
TAS: TCP Acceleration as an OS Service

Antoine Kaufmann
MPI-SWS

Tim Stamler
The University of Texas at Austin

Simon Peter
The University of Texas at Austin

Naveen Kr. Sharma
University of Washington

Arvind Krishnamurthy
University of Washington

Thomas Anderson
University of Washington

ACM Reference Format:

Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,

Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP

Acceleration as an OS Service. In Fourteenth EuroSys Conference

2019 (EuroSys ’19), March 25–28, 2019, Dresden, Germany.ACM, New

York, NY, USA, 16 pages. h�ps://doi.org/10.1145/3302424.3303985

Abstract

As datacenter network speeds rise, an increasing fraction of

server CPU cycles is consumed by TCP packet processing, in

particular for remote procedure calls (RPCs). To free server

CPUs from this burden, various existing approaches have

attempted to mitigate these overheads, by bypassing the OS

kernel, customizing the TCP stack for an application, or by

offloading packet processing to dedicated hardware. In doing

so, these approaches trade security, agility, or generality

for efficiency. Neither trade-off is fully desirable in the fast-

evolving commodity cloud.

We present TAS, TCP acceleration as a service. TAS splits

the common case of TCP processing for RPCs in the data-

center from the OS kernel and executes it as a fast-path OS

service on dedicated CPUs. Doing so allows us to streamline

the common case, while still supporting all of the features

of a stock TCP stack, including security, agility, and gener-

ality. In particular, we remove code and data of less com-

mon cases from the fast-path, improving performance on the

wide, deeply pipelined CPU architecture common in today’s

servers. To be workload proportional, TAS dynamically allo-

cates the appropriate amount of CPUs to accommodate the

fast-path, depending on the traffic load. TAS provides up to

90% higher throughput and 57% lower tail latency than the

IX kernel bypass OS for common cloud applications, such as

a key-value store and a real-time analytics framework. TAS

also scales to more TCP connections, providing 2.2× higher

throughput than IX with 64K connections.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’19, March 25–28, 2019, Dresden, Germany

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6281-8/19/03.

h�ps://doi.org/10.1145/3302424.3303985

1 Introduction

As network speeds rise, while CPU speeds stay stagnant,

TCP packet processing efficiency is becoming ever more im-

portant. Many data center applications require low-latency

and high-throughput network access to deliver remote proce-

dure calls (RPCs). At the same time, they rely on the lossless,

in-order delivery properties provided by TCP. To provide this

convenience, software TCP stacks consume an increasing

fraction of CPU resources to process network packets.

TCP processing overheads have been known for decades.

In 1993, Van Jacobson presented an implementation of TCP

common-case receive processing within 30 processor instruc-

tions [21]. Common network stacks, such as Linux’s, still

use Van’s performance improvements [1]. Despite these op-

timizations, a lot of CPU time goes into packet processing

and TCP stack processing latencies are high. For a key-value

store, Linux spends 7.5µs per request in TCP packet process-

ing. While kernel-bypass TCP stacks bring direct overhead

down, they still introduce overhead in other ways. As net-

work speeds continue to rise, these overheads increasingly

consume the available CPU time.

We investigate TCP packet processing overhead in the

context of modern processor architecture. We find that ex-

isting TCP stacks introduce overhead in various ways (and

to varying degree): 1. By running in privileged mode on

the same processor as the application, they induce system

call overhead and pollute the application-shared L1, L2, and

translation caches. 2. They spread per-connection state over

several cache lines, causing false sharing and reducing cache

efficiency; 3. They share state over all processor cores in

the machine, resulting in cache coherence and locking over-

heads; 4. They execute the entire TCP state machine to com-

pletion for each packet, resulting in codewithmany branches

that do not make efficient use of batching and prefetching

opportunities.

We harken back to TCP’s origin as a computationally

efficient transport protocol, e.g., TCP congestion control

was designed to avoid the use of integer multiplication and

division [22]. Although TCP as a whole has become quite

complex with many moving parts, the common case data

path remains relatively simple. For example, packets sent

within the data center are never fragmented at the IP layer,

packets are almost always delivered reliably and in order,

and timeouts almost never fire. Can we use this insight to

eliminate the existing overheads?

We present TCP acceleration as a service (TAS), a light-

weight software TCP network fast-path optimized for common-

case client-server RPCs and offered as a separate OS service

to applications. TAS interoperates with legacy Linux TCP

endpoints and can support a variety of congestion control

protocols including TIMELY [28] and DCTCP [6].

Separating the TCP fast-path from a monolithic OS kernel

and offering it as a separate OS service enables a number of

streamlining opportunities. Like Van Jacobson, we realize

that TCP packet processing can be separated into a common

and an uncommon case. TAS implements the fast-path that

handles common-case TCP packet processing and resource

enforcement. A heavier stack (the slow path), in concert with

the rest of the OS, processes less common duties, such as con-

nection setup/teardown, congestion control, and timeouts.

The TAS fast-path executes on a set of dedicated CPUs, hold-

ing the minimum state necessary for common-case packet

processing in processor caches. While congestion control

policy is implemented in the slow path, it is enforced by

the fast path, allowing precise control over the allocation

of network resources among competing flows by a trusted

control plane. The fast path takes packets directly from (and

directly delivers packets to) user-level packet queues. Un-

privileged application library code implements the POSIX

socket abstraction on top of these fast path queues, allowing

TAS to operate transparent to applications.

Beyond streamlining, another benefit of separating TAS

from the rest of the system is the opportunity to scale TAS

independent of the applications using it. Current TCP stacks

run in the context of the application threads using them,

sharing the same CPUs. Network-intensive applications of-

ten spend more CPU cycles in the TCP stack than in the

application. When sharing CPUs, non-scalable applications

limit TCP processing scalability, even if the TCP stack is

perfectly scalable. Separation not only isolates TAS from

cache and TLB pollution of the applications using it, but also

allows TAS to scale independently of these applications.

We implement TAS as a user-level OS service intended to

accelerate the Linux OS kernel TCP stack. TAS is workload

proportional—it acquires CPU cores dynamically depending

on network load and can share CPU cores with application

threads when less than one CPU is required. We evaluate

TAS on a small cluster of servers usingmicrobenchmarks and

common cloud application workloads. In particular, we com-

pare TAS’ per-packet CPU overheads, latency, throughput,

connection and CPU scalability, workload proportionality,

and resiliency to packet loss to those of Linux, IX [9], and

mTCP [24]. Finally, we evaluate TAS’ congestion control

performance with TCP-NewReno and DCTCP at scale using

simulations.

Within a virtualized cloud context, NetKernel [31] also

proposes to separate the network stack from guest OS ker-

nels and to offer it as a cloud service in a separate virtual

machine. NetKernel’s goal is to accelerate provider-driven

network stack evolution by enabling new network protocol

enhancements to be made available to tenant VMs transpar-

ently and simultaneously. TAS can provide the same benefit,

but our focus is on leveraging the separation of fast and slow

path to streamline packet processing.

We make the following contributions:

• We present the design and implementation of TAS, a low-

latency, low-overhead TCP network fast-path. TAS is fully

compatible with existing TCP peers.

• We analyze the overheads of TAS and other state-of-the-

art TCP stacks in Linux and IX, showing how they use

modern processor architecture.

• We present an overhead breakdown of TAS, showing that

we eliminate the performance and scalability problems

with existing TCP stacks.

• We evaluate TAS on a set of microbenchmarks and com-

mon data center server applications, such as a key-value

store and a real-time analytics framework. TAS provides

up to 57% lower tail latency and 90% better throughput

compared to the state-of-the-art IX kernel bypass OS. IX

does not provide sockets, which are heavy-weight [47], but

TAS does. TAS still provides 30% higher throughput than

IX when TAS provides POSIX sockets. TAS also scales to

more TCP connections, providing 2.2× higher throughput

than IX with 64K connections.

2 Background

Common case TCP packet processing can be accelerated when

split from its uncommon code paths and offered as a separate

service, executing on isolated processor cores. To motivate this

rationale, we first discuss the tradeoffs made by existing

software network stack architectures and TCP hardware

offload designs. We then quantify these tradeoffs for the TCP

stack used inside the Linux kernel, the IX OS, and TAS.

