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Abstract— This study proposes a deep learning method-
ology to predict the propagation of traffic shockwaves. The
input to the deep neural network is time-space diagram of
the study segment, and the output of the network is the
predicted (future) propagation of the shockwave on the study
segment in the form of time-space diagram. The main feature
of the proposed methodology is the ability to extract the
features embedded in the time-space diagram to predict the
propagation of traffic shockwaves.

I. INTRODUCTION AND BACKGROUND
The boundary between two different traffic states

is known as traffic shockwave. The driving dynamics
change from one state to another as the speed of
the vehicles and their spacing changes. The differences
between the two traffic states can be mild such as a
high-speed traffic stream reaching a traffic stream with
moderate speed and density, or it can be significant
when reaching a high density and low-speed traffic
stream (e.g., congested area). In general, when the
traffic state changes, the vehicles need to respond by
adjusting their speed and acceleration. Currently, the
approaches adopted for guidance (e.g., lane changing)
of the autonomous vehicles involves the consideration of
the current state of the surrounding vehicles in terms
of their location and speed with limited attention to
the response of the other vehicles to their surrounding
environment and how the traffic state could evolve (e.g.
formation of shockwaves). As a result, predicting the
propagation of traffic shockwave in time and space can
help in improving both the safety and performance of the
autonomous vehicles. Considering the valuable informa-
tion that the connected vehicles could provide, we are
proposing a methodology to predict the propagation of
traffic shockwaves that accounts for both the individual
behaviors and the collective change in the state of the
traffic.

The state of traffic is characterized by density, flow,
and speed that change over time and space (i.e., along
the roadway). Lint and Hinsbergen [1] classify traffic
prediction methodologies into three general groups of
naive, parametric, and non-parametric approaches. Naive
approaches have no data-driven model parameters, and
they are generally established on the average of the

historical observations or the prediction based on the
current state [2]. Parametric methodologies apply to
the traffic prediction models that utilize a traffic flow
model with parameters estimated based on the historical
data or jointly with new observations. The fundamental
diagram, along with first and second order traffic flow
models are examples of the well-researched parametric
models relating the macroscopic characteristic of traffic
state [3], [4]. Balancing between accuracy and model
complexity to address irregularities and time changing
dynamics is one of the challenges of adopting a para-
metric traffic prediction methodology. Non-parametric
refer to the methodologies that do not depend on
traffic flow models and are build on simple data-driven
techniques such as linear regression [5], neural networks
[6], support vector regression [7], as well as time series
analysis [8]. Adopting the data-driven approaches for
traffic prediction has become more popular with the
increase in the availability of the data resources in the
past decades. Most of the existing non-parametric models
use macroscopic data such as flow, density, and speed
for traffic state prediction, while few studies consider
individual-level trajectories for prediction [9], [10]. The
impact of abrupt individual behavior on traffic state
increases with the increase in flow and density levels.
As a result, this study considers the microscopic level
interactions for better prediction of the traffic state. For
a more comprehensive review of traffic prediction models,
interested readers can refer to [11].

The connected vehicles’ technology provides the op-
portunity to disseminate useful data to share with the
drivers, or to complement the vehicle’s onboard sensors
of autonomous vehicles (AV). The connected vehicles
share safety-related data regarding their location and
speed with other vehicles and traffic control centers to
improve their safety and to optimize their travel time
and quality. The connectivity provides the opportunity
to monitor the traffic stream and how the traffic evolves
over time and space more extensively than the location
specific traffic monitoring devices. The individual level
location data transmitted by connected vehicles help
to construct the time-space diagram. The time-space
diagram is a comprehensive representation of the traffic
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stream without any abstraction or aggregation. The
traffic flow dynamics as well as vehicles’ interactions and
shockwave formation and propagation are embedded in
the time-space diagram. Khajeh-Hosseini and Talebpour
[10] used a matrix representation of the time-space
diagram to predict the future traffic state of the roadway
segment in the form of average flow and density. The
objective of this study is to introduce a methodology
to predict the propagation of traffic shockwaves (i.e.,
the change of flow and density over time and space)
using the similar matrix representation of the time-
space diagram. The main innovation of the proposed
methodology is introducing the model that can learn the
features embedded in the time-space diagram to predict
the propagation of the traffic shockwaves.

