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Control and Powertrain
Management for Multi-
Autonomous Hybrid Vehicles

The need for less fuel consumption and the trend of higher level of autonomy together
urge the power optimization in multihybrid autonomous vehicles. Both the multivehicle
coordination control and the hybrid powertrain energy management should be optimized
to maximize fuel savings. In this paper, we intend to have a computationally efficient
framework to optimize them individually and then evaluate the overall control perform-
ance. The optimization is conducted in series. First is at the multivehicle system’s level
where the distributed locally optimal solution is given for vehicles with nonlinear dynam-
ics. Second, the powertrain management optimization is conducted at the hybrid power-
train level. We provide an analytical formulation of the powertrain optimization for each
hybrid vehicle by using Pontryagin’s minimum principle (PMP). By approximating the
optimal instantaneous fuel consumption rate as a polynomial of the engine speed, we can
formulate the optimization problem into a set of algebraic equations, which enables the
computationally efficient real-time implementation. To justify the applicability of the
methodology in real-time, we give directions on numerical iterative solutions for these
algebraic equations. The analysis on the stability of the method is shown through statisti-
cal analysis. Finally, further simulations are given to confirm the efficacy and the robust-
ness of the proposed optimal approach. An off-road example is given in the simulation,
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1 Introduction

The need for lower fuel consumption and cleaner powertrain
operation has increased the demand for hybrid vehicles. Mean-
while, the emerging trend of connected and autonomous vehicles
requests more cooperative operation among the vehicles. This is a
trend not only for on-road passenger transportation but also for
off-road vehicles like naval, aerospace, military, and commercial
application. Thus, being able to effectively minimizing fuel con-
sumption in a cooperative environment is a critical task to
achieve.

For an autonomous hybrid vehicle under cooperative control,
there are typically two layers of energy optimization. The first is
the vehicle level coordination, where the vehicle trajectory is opti-
mized based on a cooperative control strategy. The second is the
powertrain energy management (power split) optimization among
different powertrain components, where the power demand from
the driveline is optimally split to the power sources such as engine
and motors [1-3]. Considering both these layers together in the
control design can bring benefit. It is well known that the optimal
energy management of hybrid powertrain can be achieved only if
the future vehicle trajectory is known [3]. This requirement is typ-
ically nonfeasible for a conventional driver based vehicle, since
the intention of the driver cannot be acquired by powertrain con-
trol in advance. But the knowledge of future vehicle trajectory can
become available for autonomous driving under cooperative con-
trol scenario, since the future trajectories and vehicle speeds can
be estimated and simulated once the cooperative control strategy/
control law is determined, based on the real-time traffic
information.

A hybrid system is usually powered by multiple power sources,
a primary and less efficient one (engine) and the auxiliary and
more efficient power sources (motor and generator). The existing
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hybrid architectures [3] include series hybrid, parallel hybrid, and
power split hybrid. In this paper, we focus on the widely used
power split hybrid, which combines the benefits of series and par-
allel structures in fuel efficiency optimization [3]. Given the
power demand from the vehicle, the engine is controlled to oper-
ate close to its optimal region, and the deficit or surplus of the
engine power supply is compensated for or stored in the battery.
A critical issue to address is how to split the power demand
among the power sources (engine and two motors) in real-time,
referred to as power split management or powertrain energy man-
agement [3]. This is a very challenging control problem, as an
improper split may result in significant energy loss, inadequate
power supply, or battery drain. Furthermore, minimizing instanta-
neous energy consumption is not equivalent to optimizing the
overall fuel efficiency for the entire driving cycle. Oftentimes, the
instantaneous fuel efficiency may need to be sacrificed in order to
minimize the overall fuel consumption [3]. Therefore, the power-
train management of a power split hybrid vehicle is a complicated
problem requiring knowledge of the future vehicle speed profile
to achieve the optimized performance [4]. Optimal energy man-
agement strategies such as dynamic programming [4], stochastic
dynamic programming [4], equivalent consumption algorithm
(ECMS) [3], Pontryagin’s minimum principle (PMP) based con-
trol [5-10], and model predictive control have been studied, where
most of the existing research considers a driver-based single vehi-
cle scenario. The main challenge for the existing energy manage-
ment approaches is that it is hard to have both computational
efficiency and effective optimization to be met at the same time.
This challenge becomes more evident for autonomous vehicles
under cooperative control, since the vehicle on-board processer
needs to handle computational load from both vehicle coordina-
tion and powertrain control. Thus, a real-time powertrain manage-
ment approach that can ensure optimality by effectively
leveraging the future driveline torque and speed information pro-
vided by the cooperative controller is needed for the power opti-
mization in cooperative hybrid vehicles.

Meanwhile, a multiagent system defines a set of interconnected
autonomous subsystems known as agents whose behavior is
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associated with a specific consensus among themselves [11-14].
The interconnection structure defines the communication topology
of the multiagent system, which can be centralized, where the
global information is available for all agents, or decentralized or
distributed, where only the local information is available for each
agent. In this paper, we specifically consider the decentralized
case. To optimize the coordination among the agents, the optimal
cooperative control was studied extensively. The authors in Ref.
[14] developed an inverse optimal solution for a general linear
system by introducing the notion of partial stability. The result
was extended in Ref. [13], which provided more in-depth formula-
tion on solving the cooperative regulator and multiagent systems
tracking. However, their design is only limited to the open loop
free response of the agents and cannot be used for the case when
the leader agent has an arbitrary trajectory. In Ref. [15], the
authors considered a constrained cooperative regulator problem
and presented a distributed projected subgradient algorithm so as
to give a locally optimal solution. In Ref. [16], the authors used a
generalized fuzzy hyperbolic model approximation of the
Hamilton—Jacobi equations to obtain the optimal coordination
control. However, most existing research on the optimal multi-
agent control is based on a generic multiagent formulation, con-
sidering linear systems such as single or double integrator models
and cannot be directly used for general nonlinear systems includ-
ing the vehicle dynamics model.

