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ABSTRACT
Recursive query processing has experienced a recent resur-
gence, as a result of its use in many modern application do-
mains, including data integration, graph analytics, security,
program analysis, networking and decision making. Due to
the large volumes of data being processed, several research
efforts across multiple communities have explored how to
scale up recursive queries, typically expressed in Datalog.
Our experience with these tools indicate that their perfor-
mance does not translate across domains—e.g., a tool de-
signed for large-scale graph analytics does not exhibit the
same performance on program-analysis tasks, and vice versa.

Starting from the above observation, we make the follow-
ing two contributions. First, we perform a detailed exper-
imental evaluation comparing a number of state-of-the-art
Datalog systems on a wide spectrum of graph analytics and
program-analysis tasks, and summarize the pros and cons
of existing techniques. Second, we design and implement
our own general-purpose Datalog engine, called RecStep, on
top of a parallel single-node relational system. We outline
the techniques we applied on RecStep, as well as the contri-
bution of each technique to the overall performance. Using
RecStep as a baseline, we demonstrate that it generally out-
performs state-of-the-art parallel Datalog engines on com-
plex and large-scale Datalog evaluation, by a 4-6X margin.
An additional insight from our work is that it is possible to
build a high-performance Datalog system on top of a rela-
tional engine, an idea that has been dismissed in past work.
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1. INTRODUCTION
Recent years have seen a resurgence of interest from the

industry and research community in the Datalog language
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and its syntactic extensions. Datalog is a recursive query
language that extends relational algebra with recursion, and
can be used to express a wide spectrum of modern data man-
agement tasks, such as data integration [7, 15], declarative
networking [16], graph analysis [22, 23] and program anal-
ysis [29]. Datalog offers a simple and declarative interface
to the developer, while at the same time allowing powerful
optimizations that can speed up and scale out evaluation.

Development of Datalog solvers (or engines) has been a
subject of study in both the database community and pro-
gramming languages community. The database community
independently developed its own tools that evaluate gen-
eral Datalog programs, both in centralized and distributed
settings. These include the LogicBlox solver [9], as well as
distributed, cloud-based engines such as BigDatalog [25],
Myria [26], and Socialite [23].

In the programming languages (PL) community, it has
been observed that a rich class of fundamental static pro-
gram analyses can be written equivalently as Datalog pro-
grams [20, 29]. The PL community has extensively imple-
mented solvers that target all (or a subset) of Datalog. This
line of research has resulted in several Datalog-based tools
for program analysis, including bddbddb [28], Souffle [21],
and more recently Graspan [27].

About a year ago, we started working on the problem of
developing a scalable Datalog engine. We therefore tested
state-of-the-art Datalog engines from both communities. Our
experience with these tools indicate that their performance
does not translate across domains: Tools such as LogicBlox
and bddbddb were unable to scale well with large input
datasets prevalent in other domains. Even Souffle, the best-
performing tool for program analysis tasks, is not well-suited
for tasks outside program analysis, such as graph analytics
(which also require the language support for aggregation).
BigDatalog, Myria, and Socialite, on the other hand, can
support only simple Datalog programs with limited recur-
sion capabilities (linear and non-mutual recursion)—however,
the majority of program analyses typically correspond to
Datalog programs with complex structures.

To address this divide, we ask two questions: (i) what are
the performance characteristics of existing parallel Datalog
engines on tasks from different application domains? (ii)
can we design and implement an efficient parallel general-
purpose engine that can support a wide spectrum of Datalog
programs? To answer these questions, we perform a de-
tailed experimental evaluation of different Datalog engines
across tasks from graph analytics and program analysis, and
compare their performance with our own in-memory paral-
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lel Datalog engine, which uses a relational data manage-
ment system as a backend. We systematically examine the
techniques and optimizations necessary to transform a näıve
Datalog solver into a highly optimized one. As a conse-
quence of this work, we also show that—contrary to anec-
dotal and empirical evidence [13]—it is possible to use effec-
tively an rdbms as a backend for Datalog through careful
consideration of the underlying system issues.

Our Contribution. In this paper, we make the following
contributions:

1. Benchmarking. We perform an extensive compari-
son of four state-of-the-art Datalog engines on a multi-
core machine. We consider benchmarks both from the
graph analysis domain (e.g., transitive closure, reacha-
bility, connected components), and the program analy-
sis domain (e.g., points-to and dataflow analyses) using
both synthetic and real-world datasets. We compare
these systems across both runtime and memory usage.
A summary of our findings is depicted in Table 1.

2. Techniques and Guidelines. We study the chal-
lenges of building a recursive query processing engine
on top of a parallel rdbms, and consider a spectrum
of techniques that solve them. Key techniques include
(i) a lightweight way to enable query re-optimization
at every recursive step, (ii) careful scheduling of the
queries issued to the rdbms in order to maximize re-
source utilization, and (iii) the design of specialized
high-performance algorithms that target the bottle-
neck operators of recursive query processing (set dif-
ference, deduplication). We also propose a specialized
technique for graph analytics that can compress the
intermediate data through the use of a bit-matrix to
reduce memory usage. We systematically measure the
effect of each technique on performance.

3. Implementation. We implement our techniques as
part of RecStep, a Datalog engine that is built on top
of QuickStep [19], which is a single-node in-memory
parallel rdbms. RecStep supports a language exten-
sion of pure Datalog with both stratified negation and
aggregation, a language fragment that can express a
wide variety of data processing tasks.

4. Evaluation. We experimentally show that RecStep
can efficiently solve large-scale problems in different
domains using a single-node multicore machine with
large memory, and also can scale well when given more
cores. RecStep outperforms in almost all the cases the
other systems, sometimes even by a factor of 8. In
addition, the single-node implementation of RecStep
compares favorably to cluster-based engines, such as
BigDatalog, that use far more resources (more pro-
cessing power and memory). Our results show that (i)
it is feasible to build a fast general-purpose Datalog
engine using an rdbms as a backend, and (ii) with
the trend towards powerful (multi-core and large main
memory) servers, single node systems may be sufficient
for a large class of Datalog workloads.

Organization. In Section 3, we present the necessary
background for Datalog and the algorithms used for its eval-
uation. Section 4 gives a summary of the architecture de-
sign of RecStep, while Section 5 discusses in details the
techniques and optimizations that allow us to obtain high-

performant evaluation. Finally, in Section 6 we present our
extensive experimental evaluation.

2. RELATED WORK
We now compare and contrast our work with existing Dat-

alog engines.

Distributed Datalog Engines. Over the past few years,
there have been several efforts to develop a scalable eval-
uation engine for Datalog. Seo et al. [23] presented a dis-
tributed engine for a Datalog variant for social network anal-
ysis called Socialite. Socialite employs a number of tech-
niques to enable distribution and scalability, including delta
stepping, approximation of results, and data sharding. The
notable limitation is Socialite’s reliance on user-provided an-
notations to determine how to decompose data on different
machines. Wang et al. [26] implement a variant of Datalog
on the Myria system [11], focusing mostly on asynchronous
evaluation and fault-tolerance. The BigDatalog system [25]
is a distributed Datalog engine built on a modified version
of Apache Spark. A key enabler of BigDatalog is a mod-
ified version of rdds in Apache Spark, enabling fast set-
semantic implementation. The BigDatalog work has shown
superior results to the previously proposed systems which
we discussed above, Myria and Socialite. Therefore, in our
evaluation, we focus on BigDatalog for a comparison with
distributed implementations. Comparing our work with the
above systems, we focus on creating an optimized system
atop a parallel in-memory database, instead of a distributed
setting. The task of parallelizing Datalog has also been stud-
ied in the context of the popular MapReduce framework [2,
3, 24]. Motik et al. [18] provide an implementation of par-
allel Datalog in main-memory multicore systems.

