


treat the switching times as parameters. This transformation was

adapted in [12] and the mode sequence was incorporated in the

value functions to solve a regularization problem.

To solve the optimal tracking problem in systems with con-

ventional dynamics, some ADP solutions were introduced in

[13, 14]. In [13], an ADP solution based on Single Network

Adaptive Critic (SNAC) structure was introduced which approx-

imated the optimal costates and used them to provide the optimal

policy. Also, another ADP solution was developed in [14] which

approximated the value functions. For this method, a change of

variables was performed in the system and a new state vector was

introduced which included the tracking error dynamics and the

dynamics of the reference signal. Furthermore, in [15,16] model

free tracking methods were investigated. As for the switching dy-

namics, optimal tracking was studied in [2, 6, 7, 17] in switched

systems with autonomous subsystems and free mode sequence,

and in [18] in switched systems with controlled subsystems and

free mode sequence.

In this paper, optimal tracking in switched systems with con-

trolled subsystems and fixed mode sequence is studied. The basic

idea in this study is using the transformation introduced in [11]

to parametrize the switching instants and then use the idea intro-

duced in [12] to include the mode sequence in the value func-

tions and costates. Hence, the present study combines the results

of [11–14] to develop a solution for optimal tracking in switched

systems with fixed mode sequence. To solve the optimal tracking

problem, a single network is used to capture the optimal costates

which are parametrized with respect to the switching instants.

Once the optimal costates are known, some recommendations

are given to find the optimal switching times from the costates at

an initial condition.

The rest of the manuscript is organized as follows. In section

2, optimal control problem formulation and some assumptions

are presented. In section 3, the proposed solution based on the

SNAC is introduced. Simulation results are discussed in section

4, and section 5 concludes the paper.

2 Problem Formulation

The dynamics of the switched systems can be shown as

ẋ(t) = f̄v

(
x(t)

)
+ ḡv

(
x(t)

)
u(t),

v ∈ V = {1,2, . . . ,M},x(0) = x0

(1)

where x∈R
n is the state vector, u∈R

m is the input, and t denotes

the time. The Lipschitz continuous functions f̄v : Rn → R
n and

ḡv :Rn →R
n×m denote the dynamics of the subsystems. The sub-

index v portrays the active mode which can be selected from the

set of all available modes, V , in the system. It is further assumed

that f̄v(0) = 0, for all modes v ∈ V . The inclusion of continuous

control, i.e., u(.), in (1) shows that the subsystems are controlled

subsystems.

Assuming the sequence of active modes is known, it is de-

sired to find the continuous control policy u(.), and the switching

times, such that a performance index presented as

J(x0) =
(
x(t f )− r(t f )

)T
S
(
x(t f )− r(t f )

)

+
∫ t f

t0

1

2

((
x(t)− r(t)

)T
Q̄
(
x(t)− r(t)

)
+u(t)T R̄u(t)

)
dt

(2)

is minimized. In (2), t0 is the initial time, and t f is the final

time. r ∈ R
n is the reference signal where ṙ(t) = f̄rv(t) is the

dynamics of the reference signal and the sub-index rv shows the

active reference dynamics. S ∈ R
n×n is a positive semi-definite

matrix for penalizing the terminal cost, Q̄ ∈ R
n×n is the state

penalizing matrix which is assumed to be positive semi-definite,

and R̄ ∈ R
m×m is a positive definite control penalizing matrix.

Using Euler integration method, by choosing a small sample

time δ t > 0, one can discretize the dynamics (1) as

xk+1 = fv(xk)+gv(xk)uk (3)

where the non-negative integer k is the discrete time index. For

notational simplicity, the discrete time index is shown as a sub-

index, i.e., xk ≡ x(k). Also, fv(xk) = xk + f̄v(xk)δ t, and gv(xk) =
ḡv(xk)δ t. With a similar procedure, one can discretize the cost

function (2) as

J(x0) = (xN − rN)
T S(xN − rN)

+
N

∑
k=0

1

2

((
xk − rk

)T
Q
(
xk − rk

)
+uT

k Ruk

) (4)

In (4), N =
t f −t0

δ t
, Q = Q̄δ t, and R = R̄δ t. Based on (4), one

can define the cost-to-go as the cost of going from discrete time

index k to N as

J(xk) =
(
xN − rN

)T
S
(
xN − rN

)

+
N

∑
k̄=k

1

2

(
(xk̄ − rk̄)

T Q(xk̄ − rk̄)+uT
k̄

Ruk̄

) (5)

Before going forward, the following definition and assumption

are needed.

