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ABSTRACT

Optimal tracking in switched systems with controlled sub-
system and Discrete-time (DT) dynamics is investigated. A feed-
back control policy is generated such that a) the system tracks the
desired reference signal, and b) the optimal switching time in-
stants are sought. For finding the optimal solution, approximate
dynamic programming is used. Simulation results are provided
to illustrate the effectiveness of the solution.

1 Introduction

In this study, switched systems are referred to as systems
comprised of several subsystems/modes such that at each time
instant only one subsystem is active. If the subsystems include
continuous control signals, the subsystems are called controlled
subsystems. In case no control input exists in the subsystems,
the subsystems are called autonomous subsystems. Control of
switched systems with controlled subsystem is a challenging
problem as the controller needs to define the switching time and
the continuous control in the subsystems. Also, if the sequence
of active subsystems. i.e., mode sequence, is known a priori, the
mode sequence is called a fixed mode sequence. In a fixed mode
sequence, the controller assigns the switching times and does not
assign the active modes. On the other hand, if the mode sequence
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is free, then the controller needs to decide which mode should be
activated at each time instant. Due to the discontinuous nature of
the switched systems, control of these systems are challenging.
Control of switched systems addresses many critical problems in
automotive engineering [1], power engineering [2, 3], and many
other engineering fields.

From the mathematical point of view, solutions of the un-
derlying Hamilton-Jacobi-Bellman (HJB) equation provide the
necessary and sufficient condition for optimality in optimal con-
trol problems [4]. However, solving the HIB equation explic-
itly is difficult and most cases impossible. Dynamic Program-
ming (DP) can solve optimal control problems through discretiz-
ing the state and control domain and finding the optimal value
functions backward in time. However, as the order of the system
increases, rapid access to memory becomes prohibitive in DP
which is known as curse of dimensionality. To remedy the curse
of dimensionality, one solution is to seek a near-optimal control
solution instead of the exact optimal control which is provided by
Approximate Dynamic Programming (ADP). In general, ADP
methods use function approximators to approximate the value
functions and they use iterative methods to tune the parameters
of these function approximators.

ADP solutions for optimal control of switched systems with
free mode sequence were investigated in [3, 5-10]. As for the
fixed mode sequence, a transformation was introduced in [11] to
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treat the switching times as parameters. This transformation was
adapted in [12] and the mode sequence was incorporated in the
value functions to solve a regularization problem.

To solve the optimal tracking problem in systems with con-
ventional dynamics, some ADP solutions were introduced in
[13, 14]. In [13], an ADP solution based on Single Network
Adaptive Critic (SNAC) structure was introduced which approx-
imated the optimal costates and used them to provide the optimal
policy. Also, another ADP solution was developed in [14] which
approximated the value functions. For this method, a change of
variables was performed in the system and a new state vector was
introduced which included the tracking error dynamics and the
dynamics of the reference signal. Furthermore, in [15, 16] model
free tracking methods were investigated. As for the switching dy-
namics, optimal tracking was studied in [2, 6,7, 17] in switched
systems with autonomous subsystems and free mode sequence,
and in [18] in switched systems with controlled subsystems and
free mode sequence.

In this paper, optimal tracking in switched systems with con-
trolled subsystems and fixed mode sequence is studied. The basic
idea in this study is using the transformation introduced in [11]
to parametrize the switching instants and then use the idea intro-
duced in [12] to include the mode sequence in the value func-
tions and costates. Hence, the present study combines the results
of [11-14] to develop a solution for optimal tracking in switched
systems with fixed mode sequence. To solve the optimal tracking
problem, a single network is used to capture the optimal costates
which are parametrized with respect to the switching instants.
Once the optimal costates are known, some recommendations
are given to find the optimal switching times from the costates at
an initial condition.

The rest of the manuscript is organized as follows. In section
2, optimal control problem formulation and some assumptions
are presented. In section 3, the proposed solution based on the
SNAC is introduced. Simulation results are discussed in section
4, and section 5 concludes the paper.