Datalog Solvers in Program Analysis. Static pro-
gram analysis is traditionally the problem of overapproxi-
mating runtime program behaviors. Since the problem is
generally undecidable, program analyses resort to overap-
proximations of runtime facts of a program. A large and
powerful class of program analyses, formulated as context-
free language reachability, has been shown to be equivalent
to Datalog evaluation. Thus, multiple Datalog engines have
been built and optimized specifically for program-analysis
tasks. The bddbddb Datalog solver [28] pioneered the use
of Datalog in program analysis by employing binary deci-
sion diagrams (bdd) to compactly represent the results of
program analysis. The idea is that there is lots redundancy
in the results of a program analysis, due to overapproxima-
tion, that bdds help in getting exponential savings. How-
ever, recently a number of Datalog solvers have been used
for program analysis that employ tabular representations of
data. These include the Souffle solver [21] and the Log-
icBlox solver [9]. Souffle (which has been shown to outper-
form LogicBlox [5]) compiles Datalog programs into native,
parallel C++ code, which is then compiled and optimized
for a specific platform. All of these solvers do not employ
a deep form of parallelism that our work exhibits by utiliz-
ing a parallel in-memory database. The Graspan engine [27]
takes a context-free grammar representation and is thus re-
stricted to binary relations—graphs. However, Graspan em-
ploys worklist-based algorithm to parallelize fixpoint compu-
tation on a multicore machine. As we show experimentally,
however, our approach can outperform Graspan on its own
benchmark set.
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Table 1: Summary of Comparison Between Different Systems. CPU Efficiency is defined as the reciprocal of the product of
the overall performance (runtime) of the system supporting multi-core computation and the number of CPU cores given for
computation - the greater number suggests higher CPU efficiency. We refer readers to [8] for more details.

Graspan Bddbddb BigDatalog Souffle RecStep
Scale-Up yes no yes yes yes
Scale-Out no no yes no no

Memory Consumption low low high medium low
CPU Utilization medium poor high medium high
CPU Efficiency low - medium high high

Hyperparameters Tuning
Requried

yes
(lightweight)

yes
(complex)

yes
(moderate)

no no

Mutual Recursion yes yes no yes yes
Non-Recursive Aggregation no no yes yes yes

Recursive Aggregation no no yes no yes

Other Graph Engines. By now, there are numerous
distributed graph-processing systems, like Pregel [17] and
Giraph [12]. These systems espouse the think-like-a-vertex
programming model where one writes operations per graph
vertex. These are restricted to binary relations (graphs);
Datalog, by definition, is more general, in that it captures
computation over hypergraphs.

3. BACKGROUND
In this section, we provide the background on the syntax

and evaluation strategies of the Datalog language. Then, we
discuss the language extensions we use in this work.

3.1 Datalog Basics
A Datalog program P is a finite set of rules. A rule is an

expression of the following form:

h :− p1, p2, . . . , pk.

The expressions h, p1, . . . , pk are atoms, i.e., formulas of the
form R(t1, . . . , t�), where R is a table/relation name (predi-
cate) and each ti is a term that can be a constant or a vari-
able. An atom is a fact (or tuple) when all ti are constants.
The atom h is called the head of the rule, and the atoms
p1, . . . , pk are called the body of the rule. A rule can be in-
terpreted as a logical implication: if the predicates p1, . . . , pk
are true, then so is the head h. We assume that rules are
always safe: this means that all variables in the head occur
in at least one atom in the body. We will use the lower case
x, y, z, . . . to denote variables, and a, b, c, . . . for constants.

The relations in a Datalog program are of two types: idb
and edb relations. A relation that represents a base (input)
table is called edb (extensional database); edb relations can
occur only in the body of a rule. A relation that represents
a derived relation is called idb (intentional database), and
must appear in the head of at least one rule.

Example 1. Let us consider the task of computing the
transitive closure (TC) of a directed graph. We represent
the directed graph using a binary relation arc(x,y): this
means that there is a directed edge from vertex x to vertex
y. TC can be expressed through the following program:

r1 : tc(x, y) :− arc(x, y).

r2 : tc(x, y) :− tc(x, z), arc(z, y).

In the above program, arc is an edb relation (input), and
tc is an idb relation (output). The program can be inter-
preted as follows. The first rule r1 (called the base rule) ini-
tializes the transitive closure by adding to the initially empty
relation all the edges of the graph. The second rule r2 is a
recursive rule, and produces new facts iteratively: a new fact
tc(a,b) is added whenever there exists some constant c such
that tc(a,c) is already in the relation (from the previous it-
erations), and arc(c,b) is an edge in the graph.

Stratification. Given a Datalog program P , we construct
its dependency graph GP as follows: every rule is a vertex,
and an edge (r, r′) exists in GP whenever the head of the
rule r appears in the body of rule r′. A rule is recursive
if it belongs in a directed cycle, otherwise it is called non-
recursive. A Datalog program is recursive if it contains at
least one recursive rule. For instance, the dependency graph
of the program in Example 1 contains two vertices r1, r2, and
two directed edges: (r1, r2) and (r2, r2). Since the graph has
a self-loop, the program is recursive. A stratification of P
is a partition of the rules into strata, where each stratum
contains the rules that are in the same strongly connected
component of GP . The topological ordering of the strongly
connected components also defines an ordering in the strata.
In our running example, there exist two strata, {r1}, {r2}.
3.2 Datalog Evaluation

Datalog is a declarative query language, and hence there
are different algorithms that can be applied to evaluate a
Datalog program. Most implementations of Datalog use
bottom-up evaluation techniques, which start from the in-
put (edb) tables, and then iteratively apply the rules until
no more new tuples can be added into the idb relations,
reaching a fixpoint. In the näıve evaluation strategy, the
rules are applied by using all the facts produced so far. For
our running example, we would initialize the idb relation tc

with tc0 ← arc. To compute the (i+ 1) iteration, we com-
pute tci+1 ← πx,y(tc

i � arc). The evaluation ends when
tci+1 = tci. The näıve evaluation strategy has the draw-
back that the same tuples will be produced multiple times
throughout the evaluation.

In the semi-näıve evaluation strategy, at every iteration
the algorithm uses only the new tuples from the previous
iteration to generate tuples in the current iteration. For
instance, in the running example, at every iteration i, we
maintain together with tci the facts that are generated only
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in the i-th iteration (and not previous iterations), denoted
by ∆tci = tci − tci−1. Then, we compute the (i + 1) it-
eration of tc as tci+1 ← πx,y(∆tci � arc). The running
example is an instance of linear recursion, where each recur-
sive rule contains at most one atom with an idb. However,
many Datalog programs, especially in the context of pro-
gram analysis, contain non-linear recursion, where the body
of a rule contains multiple idb atoms. In this case, the ∆
relations are computed by taking the union of multiple sub-
queries (for more details see [1]).