2.1 Network Stack Architecture

Network stack architecture has a well-established history

and various points in the design space have been investi-

gated. We cover the most relevant designs here. As we will

see, all designs split TCP packet processing into different

components to achieve a different tradeoff among perfor-

mance, security, and functionality. TAS builds on this history

to arrive at its own, unique point in the design space.

Monolithic, in-kernel. The most popular TCP stack design

is monolithic and resides completely in the OS kernel. A

monolithic TCP stack fulfills all of its functionality in soft-

ware, as a single block of code. Built for extensibility, it fol-

lows a deeply modular design approach with complex inter-

module dependencies. Each module implements a different

part of the stack’s feature set, interconnected via queues,

function call APIs, and software interrupts. The stack itself

is trusted and to protect it from untrusted application code, a

split is made between application-level and stack-level packet

2

processing at the system call interface, involving a processor

privilege mode switch and associated data copies for secu-

rity. This is the design of the Linux, BSD, and Windows TCP

network stacks. The complex nature of these stacks leads

them to execute a large number of instructions per packet,

with a high code and data footprint (§2.2).

Kernel bypass. To alleviate the protection overheads of in-

kernel stacks, such as kernel-crossings, software mutliplex-

ing, and copying, kernel bypass network stacks split the

responsibilities of TCP packet processing into a trusted con-

trol plane and an untrusted data plane. The control plane

deals with connection and protection setup and executes in

the kernel, while the data plane deals with common-case

packet processing on existing connections and is linked di-

rectly into the application. To enforce control plane policy

on the data plane, these approaches leverage hardware IO

virtualization support [24, 34]. In addition, this approach

allows us to tailor the stack to the needs of the application,

excluding unneeded features for higher efficiency [27]. The

downside of this approach is that, beyond coarse-grained rate

limiting and firewalling, there is no control over low-level

transport protocol behavior, such as congestion response.

Applications are free to send packets in any fashion they see

fit, within their limit. This can interact badly with the data

center’s congestion control policy, in particular with many

connections.

Protected kernel bypass. To alleviate this particular prob-

lem of kernel bypass network stacks, IX [9] leverages hard-

ware CPU virtualization to insert an intermediate layer of

protection, running the network stack in guest kernel mode,

while the OS kernel executes in host kernel mode. This al-

lows us to deploy trusted network stacks, while allowing

them to be tailored and streamlined for each application.

However, this approach re-introduces some of the overheads

of the kernel-based approach.

NIC offload. Various TCP offload engines have been pro-

posed in the past [12]. These engines leverage various splits

of TCP packet processing responsibilities and distribute them

among software executing on a CPU and a dedicated hard-

ware engine executing on the NIC. The most popular is TCP

chimney offload [2], which retains connection control within

the OS kernel and executes data exchange on the NIC. By

offloading work from CPUs to NICs, these designs achieve

high energy-efficiency and free CPUs from packet process-

ing work. Their downside is that they are difficult to evolve

and to customize. Their market penetration has been low for

this reason.

Dedicated CPUs. These approaches dedicate entire CPUs to

executing the TCP stack [40, 44]. These stacks interact with

applications via message queues instead of system calls, al-

lowing them to alleviate the indirect overheads of these calls,

such as cache pollution and pipeline stalls, and to batch calls

Linux IX TAS

Module kc % kc % kc %

Driver 0.73 4% 0.05 2% 0.09 4%

IP 1.53 9% 0.12 4% 0 0%

TCP 3.92 23% 1.05 39% 0.81 32%

Sockets/IX 8.00 48% 0.76 28% 0.62 24%

Other 1.50 9% 0.00 0% 0.00 0%

App 1.07 6% 0.76 28% 0.68 26%

Total 16.75 100% 2.73 100% 2.57 100%

Table 1. CPU cycles per request by network stack module.

for better efficiency. Barrelfish [8] subdivides the stack fur-

ther, executing the NIC device driver, stack, and application,

all on their own dedicated cores. These approaches attain

high and stable throughput via pipeline parallelism and per-

formance isolation among stack and application. However,

even when dedicating a number of processors to the TCP

stack, executing the entire stack can be inefficient, causing

pipeline stalls and cache misses due to complexity.

Dedicated fast path. TAS builds on the approaches dedi-

cating CPUs, but leverages a unique split. By subdividing

the TCP stack data plane into common and uncommon code

paths, dedicating separate threads to each, and revisiting

efficient stack implementation on modern processors, TAS

can attain higher CPU efficieny. In addition to efficiency,

this approach does not require new hardware (unlike NIC

offload), protects the TCP stack from untrusted applications

(unlike kernel bypass), retains the flexibility and agility of

a software implementation (unlike NIC offload), while min-

imizing protection costs (unlike protected kernel bypass).

The number of CPU cores consumed by TAS for this service

is workload proportional. TAS threads can also share CPUs

with application threads under low load.

2.2 TCP Stack Overheads

To demonstrate the inefficiencies of kernel and protected

kernel-bypass TCP stacks, we quantify the overheads of

the Linux and IX OS TCP stack architectures and compare

them to TAS. To do so, we instrument all stacks using hard-

ware performance counters, running a simple key-value store

server benchmark on 8 server cores. Our benchmark server

serves 32K concurrent connections from several client ma-

chines that saturate the server network bandwidthwith small

requests (64B keys, 32B values) for a small working set, half

the size of the server’s L3 cache (details of our experimental

setup in §5). We execute the experiment for two minutes and

measure for one minute after warming up for 30 seconds.

Linux overheads. Table 1 shows a breakdown of the re-

sult. We find that Linux executes 16.75 kilocycles (kc) for an

average request, of which only 6% are spent within the ap-

plication, while 85% of total cycles are spent in the network

stack. For each request, Linux executes 12.7 kilo-instructions

3

(ki), resulting in 1.32 cycles per instruction (CPI), 5.3× above

the ideal 0.25 CPI for the server’s 4-way issue processor

architecture. This results in high average per-request pro-

cessing latency of 8µs. The reason for these inefficiencies is

the computational complexity and high memory footprint

of a monolithic, in-kernel stack. Per-request privilege mode

switches and software interrupts stall processor pipelines;

software multiplexing, cross-module procedure calls, and se-

curity checks require additional instructions; large, scattered

per-connection state increases memory footprint and causes

stalls on cache and TLB misses; shared, scattered global state

causes stalls on locks and cache coherence, inflated by coarse

lock granularity and false sharing; covering all TCP packet

processing cases in one monolithic block causes the code to

have many branches, increasing instruction cache footprint

and branch mispredictions.

We measure these inefficiencies with CPU performance

counters [46]. The results are shown in Table 2 and indicate

cycles spent retiring instructions, and blocked fetching in-

structions (frontend bound), fetching data (backend bound),

and on bad speculation. We can see that Linux spends an

order of magnitude more of these cycles than the applica-

tion. In particular data fetches weigh heavily. Due to the

high memory footprint we encounter many cache and TLB

misses.

IX overheads. IX can tailor the network stack to the applica-

tion, simplifying it substantially. IX executes only 2.73 kc for

an average request. IX spends 28% of cycles doing work in the

application, while the rest (72%) are spent in the IX network

stack. We note that the comparison is not entirely fair, as IX

vastly simplifies the socket interface. IX does not support

POSIX sockets, instead relying on a custom libevent-based

API. With sockets, IX would spend a smaller proportion of

cycles in the application. For each request, IX executes 3.3

ki, resulting in a CPI 3.3× above the ideal for the server. This

results in an average per-request processing latency of 1.3µs.

Privilege mode switches remain for IX and while IX simpli-

fies the TCP stack, it still covers all TCP packet processing

cases in one monolithic block, causing its code to access

sizeable per-connection state and execute many branches,

increasing cache footprint. Table 2 shows that while IX re-

duces overheads dramatically across the board versus Linux,

it still spends many backend bound cycles.