The objective of this paper is to provide a computationally effi-
cient framework that considers both the vehicles coordination and
their powertrain control. Accordingly, the contributions of the
paper are as follows: First, instead of assuming a linear system of
single or double integrators like most existing studies on the opti-
mal multi-agent control, the optimization in the multiagent coop-
erative control is achieved for agents with nonlinear vehicular
dynamics based on locally distributed information. The control is
first given in a general form for a system consisting of agents with
affine Euler-Lagrange dynamics, using feedback linearization.
Then, we extend the design to systems with nonlinear vehicular
dynamics, by converting the dynamics model into the
Euler-Lagrange form through coordinate transformation. Second,
the powertrain level optimization is formulated analytically for
each hybrid vehicle agent by using the PMP. Different from the
previous PMP-based approaches such as Refs. [6] and [8], the
optimal control is eventually converted into a set of algebraic
equations, instead of differential equations. This is enabled by
approximating the optimal instantaneous fuel consumption rate as
a polynomial of the engine speed, and it is more promising to be
solved and implemented in real-time in a computationally effi-
cient fashion. A fast converging numerical approach for solving
the resultant algebraic equations is proposed to justify the fact that
the approach can be implemented in real-time. Third, we formu-
late the vehicles cooperative control and hybrid vehicles power-
train management in the same framework by considering a
multiagent system of hybrid vehicle agents. The vehicle future tra-
jectory and driveline torque profile are predicted based on an opti-
mal multiagent cooperative controller, and then the future
driveline power demand is fed to the powertrain level controller
for energy management.

We use the following notations in this paper. We denote R as
the set of real numbers, R, as the set of positive real numbers,
R, as the set of non-negative real numbers, and R" as the set of
nx 1 column vectors. Furthermore, /,, denote an n X n identity
matrix, ()7 denote matrix transpose, and (97! denote matrix
inverse.

The rest of the paper is organized as follows: In Sec. 2, we give
the dynamics of a vehicle system. In Sec. 3, we present the formu-
lation of the optimal coordination in a multiagent system. The der-
ivation is given in terms of a general multiagent system and then
is extended to the specific case of a multivehicle system with non-
linear vehicular dynamics. In Sec. 4, a hybrid system mechanism
is introduced and then a fully analytical derivation of the optimi-
zation problem is given using the necessary condition of the PMP.

071015-2 / Vol. 141, JULY 2019

We give the description on a numerical approach for solving the
PMP-based formulation in Sec. 5. Furthermore, we provide simu-
lation examples in Sec. 6. Finally, in Sec. 7, we conclude the dis-
cussion by highlighting the contributions of this research work.

2 Model of an Autonomous Vehicle

Consider a typical rear wheel-driven vehicle. In order to avoid
dynamical complexity, the reaction forces on each individual
wheel are summed up at their midaxles. Equivalently, the free-
body diagram of the vehicle is obtained as depicted in Fig. 1.
Moreover, to enable an efficient cooperative control design, some
of the complex steering mechanism dynamics and wheel slipping
dynamics are neglected in the vehicle dynamics model. The
detailed derivation of the model is given in the Appendix.

The horizontal and vertical position of the mass center C of the
vehicle in the inertial reference frame and its orientation are deter-
mined by the variables X, Y, and 0, respectively. The kinematics
of the vehicle are given by

X (1) = vy (t)cos 0(r) — drx(£)sin 0(r), >0 (1)
Y (t) = v, (£)sin 0(¢) + dyo(f)cos 0(¢) )
0(r) = (1) 3)

where v, is the longitudinal velocity, w is the yaw angular velocity
of the vehicle, and d;, € R is the distance between C and the rear
axle. Moreover, the dynamics of the vehicle is given by

M) (e) = F(n) + G)T (1), =0 @)

where n2 [v,w|" is the velocity vector, and T2 [Ty, T,]" is the
vector of driving and steering torques

7 [f(df +dr)2w(t)
M(n) & vy (1) Q)

0 1

1
md*(t) — EpCdAfv_%(t) — fimg

F(n)& (6)

—md o (t)vy (1)

~<

Fig.1 The free body diagram of a vehicle
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1 (d+d)olt)
A r deX(l)
G(n)= 7
(n) . ot d, (7
dy

m is the total mass of the vehicle, I is the yaw moment of inertia
of the vehicle, m&m+ (It + 1) /r?), [ 21 + md?, dr € R, is
the distance between C and the front axle, /¢ is the equivalent
moment of inertia of the front wheels and the front axle about the
axis of the front axle for zero steering angle, /; is the equivalent
moment of inertia of the rear wheels and the rear axle plus all
internal rotatory components translated at the rear axle about the
axis of the rear axle, r is the radius of each wheel, p is the density
of air, Cq is the drag coefficient, A¢ is the effective frontal area of
the vehicle, and f; is the friction coefficient.

3 Optimal Coordination in a Multiagent System

This section presents the concept of control and optimization in
multiagent systems with an emphasis on leader following cooper-
ation. First, we advise the design for an Euler—Lagrangian multi-
agent with affine dynamics structure. The design is based on the
availability of the distributed information among agents and it
provides the local optimal solution for each agent. Next, we
extend the results to a multiagent system of ground vehicles
with the nonlinear dynamics presented in Sec. 2, by transforming
the specific vehicular dynamics to the Euler—Lagrangian form
through coordinate transformation.