Semi-näıve evaluation can be further sped up by exploit-
ing the stratification of a Datalog program: the strata are
ordered from lower to higher according to the topological
order, and then each stratum is evaluated sequentially, by
considering the idb relations of prior strata as edb relations
(input tables) in the current stratum. In our implementa-
tion of Datalog, we use the semi-näıve evaluation strategy
in combination with stratification.

3.3 Negation and Aggregation
In order to enhance the expressiveness of Datalog for use

in modern applications, we consider two syntactic exten-
sions: negation and aggregation.

Negation. Datalog is a monotone language, which means
that it cannot express tasks where the output can become
smaller when the input grows. However, many tasks are
inherently non-monotone. To express these tasks, we ex-
tend Datalog with a simple form of negation, called stratified
negation. In this extension, negation is expressed by adding
the symbol ¬ in front of an atom. However, the use of ¬ is
restricted syntactically, such that an atom R(t1, . . . , t�) can
be negated in a rule if (i) R is an edb, or (ii) any rule where
R occurs in the head is in a strictly lower stratum.

Example 2. Suppose we want to compute the comple-
ment of transitive closure, in other words, the vertex pairs
that do not belong in the closure. This task can be expressed
by the following Datalog program with stratified negation:

tc(x, y) :− arc(x, y).

tc(x, y) :− tc(x, z), arc(z, y).

node(x) :− arc(x, y).

node(y) :− arc(x, y).

ntc(x, y) :− node(x), node(y),¬tc(x, y).

Aggregation. We further extend Datalog with aggrega-
tion operators. To support aggregation, we allow the terms
in the head of the rule to be of the form AGG(x, y, . . . ), where
x, y, . . . are variables in the body of the rule, and AGG is an
aggregation operator that can be MIN, MAX, SUM, COUNT, or
AVG. We allow aggregation not only in non-recursive rules,
but inside recursion as well, as studied in [14]. In the latter
case, one must be careful that the semantics of the Datalog
program lead to convergence to a fixpoint; in this paper, we
assume that the program given as input always converges
([30] studies how to test this property). As an example of
the use of aggregation, suppose that we want to compute for
each vertex the number of vertices that are reachable from
this vertex. To achieve this, we can simply add to the TC
Datalog program of Example 1 the following rule:

r3 : gtc(x, COUNT(y)) :− tc(x, y).

Figure 1: Architectural overview of RecStep

We should note here that it is straightforward to incorpo-
rate negation and aggregation in the standard semi-näıve
evaluation strategy. Since negation can only be applied
when there is no recursion, it can easily be encoded in a
sql query using the difference operator. Aggregation can
be similarly encoded as group-by plus aggregation.

4. ARCHITECTURE
In this section, we present the architecture of RecStep.

The core design choice of RecStep is that, in contrast to
other existing Datalog engines, it is built on top of an ex-
isting parallel in-memory rdbms (QuickStep). This design
enables the use of existing techniques (e.g., indexing, mem-
ory management, optimized operator implementations) that
provide high-performance query execution in a multicore en-
vironment. Further, it allows us to improve performance by
focusing on characteristics specific to Datalog evaluation.

Overview. The architecture of our system is summarized
in Figure 1. The Datalog program is read from a .datalog

file, which, along with the rules of the Datalog program,
specifies the schemas of idb and edb relations. The parsed
program is first given as input to the rule analyzer. The job
of the rule analyzer is to preprocess the program: identify
the idb and edb relations, verify the syntactic correctness
of the program, construct the dependency graph and strati-
fication, and build the necessary mapping information (e.g.,
for joins). Next, the query generator takes the output of
the rule analyzer and produces the necessary sql code to
evaluate each stratum of the Datalog program using semi-
näıve evaluation. Finally, the interpreter is responsible for
the evaluation of the program. It starts the rdbms server,
creates the idb and edb tables in the database, and takes
care of the loop control for the semi-näıve evaluation in each
stratum. It also controls the communication and flow of in-
formation between the rdbms server.

Execution. We now describe how the interpreter executes
a Datalog program, outlined in Algorithm 1.

The Datalog rules are evaluated in groups and order given
by the stratification. The idb relations are initialized so that
they are empty (line 2). For each stratum, the interpreter
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Table 2: Notation used in Algorithm 1

Function Description

idb(s) returns relations that are heads in stratum s
rules(R, s) returns rules of stratum s with R as head
uieval(r) evaluates all the rules in the set r
analyze(R) call to the rdbms to collect statistics for R
dedup(R) deduplicates R

Algorithm 1 Execution Strategy for Datalog program P

1: for each idb R do
2: R ← ∅
3: // S is a stratification of P
4: for each stratum s ∈ S do
5: repeat
6: for each R ∈ idb(s) do
7: Rt ← uieval(rules(R, s))
8: analyze(Rt)
9: Rδ ← dedup(Rt)
10: analyze(Rδ, R)
11: ∆R ← Rδ −R
12: R ← R �∆R
13: if s is non-recursive then
14: break
15: until ∀R ∈ idb(s), ∆R = 0

enters the control loop for semi-näıve evaluation. Note that
in the case where the stratum is non-recursive (i.e., all the
rules are non-recursive), the loop exits after a single iteration
(line 13). In each iteration of the loop, two temporary tables
are created for each idb R in the stratum: ∆R, which stores
only the new facts produced in the current iteration, and
a table that stores the result at the end of the previous
iteration. These tables are deleted right after the evaluation
of the next iteration is finished.

The function uieval executes the sql query that is gen-
erated from the query generator based on the rules in the
stratum where the relation appears in the head (more de-
tails on the next section). We should note here that the
deduplication does not occur inside uieval, but in a separate
call (dedup). This is achieved in practice by using UNION

ALL (simply appending data) instead of UNION.
Finally, we should remark that the interpreter calls the

function analyze() during execution, which tells the backend
explicitly to collect statistics on the specified table. As we
will see in the next section, analyze() is a necessary feature
to achieve dynamic and lightweight query optimization.

5. OPTIMIZATIONS
This section presents the key optimizations that we have

implemented in RecStep to speed up performance and ef-
ficiently utilize system resources (memory and cores). We
consider optimizations in two levels: Datalog-to-sql-level
optimizations and system-level optimizations.

For Datalog-to-sql-level optimizations, we study the trans-
lation of Datalog rules to a set of sql queries. An effective
translation minimizes the overhead of catalog updates, se-
lects the optimal algorithms and query plans, avoids redun-
dant computations, and fully utilizes the available paral-
lelism. In terms of system-level optimizations, we focus on
bottlenecks that cannot be resolved by the translation-level

Figure 2: The effect of different optimizations techniques
on the CSPA analysis on httpd dataset. The figure shows
the effect of turning off each optimization on runtime, de-
picted as a percentage over the runtime of RecStep with all
optimizations turned off (RecStep-NO-OP).

(a) RecStep (b) Optimizations

Figure 3: The effect of turning off each optimization of
CSPA analysis on httpd on memory usage. The memory
consumption with all optimization turned on/off is shown
separately in Figure 3a for comparison purposes.

optimizations, and modify the back-end system by introduc-
ing new specialized data structures, implementing efficient
algorithms, and revising the rules in the query optimizer.