II. Methodology
The interaction between the vehicles and the traffic

state is best captured in the time-space diagram. The
time-space diagram is the plot of the trajectory of
the vehicles traversing the roadway (i.e., space domain)
over time. This plot is comprehensive and provides the
location and speed (slope of each trajectory) of the
vehicles, as well as the interaction between the vehicles
and the traffic state. Besides, the traffic shockwaves,
which are the boundary between the different traffic
states are evident in the time-space diagram. As a result,
this study adopts the time-space diagram as a valuable
input and predicts the propagation of shockwave in a
time-space diagram format.

A. Time-Space Diagram
In order to construct the time-space diagram as the

input for the prediction, this study assumes a connected
vehicles environment. In this environment, the connected
vehicles share their speed and location every 0.1 second
comparable to the basic safety message (BSM [12]) trans-
mitted through wireless communication. The time-space
diagram can be generated in the form of a time-space
matrix as proposed by Khajeh-Hosseini and Talebpour
[10]. The time-space matrix, Fig. 1 approximates the
time-space diagram by dividing the time and space
domains into bins of 10 ft by 100 ms (discretization).
The time-space matrix is a binary matrix, and the rows
represent the discrete space domain, and the columns
represent the discrete time domain. In this matrix, the
cell value of one indicates the presence of a vehicle in
that space and time bin, and the value of zero indicates
an empty bin. The time-space matrix is a 2D tensor that
can be used in the convolution process.

B. Convolutional Encoder-Decoder
This study proposes the use of a deep neural network

to predict the propagation of the traffic shockwave from
the current time-space diagram of the vehicles as shown
in Fig. 2. The convolutional encoder-decoder structure
is an appealing type of mapping function for this study

as the input and output of the networks are 2D tensors
with similar properties. The convolution is the process of
sliding a fixed size filter (e.g., three-dimensional receptive
window) over the input tensor. Each convolutional layer
applies the convolution process to the output of the
previous layer and provides an output tensor. The
convolution process accounts for the spatial correlation
between the units that fit in the receptive window of the
filter. Also sliding the same filter over the input space
ensures feature detection independent of its location.
This location independence aspect of the convolutional
layers makes them a practical choice to encode the time-
space matrix since the traffic shockwaves can occur at
any point in time and space.

There are different convolutional encoder-decoder net-
work architectures depending on the use of convolutional,
deconvolutional, pooling and upsampling layers. Some
networks only use convolutional layers in both encoder
and decoder components such as the Fully Convolutional
Network (FCN) [13] and Seg-Net [14]. While other
networks such as DeconvNet [15] and RED-Net [16] use
deconvolutional layers in the decoder component. Some
of the challenges in the convolutional encoder-decoder
network is the vanishing gradient, and reconstructing lost
features from the max-pooling and convolution process.
The use of skip connections [16], and memorizing the
maximum features [15], [14] of the pooling process to
use for the upsampling are the solutions. The skip con-
nections inspired by the residual network (ResNet)[17]
allow the signal to be propagated to the bottom layers
and address the vanishing gradient.

The proposed encoder-decoder architecture in Fig. 2
is inspired by the RED-Net [16] developed for image
restoration, and consists of symmetric layers of convolu-
tion and deconvolution with skip-layer connections. The
encoder component of the network contains three pairs
of convolutional layers with the small receptive window
of 3 × 3 and increasing channels from 16 to 64. The
decoder component of the network contains symmetrical
deconvolutional layers. The deconvolution process, unlike
the convolution process, associates a single input to
multiple outputs. The encoder component encodes the
features embedded in the time-space diagram. The de-
coder component predicts the propagation of the traffic
shockwaves in the form of a new time-space diagram.

The skip-layers connect the symmetric convolution
and deconvolution layers every two layers. The skip-
layer connection sums the convolutional feature maps
with the deconvolutional feature map element-wise. The
encoding convolutional layers extract the main features
and abstracts the input, while the deconvolution layers
decode the abstract input and predict the shockwave
propagation. The proposed network is deep, and the skip-
layer connections provide the opportunity to propagate
the gradient to the beginning layers of the network. The
skip-layer connections address the vanishing gradient
problem in very deep networks. Moreover, the proposed
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Fig. 1. Time-Space Diagram [10]

architecture is capable of taking any size of time-space
matrix as input since the network only utilizes the
convolutional and deconvolutional layers.