TAS overheads. TAS (with sockets) executes 2.57 kc for an

average request, 26% of these in the application, while the

rest (74%) are spent in TAS. TAS executes 3.9 ki per request,

resulting in a CPI only 2.6× above the ideal. While TAS is

not perfect and executes more instructions, these instruc-

tions are executed on a separate fast-path, resulting in an

average per-request processing latency of 1.2µs, due to less

per-connection state, pipeline parallelism, and isolation. Ta-

ble 2 shows that TAS reduces application frontend overhead

by 15%, while reducing TCP stack backend overhead by 32%

Counter Linux IX TAS

CPU cycles 1.1k/15.7k 0.8k/1.9k 0.7k/1.9k

Instructions 12.7k 3.3k 3.9k

CPI 1.32 0.82 0.66

Retiring (cycles) 175/3591 190/753 167/848

Frontend Bound 173/2600 121/175 102/248

Backend Bound 388/9046 402/1005 353/684

Bad Speculation 141/515 48/52 63/129

Table 2. Per request app/stack overheads.

versus IX. TAS frontend overhead comes primarily from the

sockets emulation and is reduced to 168 cycles (4% lower

than IX) with a low-level interface. Speculation performance

did not improve. TAS spends these cycles on message queues.

3 Design

In this section we describe the design of TAS, with the fol-

lowing design goals:

• Efficiency: Data center network bandwidth growth con-

tinues to outpace processor performance. TASmust deliver

CPU efficient packet processing, especially for latency-

sensitive small packet communication that is the common

case behavior for data center applications and services.

• Connection scalability: As applications and services

scale up to larger numbers of servers inside the data center,

incast, where a single server handles a large number of

connections, continues to grow. TAS must support this

increasing number of connections.

• Performance predictability: Another consequence of

this scale is that predictable performance is becoming as

important as high common case performance for many ap-

plications. In large-scale systems, individual user requests

can access thousands of backend servers [23, 30] caus-

ing one-in-a-thousand request performance to determine

common case performance.

• Policy compliance: Applications from different tenants

must be prevented from intercepting and interfering with

network communication from other tenants. Thus, TAS

must be able to enforce policies such as bandwidth limits,

memory isolation, firewalls, and congestion control.

• Workload proportionality: TAS should not use more

CPUs than necessary to provide the required throughput

for the application workloads running on the server. This

requires TAS to scale its CPU usage up and down, depend-

ing on demand.

TAS has three components: Fast path, slow path, and un-

trusted per-application user-space stack. All components are

connected via a series of shared memory queues, optimized

for cache-efficient message passing [8]. The fast path is re-

sponsible for handling common case packet exchanges. It

deposits valid received packet payload directly in user-space

memory. On the send path, it fetches and encapsulates pay-

load from user memory according to per-connection rate or

4

a fairer allocation of bandwidth among flows. Our rate-based

DCTCP implementation is compatible with Linux peers.

Connection control (Figure 3). Connection control is com-

plex. It includes port allocation, negotiation of TCP options,

maintaining ARP tables, and IP routing. We thus handle it in

the slow path. User-level TCP stacks issue a new_flow com-

mand on the slow path context queue to locally request new

connections (triggered by a connect() call). If granted, the

slow path establishes the connection by executing the TCP

handshake and, if successful, installs the established flow’s

state in the fast path and allocates a rate/window bucket.

Remote connection control requests are detected by the fast

path and forwarded to the slow path, which then completes

the handshake.

Servers can listen on a port by issuing a listen command

to the slow path (triggered by listen() socket call). Incom-

ing packets with a SYN flag are forwarded as exceptions to

the slow path. The slow path informs user-space of incom-

ing connections on registered ports by posting a notification

in the slow path context queue. If the application decides

to accept the connection (via accept()), its TCP stack may

issue the accept command to the slow path (via the slow

path context queue), upon which the slow path establishes

the flow by allocating flow state and bucket, and sending

a SYNACK packet. To tear down a connection (e.g., upon

close()), user-space issues close, upon which the slow

path executes the appropriate handshake and removes the

flow state from the fast path. Similarly, for remote teardowns,

the slow path informs user-space via a close command.

Retransmission timeouts. We handle retransmission time-

outs in the slow path. When collecting congestion statistics

for a flow from the fast path, the kernel also checks for unac-

knowledged data (i.e. tx_sent > 0). If a flow has unacknowl-

edged data with a constant sequence number for multiple

control intervals (2 by default) the slow path instructs the

fast path to start retransmitting by adding a command to the

slow path context queue. In response to this command the

fast path will reset the flow and start transmitting exactly as

described above for fast retransmits.

TCP stackmanagement. To associate new user-space TCP

stacks with TAS, the slow path has to be informed via a

special system call. If the request is granted, the slow path

creates an initial pair of context queues that the user-space

stack uses to create connection buffers, etc.

3.3 User-space TCP Stack

The user-space TCP stack presents the programming inter-

face to the application. The default interface is POSIX sockets

so applications can remain unmodified, but per-application

modifications and extensions are possible, as the interface

is at user-level [9, 27, 34]. For example, TAS also offers a

low-level API that is similar to the IX networking API. The

low-level API directly passes events from the context RX

queue to the application and offers functions to add entries

to the context TX queue. The TCP stack is responsible for

managing connections and contexts. To fulfill our perfor-

mance goal, common-case overhead of the TCP stack has to

be minimal.

Context management. User-space stacks are responsible

for defining and allocating contexts. Contexts are useful in

various ways, but typically stacks allocate one context per

application thread for scalability, as it allows cores to poll

(e.g., epoll()) only a private context queue, rather than a

number of shared payload buffers. Stacks allocate contexts

via management commands to the slow path.

3.4 Workload Proportionality

TAS executes protocol processing on dedicated processor

cores, and the number of cores needed depends on the work-

load. As a result, TAS has to dynamically adapt the number

of processor cores used for processing to be proportional

with the current system load. We implement this with three

separate mechanisms. On the fast path, we use hardware

and software packet steering to direct packets to the cor-

rect cores, while the slow path monitors the CPU utilization

and, as needed, adjusts steering tables to add or remove

cores. Finally, the fast path blocks threads when no packets

are received for a period of time (10 ms in our implemen-

tation). These cores can be woken up via kernel notifica-

tions (eventfd). This requires us to carefully handle packet

re-assignments among queues during scale up/down events.

Fast path. When initializing, TAS creates threads for the

configuredmaximumnumber of cores and assignsNIC queues

and application queues for all cores. Because of the adap-

tive polling with notifications, cores that do not receive any

packets automatically block and are de-scheduled.

We design the data path to handle packets arriving on

the wrong TAS core, either from the NIC or the application,

with a per-connection spinlock protecting the connection

state. This avoids the need for expensive coordination and

draining queues when adding or removing cores. Instead we

simply asynchronously update NIC and application packet

steering to route packets to or away from a specific core.

We eagerly update the NIC RSS redirection table to steer

incoming packets, and lazily update the routing for outgoing

packets from applications. This allows us to be robust during

scale up/down events.

Slow path. The slow path is responsible to decide when to

add or remove cores by monitoring fast path CPU utilization.

If it detects that in aggregate more than 1.25 cores are idle, it

initiates the removal of a core. If, on the other hand, less than

0.2 cores are idle in aggregate, it adds a core. The specific

thresholds are configuration parameters.

7

4 Implementation

We have implemented TAS from scratch in 10,127 lines of

C code (LoC). TAS’ fast path comprises 2,931 LoC. The slow

path comprises 3,744 LoC. The user-level library providing

the POSIX sockets API is dynamically linked to unmodified

application binaries and comprises 3,452 LoC. TAS runs in a

user-level process, separate from the applications. Both fast

and slow path run as separate threads within this process.

Fast path. The fast path uses DPDK [3] to directly access the

machine’s NIC, bypassing the Linux kernel. Unlike systems

that rely on batching to reduce kernel-user switches, TAS

uses a configurable number of dedicated host cores, which

we can vary based on the offered network load. Each core

replicates a linear packet processing pipeline and exposes a

queue pair to the slow path and to each application context

to avoid synchronization. The NIC’s RSS mechanism ensures

that packets within flows are assigned to the same pipeline

and not reordered.

Slow path. The slow path runs as a separate thread within

the TAS process. To bootstrap context queues, we require

applications to first connect to the slow path via a named

UNIX domain socket on which the slow path thread listens.

Applications use the socket to set up a shared memory region

for the context queues. The slow path also uses the socket for

automatic cleanup, to detect when application processes exit

by receiving a hangup signal via the corresponding socket.