Definition 1. A control policy is called admissible if it stabi-

lizes the system presented in (3) in a selected compact region of

interest Ω ⊂ R
n, which includes the origin. Also, ∀x0 ∈ Ω, J(x0)

should be finite if the state is propagated along that policy.

Assumption 1. Given the mode sequence, there is at least one

admissible policy for the system.

Considering Assumption 1, one can define the value func-

tion as

V
(
xk,k

)
≡Vk(xk) = min

u(.)

(
(xN − rN)

T S(xN − rN)

+
1

2

N

∑
k̄=k

(
(xk̄ − rk̄)

T Q(xk̄ − rk̄)+uT
k̄

Ruk̄

)) (6)

2 Copyright © 2019 ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/D

S
C

C
/p

ro
c
e
e
d
in

g
s
-p

d
f/D

S
C

C
2
0
1
9
/5

9
1
6
2
/V

0
0
3
T

1
9
A

0
1
1
/6

4
5
5
7
2
1
/v

0
0
3
t1

9
a
0
1
1
-d

s
c
c
2
0
1
9
-9

2
1

6
.p

d
f b

y
 T

e
x
a
s
 A

 &
 M

 U
n

iv
e
rs

ity
 u

s
e
r o

n
 0

9
 D

e
c
e
m

b
e

r 2
0
1
9



Considering time step k to k+1, one has

Vk(xk) = min
u(.)

(
(xN − rN

)T
S
(
xN − rN

)

+
1

2
(xk − rk)

T Q(xk − rk)+
1

2
uT

k Ruk

+
1

2

N

∑
k̄=k+1

(xk̄ − rk̄)
T Q(xk̄ − rk̄)+uT

k̄
Ruk̄

)
(7)

After some algebraic manipulations, one can rewrite (7) as

Vk(xk) = min
u(.)

(1

2
(xk − rk)

T Q(xk − rk)+
1

2
uT

k Ruk

+Vk+1(xk+1)
) (8)

Equation (8) simply means minimum cost of going from time k

to N equals to cost of going from time k to k+1 plus minimum

cost of going from time k+ 1 to N. This is in fact the Bellman

equation of optimality [4]. Based on (8), one can define the opti-

mal policy as

uk(xk) = argmin
u(.)

(1

2
(xk − rk)

T Q(xk − rk)+
1

2
uT

k Ruk

+Vk+1(xk+1)
) (9)

2.1 Including the Mode Sequence

In [11], a transformation is introduced to include the switch-

ing times as parameters in the optimal control formulation. For

ease of presentation, a case with two subsystems and only one

switching is considered. Let the switching happen at t = t1 ∈
(t0, t f ). Also, let the mode sequence to be {mode 1, mode 2}1.

To make the switching time instant an independent parameter,

let [11]

t =

{
t0 +(t1 − t0)t̂ if 0 ≤ t̂ < 1

t1 +(t f − t1)(t̂ −1) if 1 ≤ t̂ ≤ 2
(10)

From the transformation introduced in (10), one notices that t ∈
[t0, t f ] and t̂ ∈ [0,2]. The merit of the transformation is that the

switching time t1 can be any point in t ∈ [t0, t f ]. However, in the

transformed time, i.e., t̂ ∈ [0,2], switching only happens at t̂ = 1.

For t̂ ≥ 1, mode 2 is active and for t̂ < 1, mode 1 is active. Based

on the introduced transformation in (10), one has

x′(t̂) =
dx

dt̂
=

dx

dt

dt

dt̂
(11)

Since the mode sequence is known, (11) becomes

x′(t̂) =





(
f̄1

(
x(t̂)

)
+ ḡ1

(
x(t̂)

)
u(t̂)

)
(t1 − t0) if 0 ≤ t̂ < 1

(
f̄2

(
x(t̂)

)
+ ḡ2

(
x(t̂)

)
u(t̂)

)
(t f − t1) if 1 ≤ t̂ ≤ 2

(12)

1When t < t1 mode 1 is active and when t ≥ t1 mode 2 is active.