C. Data
1) Simulation: There are limited available data on

the trajectory of the individual vehicles to create an
extensive data set for the training of the proposed
deep neural network that can generalize well. As a
result, to construct a comprehensive and large data set,
this study uses a microscopic simulator written in the
Python programming language to collect the trajectory
of the vehicles. The microscopic simulator adopts the
Intelligent Driver Model (IDM) [18] as its car-following
logic, and the MOBIL [19] as its lane-changing logic.

The simulation collects the trajectory of the vehicles
traversing a three-lane roadway segment with the length
of 40,000 feet over 15 minutes. At every simulation runs,
unique and random IDM and MOBIL parameters are
assigned to every vehicle to make the simulation more
realistic. In order to create a data set with different
traffic states from free-flow to fully congested, two types
of disturbances are used in the simulation. Sudden
deceleration of a random vehicle for a small period
(e.g., 15 seconds) creates a speed drop perturbation and
disturbs the traffic stream. Another type of disturbance
used in the simulation is forcing a random slow-moving
vehicle for a more extended period, such as 5 minutes
to create congestion and traffic breakdown. Both of the
disturbances result in the formation of shockwaves in the
traffic stream. The start time of these two disturbances
are limited during periods of (20i,20i + 20) seconds,
and i being even numbers between 0 and 45. When
constructing pairs of input and output data for the
training of the model, this limitation becomes useful.
The model cannot predict random occurrences of these
disturbances, and this limitation helps to exclude the
start of these disturbances from the output data. Also,
for each simulation run, the desired speed is randomly
(uniform distribution) selected from different speed lim-
its including 30, 45, 50, 55, 65, 70, 75 mph to create a
more comprehensive data set.

2) Input and output data: The proposed encoder-
decoder (Fig. 2) of this study takes the time-space matrix

as input and predicts the propagation of the traffic
shockwaves in the same time-space matrix form. The
binary time-space matrix (Fig. 1) not only presents the
traffic shockwaves but also depicts the crisp location
of the individual vehicles in time and space domains.
Training the network to output a binary tensor of
shape (200,200) is challenging, and breaking the binary
constraint improves the training. Averaging the cells of
the time-space matrix with their neighbors, Fig. 3a,
blurs the exact location of the vehicles on time and
space domains; however, averaging over a small window
maintains the propagation of traffic shockwaves (Fig.
3b). The colors of points on the averaged time-space
diagram presented in Fig. 3b change from light yellow
to red proportional to the value of cell ranging from
0 to 1. Taking the averaged time-space matrix as the
type of output improves the training of the network.
The encoder-decoder network approximates the mapping
function from the averaged time-space matrix of segment
x over the period of (t−20, t) to the averaged time-space
matrix of the segment x over the period of (t, t + 20).
The averaged time-space matrix is derived by replacing
every cell in the time-space matrix with the average of
itself and its neighbors up to 100 feet and 1 second (i.e.,
averaging window of 100 ft by 1 s).

3) Training data: The microscopic traffic simulator
provides a 40000 ft by 900 s time-space diagram for
each lane and every simulation run. This diagram can
be divided into 900 smaller time-space diagrams for
segments of 2000 ft and a shorter period of 20 s. The 900
smaller time-space diagrams are divided into 450 pairs of
input and output data. One could extract more pairs of
input and output if relax the limitation on keeping the
start of the artificial disturbances in the input data. This
study collected data from more than 2000 simulation
runs resulting in more than 0.9 million data points. The
collected data is divided into three groups of training,
validation, and testing sets with ratios of 80%, 10%, and
10% respectively.

D. Training
Training is the iterative process of adjusting the train-

able parameters of the model to gradually minimize the
loss function. The convolutional encoder-decoder of this
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Fig. 2. Shockwave Prediction: a convolutional encoder-decoder approach.

