Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives

Michael Gowanlock
Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Flagstaff, AZ, US.A.
michael.gowanlock@nau.edu

Zane Fink

Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Flagstaff, AZ, US.A.
zwf5@nau.edu

ABSTRACT

Many database operations have a low compute to memory ac-
cess ratio. In heterogeneous systems, where a graphics processing
unit (GPU) is interconnected via PCle, the data transfer bottleneck
is perceived as insurmountable to achieving performance gains
on these memory-bound database primitives. On the other hand,
several compute-bound database operations have been shown to
achieve significant performance gains using the GPU. This leads
to CPU-only memory-bound applications having an increasingly
non-negligible impact on database query throughput. In this pa-
per we examine several of these overlooked algorithms, including
(i) batched predecessor searches; (ii) multiway merging; and, (iii)
partitioning. We examine the performance of parallel CPU-only,
GPU-only, and hybrid CPU/GPU approaches, and show that hybrid
algorithms achieve respectable performance gains. We develop a
model that considers main memory accesses and PCle data transfers,
which are two major bottlenecks for hybrid CPU/GPU algorithms.
The model lets us analytically determine how to distribute work
between the CPU and GPU to maximize resource utilization while
minimizing load imbalance. We show that our model can accurately
predict the fraction of work to be sent to each architecture, and
consequently, confirms that these overlooked database primitives
can be accelerated despite their memory-bound nature.

CCS CONCEPTS

« Information systems — Data management systems; « Comput-
ing methodologies — Parallel algorithms; - Computer systems
organization — Single instruction, multiple data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6801-8/19/07...$15.00
https://doi.org/10.1145/3329785.3329926

Ben Karsin
Université libre de Bruxelles
Department of Computer Science
Brussels, Belgium
Benjamin.Karsin@ulb.ac.be

Jordan Wright

Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Flagstaff, AZ, US.A.
jaw566@nau.edu

KEYWORDS

GPGPU, Heterogeneous Systems, Hybrid Algorithms, In-memory
Database, Memory-Bound Algorithms

ACM Reference Format:

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright. 2019. Ac-
celerating the Unacceleratable: Hybrid CPU/GPU Algorithms for Memory-
Bound Database Primitives. In International Workshop on Data Management
on New Hardware (DaMoN’19), July 1, 2019, Amsterdam, Netherlands. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3329785.3329926

1 INTRODUCTION

Many compute-intensive database operations have been paral-
lelized using new hardware such as graphics processing units
(GPUs). Such operations include index searches [23, 30, 35], join
operations [4, 27], and range queries [24]. While compute-intensive
operations have seen performance gains using GPUs, many data-
base primitives have not been accelerated due to their perceived
work-efficiency. Typically, such algorithms perform many opera-
tions in-memory and have a low compute to memory access ratio.
These algorithms are generally considered to be memory-bound
and are not considered as candidates for acceleration. However,
as more computationally intensive database operations become
less expensive through the exploitation of massively parallel ar-
chitectures, some of these overlooked algorithms begin to have a
non-negligible impact on database query throughput.

One approach to improve the performance of this class of memory-
bound algorithms is to develop hybrid parallel algorithms that use
both CPU and GPU resources, where each architecture performs
part of the total computation. Several algorithms have been de-
signed for parallel computation on multi-core CPUs, which split
the work between processing elements. However, most GPU re-
search is dedicated to GPU-only approaches which solve the entire
computation on the GPU. This is a missed opportunity, as both the
CPU and GPU can be used to compute these database primitives.

In current heterogeneous CPU/GPU systems, the GPU global
memory bandwidth is an order of magnitude higher than the CPU-
GPU interconnect (e.g., PCle v3.0 has 32 GiB/s bidirectional band-
width [33] and Nvidia Volta has 900 GiB/s global memory band-
width [32]). Thus, for data-intensive memory-bound algorithms,

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

the CPU-GPU interconnect is the performance bottleneck. How-
ever, if this bottleneck can be overcome, there is an opportunity to
exploit the GPU’s high memory bandwidth.

In this paper, we propose accelerating the unacceleratable — which
we define as memory-bound database primitives that are well-suited
to a hybrid CPU/GPU execution but not necessarily a GPU-only
execution. As a demonstration of the potential improvement over
CPU-only primitives, we develop hybrid CPU/GPU algorithms to
efficiently solve the following problems: (i) batched predecessor
searches; (ii) multiway merging; and, (iii) k-way partitioning.

These three database primitives are used in several database
applications. For instance, partitioning and multiway merging are
used in several sorting algorithms which are used in “distinct” and
“order by” SQL queries [38]. Multiway merging is useful in other
contexts, such as indexing [17], and partitioning is used in many
database approximation problems [20]. Predecessor searches are
frequently used as part of index searches [39].

Algorithms that solve the three database primitives on multi-core
CPUs are dominated by main memory accesses. And, as described
above, the primary bottleneck in GPU algorithms are CPU-GPU
data transfers. Thus, we focus on main memory accesses when
modeling both CPU and GPU performance. Since both the CPU and
GPU access main memory in “blocks” and have internal caches, we
use the well-known external memory (EM) model [1] (also known
as the disk access model (DAM)). To minimize memory accesses,
we base our CPU, GPU, and hybrid approaches on algorithms that
are known to be optimal in the EM model.