3.1 Systems With Affine Euler-Lagrange Dynamics. Con-
sider a multiagent system consisting of a leader agent denoted by
‘L’ and a set of p > 1 agents numbered from 1 to p whose individ-
ual agent’s dynamics are given by

Mi(qi,4:)G;(t) = Fi(qi,q;) + ui(2),

8
qi(o):(]i()7 qi(o):qi()v t207i2L717"'7p ( )
where g; € R” is the vector of generalized coordinates of the ith
agent; M;(q;,q;) € R™" is the positive definite inertia matrix of
the ith agent; u; € R", t > 0, is the control input for the ith agent;
and F;(qi,q,;) € R" is the vector of Coriolis, centrifugal, conserv-
ative, and nonconservative forces acting on the ith agent. The
ensemble of all agents and the leader agent forms a connected
digraph [17] by communicating their positions and velocities.
More specifically, the digraph contains a spanning tree with the
leader agent as its root ensuring that the information originated at
the leader distributes to all agents. Accordingly, the sets of the
neighboring agents are identified as

P, i=1,.0p (C))

where N; represents a set of agents whose positions and velocities
are available for the ith agent. Furthermore, the distributed error
of an agent is defined as the algebraic average of the errors associ-
ated with the agent with respect to its neighboring agents. Specifi-
cally, we express the distributed errors as

NiC{L,1,..

zi(t) 2 qi(r IN\Z% +1;(0), i=1,...p  (10)
JEN

where z; € R” is the distributed error of the ith agent, |N;| > 1 is
the cardinality of \V;, which is the number of elements in N, and
Lje R"i,je{L,1,...,p}, specify the desired geometry of
ensemble of all agents and the leader. The leader following coor-
dination problem can be formulated by rewriting Eq. (8) in terms
of the distributed errors. The second time derivative of Eq. (10)
yields

Journal of Dynamic Systems, Measurement, and Control

AGES M'il(qh‘}i)ui([) +M; " (qi,4:)Fi (i d,)
> (G, + (e
g 22 (000 +500).
zi(0) =z, 2:(0)=Zp, 1>0,i=1,...,p 1n

The knowledge of the neighboring agents’ acceleration appearing
in the right-hand side of Eq. (11) is a necessity in order to achieve
the exact coordination among all agents with respect to the leader
agent. We assume that such information is available for each
agent through robust observer estimation [18,19].

Next, consider a feedback linearization control given as

|N|Z(q/ 1yt ))

—Fz(Cqu,)» 1:17717 (12)

ui()éM(q,,q)<

where v; € R" is the new control input. Substituting Eq. (12) in
Eq. (11) gives

Zi(0) =vi(t), zi(0)=zp, zi(0)=2zp, t>0, i=1,...,p
(13)
Let 221 (1), 2] (#)],i = 1, ..., p. Then, Eq. (13) is rewritten as
() =A4+Bv(t), Z(0)=Zy >0, i=1,...p (14
where
i e

We define the distributed control protocol as

V,‘([) = —Kifi(l’)7 t>0, i=1,.,p (16)
where K; € R"**" is the control gain for the ith agent. We con-
sider the cost function of the ith agent defined as

Jié Jm(f?(l)Rlifi(f) +v,-T(t)R2,»v,-(t))dt (17)

0

where Ry; € R*™" is positive semi-definite, and R, € R™" is
positive definite. The collision free optimal problem of minimization
of J;,,i=1,..., p, subject to Egs. (14)—(16) can be solved by using the
linear quadratic regulator (LQR) approach. Specifically, we obtain
Ki=B"P;, i=1,.,p (18)

where P; € R*" is the solution of the algebraic Riccati equa-
tions given by

ATP; + PA+ Ry — PiBR,'B"P; =0, i=1,.p (19)
Note that the above cooperative control design provides only local
optimal solution for each agent.

3.2 Systems With Nonlinear Vehicular Dynamics. In this
subsection, we will transform the nonlinear vehicular dynamics
(1)=(3) and (4) into the affine Euler—Lagrange form, so we can
directly use the optimal controller described in the previous sub-
section for cooperative control design.

Consider the multiagent system consisting of a leader vehicle
agent denoted by L and a set of p > 1 autonomous vehicle agents
numbered from 1 to p whose kinematics and dynamics are identi-
cal and are given by Egs. (1)—(3) and (4), respectively. We use
index i € {L, 1,..., p} to indicate the specific dynamics of the
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ith vehicle agent. In order to adopt the optimal coordination
control design discussed earlier, we write the dynamics in terms
of the generalized position coordinates, ¢;()2 [X:(z),Y;(1)]",
i=1L,1,....p, and the generalized orientation coordinate, 0,(¢).
The time derivative of Egs. (1) and (2) yields

i) = R(0)01,0) + & 0+ ) 0n0)o )

(20)
qi(o):qi07 q‘i(o):qim t207 i:L717~'~7p
where
cos 0;(t) —sin0;(¢ 1 0
Ri(0;) 2 " X 0& 2D
sin0;(r)  cos0;(r) 0 4

Note that the planar rotation matrix, R;(-) : R — R*?, is an
orthogonal matrix satisfying the following properties:

|R,(6l)‘ 17 0; € R
R7Y(0:) = R} (0;) = Ri(—=0;) (22)
Ri(0i1 + 02) = Ri(0i1)Ri(02) = Ri(02)Ri(0;1)

Accordingly, one can write 1;(f) = Q7'R] (0;)¢;(¢). Furthermore,
substituting #7;(¢) from Eq. (4) in Eq. (20) gives

G;(1) = Ri(0:)OM " (¢;) (Fi(:) + Gi(d:)Ti(1))
+8(5 )00
ql(o) = qio, ([,(0) :qi07 [207 i:L717“~7p (23)

where 9,~(t) is obtained from the kinematics of the vehicle agent
given by

0i(t) = dlr (~sin 60X, +eosth V)

6[(0):6i07 i:L717-~-7P

In Ref. [20], it is shown that the orientation kinematics given by
Eq. (24) is minimum phase with respect to its velocity states,
X;(¢) and Y,(¢). Therefore, the control design for the underactu-
ated vehicle agent can be adopted based on its dynamics given by
Eq. (23). One can rewrite Eq. (23) as

