensive applications. With the advent
of fast network technologies, server CPUs are still required.
Motivated by these studies, we focus on using SmartNIC-
accelerated servers for energy efficiency.

Heterogeneous scheduling. A set of schedulers for
performance-asymmetric architectures have been proposed.
For example, Kumar et al. [44,45] use instructions per cycle
to determine relative speedup of each thread on different types
of cores. HASS [73] introduces the architectural signature
concept as a scheduling indicator, which contains informa-
tion about memory-boundedness, available instruction-level
parallelism, etc. CAMP [71] combines both efficiency and
thread-level parallelism specialization and proposes a light-
weight technique to discover which threads could use fast
cores more efficiently. PTask [69] provides a data-flow pro-
gramming model for programmers to manage computation
for GPUs. It enables sharing GPUs among multiple processes,
parallelizes multiple tasks, and eliminates unnecessary data
movements. These approaches target long-running compu-
tations, mostly on cache coherent architectures, rather than
microsecond-scale, request-based workloads over compute
nodes that do not share memory and are hence not applicable.

Microservice scheduling. Wisp [76] enforces end-to-end
performance objectives by globally adapting rate limiters and

request schedulers based on operator policies under varying
system conditions. This work is not concerned with Smart-
NIC heterogeneity. UNO [46] is an NFV framework that can
systematically place NFs across SmartNIC and host with a
resource-aware algorithm on the control plane. E3 is a mi-
croservice platform and thus goes several steps further: (1)
E3 uses a data-plane orchestrator to detect node load and
migrates microservices if necessary; (2) HCM considers com-
munication distance during the placement. With the advent
of SmartNICs and programmable switches, researchers have
identified the potential performance benefits of applying re-
quest processing across the communication path [14]. E3 is
such a system designed for the programmable cloud and ex-
plores the energy efficiency benefits of running microservices.

Power proportionality. Power proportional systems can
vary energy use with the presented workload [50]. For exam-
ple, Prekas, et al. propose an energy-proportional system man-
agement policy for memcached [65]. While E3 can provide
energy proportionality, we are primarily interested in energy-
efficiency. Geoffrey et al. [18] propose a heterogeneous power-
proportional system. By carefully selecting component ensem-
bles, it can provide an energy-efficient solution for a particular
task. However, due to the high cost of ensemble transitions,
we believe that this architecture is not fit for high bandwidth
I/0 systems. Rivoire, et al. propose a more balanced system
design (for example, a low-power, mobile processor with nu-
merous laptop disks connected via PCle) and show that it
achieves better energy efficiency for sorting large data vol-
umes [67]. Pelican [11] presents a software storage stack on
under-provisioned hardware targeted at cold storage work-
loads. Our proposal could be viewed as a balanced-energy
approach for low-latency query-intensive server applications,
rather than cold, throughput intensive ones.

7 Conclusion

We present E3, a microservice execution platform on
SmartNIC-accelerated servers. E3 extends key system com-
ponents (programming model, execution engine, communi-
cation subsystem, scheduling) of the Azure Service Fabric
microservice platform to a SmartNIC. E3 demonstrates that
SmartNIC offload can improve cluster energy-efficiency up
to 3x and cost efficiency up to 1.9 at up to 4% latency cost
for common microservices.
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