4.1 Limitations

Fixed connection buffer sizes. TAS requires connection

send and receive buffers to be fixed upon connection cre-

ation. We do not currently implement any buffer resizing

depending on load. For workloads with large numbers of

inactive connections, buffer resizing (via additional manage-

ment commands) is desirable.

TCP slow start. Our prototype does not fully implement the

TCP slow start algorithm. Instead, we currently double the

sending rate every RTT until we reach steady-state. With the

exception of short-lived connections, our measurements are

concerned with steady-state performance and this limitation

does not impact the reported results. For short-lived connec-

tions, TAS might be slightly negatively impacted, as RTT

estimates are based on and thus may lag behind received

TCP acknowledgements.

No IP fragments. Our current prototype does not support

fragmented IP packets. We believe this is sufficient, as IP

fragmentation does not normally occur in the data center.

5 Evaluation

Our evaluation seeks to answer the following questions:

• How does TAS’ throughput, latency, and connection scal-

ability for remote procedure call operation compare to

state-of-the-art software solutions in the common case?

How in the case of short-lived connections? (§5.1)

• Does our simplified fast-path TCP operation negatively

affect performance under packet loss or congestion? (§5.2)

• Do these improvements result in better end-to-end through-

put and latency for data center applications? How do these

workloads scale with the number of CPU cores? (§5.3, 5.4)

• How does TAS perform at scale? Does the split of labor

into slow and fast path affect congestion control fidelity

with many connections and various round-trip times to

remote machines? (§5.5)

• Is TAS consuming CPU resources proportional to its work-

load? What is the impact on network throughput and

latency when TAS changes its CPU resource use? (§5.6)

To answer these questionswe first evaluate RPC performance

on a number of systems using microbenchmarks. We then

evaluate two data center application workloads: a typical,

read-heavy, key-value store application and a real-time an-

alytics framework. Finally, we validate our results at scale

with an ns-3 simulation.

Testbed cluster. Our evaluation cluster contains a 24-core

(48 hyperthreads) Intel Xeon Platinum 8160 (Skylake) system

at 2.1 GHz with 196 GB RAM, 33 MB aggregate cache, and

an Intel XL710 40Gb Ethernet adapter. We use this system

as the server. There are also six 6-core Intel Xeon E5-2430

(Sandy Bridge) systems at 2.2 GHz with 18MB aggregate

cache, which we use as clients. These systems have Intel

X520 (82599-based) dual-port 10Gb Ethernet adapters with

both ports connected to the switch. We run Ubuntu Linux

16.04 (kernel version 4.15) with DCTCP congestion control

on all machines. We use an Arista 7050S-64 Ethernet switch,

set up for DCTCP-style ECN marking at a threshold of 65

packets. The switch has 10G ports (connected to the clients)

and 40G ports (connected to the server).

Baseline. We compare TAS performance to the Linux mono-

lithic, in-kernel TCP stack (using epoll), to themTCP kernel-

bypass TCP stack [24], and to the IX protected kernel-bypass

TCP stack [9]. Unless stated, our benchmarks do not mix peer

systems. mTCP and IX do not provide the standard sockets

API, requiring significant application modification [9, 24].

Unless stated, we use the same application binary for TAS

and Linux.

Peer compatibility. We confirm that TAS interoperateswith

existing Linux TCP peers by comparing the aggregate through-

put of 100 flows between two hosts among all combinations

of Linux and TAS senders and receivers. Table 4 shows the

result. Line rate was achieved in all cases.

5.1 Remote Procedure Call (RPC)

RPC is a demanding, but necessary mechanism for many

server applications. RPCs are both latency and throughput

8

Sender Linux TAS

Receiver
Linux 9.4Gbps 9.4Gbps

TAS 9.4Gbps 9.4Gbps

Table 4. Compatibility between Linux and TAS: 100 bulk

transfer flows from 1 sendingmachine to 1 receivingmachine

running the specified combination of network stacks.

 0

 5

 10

 15

 20

 25

 1 16 32 48 64 80 96

T
h
ro

u
g
h
p
u
t
[m

O
p
s
]

K Connections

TAS
IX

Linux

Figure 4. Connection scalability for RPC echo benchmark

on 20 core server.

sensitive. Scaling reliable RPCs to many connections has

been a long-standing challenge due to the high overhead of

software TCP packet processing [30, 39, 41]. To demonstrate

the per-core efficiency benefits of TAS, we evaluate a simple

event-based RPC echo server.

Connection scalability. For each benchmark run, we es-

tablish an increasing number of client connections to the

server and measure RPC throughput over 1 minute. To do

so, we use multi-threaded clients running on as many client

machines as necessary to offer the required load. Each client

thread leaves a single 64-byte RPC per connection in flight

and waits for a response in a closed loop.

Figure 4 shows throughput as we vary the number of client

connections. With 1k connections TAS shows a throughput

of 5.1× Linux, and 0.95× IX. The improvement relative to

Linux is because TAS streamlines processing and thus gains

efficiency. After reaching saturation, throughput for both IX

and Linux degrades as the number of connections increases,

by 40% for Linux and up to 60% for IX. TAS on the other

hand only degrades by up to 7% relative to peak throughput.

This is because of TAS’s minimal fast-path connection state

and streamlined packet processing code allowing the CPU

to prefetch state efficiently.

Short-lived connections. Separating packet processing into

a common case fast path and a separate slow path reduces

packet processing overheads in the common case. However,

operations that involve slow path processing do incur addi-

tional overheads because of handoff overheads between the

slow path and the fast path. The most heavy-weight such

operations in TAS are connection setup and teardown, in-

volving not just the slow path but also the application several

times during each handshake. To quantify these overheads

we measure throughput of 1,024 concurrent, short-lived con-

nections in our RPC echo benchmark.We use one application

core, and for TAS two fast-path cores and one partially used

 0.03

 0.1

 0.5

 1

 4

1 2 4 16 64 256 1k 4k

T
h
ro

u
g
h
p
u
t
[m

O
p
s
]

Messages per Connection

TAS
Linux

Figure 5. Throughput with short-lived connections.

1G

10G

40G

R
X

 T
h

ro
u

g
h

p
u

t

250 Cycles/Message 1000 Cycles/Message

.1G

1G

10G

40G

3
2

1
2

8

5
1

2

2
0

4
8

T
X

 T
h

ro
u

g
h

p
u

t

Message Size [bytes]

TAS

3
2

1
2

8

5
1

2

2
0

4
8

Message Size [bytes]

mTCP
Linux

Figure 6. Pipelined RPC throughput, varying per-RPC delay

and size, for a single-threaded server.

core for the slow-path. Figure 5 shows the results for vary-

ing numbers of RPCs before connections are torn down and

re-established with Linux and TAS. With 4 or more RPCs

per connection TAS outperforms Linux, and reaches 95%

bandwidth utilization with 256 RPCs per connection.

Pipelined RPC. In cases without dependencies, RPCs can

be pipelined on a single connection. These transfers can still

be limited by TCP stack overheads, depending on RPC size.

We compare pipelined RPC throughput for different sizes

by running a single-threaded event-based server processing

RPCs on 100 connections, partitioned equally over 4 client

machines using 4 threads each. After each RPC the server

waits for an artificial delay of 250 or 1000 cycles to simulate

application processing. To break out improvements in receive

and transmission overhead, we run separate benchmarks,

one where the server only receives RPCs and one where it

only sends.

Figure 6 shows the results. When receiving small (≤ 64B)

RPCs, TAS provides up to 4.5× better throughput than Linux.

TAS’s improvement reduces to 4× as RPCs become larger.

TAS reaches 40G line-rate with 2KB RPCs for 250 cycles of

processing while Linux barely reaches 10G. For 1000 cycles

of processing, no stack achieves line-rate and TAS provides

a steady throughput improvement around 2.5× regardless of

RPC size. mTCP locks up in this experiment.

When sending small and moderate (≤ 256B) RPCs at 250

cycles processing time, TAS provides up to 12.4× Linux and

9

 0

 5

 10

 15

 20

 25

 30
 0.1 0.2 0.5 1 2 5

T
h
ro

u
g
h
p
u
t
p
e
n
a
lt
y
 [
%

]

Packet drop rate [%]

Linux
TAS
TAS simple recovery

Figure 7. Throughput penalty with varying packet loss rate.