Also, the cost function in (2) can be written as2

J(x0) =
(
x(2)− r(2)

)T
S
(
x(2)− r(2)

)

+
∫ 1

0

1

2

((
x(t̂)− r(t̂)

)T
Q̄(t1 − t0)

(
x(t̂)− r(t̂)

)

+u(t̂)T R̄(t1 − t0)u(t̂)
)

dt̂

+
∫ 2

1

1

2

((
x(t̂)− r(t̂)

)T
Q̄(t f − t1)

(
x(t̂)− r(t̂)

)

+u(t̂)T R̄(t f − t1)u(t̂)
)

dt̂

(13)

An important observation in (13) is that the transformed cost

function is not only a function of x0, but also it is a function

of the switching time, i.e., t1. Hence, J(x0) = J(t1,x0). With

a similar procedure used before, by choosing a small sampling

time δ t̂ one can discretize (12) and (13) as

xk̂+1 =

{
f1

(
xk̂

)
+g1

(
xk̂

)
uk̂ if 0 ≤ k̂ < N′

2

f2

(
xk̂

)
+g2

(
xk̂

)
uk̂ if N′

2
≤ k̂ ≤ N′

(14)

where f1(xk̂) = xk̂ + f̄1(xk̂)(t1− t0)δ t̂, g1(xk̂) = ḡ1(xk̂)(t1− t0)δ t̂,

f2(xk̂) = xk̂ + f̄2(xk̂)(t f − t1)δ t̂, and g2(xk̂) = ḡ2(xk̂)(t f − t1)δ t̂.

In (14), k̂ ∈ [0,N′] is the discrete time index where N′ =
number o f switching+1

δ t̂
[12]. With the transformed dynamics and the

cost function, with similar procedure used in the previous section

one can define cost-to-go as

Vk̂(t1,xk̂) =

{
Q1 +R1 +Vk̂+1(t1,xk̂+1) if 0 ≤ k̂ < N′

2

Q2 +R2 +Vk̂+1(t1,xk̂+1) if N′

2
≤ k̂ ≤ N′

(15)

where

Q1 =
1

2
(xk̂ − rk̂)

T Q̄(t1 − t0)δ t̂(xk̂ − rk̂)

R1 =
1

2
uT

k̂
R̄(t1 − t0)δ t̂uk̂

Q2 =
1

2
(xk̂ − rk̂)

T Q̄(t f − t1)δ t̂(xk̂ − rk̂)

R2 =
1

2
uT

k̂
R̄(t f − t1)δ t̂uk̂

(16)

As one can see, the cost-to-go in (15) is a function of current time

k̂, current state xk̂, and the switching time t1. Similarly, one can

define the costate as3

λk̂(t1,xk̂) =





Q̄1 +
∂x

k̂+1

∂x
k̂

λk̂+1(t1,xk̂+1) if 0 ≤ k̂ < N′

2

Q̄2 +
∂x

k̂+1

∂x
k̂

λk̂+1(t1,xk̂+1) if N′

2
≤ k̂ ≤ N′

(17)

2Since the mode sequence is known, one can consider the integral from t0 to

t1 with the first mode, and from t1 to t f with the second mode.
3By definition, costate is the gradient of value function, i.e., λ (x) = ∂V (x)

∂x
.

Taking the gradient of (15) leads (17).
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where

Q̄1 = Q̄(t1 − t0)δ t̂
(
xk̂ − rk̂

)

Q̄2 = Q̄(t f − t1)δ t̂
(
xk̂ − rk̂

) (18)

3 Single Network Adaptive Critic (SNAC)

The application of SNAC was introduced for tracking in sys-

tems with conventional dynamics [13]. This idea is adapted in

this section to perform tracking in a switched system. To intro-

duce the concept, consider the costate as in (17). The idea here

is training neural networks to approximate λk̂+1(t1,xk̂+1) from

(t1,xk̂). Based on Weierstrass Approximation Theorem [19],

linear-in-parameter neural networks with polynomial basis func-

tions can uniformly [20] approximate continuous functions to a

desired degree of precision in a compact set. In order to use

Weierstrass Approximation Theorem, the following assumption

is required.

Assumption 2. The value functions are continuously differen-

tiable.

Through Assumption 2, one can use linear-in-parameter neural

networks to approximate the value functions, and the costates.