Mi(q,,00)G;(1) = Fi(q;, 0;) + ui(2)
ql(O) = {0, ql(o) :q-i(h t207 i:L717"'7p
(25)
where
wi(1) 2 G (q)Ti(0) (26)
M;(4;,0;) 2 Mi(¢;)Q 'R} (0) 27

Filan0)2 )0 R (0. 5)a 000 + FiG) @9

Vehicle dynamics given by Eq. (25) conforms to the system repre-
sentation of Eq. (8). Accordingly, the optimal coordination control
design can be developed for the vehicular multiagent system by
following the steps described in Sec. 3.1 and the control inputs
consisting of the steering torques and the driving rear axle
torques are obtained for each vehicle. The steering torques,
Tgi(f),t > 0,i=1,...,p, act as reference inputs for the steering
mechanisms of the vehicles. Nonetheless, their utilization requires

071015-4 / Vol. 141, JULY 2019

the detailed knowledge of steering mechanisms themselves, which
is out of the scope of this research work. The driving rear axle tor-
ques, Tq;(t),t > 0,i =1, ..., p, provide the torques on demand (at
the driveline) for the internal powertrain dynamics of the vehicles.
Note that in order to comply with the internal hybrid systems’
constraints (described in Sec. 4), and to consider realistic road
conditions, the LQR control protocols are constrained limiting the
vehicles” accelerations and velocities. Note that since each
vehicle’s model given by Egs. (1)—(7) as well as the estimated
neighboring vehicles’ accelerations bears uncertainties, further
analysis on the robustness of the controller is necessary.

Once the optimal cooperative controller is determined, the
future vehicle trajectory and driving torques on demand can be
estimated and predicted. The prediction for a single vehicle sce-
nario based on the real-time traffic information has been exten-
sively studied in the literature [9], and it is a straightforward
extension for the multivehicle case once the cooperative controller
is available. Thus, it is not covered in detail here. The current and
future driveline torque demands, Ty;(¢),7 > 0,i =1, ...,p, can be
regarded as reference inputs for the internal power optimization of
the vehicles, which is the subject of Sec. 4.

4 Powertrain Energy Management in Power Split
Hybrid Electric Vehicles

In this section, we will present a real-time computationally effi-
cient approach for the hybrid powertrain management of each
vehicle agent. Different from the previous PMP-based approaches
for hybrid vehicle, we can formulate the optimal control into a set
of algebraic equations rather than differential equations, enabled
by approximating the optimal instantaneous fuel consumption rate
as a polynomial of the engine speed. This can lead to a real-time
numerical solution online.

Let each vehicle agent discussed in Sec. 3.2 be powered by a
hybrid system consisting of an internal combustion engine and an
electrical battery. A typical mechanism of the power split was
introduced by Toyota for Prius vehicles [21]. The schematic of
such a system is depicted in Fig. 2. This system also consists of a
planetary gear set, a coupler gear set, an inverter, and two electri-
cal machines. The electrical machines can act as either motors or
generators allowing two degrees-of-freedom in the system, and
thus, setting the engine operation at any arbitrary speed and tor-
que. Assuming that the inertia of the moving components of the
hybrid system are negligible, the algebraic equations describing
the constraints between these components can be derived by con-
sidering the power balances at the planetary gear set, the coupler
gear set, and the inverter. For simplicity, we drop the index i asso-
ciated with each vehicle in the following derivations. Specifically,
the power balance at the coupler gear set gives

I 1
Ti(t) = — Te(t) +—Tq(t 29
) = (i )0+ Tl 9
Internal Planetary Coupler
Combustion Gear Set Gear Set Driveline
Engine

0000

Battery

Inverter Motor

Fig. 2 The hybrid system of power split in Toyota Prius. The
arrows indicate power flow directions.
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O (1) = kewq(t) (30)

where T, € R is the engine’s torques, Ty, € R is the motor’s
torques, mm, wq € R are the motor’s and the driveline’s speeds,
respectively, 7, € R are the radii of the sun gear and the ring
gear, respectively, and k. € R, is the gear ratio at the coupler
gear set. Similarly, the power balance at the planetary gear set
gives

Ty(r) = 7<, & >Te(t) (31)

we(t) = <, . rf) Om(1) + <,’T> (1) (32)

where T, € R is the generator’s torque and o, € R is the genera-
tor’s speeds. Finally, the power balance at the inverter yields

Po(t) = 0 T (D)o () + 16 Ty (1) 0y (0) (33)

where Py, € R is the battery power, pm, i, € (0, 1) are, respec-
tively, the efficiency factors of the motor and the generator when
they are operating as generators, and k,, and/or k, are equal to “1”
if their respective electrical machines are operating as generators,
otherwise, they are equal to “—1”. Substituting the relations for
the motor and the generator’s torques and speeds from Egs. (29)
to (32) in Eq. (33) gives

Polt) = W Ta(D)oa(t) — 1o To(H)e (1)

kery ﬂfﬁ" - .ulég
"—%T;jﬂwwm en

Furthermore, the dynamics of the battery is given by

. Vb - Vg - 4Rbe([)
$(0) = RO L s(0) =50, 120 (39)
where s € R, is the state of the charge of the battery, V,, € R is
the battery’s open circuit voltage, R, € R is the internal resist-
ance of the battery, and Oy € R is the capacity of the battery.
Note that for the nominal operating range of the state of the
charge of the battery (40-80%), these variables are almost con-
stant [6].