We summarize our optimizations as follows:

1. Unified idb Evaluation (uie): different rules and dif-
ferent subqueries inside each recursive rule evaluating
the same idb relation are issued as a single query.

2. Optimization On the Fly (oof): the same set of sql
queries are re-optimized at each iteration considering
the change of idb tables and intermediate results.

3. Dynamic Set Difference (dsd): for each idb table, the
algorithm for performing set-difference to compute ∆
is dynamically chosen at each iteration, by considering
the size of idb tables and intermediate results.

4. Evaluation as One Single Transaction (eost): the eval-
uation of a whole Datalog program is regarded as a
single transaction and nothing is committed until the
end.

5. Fast Deduplication (fast-dedup): a memory-efficient
implementation for high-performance deduplication.

Apart from the above list of optimizations, we also provide
a specialized technique that can speed up performance on
Datalog programs that operate on dense graphs called pbme.
This technique represents the relation as a bit-matrix, with
the goal of minimizing the memory footprint of the algo-
rithm. We next detail each optimization; their effect on
runtime and memory is visualized in Figure 2 and Figure 3.

5.1 Datalog-to-SQL-level optimizations
Unified IDB Evaluation (UIE). For each idb relation
R, there can be several rules where R appears in the head of
the rule. In addition, for a nonlinear recursive rule, in which
the rule body contains more than one idb relation, the idb
relation is evaluated by multiple subqueries. In this case,
instead of producing a separate sql query for each rule and
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Individual IDB Evaluation:
// Evaluate and write results separately 
INSERT INTO pointsTo_tmp_mDelta0 
    SELECT a0.y AS y, p1.x AS x FROM …
INSERT INTO pointsTo_tmp_mDelta1 
    SELECT l0.y AS y, p2.x AS x FROM …;
  …
INSERT INTO pointsTo_tmp_mDelta6 
    SELECT p1.x AS y, p2.x AS x FROM …;
// Merge results from seperate queries
INSERT INTO pointsTo_mDelta 
    SELECT * FROM pointsTo_tmp_mDelta0 
        UNION ALL 
    SELECT * FROM pointsTo_tmp_mDelta1 
        UNION ALL
     …
    SELECT * FROM pointsTo_tmp_mDelta6;

Unified IDB Evaluation:
// Evaluate and write results as a whole
INSERT INTO pointsTo_mDelta 
    SELECT a0.y AS y, p1.x AS x FROM …
        UNION ALL 
    SELECT l0.y AS y, p2.x AS x FROM … 
        UNION ALL
     …
    SELECT p1.x AS y, p2.x AS x FROM …;

Figure 4: Example uie in Andersen analysis.

then computing the union of the intermediate results, the
query generator produces a single sql query using the UNION
ALL construct. We call this method unified idb evaluation
(uie). Figure 4 provides an example of the two different
choices for the case of Andersen analysis.

The idea underlying uie is to fully utilize all the available
resources, i.e., all the cores in a multi-core machine. Quick-
Step does not allow the concurrent execution of sql queries,
and hence by grouping the subqueries into a single query, we
maximize the number of tasks that can be executed in paral-
lel without explicitly considering concurrent multi-task co-
ordination. In addition, uie mitigates the overhead incurred
by each individual query call, and enables the query opti-
mizer to jointly optimize the subqueries (e.g., enable cache
sharing, pipelining instead of materializing intermediate re-
sults). The latter point is not specific to QuickStep, but
generally applicable to any rdbms backend (even ones that
support concurrent query processing).

Optimization On the Fly (OOF). In Datalog evalua-
tion, even though the set of queries is fixed across iterations,
the input data to the queries changes, since the idb relations
and the corresponding ∆-relations change at every iteration.
This means that the optimal query plan for each query may
be different across different iterations. For example, in some
Datalog programs, the size of ∆R (Algorithm 1) produced
in the first few iterations might be much larger than the
joining edb table, and thus the hash table should be prefer-
ably built on the edb when performing a join. However, as
the ∆R produced in later iterations tend to become smaller,
the build side for the hash table should be switched later.

In order to achieve optimal performance, it is necessary
to re-optimize each query at every iteration (lines 8, 10 in
Algorithm 1) by using the latest table statistics from the
previous iteration. However, collecting the statistical data
(e.g., size, avg, min, max) of the whole database at every it-
eration can cause a large overhead, since it may be necessary
to perform a full scan of all tables. To mitigate this issue,
our solution is to control precisely at which point which sta-
tistical data we collect for the query optimizer, depending
on the type of the query. For instance, before joining two
tables, only the size of the two tables is necessary for the
optimizer to choose the right side to build the hash table on
(the smaller table), as illustrated in the previous example.

In particular, we collect the following statistics:

• For deduplication, the size of the hash table needs to
be estimated in order to pre-allocate memory. Instead
of computing the number of distinct values in the ta-
ble (which could be very expensive), we instead use
a conservative approximation that takes the minimum
of the available memory and size of the table.

• For join processing, we collect only the number of tu-
ples and the tuple size of the joining tables, if any of
the tables is updated or newly created.

• For aggregation, we collect statistics regarding the min,
max, sum and avg of the tables.

The effect of oof can be seen in Figure 4. Without up-
dating the statistics across the iterations, the running time
percentage jumps from 24% to 63% (oof-na). On the other
hand, if we update the full set of statistics, the running time
percentage increases to 41% (oof-fa).

Dynamic Set-Difference (DSD). In semi-näıve evalua-
tion, the execution engine must compute the set difference
between the newly evaluated results (Rδ) and the entire re-
cursive relation (R) at the end of every iteration, to gener-
ate the new ∆R ← Rδ − R (line 12 in Algorithm 1). Since
set difference is executed at every iteration for every idb
in the stratum, it is a computational bottleneck that must
be highly optimized. There exist two different ways we can
translate set difference as a sql query.

The first approach (One-Phase Set Difference – OPSD)
simply runs the set difference as a single sql query. The
default strategy that QuickStep uses for set difference is to
first build a hash table on R, and then Rδ probes the hash
table to output the tuples of Rδ that do not match with any
tuple in the hash table. Since the size of R grows at each
iteration (recall that Datalog is monotone), this suggests
that the cost of building the hash table on R will constantly
increase for the set difference computation under OPSD.

An alternative approach is to use a translation that we call
Two-Phase Set Difference (TPSD). This approach involves
two queries: the first query computes the intersection of the
two relations, r ← R ∩ Rδ. The second query performs
set difference, but now between R and r (instead of Rδ).
Although this approach requires more relational operators,
it avoids building a hash table on R.

We observe that none of the two approaches always dom-
inates the other, since the size of R and Rδ changes at dif-
ferent iterations. Hence, we need to dynamically choose the
best translation at every iteration. We guide this choice
using a simple cost model, presented in full detail in [8].

5.2 System-level Optimizations
Evaluation as One Single Transaction (EOST). By
default, QuickStep (as well as other rdbmss) view each
query that changes the state of database as a separate trans-
action. Keeping the default transaction semantics in Quick-
Step during evaluation incurs I/O overhead in each itera-
tion due to the frequent insertion happening to idb tables,
and the creation of tables storing intermediate results. Such
frequent I/O actions are unnecessary, since we only need
to commit the final results at the end of the evaluation.
To avoid this overhead, we use the evaluation as one single
transaction (eost) semantics. Under these semantics, the
data is kept in memory until the fixpoint is reached (when
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Figure 5: Example of applying fast deduplication algorithm
on table with two integer attributes in RecStep

there is enough main memory), and only the final results
are written to persistent storage at the end of evaluation.