Fig. 3. Averaged time-space diagram

study contains 180,449 trainable parameters. Adopting
the small receptive window of 3× 3, and fully convo-
lutional and deconvolutional layers kept the number of
network parameters small. The model parameters are
updated in multiple iterations (steps). At each iteration,
the loss function is estimated for a batch of data points,
and the parameters are adjusted based on their loss
gradient times the learning rate (a small constant).
The Adam optimizer [20] is a stochastic gradient-based
optimizer that is adapted for the training of the network
of this study.

1) Loss Function: The prediction model of this study
is a regression model that maps the current averaged
time-space diagram to the future averaged time-space
diagram. The mean squared error (MSE), equation (1), is
a standard performance measure used as the loss function
for the training of regression type neural networks. The
output of network (model) F with parameters Θ for
input X i is F(X i;Θ), and the true value of output is
Y i. Mean absolute error (MAE), equation (2), is another
performance measure for regression problems. However,
the MAE is not useful as the loss function and estimation
of gradients in neural networks.

MSE =
1
n

n

∑
i=1

||F(X i;Θ)−Y i||2 (1)

MAE =
1
n

n

∑
i=1

||F(X i;Θ)−Y i|| (2)

The input and output of the model of this study are
2D tensors of size (200,200). A smoothed version of
the output can be constructed by replacing each cell
of the output tensor with the average of itself and
its neighboring cells. A well trained neural network
model is expected to predict outputs very comparable
to the true outputs. Besides, it is expected that the
smoothed versions of the predicted and true outputs
are also comparable. In order to speed up the training
(convergence) of the model and to guide the gradients,
this study proposes the use of the custom loss function
of equation (3). The MSE10, MSE5, and MSE3 are the
estimated MSE between the true and predicted outputs
when smoothed with sliding average windows of size
10× 10, 3× 3, and 5× 5 respectively. The size of the
sliding window indicates the extent of neighboring cells
considered in the estimation of the average for that
cell. Adopting this custom loss function significantly
improved the convergence of the training process.

loss = MSE +1000(MSE10 +MSE5 +MSE3) (3)

The training process of the model is conducted in two
steps. In the first step, the model is trained using the
loss function of equation 3 until the loss value on the
validation set started increasing. In the second step, the
model is retrained using the MSE, equation (1), as the
loss function.

III. Results and Discussions on Results
In the training process of the model, a batch size of

60 and the early stopping policy are used to prevent
overfitting the training data. The loss function is esti-
mated at the end of every epoch (a complete iteration
over the entire dataset), and the training is stopped after
five epochs from the one with the minimum loss on the
validation dataset. Table I presents the performance of
the network of this study in prediction on the validation
and testing dataset. Training the model with the custom
loss function, equation (3), helped the convergence in the
first step of training. Also, retraining the model in the
second step by adopting the original MSE as the loss
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TABLE I
Model performance on time-space matrix

Validation Dataset
MSE MSE10 +MSE5 +MSE3

Training Step 1 0.0037 0.0071
Training Step 2 0.0029 NA

Testing Dataset
MSE MAE

Trained Model 0.0030 0.0408

function further improved the performance of the model
from MSE error of 0.0037 to 0.0029. According to table
I, the performance of the fully trained model in terms
of MSE and MAE on the testing dataset are 0.0030 and
0.0408 respectively.

A. Traffic shockwave propagation prediction
Fig. 4 presents some of the traffic predictions of the

model in the form of the averaged time-space matrix.
The prediction model of this study takes the averaged
time-space matrix of time (t − 20, t) as input (x), and
predicts the future averaged time-space matrix of time
(t, t +20) as the output (y). Comparing the predictions
of the model (predicted y) and the true states of the
traffic (y) in Fig. 4, the model is capable of predicting
the propagation of the traffic shockwaves. According to
this figure, the predicted averaged time-space diagrams
presents dissemination, propagation, the forward and
backward movement of the traffic shockwaves over the
evaluated segment of roadway.