2 Problem Formulation
The dynamics of the switched systems can be shown as

(1) = fi (x(2)) + &y (x(1) Ju(o),
ve? ={1,2,...,M},x(0) =xo

where x € R" is the state vector, u € R™ is the input, and ¢ denotes
the time. The Lipschitz continuous functions £, : R* — R” and
gy : R" — R™™ denote the dynamics of the subsystems. The sub-
index v portrays the active mode which can be selected from the
set of all available modes, ¥, in the system. It is further assumed
that £,(0) = 0, for all modes v € ¥. The inclusion of continuous
control, i.e., u(.), in (1) shows that the subsystems are controlled
subsystems.

Assuming the sequence of active modes is known, it is de-

ey

sired to find the continuous control policy u(.), and the switching
times, such that a performance index presented as

J(x0) = (xlty) — r(ep)) S (xlty) — rey))
+ /fof % ((x(t) — r(t))TQ(x(t) — r(t)) + u(t)TRu(t))dt

is minimized. In (2), # is the initial time, and f7 is the final
time. r € R” is the reference signal where #(t) = f,, (¢) is the
dynamics of the reference signal and the sub-index r, shows the
active reference dynamics. S € R"*" is a positive semi-definite
matrix for penalizing the terminal cost, Q € R™" is the state
penalizing matrix which is assumed to be positive semi-definite,
and R € R™ ™ is a positive definite control penalizing matrix.

Using Euler integration method, by choosing a small sample
time 8¢ > 0, one can discretize the dynamics (1) as

X1 = folo) + &y (o) uk (3

where the non-negative integer k is the discrete time index. For
notational simplicity, the discrete time index is shown as a sub-
index, i.e., x; = x(k). Also, f,(x¢) = x¢ + f,(x) 6, and g, (x;) =
8v(x;)Ot. With a similar procedure, one can discretize the cost
function (2) as

@)

J(x0) = (xn — rN)TS(xN —ry)
N 1 T
+kgb§((xk—rk) Q(xk—rk) —|—M]];Ruk)

In (4), N = %, Q = 06t, and R = RS8t. Based on (4), one
can define the cost-to-go as the cost of going from discrete time
index k to N as

J(xk) = ()CN - l"N) TS()CN - rN)

u 1 T T
+ Y5 (G = )" Qg = )+ uf R
k=k

“

&)

Before going forward, the following definition and assumption
are needed.

Definition 1. A control policy is called admissible if it stabi-
lizes the system presented in (3) in a selected compact region of
interest Q C R", which includes the origin. Also, Vxo € Q, J(xo)
should be finite if the state is propagated along that policy.

Assumption 1. Given the mode sequence, there is at least one
admissible policy for the system.

Considering Assumption 1, one can define the value func-
tion as

V (xk,k) = Vi(x) = I;l(i;l((xN —rn)"S(ew —rw)
N (6)
+ % Z ((x,; — r,;)TQ(x,; — I‘j{) + M%Ruk)>

k=k
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Considering time step k to k+ 1, one has

Vi (k) = T(l? ((XN — )" Sy —rw)

1 1
+ E(xk—rk)TQ(xk—rk) + EM]ZRM]( (7
1 & T T
3 L (e Qlg—rg)+ug Ru;})
k=k+1

After some algebraic manipulations, one can rewrite (7) as

e 1
Vi(x¢) = min <f(xk — rk)TQ(xk —r)+ fu,{Ruk
u(l) \2 2 )

+Vk+1(xk+1))

Equation (8) simply means minimum cost of going from time k
to N equals to cost of going from time k to k4 1 plus minimum
cost of going from time k4 1 to N. This is in fact the Bellman
equation of optimality [4]. Based on (8), one can define the opti-
mal policy as

ui(xi) = argmin (%(xk — 1) Qo —re) + lqu“k

) g ©)

+ Vit (xk+1))