1.5× mTCP efficiency. For large (2KB) RPCs, TAS’s advan-

tage declines to 6.1× Linux, but improves to 2.6× mTCP.

mTCP reaches scalability limitations beyond 512B RPCs,

while Linux catches up as memory copying costs start to

dominate. TAS again achieves 40G line-rate at 2KB RPC size,

while Linux and mTCP do not reach beyond 10G. This shows

that simplifications in common-case send processing, such

as removing intermediate send queueing, can make a big

difference.

This difference again diminishes as application-level pro-

cessing grows to 1000 cycles. In this case, TAS provides a

steady improvement of up to 5–6× Linux, regardless of RPC

size. Compared to mTCP, TAS provides up to 2× improve-

ment. TAS performs comparably to mTCP in both transmit

cases, but does provide protection.

We conclude that TAS indeed provides better RPC latency

and throughput when compared to both state-of-the-art in-

kernel and kernel-bypass TCP stack solutions. Further, TAS

provides throughput on par with and better latency than

kernel-bypass stacks while retaining traditional OS safety

guarantees. Thus we improve performance and efficiency of

all networked data center applications relying on RPCs over

TCP.

5.2 Packet Loss

Even in a data center environment, minimal (≤1%) packet

loss can occur due to congestion and transmission errors.

TAS uses a simplified recovery mechanism and we are in-

terested in how packet loss affects TAS throughput in com-

parison to Linux. We quantify this effect in an experiment

measuring throughput of 100 flows over a single link be-

tween two machines under different rates of induced packet

loss between 0.1% and 5%. We compare TAS with receiver

out-of-order processing (cf. Exceptions in Section 3.1) and

without it (simple go-back-N).

Figure 7 shows the penalty relative to the throughput

achieved without loss. We can see that TAS throughput is

minimally affected (up to 1.5%) for loss rates up to 1%. For

a loss rate of 5%, TAS incurs a throughput penalty of 13%.

Overall, TAS’s penalty is about 2× that of Linux. Linux keeps

all received out-of-order segments and also issues selective

acknowledgements, allowing it to recover more quickly. TAS

only keeps one continuous interval of out-of-order data,

requiring the sender to resend more in some cases. Without

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
[m

O
p

s
]

Cores

TAS LL

TAS SO

IX

Linux

Figure 8. Key-value store throughput scalability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 15 50 100 150 200

C
D

F

Latency [us]

TAS/TAS
IX/TAS

TAS/Linux
IX/Linux

Linux/TAS
Linux/Linux

Figure 9. Key-value store latency CDF with different con-

figurations (server stack / client stack).

Latency [µs] Median 90th 99th Max

Linux 97 129 177 1319

IX 20 27 30 280

TAS 17 20 30 122

Table 5. Key-value store request latency in microseconds

with TAS clients.

receiver out-of-order processing, the penalty increases by a

factor of 3. We conclude that limited out-of-order processing

has a benefit, but full out-of-order processing has minimal

impact for the loss rates common in data centers.

5.3 Key-Value Store

Key-value stores strongly rely on RPCs. Due to the high

TCP processing overhead, some cloud operators use UDP

for reads and use TCP only for writing. In this section, we

demonstrate that TAS is fast enough to be used for both

reading and writing, simplifying application design. To do

so, we evaluate a scalable key-value store, modeled after

memcached [4]. We send it requests at a constant rate us-

ing a tool similar to the popular memslap benchmark. The

workload consists of 100,000 key-value pairs of 32 byte keys

and 64 byte values, with a skewed access distribution (zipf,

s = 0.9). The workload contains 90% GET requests and 10%

SET requests. Throughput was measured over 2 minutes

after 1 minute of warm-up.

Throughput scalability. To conduct throughput bench-

marks we run 5 client machines, each using 12 cores in total

to generate requests directed at the server. For all cases we

run the clients on TAS to maximize the throughput they

can generate. We establish 32k connections with at most

one request in flight per connection, while the clients adjust

the offered load to maximize throughput without excessive

10

Total Cores 2 4 8 12 16

Sockets
App 1 2 5 7 9

TAS 1 2 3 5 7

Lowlevel
App 1 2 4 6 8

TAS 1 2 4 6 8

Table 6.Core split for TAS in the key-value store throughput

experiment from Figure 8.

queuing in the application receive buffers. We run the bench-

mark, varying the number of server cores available. Figure 8

shows the result, counting all server cores in use for the

application and TCP stack. We also measure throughput for

a version of the key-value store that uses the TAS low-level

API (TAS LL), skipping the sockets compatibility layer (TAS

SO). We can see that TAS LL outperforms Linux and IX in

total throughput by up to 9.6× and 1.9×, respectively, and by

up to 7.0× and 1.3× with TAS SO. Table 6 shows the split of

cores between the key-value store and TAS. TAS SO requires

up to 2 fewer cores for TCP processing, which we allocate

to the application instead.

Latency. We also conduct end-to-end latency experiments

under 15% bandwidth utilization, so that queues do not build

excessively. This experiment uses a single application core

(and one TAS fast-path core). To quantify both server-side

and client-side effects, we repeat the experiment with TAS

and Linux on the client side (IX does not support our client).

Figure 9 shows the resulting latency distributions and Table 5

summarizes the results. When using TAS clients, we can

see that TAS outperforms Linux and IX by a median 5.6×

and 15%, respectively. Both IX and TAS demonstrate much

better tail behavior than Linux, improving 99th percentile tail

latency versus Linux by 5.9×. While 99th percentile latency

of TAS and IX is identical, IX has a longer tail than TAS, with

a maximum latency 2.3× that of TAS. TAS also maintains

lower latencies than IX in the median to 99th percentile

range, with a 90th percentile improvement of 26%. We attain

similar improvements when using a Linux client.

Non-scalable workloads. We evaluate TAS’s performance

for workloads with scalability bottlenecks by increasing the

access skew to maximize contention on a single 4-byte key

and value. Our key-value store uses locks to serialize key

updates, causing it to scale badly in this case. This experiment

uses the same client setup with 256 connections.

Table 7 shows throughput with varying numbers of ag-

gregate cores used for TAS LL and SO, IX, and Linux. The

TAS core numbers use 1 application core with 1-3 fast path

cores. TAS scales to 4 cores and IX to 3 cores. In the limit TAS

improves throughput by 1.6× relative to IX, and by 5.7× rela-

tive to Linux (1.1× and 3.9× with sockets). We conclude that

TAS’s ability to scale the network stack independently from

the application can signficantly improve performance for

Throughput [mOps] 1 Core 2 C 3 C 4 C

TAS LL 2.4 3.8 4.6

TAS SO 2.4 3.1 3.1

IX 1.5 2.5 2.8 2.8

Linux 0.3 0.4 0.6 0.8

Table 7. Throughput for non-scalable key-value store work-

load, with a single 4-byte key and 4-byte value pair.

applications with scalability bottlenecks (e.g., Memcached)

or not designed to scale (e.g. Redis [5]).

We conclude that TAS can improve the performance of RPC-

based client-server applications, such as key-value stores,

even in cases where these applications have scalability bot-

tlenecks. It exceeds state-of-the-art network stacks in both

latency and throughput, both in median and the tail. TAS can

simplify the design of RPC-based applications by allowing

them to rely on the familiar TCP sockets interface.

5.4 Real-time Analytics

Real-time analytics platforms are useful tools to gain instan-

taneous, dynamic insight into vast datasets that change fre-

quently. These systems must be able to produce answers

within a short timespan and process millions of dataset

changes per second. To do so, analytics platforms utilize

data stream processing techniques: A set of workers run con-

tinuously on a cluster of machines; data tuples containing

updates stream through them according to a dataflow pro-

cessing graph, known as a topology. The system scales by

replicating workers over multiple cores and spreading in-

coming tuples over the replicas. To minimize loss, many

implementations transmit tuples via the TCP protocol.

To direct tuples to worker cores on each machine, a demul-

tiplexer thread is introduced that receives all incoming tuples

and forwards them to the correct executor for processing.