Note that the powertrain variables are all subject to boundary
conditions due to physical limitations. In the following deriva-
tions, such limitations are implicitly considered. Furthermore, in
charge sustaining operations, the utilization of the hybrid system
increases the total power that the engine should provide to the
driveline. This is first due to the power dissipation through the
electrical machines in Eq. (33) and second due to the nonlinear
behavior of the battery described by Eq. (35). Nonetheless, such a
system can help the engine to operate more efficiently during the
entire operation of the vehicle. Therefore, a proper design is
required in order to achieve a better overall fuel economy.

We formulate the problem as a nonlinear optimization of the
hybrid system by using Pontryagin’s minimum principle. The for-
mulation is given for one driving cycle and is repeated for other
driving cycles such that it gives overall optimal solution for the
entire operation of the vehicle. The formulation assumes that the
power demand for the entire driving cycle is known. We suppose
that an appropriate prediction scheme provides such information.
Since the hybrid system has two degrees-of-freedom, then any
two independent variables can be used as the optimization inputs.
Let u(r) 2 [Te(t), we(1)]", ¢ > 0, denote the vector of optimization
inputs. Furthermore, we consider a charge sustaining operation
where the initial and final values of the state of the charge of the
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battery are equal, and accordingly, the optimization problem is
defined as the minimization of the total fuel consumption subject
to the dynamical equations of Eq. (35) and the constraints on the
powertrain variables. The cost function is written as

It

JE (s — (1) + J mie (u(t))dt (36)

ti

where J € R, is the total cost for the driving cycle initiating at
ti € R, and finalizing at ty € R, mg(-) : R — R is a nonlin-
ear function, which gives the instantaneous fuel consumption rate,
5,6 = is the final value of the state of the charge of the battery,
and y € R is a constant coefficient, which drives the terminal con-
dition to zero. We write the Hamiltonian as

H(t,s,u) £ me(u(t)) — A6)s(1) (37)

where A € R is the costate. The adjoint equation is derived as

i) = %H(r, s,u) =0 (38)
Alty) = 7ds(t1~) (v(s —s(t))) =y (39)

From Eqgs. (38) and (39), one can conclude that
M) =7y (40)

The charge sustaining condition yields As,;= 0, where

Asg & J.rf s(t)dr (41)

4

Finally, the derivatives of the Hamiltonian with respect to the
inputs are given as

o (D) = Ag$() =0 (42)
0 0
Do, 1 (u(0) = 25 -5(1) =0 43)

Given the initial values at t=¢ and the driveline’s torques and
speeds for the entire driving cycle, the optimal solution is obtained
by solving Egs. (34), (38)—(43) for the unknown inputs,
Te(1), we(1),t € (8, 1), the costate, ., and the battery power, Py(?).
One can deduce that the solution for any engine power
Pe(t)2Te(t)we(t) lies on the most efficient point (subject to the
boundary conditions of the engine torque and speed). This fact is
confirmed in Ref. [4] by using a stochastic dynamic programming.
The union of all these operating points for all engine power,
0 < P, < max{P.}, yields a continuous curve on the engine map.
An example of the engine map depicting the efficient curve is
shown in Fig. 3. We assume that this efficient curve is sufficiently
smooth such that it can be estimated offline by an analytical smooth
function. Similarly, the instantaneous fuel consumption rate on this
curve can be estimated offline by an analytical smooth polynomial
function (the curve fit is shown as solid narrow line in Fig. 3). Let
T.(-) and 7i;(-) denote the torque and the instantaneous fuel con-
sumption rate on the efficient curve, respectively. Note that the
degree of polynomial can be chosen appropriately such that enough
accuracy for curve fitting is achieved. Then, the optimization
degrees-of-freedom is reduced to one and the derivative of the
Hamiltonian with respect to the input, u(f) £ w,(t), is given as

d _. , ds(t) dPy (1)
do ") T A b e

=0 (44)
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Fig. 3 The fuel consumption map of the internal combustion
engine. The polynomial curve fitting in red starts at 100rad/s
since engine normally operates beyond that value.

where

ds(r) -1

= (45)
de Qb Vg — 4Rbe(t)
dPy(1) k, dTe () ke
do. = M a0 AT
ket (ﬂfg' - ui“’) dT (o)
— 4
s+ 1y dwm, @a(1) (46)

Since 7i¢(-) and T (+) are smooth functions of the engine’s speed,
they can be estimated by lower order terms in their Taylor expan-
sion as given by (evidenced by the curve fit in red as Fig. 3)

o)~ Y aiol(t) (47
i=1

= Z‘biwie(t) (48)
i=1

respectively,  where  ngn,ne>1,a, € R;i=1,...,n,, and

b; € R,i=1,...,n. Substituting the above estimation in Egs.
(44) and (46) yields the following algebraic equation as

o L ds(t) dPy(t)

i—1
1) — 2 =0 49

;(’“ @) = e @9

and
dPy(
bt Z i+1)b; a)

da)e

(m_“g>zzbw” Nour)  (50)

rs+ 1y =
Given the initial values at =1 and the driveline’s torques and
speeds for the entire driving cycle, the optimal solution is obtained
by solving the set of algebraic equations (34), (41), (45), (49), and
(50) for the unknown input, w.(¢), t € (t;, ], the costate, 4, and
the battery power, Py(?), subject to the boundary conditions of the
powertrain variables. Thus, enabled by the polynomial approxi-
mations as Eqs. (47) and (48), the optimal powertrain manage-
ment can be formulated into a set of algebraic equations.

Remark 4.1. Fuel consumption is a monotonically increasing
function of the engine speed on the efficient curve. Therefore, we
claim that the estimation of Eq. (47) is fair. Furthermore, an
engine efficiency contour map (not shown in the paper) in general
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has a smooth gradient from efficient region to low efficient
regions and we claim that the optimal curve itself is smooth
enough such that the estimations of Egs. (47)—(48) are feasible.