2.1 Including the Mode Sequence

In [11], a transformation is introduced to include the switch-
ing times as parameters in the optimal control formulation. For
ease of presentation, a case with two subsystems and only one
switching is considered. Let the switching happen at t = #; €
(to,tf). Also, let the mode sequence to be {mode 1, mode 2}'.
To make the switching time instant an independent parameter,
let [11]

ifo<i<l1

to+ (1 —to)f
;= Jlot (=) _ X (10)
if1<i<2

n+(tp—n)(f—1)
From the transformation introduced in (10), one notices that ¢ €
[to.t] and 7 € [0,2]. The merit of the transformation is that the
switching time 7; can be any point in 7 € [f,7]. However, in the
transformed time, i.e., 7 € [0,2], switching only happens at 7 = 1.
For 7 > 1, mode 2 is active and for < 1, mode 1 is active. Based
on the introduced transformation in (10), one has

dx dxdt
di — dtdi
Since the mode sequence is known, (11) becomes

( AG®)+a (x(f))u(f)) (1—19) ifO<F<]1
(fz (x(7)) +g2(x(f))u(f)) (t—n) if1<i<2

X(P) = (11)

x(t)=

"When ¢ < 1, mode 1 is active and when 7 > ¢; mode 2 is active.

Also, the cost function in (2) can be written as?

J(x0) =(x(2) = r(2)) 'S (x(2) - r(2))
* ./; % (<x(f) — ()"0t —10) (x(?) — (7))
i) R( — o)u() ) ai 13
(0000t 0 9)
+u(t) Rty —1)u(f) ) di

An important observation in (13) is that the transformed cost
function is not only a function of x¢, but also it is a function
of the switching time, i.e., #;. Hence, J(xo) = J(t1,x0). With
a similar procedure used before, by choosing a small sampling
time &7 one can discretize (12) and (13) as

g :{fl(x,;)Jrgl(x,;)u,; if0§12<N7/
o o) +ea(xp)uy it Y <k<N

where f1(x;) = x; + /1 () (1 —10) 87, 81 (x) = &1 (xp) (11 —10) 67,
Fo(xp) = x; + fa o) (1 — 11) 67, and ga(xp) = &2(x) (2 — 11) 61,
In (14), k € [0,N'] is the discrete time index where N’ =
number of SSfWitChi"g *1 [12]. With the transformed dynamics and the
cost function, with similar procedure used in the previous section
one can define cost-to-go as

(14)

Qi +Ri+Vi  (t1,x; ifo<k<id
V/;(tl,x,;):{ ! 1 Vi (1 %) v 2/ (15)
Q2+R2+V12+1(t17x12+1) 1f7§k§N
where
1 A ~
Qi =5 (=) Q1 —10) 8t (x — 1)
s .
Rl = EM{R(tl *t())stufc
(16)

1 ~ .
Q2 = E(xi{ - rf()TQ(l‘f 71‘1)5[()% - r]%)

1 ;- .
R, = EMI{R(tf*tl)Stu]}

As one can see, the cost-to-go in (15) is a function of current time
k, current state x;, and the switching time #;. Similarly, one can
define the costate as>

= ax; . ~ d
- Ql+ﬁlﬁ+l(t1’x1§+l) if0<k< N7 an
(AU RSy A

92+%?lﬁ+1(t1’x§+1) ifN? <k<N

2Since the mode sequence is known, one can consider the integral from fy to
t1 with the first mode, and from ¢, to ¢, with the second mode.
3By definition, costate is the gradient of value function, i.e., A (x) = 9\3ix)'

Taking the gradient of (15) leads (17).
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where

(18)

3 Single Network Adaptive Critic (SNAC)

The application of SNAC was introduced for tracking in sys-
tems with conventional dynamics [13]. This idea is adapted in
this section to perform tracking in a switched system. To intro-
duce the concept, consider the costate as in (17). The idea here
is training neural networks to approximate Ay, (t1,x;, ) from
(tl,xi{). Based on Weierstrass Approximation Theorem [19],
linear-in-parameter neural networks with polynomial basis func-
tions can uniformly [20] approximate continuous functions to a
desired degree of precision in a compact set. In order to use
Weierstrass Approximation Theorem, the following assumption
is required.