Similarly, outgoing tuples are first relayed to a multiplexer

thread that batches tuples before sending them onto their

destination connections for better performance.

Testbed setup. We evaluate the performance of the Flex-

Storm real-time analytics platform, obtained from the au-

thors of [25], by running the same benchmark presented in

[25]. Figure 10 and Table 8 show average achievable through-

put and latency at peak load on this workload. Throughput

is measured over a runtime of 20 seconds, shown raw and

per core over the entire deployment. Per-tuple latency is

broken down into time spent in processing, and in input and

output queues, as measured at user-level, within FlexStorm.

We deploy FlexStorm on 3 machines of our client cluster. We

evenly distribute workers over the machines to balance the

load.

Linux performance. Overhead introduced by the Linux

kernel network stack limits FlexStorm performance. Even

11

 0

 1

 2

 3

 4

Raw

T
h
ro

u
g
h
p
u
t
[m

 t
u
p
le

s
 /
 s

]

Linux mTCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Per core

TAS

Figure 10. Average throughput on various FlexStorm con-

figurations. Error bars show min/max over 20 runs.

Input Processing Output Total

Linux 6.96 µs 0.37 µs 20 ms 20 ms

mTCP 4 ms 0.33 µs 14 ms 18 ms

TAS 7.47 µs 0.36 µs 8 ms 8 ms

Table 8. Average FlexStorm tuple processing time.

though per-tuple processing time is short, tuples spend sev-

eral milliseconds in queues after reception and before emis-

sion. Queueing before emission is due to batching in the

multiplexing thread, which batches up to 10 milliseconds of

tuples before emission. Input queueing is minimal in Flex-

Storm as it is past the bottleneck of the Linux kernel and thus

packets are queued at a lower rate than they are removed.

mTCPperformance. Running all FlexStormnodes onmTCP

yields a 2.1× raw throughput improvement versus Linux,

while utilizing an additional core per node to execute the

mTCP user-level network stack. The per-core throughput

improvement is thus lower, 1.8×. We could not run mTCP

threads on application cores, as mTCP relies on the NIC’s

symmetric RSS hash to distribute packets to isolated per-

thread stacks for scalability. This does not work for asymmet-

ric applications, like FlexStorm, where the sets of receiving

and sending threads are disjoint. The bottleneck is now the

FlexStorm multiplexer thread. Input queuing delay has in-

creased dramatically, while output queueing delay decreased

only slightly. This is primarily because mTCP collects pack-

ets into large batches to minimize context switches among

threads. Overall, tuple processing latency has decreased only

10% versus Linux due to the much higher amount of batching

in mTCP.

TAS performance. Running all FlexStorm nodes on TAS

yields an 8% raw throughput improvement versus mTCP and

the per-core throughput improvement is 26%. The improve-

ment is only small as the bottleneck remains the multiplexer

thread. Overall, tuple processing latency has decreased 56%

versus mTCP. This is because TAS does not require any

batching to achieve its performance.

While there are limited throughput improvements to using

TAS due to application-level bottlenecks, we conclude that

tuple processing latency can be improved tremendously com-

pared to approaches that use batching, as fewer tuples are

 0

 0.5

 1

 1.5

0 200 400 600 800 1ms

A
v
e

ra
g

e
 F

C
T

 [
m

s
]

Control interval (T) [us]

TCP
DCTCP

TAS

(a) Avg flow completion time

 10

 100

0 200 400 600 800 1ms

Q
u

e
u

e
 s

iz
e

 [
p

k
ts

]

Control interval (T) [us]

TCP
DCTCP

TAS

(b) Average queue length

Figure 11. Simulation of a single 10Gbps link.

held in queues. This provides the opportunity for tighter real-

time processing guarantees under higher workloads using

the same equipment.

5.5 Congestion Control

We implemented DCTCP congestion control in TAS with

the key difference that transmission is rate based, with rates

updated periodically for all flows by the kernel at a fixed

pre-defined control interval τ . We investigate the impact of

τ on congestion behavior via ns-3 simulations, comparing to

vanilla DCTCP. First, we simulate a single 10Gbps link with

an RTT of 100�s at 75% utilization with Pareto-distributed

flow sizes and varying τ . Next, we simulate a large cluster of

2560 servers and a total of 112 switches that are configured

in a 3-level FatTree topology with an oversubscription ratio

of 1:4. All servers follow and on-off traffic pattern, sending

flows to a random server in the data center at a rate such

that the core link utilization is approximately 30%. Finally,

we investigate congestion fairness experimentally with τ =

2 × RTT (as measured for each flow) under incast.

Single link. Figure 11 shows average flow completion time

(FCT) and average queue size with varying τ for the single

10Gbps link. The average FCT for TAS is very similar to that

of DCTCP when τ is greater than the RTT. However, if τ

is set too low, frequent fluctuations in congestion window

cause slow convergence and long completion times. The

average queue length is very similar to that of DCTCP and

grows, but slowly, as τ increases beyond the RTT, due to

delayed congestion window updates.

Large cluster. Figure 12 shows the average flow comple-

tion times for short and long flow sizes in the large cluster

simulation with the control interval τ set to 100�s. The per-

formance of TAS is similar to that of DCTCP in both cases.

100�s is a reasonable amount of time for the kernel to up-

date congestion windows for thousands of flows. Even with

larger values of τ , queue size is only minimally affected and

FCTs stay approximately identical.We thus conclude that our

out-of-band approach works to provide DCTCP-compatible

congestion behavior.

Tail-latency under incast. To evaluate performance un-

der congestion, we measure tail latency under incast with

4 machines sending to a single receiver (operating at line

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Latency [ms]

TCP
DCTCP

TAS

(a) Short flows ≤ 50 pkts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Latency [ms]

TCP
DCTCP

TAS

(b) Long flows > 50 pkts

Figure 12. Flow completion times for large cluster simula-

tion.

 0.01

 0.1

 1

 50 100 200 500 1000 2000

T
’p

u
t

[m
B

 /
 1

0
0

 m
s
]

of Connections

Linux Median
TAS Median
TAS 99th %

Fair Share

Figure 13. Distribution of connection rates under incast.

rate) with different numbers of connections. We record the

number of bytes received on each connection every 100ms

on the receiver over the period of a minute, discarding a

warmup 20 seconds. Figure 13 shows the median (and 99th

percentile) throughput over the measured intervals and con-

nections on Linux (using DCTCP) and TAS. For TAS, the

tail falls within 1.6× and 2.8× of the median, while the me-

dian is close to each connection’s fair share. Linux median

(and tail—not shown) behavior fluctuates widely, showing

significant starvation of flows in some cases.

Linux fairness is hurt in three interacting ways: (1) Linux

window based congestion control creates bursts when win-

dows abruptly widen and contract under congestion. (2)

Window-based congestion control limits the control granu-

larity for low-rtt links. (3) The Linux TCP stack architecture

requires many shared queues that can overflow when flows

are bursty, resulting in dropped packets without regard to

fairness. Rate-based packet scheduling and per-flow queue-

ing in TAS smoothes bursts and eliminates unfair packet

drops at end hosts.

5.6 Workload Proportionality

Finally, we analyze a dynamic workload to evaluate how TAS

adapts to workload changes and how this affects end-to-end

performance. For this experiment, we re-use and instrument

the key-value store server and vary the number of clients

over time. At time 0 we start with one client machine, and

add four additional client machines, one every 10 seconds,

after an additional 10 seconds we remove the client machines

again one by one. Figure 14 shows both the number of fast-

path cores for TAS as well as the total server throughput. TAS

starts out with just 1 core, and ramps up to 3 cores for the first

client, and continues to add additional cores until reaching

9 cores, before incrementally removing cores again as the

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90
 0

 2

 4

 6

 8

 10

 12

 14

C
o

re
s

T
h

ro
u

g
h

p
u

t
[m

o
p

s
]

Time [s]

Cores Throughput

Figure 14. Number of TAS processor cores and end-to-end

throughput as key-value store server load first increases and

then decreases again.