To achieve eost, we slightly modify the kernel code in
QuickStep to pend the I/O actions until the fixpoint is
reached (by default, if some pages of the table are found
dirty after a query execution, the pages are written back to
the disk). At the end of the evaluation, a signal is sent to
QuickStep and the data is written to disk. For other pop-
ular rdbmss (e.g., PostgreSQL, MySQL, SQL Server), the
start and the end of a transaction can be explicitly specified,
but this approach is only feasible for a set of queries that
are pre-determined.1 However, in recursive query processing
the issued queries are dynamically generated, and the num-
ber of iterations is not known until the fixpoint is reached,
which means that similar changes need to be made in these
systems to apply eost.

Fast Deduplication. In Datalog evaluation, deduplica-
tion of the evaluated facts is not only necessary for conform-
ing to the set semantics, but also helps to avoid redundant
computation. Deduplication is also a computational bottle-
neck, since it occurs at every iteration for every idb in the
stratum (line 10 in Algorithm 1); hence, it is necessary to
optimize its parallel execution.

To achieve this, we use a specializedGlobal Separate Chain-
ing Hash Table implementation that uses a Compact Con-
catenated Key (ck), which we call cck-gscht. cck-gscht
is a global latch-free hash table built using a compact rep-
resentation of 〈key, value〉 pairs, in which tuples from each
data partition/block can be inserted in parallel. Figure 5
illustrates the deduplication algorithm using an example in
which cck-gscht is applied on a table with two integer at-
tributes (src int, dest int).

Based on the approximated number of distinct elements
from the query optimizer, RecStep pre-allocates a list of
buckets, where each bucket contains only a pointer. An im-
portant point here is that the number of pre-allocated buck-
ets will be as large as possible when there is enough memory,
for the purpose of minimizing conflicts in the same bucket,
and preventing memory contention. Tuples are assigned to

1To fully achieve eost, transactional databases also need to
turn off features such as checkpoint, logging for recovery, etc

Algorithm 2 Parallel Bit-Matrix Evaluation of TC

1: Input: arc(x, y) - edb relation, number of threads k
2: Output: tc(x, y) - idb relation
3: // Marc: virtual bit-matrix of arc(x, y)
4: Construct bit-matrix Mtc of tc(x, y)
5: Mtc ← Marc

6: Partition the rows of Mtc into k partitions
7: // the k threads evaluate k partitions in parallel
8: for each row i in partition p do
9: δ ← {u | Mtc[i, u] = 1}
10: while δ 	= ∅ do
11: δn ← ∅
12: for each t ∈ δ do
13: for each j s.t. Marc[t, j] = 1 do
14: if Mtc[i, j] = 0 then
15: δn ← δn ∪ {j}
16: Mtc[i, j] ← 1

17: δ ← δn

each thread in a round-robin fashion and are inserted in par-
allel. Knowing the length of each attribute in the table, a
compact ck of fixed size 2 is constructed for each tuple (8
bytes for two integer attributes as shown in Figure 5). The
compact ck itself contains all information of the original tu-
ple, eliminating the need for explicit 〈key, value〉 pair rep-
resentation. Additionally, the key itself is used as the hash
value, which saves computational cost and memory space.

5.3 Parallel Bit-Matrix Evaluation
In our experimental evaluation, we observed that the us-

age of memory increases drastically during evaluation over
dense relations. By default, QuickStep uses hash tables for
joins between tables, aggregation and deduplication. When
the intermediate result becomes very large, the use of hash
tables for join processing becomes memory-costly. In the
extreme, the intermediate results are too big to fit in main
memory, and are forced to disk, incurring additional I/O
overhead, or even out-of-memory errors. This phenomenon
was observed in both graph analytics and program analysis.
In both cases, a Datalog program starts with sparse input
relations with a relatively small active domain, but end up
with large and dense output relations. A typical example of
this behavior is transitive closure on graphs.

Inspired by this observation, we exploit a specialized data
structure, called bit-matrix, that replaces a hash map dur-
ing join and deduplication in the case when the graph rep-
resenting the data is dense and has relatively small number
of vertices. This data structure represents the join results in
a much more compact way under certain conditions, greatly
reducing the memory cost compared to a hash table. In this
paper, we only describe the bit matrix for binary relations,
but the technique can be extended to relations of higher ar-
ity. At the same time, we implement new operators directly
operating on the bit-matrix, naturally merging the join and
deduplication into one single operation and thus avoid the
materialization cost of the intermediate results. We call this

2The inputs of Datalog programs are usually integers trans-
formed by mapping the active domain of the original data (if
not integers). Thus the technique can also applied to data
where the original type has varied length.
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(a) Transitive Closure (b) Same Generation

Figure 6: Memory Saving of PBME on TC and SG

technique Parallel Bit-Matrix Evaluation (pbme). Our ex-
periments (Figure 6) show that pbme improved performance
for transitive closure (TC) and same generation (SG). The
latter is expressed through the following program:

sg(x, y) :− arc(p, x), arc(p, y), x! = y.

sg(x, y) :− arc(a, x), sg(a, b), arc(b, y).

We next describe the bit-matrix technique and show how
to apply it for TC (Algorithm 2). We discuss the algorithm
for SG in the full paper [8]. Note that we construct a matrix
only for each idb, but for convenience of illustration, we use
matrix notation for the edbs as well (line 3 in Algorithm 2).

The Bit-Matrix Data Structure. Let R(x, y) be a bi-
nary idb relation, with active domain {1, 2, . . . , n} for both
attributes. Instead of representing R as a set of tuples, we
represent it as an n × n bit matrix denoted MR. If R(a, b)
is a tuple in R, the bit at the a-th row and b-th column,
denoted MR[a, b] is set to 1, otherwise it is 0. The rela-
tion is updated during recursion by setting bits from 0 to 1.
We decide to build the bit-matrix data structure only if the
memory available can fit both the bit matrix, as well as any
additional index data structures used during evaluation.

One of the key features of pbme is zero-coordination: each
thread is only responsible for the partition of data assigned
to it and there is almost no coordination between different
threads. Algorithm 2 outlines the pbme for transitive clo-
sure. For the evaluation of TC (Algorithm 2), the rows of the
idb bit-matrix Mtc are firstly partitioned in a round-robin
fashion (line 6). For each row i assigned to each thread, the
set δ stores the new bits (paths starting from i) produced
at every iteration (line 12-16). For each new bit t produced,
the thread searches for all the bits at row t of Marc, and
computes the new δ (line 13-16).

The Effect of Skew. While unnoticeable in TC, data
skew across the threads was observed in SG. To analyze the
effect of data skew, we implement a variant of pbme with
coordination (PBME-COORD) and compare it with pbme
without coordination. PBME-COORD mitigates the data
skew by rebalancing the workloads between threads. In the
case where there is no skew, coordination only incurs unnec-
essary overhead. We refer readers to [8] for more detail.

The comparison of the two algorithms is shown in Figure
7. The CPU utilization of pbme with coordination is almost
100% throughout the whole evaluation of SG, and it takes
less time to finish compared to pbme without coordination.
This demonstrates that skew can indeed affect performance.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of RecStep.