Remark 4.2. Enabled by approximating the efficient fuel con-
sumption curve as a polynomial of the engine speed, we are able
to formulate the PMP constraints into a set of algebraic equations
(34), (41), (45), and (47)—(50). This is a novel feature compared
with the existing studies of the hybrid vehicles using the PMP [6],
where the formulated constraints are a set of differential equa-
tions. The algebraic formulation can lead to a computationally
efficient real-time optimal solution, enabled by the numerical
approach given below.

5 Numerical Solution

The PMP-based approach discussed in Sec. 4 translated the
problem to some constraint algebraic equations. Nonetheless, the
solution to these equations cannot be obtained analytically nor is
the numerical solution trivial. Thus, one may need to advise a
practical design for the numerical approach such that its robust-
ness and fast convergence is guaranteed. In order to address this
challenge, we give directions on how to solve the constraint alge-
braic equations specific to the PMP-based formulations given in
Sec. 4. The method proposed here is based on the strictness of the
hybrid system’s constraints. In order to determine the strictness of
the constraints, we specify three levels:

The hard or physical constraints: Such constraints give physical
relations between system variables and they can be boundary val-
ues, algebraic equations, or differential equations. For instance,
the utmost operating limits of any of the components in the hybrid
system define some physical boundary of the system. Further-
more, any relation between the system’s variables such as the
power balance equations is considered in this category.

The midlevel or operational constraints: Any limitations for
operation of the system set by the designer so as to achieve a bet-
ter performance, to operate safely, and to increase the life span of
the system lie in this category. Such limitations provide a subset
of the system’s operational region, and thus, do not violate the
physical constraints. The limitations on the engine speed, the bat-
tery power, and the battery state of the charge are some examples
of this type of constraints. Under extreme conditions, these con-
straints might be violated. For instance, for a continuous very high
power on demand at the driveline, the battery can be depleted
completely or the output power to the driveline can be limited
such that the battery state of charge is preserved. The choice here
can depend on the safety measurements of the system.

The soft or optimization constraints: These are specific con-
straints set by an optimization approach. For instance, the charge
sustaining operation of the battery and any algebraic or differen-
tial equations obtained through the necessary conditions of the
PMP define soft or optimization constraints. These constraints can
be disregarded if the physical or the operational constraints are
violated. In such cases, the optimal solution might be on the
operational boundary.

Next, the numerical approach is designed such that the optimi-
zation constraints (soft constraints) appear as corrective terms for
the algebraic or differential equations corresponding to the physi-
cal (hard) or the operational (midlevel) constraints. Furthermore,
the specific optimization variables are adjusted in the outer itera-
tive loop(s), while the system physical variables are adjusted in
the inner iterative loop(s). The specific details of the numerical
approach for solving Egs. (34), (41), (45), and (47)—(50) are as
follows:

(1) Acquire the initial values and set =1 and P, =0 for the
entire driving cycle.

(2) Calculate As,; from Eq. (41).

(3) Calculate the battery power given by

Pb:Fp(we,wd,Td)JrKlAsrf (51)
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where Fj, (-,-,-) is the right-hand side of Eq. (34) and K €
R is sufficiently small.

(4) Calculate o, by iterating Eq. (34) using the new value of
Py,

(5) Calculate other variables of the hybrid system using Eqs.
(29)—(32).

(6) Repeat steps 3-5 for the entire driving cycle.

(7) Calculate AP defined as

ors

APéJ M

ds (1)
dpy, #

f

(8) Calculate As,¢ from Eq. (41).
9) If AP <APin>0 and |Asy| < Aspin > 0, stop the itera-
tion for the current driving cycle, else, go to step 10.
(10) Adjust the costate value as

Ak + 1) = 2(k)(1 — KyAs) (1 — K3AP) (53)

where £ is the iteration index, and K, K3 € R, are suffi-
ciently small.
(11) Go to step 3.

Note that the hard/midlevel constraints are checked in steps 3-5,
while the optimization constraints appear as corrective terms in
steps 3 and 10. Furthermore, note that the outer iteration can be
limited to prevent infinite loop in case the optimization problem
does not have any solution (for instance, for a very high average
power on demand). The analysis on the convergence and robust-
ness of the above approach is conducted through numerical simu-
lation studies given in Sec. 6.

6 Simulation Results

In this section, we provide simulation results in order to evalu-
ate the efficacy of the approaches discussed in this paper.
Although the proposed approach is formulated in a generic fash-
ion and can be applied to both off-road and on-road scenarios, we
will consider an off-road case as an example in this section. Spe-
cifically, we consider a set of identical autonomous off-road
hybrid electric vehicles whose parameters are given in Table 1.

In order to evaluate the analytical results provided in Secs. 3
and 4, we consider different case studies. For the first case study,
the overall behavior of the distributed optimal cooperative control
of the multiagent system of hybrid vehicles is analyzed. For this
purpose, we consider the coordinated motion of a set of four
autonomous hybrid vehicles and a leader vehicle. The desired for-
mation and communication topology is depicted in Fig. 4 and the
leader vehicle’s velocity profile is shown in Fig. 5.

We assume Ry; =14, Ry;=15,i=1,..., p. Accordingly, the LQR
control gains are obtained as K;=[l,, 1.73211,], i=1,..., p.
Finally, we set the initial formation errors and the initial velocities
of the vehicles to nonzero values. The results are depicted in
Figs. 6-8. Specifically, Fig. 6 shows the phase portrait of the mul-
tiagent system, Fig. 7 shows the torque control inputs of each

Table 1 Vehicle system parameters

Parameter Value Parameter Value

m 1350kg I 1850 kg/m?>
I 2 kg/m* I, 7 kg/m
dy 1.5m d, 0.9 m

r 0.28 m fi 0.007

p 1.225kg/m’ Cqa 0.3

Ar 2.2 m? ke 3.9

Ts 0.030 m I 0.078 m
Hins Mg 0.9 Vi 202V
Ov 23,400 A.s Ry 0.45Q

Journal of Dynamic Systems, Measurement, and Control

Leader

4

Fig. 4 The communication topology and the desired formation
in the multiagent system
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Fig. 5 The velocity profile of the leader vehicle in (a) the longi-
tudinal and (b) the angular directions

y (km)

20

Fig. 6 The phase portrait of the multiagent system

vehicle, and Fig. 8 shows the distributed errors associated with
each vehicle.