 0

 2

 4

 6

 8

 10

 36 38 40 42 44 46 48
 0

 10

 20

 30

 40

 50

 60

 70

C
o

re
s

L
a

te
n

c
y
 [

u
s
]

Time [s]

Cores Latency

Figure 15. End-to-end request latency as TAS acquires ad-

ditional processor cores in response to increasing load.

load reduces. Figure 15 shows request latency as measured

by clients as for the transition from 3 to 4 clients and with it

7 to 9 cores. During the adjustment the latency temporarily

spikes by about 15µs or 30% before quckly returning back

to the previous level. We conclude that TAS is able to adapt

to workload changes, acquiring and releasing processors as

needed, without significantly impacting end-to-end latency

or throughput.

6 Discussion

Our TAS prototype streamlines data center software TCP

processing. In light of recent interest in using different pro-

tocols for data center networking and hardware offload of

packet processing, we discuss how TAS fits in the picture.

We also discuss how TAS might be used to accelerate TCP

processing across the Internet.

Beyond TCP. A number of alternatives to TCP for data cen-

ter and Internet packet processing have been proposed [18,

20, 38]. While TCP still dominates both domains, it is worth-

while to ask if TAS can support these proposals. Beyond

differences in protocol details, such as header format and

framing, most high level ideas including the fast path/slow

path split for congestion control and timers generalize to

other protocols. While adding datagram framing to TAS is

simple, it is interesting to note that TCP’s byte stream ab-

straction requires less per-connection state. The fast path

only needs to track the stream position and length in the

circular buffer (constant size), instead of tracking a variable

number of message boundaries.

NIC offload. NIC offload of network packet processing also

received renewed recent interest [15, 25]. We believe that

13

offload is a promising long-term solution to accelerating reli-

able network packet exchange—as long as it is flexible. Data

center network infrastructure, protocols, and in particular

congestion control are constantly evolving [6, 11, 20, 28, 48].

NIC offload must adapt quickly to these new protocols. We

believe TAS’ division of labor can inform NIC offload de-

signs. The minimal but resource intensive fast path can be

offloaded to the NIC. The complex, but less intensive slow

path can remain on host CPUs. This includes the congestion

control policy, which can be changed quickly using familiar

software programming abstractions.

Internet TCP acceleration. Our focus in this paper is on

data center use of TCP. Another benefit of TCP support in

TAS is TCP’s strong use on the Internet, allowing TAS to be

potentially useful to edge applications. Supporting Internet

TCP is possible in principle, but requires revisiting some

common-case assumptions: Are packet loss rates compara-

ble to the data center scenario? Will IP packet fragmentation

need to be handled in the fast path? Will longer round-trip

times impact slow path mechanisms, such as congestion

control and timeouts? Are connection control events, such

as setup and teardown more common and need to be han-

dled on the fast path? Finally, Internet clients will want to

send RPCs over secure connections. This entails supporting

transport layer security (TLS) features. While doing so via an

application-level library is always possible, another potential

for fast-path acceleration of TLS within TAS presents itself.

7 Related Work

So�ware TCP stack improvements. A closely related line

of work aims to reduce TCP CPU overhead, often with some

level of NIC assistance. Many of these systems also use batch-

ing to reduce overhead at some cost in latency; our focus

is on reducing overhead for latency-sensitive RPCs where

batching is less appropriate. Affinity-accept [33] and Fast-

socket [26] use flow steering on the NIC to keep connections

local to cores. Arrakis [34] and mTCP [24] use NIC virtualiza-

tion to move the TCP stack into each application, eliminating

kernel calls in the common case, at the cost of trusting the

application to implement congestion control. StackMap [47]

takes a hybrid approach, using the featureful Linux in-kernel

TCP stack, but keeping packet buffers in user-space, elimi-

nating copies between user and kernel space; this provides

moderate speedups, but requires the application to be trusted

and modified to StackMap’s interface. Sandstorm [27] co-

designs the TCP stack using application-specific knowledge

about packet payloads; this is an interesting avenue for fu-

ture work. Megapipe [19] re-designs the kernel-application

interface around communication channels; we use a sim-

ilar idea in our design. IX [9] pushes this farther by also

changing the socket interface; we aim to keep compatibility

with existing applications. To improve load balancing, Zy-

gOS [36] introduces an object steering layer that is similar

to ours. Finally, CCP proposes separating congestion control

policy from its enforcement [29]; our work can be seen as

an implementation of that idea.

NIC-So�ware co-design. Earlier work on improving packet

processing performance used new HW/SW interfaces to re-

duce the number of required PCIe transitions [10, 16], to scale

rate limiting [37], and to enable kernel-bypass [14, 35, 45].

TCP Offload Engines [12, 13] and remote direct memory ac-

cess (RDMA) [38] go a step further, entirely bypassing the

remote CPU for their specific use-case. Scale-out NUMA [32]

extends the RDMA approach by integrating a remote mem-

ory access controller with the processor cache hierarchy that

automatically translates certain CPU memory accesses into

remote memory operations. Portals [7] is similar to RDMA,

but adds a set of offloadable memory and packet send opera-

tions triggered upon matching packet arrival. Out of these

approaches, only kernel bypass has found broad market ac-

ceptance. One hindrance to widespread adoption of network

stack offload is that hardware stack deployment is slower

than software stack deployment, while application demands

and datacenter network deployments change rapidly. Hard-

ware approaches are thus often not able to keep pace fast

enough with the changing world around them. By providing

an efficient software network stack, TAS side-steps this is-

sue, while providing performance close to that of hardware

solutions.

8 Conclusion

The continuing increase in data center link bandwidth, cou-

pled with a much slower improvement in CPU performance,

is threatening the viability of kernel software TCP process-

ing, pushing researchers to investigate alternative solutions.

Any alternative has to ensure that it is safe, efficient, scalable,

and flexible.

We present TAS, TCP acceleration as a software service.

TAS executes common-case TCP operation in an isolated

fast path, while handling corner cases in a slow path. TAS

achieves throughput up to 7× that of Linux and 1.3× that

of IX for common, unmodified cloud applications. Unlike

kernel bypass, TAS enforces congestion control on untrusted

applications, and achieves much higher levels of per-flow

fairness than Linux. TAS scales to many cores and connec-

tions, providing up to 2.2× higher throughput than IX on

64K connections, while facilitating TCP protocol innovation.

Acknowledgements

This work is supported in part by NSF grants NSF 1751231

and CNS-1518702, the Texas Systems Research Consortium,

Huawei Innovation Research Lab YBN2017120001, as well

as gifts from Google, Facebook, Huawei, VMware, Citadel

Securities, and ARM. We would like to thank the anony-

mous reviewers and our shepherd, Robert Soulé, for their

comments and feedback.

14

References
[1] [n. d.]. h�ps://github.com/torvalds/linux/blob/master/net/ipv4/tcp_

input.c#L5302.

[2] [n. d.]. h�ps://support.microso�.com/en-us/help/951037/information-

about-the-tcp-chimney-offload-receive-side-scaling-and-net.

[3] [n. d.]. Intel Data Plane Development Kit. h�p://www.dpdk.org/.

[4] [n. d.]. h�p://memcached.org/.

[5] [n. d.]. h�p://redis.io/.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. 2010. Data Center TCP (DCTCP). In 2010 ACMConference on

SIGCOMM (SIGCOMM). 12. h�ps://doi.org/10.1145/1851182.1851192

[7] Brian W. Barrett, Ron Brightwell, Scott Hemmert, Kevin Pedretti, Kyle

Wheeler, Keith Underwood, Rolf Riesen, Arthur B. Maccabee, and

Trammell Hudson. 2013. The Portals 4.0.1 Network Programming Inter-

face (sand2013-3181 ed.). Sandia National Laboratories.

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture

for Scalable Multicore Systems. In 16th ACM Symposium on Operating

Systems Principles (SOSP). 16. h�ps://doi.org/10.1145/1629575.1629579

[9] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane

Operating System for High Throughput and Low Latency. In 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI). 17. h�p://dl.acm.org/citation.cfm?id=2685048.2685053

[10] Nathan L. Binkert, Ali G. Saidi, and Steven K. Reinhardt. 2006. Inte-

grated Network Interfaces for High-bandwidth TCP/IP. In 12th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). h�ps://doi.org/10.1145/1168857.