Our experimental evaluation focuses on answering the fol-
lowing two questions:

(a) CPU Utilization (b) Memory Usage

Figure 7: PBME with Coordination v.s Non-Coordination
on SG on the G20K dataset.

1. How does our proposed system scale with increased
computation power (cores) and data size?

2. How does our proposed system perform compared to
other parallel Datalog evaluation engines?

To answer these two questions, we perform experiments us-
ing several benchmark Datalog programs from the literature:
both from traditional graph analytics tasks (e.g., reachabil-
ity, shortest path, connected components), as well as pro-
gram analysis tasks (e.g., pointer static analysis). We com-
pare RecStep against a variety of state-of-the-art Datalog
engines, as well as a recent single-machine, multicore engine
(Graspan), which can express only a subset of Datalog.

6.1 Experimental Setup
We briefly describe here the setup for our experiments.

System Configuration. Our experiments are conducted
on a bare-metal server in Cloudlab [6], a large cloud in-
frastructure. The server runs Ubuntu 14.04 LTS and has
two Intel Xeon E5-2660 v3 2.60 GHz (Haswell EP) proces-
sors. Each processor has 10 cores, and 20 hyper-threading
hardware threads. The server has 160GB memory and each
NUMA node is directly attached to 80GB of memory.

Other Datalog Engines. We compare the performance
of RecStep with several state-of-the-art systems that per-
form either general Datalog evaluation, or evaluate only a
fragment of Datalog for domain-specific tasks.

1. BigDatalog [25] is a general-purpose distributed Dat-
alog system implemented on top of Apache Spark.3

2. Souffle [21] is a parallel Datalog evaluation tool that
compiles Datalog to a native C++ program. It fo-
cuses on evaluating Datalog programs for the domain
of static program analysis.4

3. bddbddb [28] is a single-thread Datalog solver de-
signed for static program analysis. Its key feature is
the representation of relations using binary decision
diagrams (bdds).

4. Graspan [27] is a single-machine disk-based parallel
graph system, used mainly for interprocedural static
analysis of large-scale system code.

3BigDatalog exhibits significant performance improvements
over Myria and Socialite, and therefore we do not compare
against them.
4Recent work has shown that Souffle outperforms Log-
icBlox [5]. Indeed, our early attempts using LogicBlox con-
firm that its performance is not comparable to other parallel
Datalog systems. Thus, we exclude LogixBlox from our ex-
perimental evaluation.
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Table 3: Summary of Datalog Programs and Datasets in Performance Evaluation

Graph Analytics Datasets Reference

Transitive Closure (TC) [G5K, G10K, G10K-0.01, G10K-0.1, G20K, G40K, G80K] [25]
Same Generation (SG) [G5K, G10K, G10K-0.01, G10K-0.1, G20K, G40K, G80K] [25]
Reachability (REACH) [livejournal, orkut, arabic, twitter], [RMAT] [25]

Connected Components (CC) [livejournal, orkut, arabic, twitter], [RMAT] [25]
Single Source Shortest Path (SSSP) [livejournal, orkut, arabic, twitter], [RMAT] [25]

Program Analysis Datasets Reference

Andersen’s Analysis (AA) 7 synthetic datasets -
Context-sensitive Dataflow Analysis (CSDA) [linux, postgresql, httpd] [27]
Context-sensitive Points-to Analysis (CSPA) [linux, postgresql, httpd] [27]

6.2 Benchmark Programs and Datasets
We conduct our experiments using Datalog programs that

arise from two different domains: graph analytics and static
program analysis. The graph analytics benchmarks are those
used for evaluating BigDatalog [25]. Below, we present them
in detail (with the exception of TC and SG, which are de-
scribed earlier in the paper).

Reachability (REACH)

reach(y) :− id(y).

reach(y) :− reach(x), arc(x, y).

Connected Components (CC)

cc3(x, MIN(x)) :− arc(x, ).

cc3(y, MIN(z)) :− cc3(x, z), arc(x, y).

cc2(x, MIN(y)) :− cc3(x, y).

cc(x) :− cc2( , x).

Single Source Shortest Path (SSSP)

sssp2(y, MIN(0)) :− id(y).

sssp2(y, MIN(d1+ d2)) :− sssp2(x, d1), arc(x, y, d2).

sssp(x, MIN(d)) :− sssp2(x, d).

The static analysis benchmarks include analyses on which
Graspan was evaluated [27], as well as a classic static anal-
ysis called Andersen’s analysis [4].

Andersen’s Analysis (AA)

pointsTo(y, x) :− addressOf(y, x).

pointsTo(y, x) :− assign(y, z), pointsTo(z, x).

pointsTo(y, w) :− load(y, x), pointsTo(x, z), pointsTo(z, w).

pointsTo(z, w) :− store(y, x), pointsTo(y, z), pointsTo(x, w).

Context-sensitive Points-to Analysis (CSPA)5

valueFlow(y, x) :− assign(y, x).

valueFlow(x, y) :− assign(x, z), memoryAlias(z, y).

valueFlow(x, y) :− valueFlow(x, z), valueFlow(z, y).

memoryAlias(x, w) :− dereference(y, x), valueAlias(y, z),

dereference(z, w).

valueAlias(x, y) :− valueFlow(z, x), valueFlow(z, y).

valueAlias(x, y) :− valueFlow(z, x), memoryAlias(z, w),

5Graspan’s analysis is context-sensitive via method
cloning [29]—therefore, calling context does not appear in
the rules, but in the data.

valueFlow(w, y).

valueFlow(x, x) :− assign(x, y).

valueFlow(x, x) :− assign(y, x).

memoryAlias(x, x) :− assign(y, x).

memoryAlias(x, x) :− assign(x, y).

Context-sensitive Dataflow Analysis (CSDA)

null(x, y) :− nullEdge(x, y).

null(x, y) :− null(x, w), arc(w, y).

To evaluate the benchmark programs, we use a combina-
tion of synthetic and real-world datasets, which are summa-
rized in Table 3. To give a better view of the performance
evaluation, we briefly summarize some of the datasets and
corresponding Datalog programs here. For more details,
readers can go to the reference in Table 3.
Gn-p graphs are graphs generated by the GTgraph syn-

thetic graph generatorc [10], where n represents the num-
ber of total vertices of the graph in which each pair of ver-
tices is connected by probability p. Each pair of vertices
in Gn omitting p is connected with probability 0.001. All
Gn-p graphs are very dense considering their relatively small
number of vertices. SG and TC generate very large results
when evaluation is performed on Gn-p, (at least a few or-
ders of magnitude larger than the number of vertices). RMAT
graphs are graphs generated by the RMAT graph genera-
tor [10], with the same specification in [25], RMAT-n repre-
sents the graph that has n vertices and 10n directed edges
(n ∈ {1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M} in our evalu-
ation experiments). livejournal, orkut, arabic, twitter
are all large-scale real-world graphs which have tens of mil-
lions of vertices and edges. For the Andersen’s analysis,
seven datasets are generated ranging from small size to large
size based on the characteristics of a tiny real dataset avail-
able at hand, numbered from 1 to 7. The graph representa-
tions of the datasets are small and produce moderate num-
ber of tuples. linux, postgresql, httpd are all real system
programs used for CSDA and CSPA experiments in [27].