In order to comply with the limitation of the internal hybrid sys-
tem of each vehicle, the output control torques are constrained.
The limitations depend on the vehicles’ speeds and the friction
between road and the tires of the vehicles. Thus, at the initial time
when the distributed LQR algorithm requires large positive or
negative control efforts, saturation happens as shown in Fig. 7.
Despite the saturation, the multiagent system performs properly as
the distributed formation errors converge to zero (Fig. 8) and the
vehicles keep the “>" formation along the way (Fig. 6).

For the next case study, the hybrid powertrain performance is
analyzed. We consider the first vehicle in this study as the
vehicles are behaving similarly except at the beginning of the
cooperation. We consider an internal combustion engine whose
fuel consumption map is depicted in Fig. 3. We assume that the
operation of the engine is limited to 115 < w, < 400rad/s. Fur-
thermore, the battery power is limited to |P,| < 22kW. For this
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Fig. 8 The time history of the distributed errors

simulation, we set the driving cycle to 1000 s and the initial state
of the charge equal to 70%.

The results for the first driving cycle are depicted in Figs. 9-11.
Specifically, Fig. 9 shows the time history of input—output power
diagrams of the hybrid system, Fig. 10 shows the time history of
the state of the charge of the battery, and Fig. 11 shows the time
history of the engine’s fuel consumption. The hybrid system’s
response indicate that the battery power is utilized to ensure that
engine is dominantly running at the speeds with higher efficiency
or otherwise is shut off. The resultant fuel economy is 27.56 km/I.

In order to evaluate the efficiency of the engine, we examine
the behavior of the hybrid system in response to different average
powers on demand at the driveline. Particularly, we repeat the
above simulation for different velocity profiles of the leader vehi-
cle and calculate the overall efficiency of the engine. The results
are depicted in Fig. 12 for the average fuel economy and average
engine efficiency with respect to the average power on demand.
The first diagram indicates that the fuel economy rapidly
decreases as the average power on demand increases and it drops
to as low as 12 km/I. The purpose of the second diagram is to indi-
cate that the results for different power demands (with wide range
of acceleration/deceleration and speeds in highways and urban
routes) guarantee highest efficiencies possible. The maximum
instantaneous engine efficiency for the engine map shown in
Fig. 3 is 16.26 kWs/g, which happens on the efficient curve at
engine speeds around 270-305rad/s. Despite the changes in
power demand, the average engine efficiency is almost kept con-
stant for different average power on demands and it is very close
to the maximum instantaneous engine efficiency. Furthermore, the
engine operation is more sensitive to the temporal details of the

071015-8 / Vol. 141, JULY 2019

powers on demand at the lower average powers on demand. The
resultant fluctuations vanish as the average power on demand
increases.

In the next case studies, we evaluate the performance of the
numerical approach for solving the PMP-based formulation of the
optimization in the hybrid system. First, we examine the effects of
the driving cycle on the stability of the method. We set the sam-
pling time-step in optimization to 0.1 s and repeat the simulation
for an extended time interval. Figure 13 depicts the maximum
simulation time and the maximum number of iterations versus
driving cycle.

The processor used in this study is an Intel® Quad Core™ i5
CPU with 3.33 GHz computational frequency and the main solver
code is written in C programming language. The result indicates
that for small driving cycles, the convergence is slower (higher
iterations) while for high driving cycles, the convergence rate is
almost constant. The convergence is at the highest rate (lowest
iterations) for the driving cycle equal to 1000 s. Furthermore, the
computation time is slowly decreasing for driving cycles up to
1000s, where it is minimum. For higher values of the driving
cycles, the computation time increases rapidly, which is almost
proportional to the values of the driving cycles.

Next, we examine the effect of the optimization sampling time-
step. Figure 14 provides the computational statistical results for
different sampling time steps and driving cycles. The results indi-
cate that the sampling time steps and convergence rate (which is
inversely proportional to the number of iterations) are not corre-
lated. Thus, the computation time is reversely proportional to the
sampling time-step. The above results give a hint that a rough yet
acceptable solutions can be obtained for high values of the
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Fig. 9 The time history of the input—output powers to/from the
hybrid systems through the driveline, the engine, and the bat-
tery, respectively
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Fig. 10 The time history of the state of the charge of the
battery
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Fig. 11 The time history of the fuel consumption by the engine

100 T T T T T T T
Average Fuel Economy (km/1) |
i —\«, 1
L ieed. el A OLE IR U TC I
0 5 10 15 20 25 30 35 40 45
16.5 T T T T T T T T
* ¥
161 L EEE e ow
* oropon ¥ 3 %
1551 % , , 1
! # 2 Average Engine Efficiency (kWs/g) |
15 . . . N N N N N
0 5 10 15 20 25 30 35 40 45

Average Power on Demand (kW)
Fig. 12 The efficiency metrics of the engine

sampling time-step (for instance, 1s), and then, they can be fur-
ther adjusted with lower sampling time steps. Therefore, the com-
putational cost and time is decreased greatly. The above studies
offer that the methodology proposed in this paper is computation-
ally efficient for real-time implementation.
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Fig. 13 The effect of the driving cycle on the performance of
the numerical approach
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Fig. 14 The effect of the optimization sampling time-step on
the performance of the numerical approach for different driving
cycles