Assumption 2. The value functions are continuously differen-
tiable.

Through Assumption 2, one can use linear-in-parameter neural
networks to approximate the value functions, and the costates.
Consider the exact costate at discrete time index k as

M (t1,x0,0) = Wi o (1,xp) + € (11,3) (19)

where W € R™*" is a weight vector and ¢ : R x R" — R"™ isa
vector of linearly independent polynomial basis functions (neu-
rons). The number of neurons is denoted by positive integer m,.
In (19), the dependence of the parameters/functions to discrete
time index is shown with a sub-index k. Hence the approximate
costates can be calculated as

D (t1xp,0) = W9 (11,x;) (20)

where Wk € R™ " ig a tunable weight vector. The Wk is tuned
through the training process. Once the costates are known, one
finds the optimal policy as

-1 -~ R v
/I/i\*(tl xA) = {_Rl g{ (x]A()A'A-&-l(tlax]A(_;'_l) if O S k< 5
e o ) ! ~
Ry 'Y () Ay (h1,xp,y)  if N <k<N

(2D
In (21), Ry = R&i(t; —19) and R, = ROt (ty —t1). For training,
one can go backward in time and find the costates and save them
for online control. This process is summarized in Algorithm 1.

Remark 1. The convergence of the inner loop in step 3 of Algo-
rithm 1 was studied in theorem 1 of [13] for systems with conven-
tional dynamics. The proof can be modified to include tracking
in switched systems.

Remark 2. Once the training is concluded, one needs to find
the optimal switching times from the costates for a selected initial

Algorithm 1 : Finding the Costates (Approach 1)

step 1: Initialize the neural network weights, VAV]}O,IAc IS
{1,...,N —1}. Also select a small positive number y
as a convergence tolerance. Select 1 random training
samples x!l € Q where [ € {1,2,...,n} and t{” € [t0,1f]
where [ € {1,2,....,n}.

step 2: Repeat the outer loop for k=N—-1tok=1:

step 3: Set i = 0 and repeat the following inner loop:

step 3-1: Select 1 random training samples {(t{l],xm) €
(to,tr) x Q where [ € {1,2,...,n}. Substitute all the training
samples in ¢(.,.) and find a A, (t1,x3). With A (r1,x;)
find u;, and propagate the states along it to find x; ;. Also,
find r]A{Jrl .

step 3-2: If k = N — 1 set the target as 11%“ (t1,x, 1) = Slenr —
ryv) and train W/ such that W]{“Tq)(tl Xp) = 112+1 (t1,%, 1)
with least squares on the entire set of training samples. Oth-
erwise, set the target as right-hand side of (17) and use the

least squares to find Wg*lT.

step 3-3: If ||VT//(’+1 - VT/k’H <7, go to step 4. Otherwise, set i =
i+ 1 and go back to step 3-1. N

step 4: If k = 1, stop the training. Otherwise, store W]A(’“, set

k=k—1 and go to step 2.

condition xp € Q. Three methods are suggested below to find the
optimal switching times from the optimal costates.

— Method 1: propagating the states analytically along the
optimal policy by treating switching time as a parameter and
finding the optimal cost-to-go from the cost function. Once
done, one can use constrained minimization methods to find
switching times.

— Method 2: integrating the costate analytically to find the
value function. Similar to finding the velocity field from po-
tential flow in fluid mechanics, one can integrate the costates
analytically to find the value functions. The convenient fea-
ture of this method is that the analytical solutions provide the
optimal value function Vxy € Q. In order word, one does not
need to integrate again when the initial condition is changed.
This is unlike Method 1 that propagation should be done for
each initial condition separately. However, as the order of
system increases, this method becomes very complicated.
In other words, this method is only suitable for systems with
low order dynamics.