6.3 Experimental Results
We first evaluate the scalability of our proposed engine,

and then move to a comparison with other systems.

6.3.1 Scalability
Scaling-up Cores. To evaluate the speedup of Rec-
Step, we run the CC benchmark on livejournal graph,
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(a) CSPA on httpd (b) CC on livejournal

Figure 8: Scaling-up on Cores

(a) CC on RMAT (b) AA on synthetic dataset

Figure 9: Scaling-up on Datasets: the x-axis of 9a repre-
sents the number of vertices of the corresponding RMAT graph
datasets (RMAT-1M to RMAT-128M); the synthetic datasets are
numbered from 1 to 7 and the x-axis of 9b suggests the
corresponding dataset number.

and the CSPA benchmark on the httpd dataset. We vary
the number of threads from 2 to 40. Figure 8 demonstrates
that for both cases, RecStep scales really well using up to
16 threads, and after that point achieves a much smaller
speedup. This drop on speedup occurs because of the syn-
chronization/scheduling primitive around the common shared
hash table that is accessed from all the threads. Recall that
20 is the total number of physical cores.

Scaling-up Data. We perform experiments on both a
graph analytics program (CC on RMAT) and a program anal-
ysis task (AA on the synthetic datasets) using all 20 physical
cores (40 hyperthreads) to observe how our system scales
over datasets of increasing sizes. From Figure 9a, we ob-
serve that the time increases nearly proportionally to the
increasing size of the datasets. In Figure 9b, we observe that
for datasets numbered from 1 to 3, the evaluation times on
these three datasets are roughly the same. The correspond-
ing graphs representing the input for these three datasets
are relatively sparse and the total size of the data (input
and intermediate results) during evaluation is small, and
the cores/threads are underutilized; thus, when the data in-
creases, the stale threads will take over the extra processing,
and runtime will not increase. With the increasing size of
datasets (4 to 7), we observe a similar trend as seen in Fig-
ure 9a since the size of input data as well as that of the
produced intermediate results increases. All cores are fully
utilized, so more data will cause increase in runtime.

6.3.2 Comparison With Other Systems
In this section, we report experimental results over our

benchmarks for several other Datalog systems and Gras-
pan. For each Datalog program and dataset shown in the
comparison results, we run the evaluation four times (with

(a) Transitive Closure

(b) Same Generation

Figure 10: Performance Comparison of TC and SG

(a) Transitive Closure (b) Same Generation

Figure 11: Memory Usage of TC and SG (G10k)

the exception of bddbddb, since its runtime is substantially
longer than all other systems across the workloads), we dis-
card the first run and report the average time of the last
three runs. For each system, we report the total execution
time, including the time to load data from the disk and
write data back to the disk. For BigDatalog, since its eval-
uation is parameter workload dependent based on the avail-
able resources provided (e.g., memory), and its performance
depends on both of the supplied parameters, datasets and
the programs, we tried different combinations of parame-
ters (e.g., different join types) and report the best runtime
numbers. For comparison purposes, we also display the re-
sults of BigDatalog that runs on the full cluster from [25]
(Distributed-BigDatalog in Figure 10, 12, 13, which has 15
worker nodes with 120 CPU cores and 450GB memory in
total.) As we will see next, the experiments show that our
system can efficiently evaluate Datalog programs for both
large-scale graph analytics and program analyses, by being
able to efficiently utilize the available resources on a single
node equipped with powerful modern hardware (multi-core
processors and large memory). Specific runtime numbers
are not shown in Figure 10, 15a due to the space limit.

TC and SG Experiments. For TC and SG, our sys-
tem uses pbme as discussed in Section 5. Since the Gn-p
graphs are very dense, in each iteration intermediate results
of large sizes are produced. Hence, the original QuickStep
operators run out of memory due to the high materializa-
tion cost and demand for memory. By using a bit-matrix
data structure, the evaluation naturally fuses the join and
deduplication into a single operation, avoiding the materi-
alization cost and heavy memory usage. Our system is the
only one that completes the evaluation for TC and SG on all
Gn-p graphs (the runtime bar is not shown if the system fails
to finish the evaluation due to OOM or timeout (> 10h) is
observed ). The evaluation time of all four systems is shown
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(a) REACH (b) CC (c) SSSP

Figure 12: Performance Comparison on RMAT Graphs: The x-axis represents RMAT-1M to RMAT-128M.

in Figure 10. Figure 11 shows the memory consumption of
each system as percentage over the total memory given .

For TC, except for Distributed-BigDatalog, our system
outperforms all other systems on all Gn-k graphs (Distributed-
BigDatalog is only slightly faster than RecStep on G20K,
G40K and G80K). For G5K, G10K, G10K-0.01, and G10K-0.1,
our system even outperforms Distributed-BigDatalog, which
uses 120 cores and 450GB memory. For graphs that have
more vertices, Distributed-BigDatalog slightly outperforms
our system due to the additional CPU cores and memory it
uses for evaluation.

Due to the use of bdds, bddbddb can only efficiently eval-
uate graph analytics expressed in Datalog when the graph
has a relatively small number of vertices and when the proper
variable ordering is given.6 When the evaluation violates ei-
ther of these two conditions, bddbddb is a few orders of
magnitude slower than other systems as shown in graphs
G5K, G10K, G10K-0.01, G10K-0.1. For graphs G20K, G40K,
G80K, bddbddb runs out of time (> 10h). Souffle runs out
of memory when evaluating TC on G80K.

Compared to TC, the evaluation of SG is more memory
demanding and computationally expensive as observed in
Figure 10b and 11. Except for our system, all other systems
either use up the memory before the completion of the eval-
uation of SG or run into timeout (> 15h) on some of the
Gn-k graphs. Unlike TC, we observe that RecStep on SG
evaluation is much more sensitive to the graph density (e.g.,
G10K, G10K-0.01, G10K-0.1).

Experiments of Other Graph Analytics Besides TC
and SG, we also perform experiments running REACH, CC
and SSSP on both the RMAT graphs and the real world graphs
(Table 3), comparing the execution time and memory con-
sumption (on livejournal) of our system with Souffle and
BigDatalog (Figure 13, 14). Since Soufflle does not support
recursive aggregation (which shows in CC and SSSP), we
only show the execution time results of our system and Big-
Datalog for CC and SSSP. bddbddb is excluded, since the
number of vertices of all the graphs is too large.

As mentioned in [25], the size of the intermediate results
produced during the evaluation of REACH, CC, SSSP is
O(m), O(dm) and O(nm), where n is the number of ver-
tices, m is the number of edges and d is the diameter of the
graph. For convenience of comparison, we follow the way

6The size of BDD is highly sensitive to the variable ordering
used in the binary encoding; finding the best ordering is NP-
complete. We let bddbddb pick the ordering.

in which [25] presents the experimental results: for REACH
and SSSP, we report the average run time over ten randomly
selected vertices. We only consider an evaluation complete if
the system is able to finish the evaluation on all ten vertices
for REACH and SSSP, otherwise, the evaluation is seen as
failed (due to OOM). The corresponding point of failed eval-
uation is not reported in Figure 12 (on RMAT) and is shown
as Out of Memory in Figure 13 (on real world graphs).