1168897

[11] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas

Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Conges-

tion Control. ACM Queue 14, 5, Article 50 (Oct. 2016), 34 pages.

h�ps://doi.org/10.1145/3012426.3022184

[12] Chelsio Communications. 2013. TCP Offload at 40Gbps. h�p://www.

chelsio.com/wp-content/uploads/2013/09/TOE-Technical-Brief.pdf.

[13] Andy Currid. 2004. TCP Offload to the Rescue. ACM Queue 2, 3 (June

2004).

[14] Peter Druschel, Larry Peterson, and Bruce Davie. 1994. Experiences

with a High-Speed Network Adaptor: A Software Perspective. In 1994

ACM Conference on SIGCOMM (SIGCOMM).

[15] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,

Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,

Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth

Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.

Azure Accelerated Networking: SmartNICs in the Public Cloud. In

15th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 18). USENIX Association, Renton, WA, 51–66. h�ps:

//www.usenix.org/conference/nsdi18/presentation/firestone

[16] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design

for Low Latency Request-response Protocols. In 2013 USENIX Annual

Technical Conference (ATC). 14. h�p://dl.acm.org/citation.cfm?id=

2535461.2535502

[17] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-

dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel,

and Sudipta Sengupta. 2009. VL2: a scalable and flexible data center

network. In 2009 ACM Conference on SIGCOMM (SIGCOMM).

[18] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. 2016. QUIC: A UDP-

Based Secure and Reliable Transport for HTTP/2. h�ps://tools.ietf.

org/html/dra�-tsvwg-quic-protocol-02.

[19] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.

2012. MegaPipe: A New Programming Interface for Scalable Network

I/O. In 10th USENIX Symposium on Operating Systems Design and

Implementation (OSDI). 14. h�p://dl.acm.org/citation.cfm?id=2387880.

2387894

[20] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,

Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-

architecting Datacenter Networks and Stacks for Low Latency and

High Performance. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication (SIGCOMM ’17). ACM, New

York, NY, USA, 29–42. h�ps://doi.org/10.1145/3098822.3098825

[21] Van Jacobson. [n. d.]. TCP in 30 instructions. h�p://www.pdl.cmu.

edu/mailinglists/ips/mail/msg00133.html.

[22] V. Jacobson. 1988. Congestion Avoidance and Control. SIGCOMM

Computer Communication Review 18, 4 (Aug. 1988), 314–329. h�ps:

//doi.org/10.1145/52325.52356

[23] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache,

Mikhail Rybalkin, and Chenyu Yan. 2013. Speeding Up Distributed

Request-response Workflows. In 2013 ACM Conference on SIGCOMM

(SIGCOMM).

[24] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,

Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A

Highly Scalable User-level TCP Stack for Multicore Systems. In 11th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI). 14. h�p://dl.acm.org/citation.cfm?id=2616448.2616493

[25] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas An-

derson, and Arvind Krishnamurthy. 2016. High Performance Packet

Processing with FlexNIC. In 21st International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS). 15. h�ps://doi.org/10.1145/2872362.2872367

[26] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu,

and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implemen-

tation for Short-Lived Connections. In 21st International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). 14. h�ps://doi.org/10.1145/2872362.2872391

[27] Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Net-

work Stack Specialization for Performance. In 2014 ACM Conference on

SIGCOMM (SIGCOMM). 12. h�ps://doi.org/10.1145/2619239.2626311

[28] RadhikaMittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan

Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-

all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for

the Datacenter. In 2015 ACM Conference on SIGCOMM (SIGCOMM). 14.

h�ps://doi.org/10.1145/2785956.2787510

[29] Akshay Narayan, Frank J. Cangialosi, Prateesh Goyal, Srinivas

Narayana, Mohammad Alizadeh, and Hari Balakrishnan. 2017. The

Case for Moving Congestion Control Out of the Datapath. In Sixteenth

ACM Workshop on Hot Topics in Networks (HotNets). Palo Alto, CA.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek,

Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkatara-

mani. 2013. Scaling Memcache at Facebook. In 10th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI). 14.

h�p://dl.acm.org/citation.cfm?id=2482626.2482663

[31] Zhixiong Niu, Hong Xu, Dongsu Han, Peng Cheng, Yongqiang Xiong,

Guo Chen, and Keith Winstein. 2017. Network Stack As a Service

in the Cloud. In Proceedings of the 16th ACM Workshop on Hot Topics

in Networks (HotNets-XVI). ACM, New York, NY, USA, 65–71. h�ps:

//doi.org/10.1145/3152434.3152442

[32] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,

and Boris Grot. 2014. Scale-out NUMA. In 19th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). h�ps://doi.org/10.1145/2541940.2541965

[33] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.

Morris. 2012. Improving Network Connection Locality on Multicore
15

Systems. In 7th ACM European Conference on Computer Systems (Eu-

roSys). 14. h�ps://doi.org/10.1145/2168836.2168870

[34] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind

Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2015. Arrakis:

The Operating System Is the Control Plane. ACM Transactions on

Computer Systems 33, 4, Article 11 (Nov. 2015), 30 pages. h�ps://doi.

org/10.1145/2812806

[35] Ian Pratt and Keir Fraser. 2001. Arsenic: A User-Accessible Gigabit

Ethernet Interface. In 20th IEEE International Conference on Computer

Communications (INFOCOM).

[36] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:

Achieving Low Tail Latency for Microsecond-scale Networked Tasks.

In Proceedings of the 26th Symposium on Operating Systems Principles

(SOSP ’17). 17. h�ps://doi.org/10.1145/3132747.3132780

[37] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyaku-

mar, Abdul Kabbani, George Porter, and Amin Vahdat. 2014.

SENIC: Scalable NIC for End-Host Rate Limiting. In 11th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI). h�ps://www.usenix.org/conference/nsdi14/technical-sessions/

presentation/radhakrishnan

[38] RDMA Consortium. [n. d.]. Architectural specifications for RDMA

over TCP/IP. h�p://www.rdmaconsortium.org/.

[39] Rick Reed. 2012. Scaling to Millions of Simultaneous Connec-

tions. h�p://www.erlang-factory.com/upload/presentations/558/

efsf2012-whatsapp-scaling.pdf.

[40] Greg Regnier, Srihari Makineni, Ramesh Illikkal, Ravi Iyer, Dave

Minturn, Ram Huggahalli, Don Newell, Linda Cline, and Annie Foong.

2004. TCP Onloading for Data Center Servers. Computer 37, 11 (Nov.

2004), 48–58. h�ps://doi.org/10.1109/MC.2004.223

[41] Mihai Rotaru. 2013. Scaling to 12 Million Concurrent Connections:

How MigratoryData Did It. h�ps://mrotaru.wordpress.com/

2013/10/10/scaling-to-12-million-concurrent-connections-how-

migratorydata-did-it/.

[42] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson.

1999. TCP Congestion Control with a Misbehaving Receiver. SIG-

COMM Computer Communication Review 29, 5 (Oct. 1999), 71–78.

h�ps://doi.org/10.1145/505696.505704

[43] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-

tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,

Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.

Jupiter Rising: A Decade of Clos Topologies and Centralized Control

in Google’s Datacenter Network. In 2015 ACMConference on SIGCOMM

(SIGCOMM).

[44] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call

Scheduling with Exception-less System Calls. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’10). USENIX Association, Berkeley, CA, USA, 33–46. h�p:

//dl.acm.org/citation.cfm?id=1924943.1924946

[45] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: a user-

level network interface for parallel and distributed computing. In 15th

ACM Symposium on Operating Systems Principles (SOSP).

[46] Ahmad Yasin. 2014. A Top-Down method for performance analysis

and counters architecture. In ISPASS. IEEE Computer Society, 35–44.

[47] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert.

2016. StackMap: Low-latency Networking with the OS Stack and

Dedicated NICs. In Proceedings of the 2016 USENIX Conference on Usenix

Annual Technical Conference (USENIX ATC ’16). USENIX Association,

Berkeley, CA, USA, 43–56. h�p://dl.acm.org/citation.cfm?id=3026959.

3026964

[48] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-

hamad Haj Yahia, and Ming Zhang. 2015. Congestion Control for
Large-Scale RDMA Deployments. In 2015 ACM Conference on SIG-

COMM (SIGCOMM). 14. h�ps://doi.org/10.1145/2785956.2787484

16