B. Density time-space matrix
The traffic shockwave propagation prediction of the

network can be evaluated more quantitatively. The traffic
shockwave is the boundary between two states of the
traffic. Edie [21] estimates the average density k(A) for a
time-space block of A (e.g. 100 feet by 1 second) based
on equation (4). In this equation, |A| is the area of the
time-space block A, and t(A) stand for the total time
spent by all the vehicles going through block A.

k(A) =
t(A)
|A|

(4)

As specified in the methodology section, the time-
space matrix is a binary matrix constructed by dividing
time and space domains into bins of 10 ft by 100 ms. In
this matrix, one represents the presence of a vehicle in
that time and space bin, and zero represents an empty
bin. The number of occupied bins of the time-space
block A is equal to the summation of all the bins of its
representative binary time-space matrix (i.e., sum(A)).
As a result, the total time spent by all the vehicles going
through any arbitrary time-space block of A is equal to
multiplying the number of occupied bins in that block
by 0.1 second, equation 5.

t(A) = 0.1× sum(A) (5)

Considering Edie’s [21] definition on the average
density of a time-space block, the averaged time-space
matrix (T S) can be used to estimate the density time-
space matrix (K). Similar to the time-space matrix, the
rows of this matrix represent the discrete space domain,
and their columns represent the discrete time domain.
The values of each cell in the matrix K is the average
density of a time-space block (e.g., 100 ft by 1 s) centered
at that location in time and space. The density time-
space matrix depicts the change in traffic state over time
and space and consequently the propagation of the traffic
shockwaves.

As mentioned in the methodology section, the aver-
aged time-space matrix (T S) of this study is estimated
by replacing every cell in the time-space matrix with the
average of itself and its neighbors up to 100 ft and 1 s.
Each cell in the time-space matrix is representative of
a bin with dimensions of 10 ft in space domain and 0.1
s in the time domain. The averaging window of 100 ft
by 1 s is equivalent to a 10× 10 averaging window on
the time-space matrix, in other words, each cell of the
averaged time-space matrix (T S) is the average of 100
cells in the time-space matrix. Therefore, if the averaged
time-space matrix (T S) is multiplied by 100, the cells of
the resulting matrix indicate the number of occupied cells
in the blocks of 100 ft by 1 s centered on that location
on the time-space matrix. As a result, the density time-
space matrix (K) can be estimated based on equation
(6). In this equation, the constant 5280 is applied for
the unit conversion from feet to mile. Vehicles per mile
(vpm) is the unit for the values in the resulting density
time-space matrix (K).

K =
t(A)
|A|

=
100×T S×0.1

100×1
×5280 = 528×T S (6)

According to equation (6), the averaged time-space
matrix (T S) can be converted to the density time-space
matrix (K) by a constant scalar. Therefore, the prediction
(output) of the model is proportional to the density time-
space matrix. The performance of the model in table I are
updated for the density time-space matrix presented in
table II. According to table II, the mean absolute error of
the model in predicting the density for small blocks of 100
ft by 1 s is 21.54 vpm. Root mean squared error (RMSE)
is another valuable performance measure that has the
same unit as the output. Based on table II, the RMSE
of the model in the prediction of the density on the
testing dataset is estimated as 28.91 vpm. Considering a
range of 200 vpm for the density, the MAE and RMSE
of the model are between %10 to %14 of the range of
density.

IV. CONCLUSIONS
This study proposes a methodology to predict the

propagation of traffic shockwaves in the form of the
averaged time-space matrix. The averaged time-space
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TABLE II
Network performance on density time-space matrix

Validation Dataset
MSE MSE10 +MSE5 +MSE3

Training Step 1 1031.50 1979.36
Training Step 2 808.47 NA

Testing Dataset
MSE MAE

Trained Model 836.35 21.54

Fig. 4. Traffic shockwave propagation prediction results

matrix is comparable to a density time-space matrix
derived from Edie’s definition of average density. The
traffic shockwave is the boundary between two traffic
states, and the density time-space matrix depicts the
state changes in the form of density. The result of
the analysis indicated that the model is capable of
predicting the dissemination, propagation, the forward
and backward movement of the traffic shockwaves over
the study segment. Moreover, the performance of the
model in the form of MAE and RMSE for predicting the
density time-space matrix is 21.54 vpm and 28.91 vpm
respectively. Considering a range of 0 to 200 vpm for the
density, the performance of the model is acceptable for
prediction of the traffic shockwaves propagation.
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