Besides Distributed-BigDatalog, RecStep is the only sys-
tem that completes the evaluation for REACH, CC, SSSP
on all RMAT graphs and real world graphs, and is 3-6X faster
than other systems using scale-up approach on all the work-
loads that other systems manage to finish (as shown in Fig-
ures 12 and 13); compared to Distributed-BigDatalog, Rec-
Step shows comparable performance using far less computa-
tional resources. Both BigDatalog and Souffle fail to finish
evaluating some of the workloads due to OOM. As shown in
Figure 12, the execution time of our system increases nearly
proportionally to the increasing size of the dataset on all
three graph analytics tasks. In contrast, Souffle’s parallel
behavior is workload dependent though it efficiently evalu-
ates dataflow and points-to analysis (Fig 15b, 15c), it does
not fully utilize all the CPU cores when evaluating REACH
(Fig13a, 12a) and Andersen’s analysis (Fig 15a) . The CPU
utilization of different systems evaluating Andersen’s anal-
ysis, CSPA is visualized in Figure 16.

Program Analysis. We perform experiments on Ander-
sen’s analysis using the synthetic datasets (generated based
on a real-world dataset). Besides, we also conduct experi-
ments comparing the execution time of CSPA and CSDA on
the real system programs in [27]. Nonlinear recursive rules
are commonly observed in Datalog programs for program
analysis, and the results help us understand the behavior
of our system and other systems when evaluating Datalog
programs with(out) involving complex recursive rules.

For Andersen’s analysis, the number of variables (the size
of active domains of each edb relation) increases from dataset

1 to dataset 7. Our system outperforms all other systems
on every dataset. The performance of bddbddb is compa-
rable to other systems when the number of variables be-
ing considered is small (dataset 1 and dataset 2), but the
runtime increases a lot when the number of variables grows,
due to its large overhead of building the bdd. BigDatalog
outperforms Souffle on large datasets, since Souffle does not
parallelize the computation as effectively.

All three systems significantly outperform Graspan on
both CSPA and CSDA, as shown in Figure 15b and Figure
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(a) REACH (b) CC (c) SSSP

Figure 13: Performance Comparison on Real-World Graphs.

(a) REACH (b) CC (c) SSSP

Figure 14: Memory Consumption on livejournal.

(a) AA on 7 synthetic datasets (b) CSDA on systems programs (c) CSPA on systems programs

Figure 15: Performance Comparison on Program Analyses

(a) AA on dataset 5 (b) CSPA on linux (c) CSPA on httpd

Figure 16: CPU Utilization on Program Analyses

15c. Since BigDatalog does not support mutual recursion,
it is not present in Figure 15c). The inefficiency of Graspan
is mainly due to its frequent use of sorting, coordination
during the computation and relatively poor utilization of
multi-cores for parallel computation.

CSDA is the only Datalog program on which RecStep is
outperformed by Souffle and BigDatalog. The reasons are
two-fold. First, the evaluation of CSDA on all three datasets
needs many iterations (∼ 1000), and thus the overhead of
triggering each query accumulates. There is also an addi-
tional overhead from the analyze calls and the materializa-
tion cost of the intermediate results. Compared to this over-
head, the cost of the actual computation is much smaller.
The second reason is that the rules in CSDA are simple and
linear. Since the input data and the intermediate results
produced in each iteration is small in size, the RDBMS can-
not fully utilize the available cores.

In contrast, CSPA has more rules and involves nonlin-
ear recursion, producing large ∆ and intermediate results at
each iteration. This enables RecStep to exploit both data-
level and multiquery-level parallelism. Figure 15c shows the

evaluation time for CSPA: while Souffle slightly outperforms
our system on the httpd dataset, RecStep outperforms Souf-
fle and Graspan on the other two datasets.

7. CONCLUSION
In this paper, we started with the observation that Dat-

alog engines do not translate across domains. We experi-
mentally evaluated the advantages and disadvantages of ex-
isting techniques, and compared them with our own base-
line, a general-purpose, parallel, in-memory Datalog solver
(RecStep) built upon a rdbms. We presented the neces-
sary optimizations and guidelines to achieve efficiency, and
demonstrated that RecStep is scalable, applicable to a range
of application domains, and is competitive with highly op-
timized and specialized Datalog solvers.
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Porting doop to soufflé: a tale of inter-engine
portability for datalog-based analyses. In Proceedings
of the 6th ACM SIGPLAN International Workshop on
State Of the Art in Program Analysis, pages 25–30.
ACM, 2017.

[6] https://www.cloudlab.us/, 2018.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering. In
Database Theory - ICDT 2003, 9th International
Conference, Siena, Italy, January 8-10, 2003,
Proceedings, pages 207–224, 2003.

[8] Z. Fan, J. Zhu, Z. Zhang, A. Albarghouthi, P. Koutris,
and J. Patel. Scaling-Up In-Memory Datalog
Processing: Observations and Techniques. arXiv
e-prints, page arXiv:1812.03975, Dec. 2018.

[9] T. J. Green, M. Aref, and G. Karvounarakis.
Logicblox, platform and language: A tutorial. In
Datalog in Academia and Industry, pages 1–8.
Springer, 2012.

[10] http://www.cse.psu.edu/~kxm85/software/GTgraph.

[11] D. Halperin, V. T. de Almeida, L. L. Choo, S. Chu,
P. Koutris, D. Moritz, J. Ortiz, V. Ruamviboonsuk,
J. Wang, A. Whitaker, S. Xu, M. Balazinska,
B. Howe, and D. Suciu. Demonstration of the myria
big data management service. In SIGMOD ’14, pages
881–884, 2014.

[12] M. Han and K. Daudjee. Giraph unchained:
barrierless asynchronous parallel execution in
pregel-like graph processing systems. PVLDB,
8(9):950–961, 2015.

[13] H. Jordan, B. Scholz, and P. Subotić. Soufflé: On
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in hadoop. In Datalog 2.0, pages 165–176, 2012.

[25] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu,
T. Condie, and C. Zaniolo. Big data analytics with
datalog queries on spark. In SIGMOD ’16, pages
1135–1149, 2016.

[26] J. Wang, M. Balazinska, and D. Halperin.
Asynchronous and fault-tolerant recursive datalog
evaluation in shared-nothing engines. PVLDB,
8(12):1542–1553, 2015.

[27] K. Wang, A. Hussain, Z. Zuo, G. Xu, and
A. Amiri Sani. Graspan: A single-machine disk-based
graph system for interprocedural static analyses of
large-scale systems code. In Proceedings of the
Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 389–404, New
York, NY, USA, 2017. ACM.

[28] J. Whaley, D. Avots, M. Carbin, and M. S. Lam.
Using datalog with binary decision diagrams for
program analysis. In Proceedings of the Third Asian
Conference on Programming Languages and Systems,
APLAS’05, pages 97–118, Berlin, Heidelberg, 2005.
Springer-Verlag.

[29] J. Whaley and M. S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In W. Pugh and C. Chambers,
editors, PLDI, pages 131–144. ACM, 2004.

[30] C. Zaniolo, M. Yang, M. Interlandi, A. Das,
A. Shkapsky, and T. Condie. Declarative bigdata

707



algorithms via aggregates and relational database
dependencies. In Proceedings of the 12th Alberto
Mendelzon International Workshop on Foundations of

Data Management, Cali, Colombia, May 21-25, 2018.,
2018.

708