— Method 3: propagating the states along all possible
switching times and find the optimal cost to go for all possi-
ble switching time. Once done, choose the switching times
which lead to the minimum value function. Method 3 is sim-
ilar to the forward dynamic programming method and when
the number of switching increases, performing this method
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might become very time-consuming.

4 Numerical Simulation

In this section some simulation results are provided to eval-
uate the effectiveness of the solutions discussed in this paper.
Consider a system with two modes. For the first mode, a bench-
mark system, Van der Pol oscillator was selected. The dynamics
of this mode can be shown as

61(1) = x2(1)

(22)
%o (t) = (1 —x3(t))xa(t) —x1 (1) +ult)
For the second mode, a linear subsystem was selected as
x1(t) =xo (¢
10 =x2(0) o)
X2(t) =2x1 —xp +u(r)
The reference signal is chosen as
71(t) = sin(mt
1(2) (mt) (24)

2 (t) = wcos(mt)

For the cost function, S = diag(10°,10%), O = diag(103,107)
were selected, where diag(a, b) denotes a diagonal matrix with a
and b on the main diagonal and 0 elsewhere. Also, R = 1/6f
was selected as the control penalizing term. The basis functions
were selected as all possible combination of #1, x1, xo up to the
power 3 without repetition. For training, 1000 random samples
were generated in Q = {(71,x1,x2)|t1 € (0,3),x1 € [-4,4],x2 €
[—4,4]}. For descritization, sampling time was selected as 67 =
0.001 (sec). Using approach 1, The training process concluded
in 22.6177 seconds using an office desktop with 16 GB of RAM
and Intel(R) Core(TM) i7-3770 CPU @ 3.4 GHz. The history of
the weights of the neural networks to approximate the costates is
shown in Fig. 1. As one can see from Fig 1, the history of the
weights shows a jump at f = 1 which is the switching time.

Critic Weights

FIGURE 1: The history of the weights of the neural net-
works to approximate costates. The jump at 7 = 1 shows
the switching at this time.

Once the training concluded, the trained costates were
used to find the optimal switching time. For this exam-
ple, Method 2 in Remark 2, i.e., integration of the costate
analytically, was used to find the value function and then
minimized the value function with nonlinear programming
methods. Through integration, one can find the analytical
value function as V(t,x1,x2) = 67377t5x; + 568.7t;x; +
49288t2x3 + 849r2x1xy — 2.322 x 10°t2x; + 57.67t7x% —
2077t3x2 4+ 421081x3 + 162.2t1x3x, — 9217711x3 + 1.432¢, x5 —
1691t1x1x, + 7.968 x 10%1x; + 0.333211x3 — 2411123 +
3337tx2 + 2413x} + 97.95xx; — 4013x] — 434.8x3x3 —
182.2x3x; + 1.44 x 10%x7 — 2.424x1x3 +2.186x1x3 + 1789x1x, —
1.961 x 10%x; — 0.1953x3 — 0.08602x3 + 50288x3 + 77666x,.
Substituting the initial conditions for x; = 1 and x, = —0.5, one
can find the value function as a function of the switching time as
V(t1) = 670881 —1.823 x 10°#7 +7.073 x 10°; — 1.846 x 10°.
Using nonlinear programming, the best switching time is sought
as t; = 2.654 (sec).

The history of the states in the transformed dynamics is
shown in Fig. 2. As one can see, the controller had a very good
performance in forcing x;(.) to track r»(.) as in the cost function
it was emphasized.

States

3

FIGURE 2: The history of the states in the transformed
time.

5 Conclusion

An approximate solution for optimal control of switched
systems with fixed mode sequence and controlled subsystems
was presented. The method includes two levels of control. In the
upper level, optimal switching times were sought. In the lower
level, continuous control for each mode was generated in a feed-
back form. To find the continuous control, a single network adap-
tive critic was used to find the optimal costates while treating the
switching times as parameters. Simulation results confirmed the
effectiveness of the solution.
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