7 Conclusion

In this paper, we considered the powertrain energy management
in multiple autonomous and connected hybrid electric vehicles.
The optimization process was given in two successive steps. In
the first step, the distributed locally optimal solution for the non-
linear multiagent system was derived. The formulation was given
first for the Euler-Lagrangian agents’ dynamics in an affine struc-
ture and then extended to our specific nonlinear vehicular dynam-
ics through coordinate transformation. The future vehicle
driveline power demand can then be determined and predicted
based on the multi-agent cooperative controller. In the second
step, based on the predicted power demand, the hybrid powertrain
energy management was optimized by using Pontryagin’s mini-
mum principle. Specifically, we gave a fully analytical formula-
tion of the optimization problem subject to the hybrid system’s
constraints and assuming that the future information of the powers
on demand (torques and speeds at the driveline) are available. The
formulation resulted in some constrained algebraic equations,
enabled by approximating the optimal instantaneous fuel con-
sumption rate as a polynomial of the engine speed. We provided
the directions on a numerical iterative approach to solve these
equations. Through statistical analysis, we confirmed its stability
and robustness for different driving cycles and sampling time
steps in optimization. Furthermore, we provided simulation case
studies so as to evaluate the efficacy and the robustness of the pro-
posed optimal approaches.
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Appendix: Model of an Autonomous Vehicle

Consider the rear wheel-driven vehicle whose free body dia-
gram is shown in Fig. 1. The global position and orientation coor-
dinates of the vehicle are determined by variables X, Y, and 0,
respectively. The kinematics of the vehicle are given by

X () = vy(t)cos 0(t) — vy (t)sin 0(r) (A1)
Y (1) = vo(t)sin 0(r) + vy(t)cos 0(t) (A2)
0(t) = (1) (A3)

where v, and v, are the projections of the velocity of the mass cen-
ter C onto the body fixed frame, and o is the angular velocity of
the vehicle around the Z axis, the axis orthogonal to the X-Y
plane. Furthermore, the Newtonian equations of motion are given
by

mv (1) — ma(t)vy(t) = fie(t) — fir(t) = fo (A4)
mvy (1) +mo(t)vi(t) = far(t) + fr (1) (A5)
Lo (1) = defor(t) — difar(t) + T (1) + T:(¢) (A6)

where f|, and f5, are the equivalent longitudinal and lateral friction
forces acting on the rear wheels’ midaxle, respectively. fi; and f>¢
are the equivalent longitudinal and lateral friction forces acting on
the front wheels’ midaxle, respectively, 7, and Ty are the equiva-
lent torques due to longitudinal friction forces on the rear and the
front wheels, respectively, and fp, is the drag force. We define the
steering torque as

Ts(l‘) ES dffzf(f) + Tf([) + Tr(t) (A7)

We assume that the equivalent torques 7 and Ty are negligible so
as to avoid dynamical redundancy. Thus, the steering torque is
estimated as

TS(Z) ~ dffzf([) (AS)

Furthermore, we assume that the resultant dynamics obey the non-
holonomic constraint restricting the motion of the wheels to pure
rolling with no slip in the lateral directions. This assumption is
true for an ideal Ackermann steering mechanism. Thus, one can
write

v (1) = 0(0)d, >0 (A9)

Since Eq. (A9) is valid at all times, its time derivative yields

vy (1) = 0()d, >0 (A10)

Substituting Eqs. (A10) and (A8) in Eq. (AS5) gives
. 1
SFor(t) = mded (1) + maor (1) vy (t) — d—Ts(t) (A11)
f
The rear longitudinal friction force, f,, is obtained by considering

the dynamics of the active rear wheels

fielt) = Ta)) = 250200 (A12)

where T} is the vehicle’s driving torque acting on the rear wheels’
axle. Since, the vehicle’s motion obeys the nonholonomic con-
straint of pure rolling and no slip motion, then we can substitute it
by a single wheel placed at the front midaxle. The orientation and
the velocity of this virtual wheel are equal to those of the front mid-
axle point. Therefore, the kinematics of this wheel are derived as

071015-10 / Vol. 141, JULY 2019

1
dy + d;

ve(r)sina(r) (A13)

v (2) = ve(r)cos a(t) (A14)

where vy is the velocity of the virtual wheel and o€
(—(m/2), (m/2)) is the orientation of the virtual wheel in the body
fixed frame. The time derivative of Egs. (A13) and (A14) yields

Vf(t)

cos o(1)

(dftdizt);“’(‘)@(z) (A15)

Furthermore, the dynamics of the virtual wheel is given as

=v.(r) +

fie(t)cos a(t) — for(f)sino(r) = %\‘q-(t) (A16)

Substituting Eqgs. (A8) and (A13)—(A15) in Eq. (A16) yields

(df +dr)w(1) I5

fie(t) = Ty(r) + r—z\"x(f)

a'fvx(t)
(d + )’ oo() .
——— ot Al17
* r2vy(1) (1) ( )
Finally, the drag force is given by
1
folt) = 5 pCaAv2 (1) (A18)

Substituting the relations for the friction forces and the drag force
in the equations of motion (A4) and (A6) gives

M(n)i() = F(n) + Gn)T (1) (A19)

where 2 [v,, ]" is the velocity vector, T2 [Ty, T,]" is the vector
of driving and steering torques,

[f(df + dr)zw(l‘)
5 hildr tdo) oln)
M(n) & r2vy(1) (A20)

0 1

1
md, o (t) — EpCdAfvi(t) — fimg

F(n) & (A21)
—md o (t)vy(1)
- (dp + dy)o(t)
Al dpvi(1)
G(n)= . i d (A22)
dy

meam+ ((Iy +1,)/r?), [ 21 + md?, and f, is the friction coeffi-
cient. Note that the penalty term f, mg added to the above deriva-
tion so as to consider practical surface reaction for friction force
when wheels slip.
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