Consider the exact costate at discrete time index k̂ as

λk̂+1(t1,xk̂+1) =W ∗
k̂

T φ(t1,xk̂)+ ε∗
k̂
(t1,xk̂) (19)

where W ∗
k ∈R

mλ×n is a weight vector and φ : R×R
n →R

mλ is a

vector of linearly independent polynomial basis functions (neu-

rons). The number of neurons is denoted by positive integer mλ .

In (19), the dependence of the parameters/functions to discrete

time index is shown with a sub-index k̂. Hence the approximate

costates can be calculated as

λ̂k̂+1(t1,xk̂+1) = Ŵ T

k̂
φ(t1,xk̂) (20)

where Ŵk̂ ∈ R
mλ×n is a tunable weight vector. The Ŵk̂ is tuned

through the training process. Once the costates are known, one

finds the optimal policy as

ûk̂(t1,xk̂) =

{
−R−1

1 gT
1

(
xk̂

)
λ̂k̂+1(t1,xk̂+1) if 0 ≤ k̂ < N′

2

−R−1
2 gT

2

(
xk̂

)
λ̂k̂+1(t1,xk̂+1) if N′

2
≤ k̂ ≤ N′

(21)

In (21), R1 = Rδ t̂(t1 − t0) and R2 = Rδ t̂(t f − t1). For training,

one can go backward in time and find the costates and save them

for online control. This process is summarized in Algorithm 1.

Remark 1. The convergence of the inner loop in step 3 of Algo-

rithm 1 was studied in theorem 1 of [13] for systems with conven-

tional dynamics. The proof can be modified to include tracking

in switched systems.

Remark 2. Once the training is concluded, one needs to find

the optimal switching times from the costates for a selected initial

Algorithm 1 : Finding the Costates (Approach 1)

step 1: Initialize the neural network weights, Ŵ 0

k̂
, k̂ ∈

{1, . . . ,N − 1}. Also select a small positive number γ
as a convergence tolerance. Select η random training

samples x[l] ∈ Ω where l ∈ {1,2, ...,η} and t
[l]
1 ∈ [t0, t f ]

where l ∈ {1,2, ...,η}.

step 2: Repeat the outer loop for k̂ = N −1 to k̂ = 1:

step 3: Set i = 0 and repeat the following inner loop:

step 3-1: Select η random training samples {(t
[l]
1 ,x[l]) ∈

(t0, t f )×Ω where l ∈ {1,2, ...,η}. Substitute all the training

samples in φ(., .) and find a λk̂+1(t1,xk̂). With λk̂+1(t1,xk̂)
find uk̂ and propagate the states along it to find xk̂+1. Also,

find rk̂+1.

step 3-2: If k̂ = N −1 set the target as λ̂k̂+1(t1,xk̂+1) = S(xN′ −

rN′) and train Ŵ i+1

k̂
such that Ŵ i+1T

k̂
φ(t1,xk̂) = λ̂k̂+1(t1,xk̂+1)

with least squares on the entire set of training samples. Oth-

erwise, set the target as right-hand side of (17) and use the

least squares to find Ŵ i+1T

k̂
.

step 3-3: If ‖Ŵ i+1

k̂
−Ŵ i

k̂
‖ ≤ γ , go to step 4. Otherwise, set i =

i+1 and go back to step 3-1.

step 4: If k̂ = 1, stop the training. Otherwise, store Ŵ i+1

k̂
, set

k̂ = k̂−1 and go to step 2.

condition x0 ∈ Ω. Three methods are suggested below to find the

optimal switching times from the optimal costates.

– Method 1: propagating the states analytically along the

optimal policy by treating switching time as a parameter and

finding the optimal cost-to-go from the cost function. Once

done, one can use constrained minimization methods to find

switching times.

– Method 2: integrating the costate analytically to find the

value function. Similar to finding the velocity field from po-

tential flow in fluid mechanics, one can integrate the costates

analytically to find the value functions. The convenient fea-

ture of this method is that the analytical solutions provide the

optimal value function ∀x0 ∈ Ω. In order word, one does not

need to integrate again when the initial condition is changed.

This is unlike Method 1 that propagation should be done for

each initial condition separately. However, as the order of

system increases, this method becomes very complicated.

In other words, this method is only suitable for systems with

low order dynamics.

– Method 3: propagating the states along all possible

switching times and find the optimal cost to go for all possi-

ble switching time. Once done, choose the switching times

which lead to the minimum value function. Method 3 is sim-

ilar to the forward dynamic programming method and when

the number of switching increases, performing this method
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