The external memory model considers a fixed internal memory
size M, block size B, and accessing a block of B elements (called an
1/0) has unit cost. All computation in internal memory is considered
free. While this model is well-known, it oversimplifies the perfor-
mance impacts of modern memory systems. For example, CPUs
have multi-level cache hierarchies and use approximate “LRU-like”
page replacement policies [28] that are difficult to model. Addition-
ally, GPU memory transfers can be overlapped and rely on pinned
memory buffers to achieve peak throughput [15]. Thus, rather than
considering a fixed memory size M and block size B, we use the
total number of main memory elements loaded/stored as our perfor-
mance metric. We base our approaches on EM-optimal algorithms
to minimize main memory accesses by both the CPU and GPU,
and use benchmarks and experimental results to further improve
performance on our hardware platform. In Table 1 we summarize
the algorithms that we consider in this work, along with the total
number of elements loaded/stored in main memory, as well as the
total work performed, according to the standard RAM model [6].
See Table 2 for descriptions of the parameters used. To simplify
our analysis, we omit small additive terms (e.g., +k) from the total
number of main memory accesses. We note that, in our GPU algo-
rithms, since we overlap data transfers to and from the GPU, the
total data accessed is the maximum unidirectional data transferred
(not the total elements accessed in main memory).

In the context of hybrid CPU/GPU algorithms for memory-bound
database primitives, this paper makes the following contributions:

o We show that the EM model can be used to design efficient in-
memory hybrid CPU/GPU memory-bound database primitives.

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright

Table 1: Summary of algorithms considered in this paper, to-
tal elements loaded/stored from main memory, and asymp-
totic time complexity in the RAM model. We omit small ad-
ditive terms for loads/stores and, for the GPU, we compute
it as the maximum unidirectional data transferred, since we
overlap data transfers. The parameter ;: depends on the hard-
ware which is optimized experimentally.

Algorithm Arch. | Elements accessed in | RAM Complexity
memory

Batched Pred. Search | CPU 3n O(n)

Batched Pred. Search | GPU | 2n O(nlogn)

Multiway Merge CPU | 2n O(nlog k)

Multiway Merge GPU | n O(nlog k)

k-way Partition CPU 2n [logﬂ k] O(nlogk)

k-way Partition GPU | n O((n+npk)log %)

o We demonstrate that when the CPU and GPU require the same
amount of data transferred into their respective architectures per
work unit computed, the best hybrid performance is achieved
when the majority of computation is performed by the CPU.

e We find that when an algorithm requires a large memory cache
to avoid many random memory accesses, the hybrid algorithm
achieves the best performance when the majority of the work is
assigned to the GPU.

o We show that our model is very accurate at splitting the work
between CPU and GPU architectures.

e Across most experimental scenarios we find that the hybrid
CPU/GPU database primitives outperform CPU- and GPU-only
approaches.

The paper is organized as follows. Section 2 outlines related
work. Section 3 describes the hybrid database primitives and models
that we propose. In Section 4 we experimentally demonstrate the
effectiveness of the hybrid algorithms, and the utility of the models.
Finally, Section 5 concludes the paper.

2 BACKGROUND & RELATED WORK

In what follows, we give an overview of the problem, then we
discuss several categories of related work, including GPU modeling
studies, the database primitives that we implement in this work,
and optimizations related to data transfers.

2.1 Problem Statement

For each of our database primitives we implement CPU-only, GPU-
only, and hybrid CPU/GPU algorithms. We consider a platform with
multi-core CPUs and a GPU, where the total response time includes
all data transfers to and from the GPU and related overheads. The
final result of each algorithm is stored in main memory. We assume
that each algorithm can exceed the GPU’s global memory capacity.
However, each algorithm may not exceed main memory capacity,
as we do not consider the impact of disk accesses in this work.

2.2 Modeling Studies

There is a substantial body of work modeling the performance of
applications on GPUs and general models of GPU computation.
For example, Schaa and Kaeli [36] propose a multi-GPU model for

Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives

predicting application response time. The model considers multi-
GPU contention for PCle bandwidth, network bandwidth, and disk
access throughput. Their model achieves high accuracy across six
applications. Another model [25] combines ideas from the BSP [40],
PRAM [11], and QRQW [13, 14] models to create a general model
of GPU computation. Other works model GPU performance vs.
power trade-offs [18], which are of particular importance in large
distributed-memory clusters that consume significant power.

In contrast to some of these previous efforts, we do not consider
the cost of computation. Also, we address the question of splitting the
work between CPU and GPU architectures, instead of focusing on
GPU-only algorithms. To our knowledge, no other works address
modeling the work splitting strategy that we propose in this paper.

2.3 Database Primitives Explored in this Work

In general, many studies are “GPU-only”, and only optimize GPU
computation, while minimally involving the host (e.g., using the
host to perform data transfers, and other operations peripheral to
the computation itself). However, there is a growing trend towards
using both the CPU and the GPU to maximize resource utilization
(see Mittal and Vetter [29] for an overview of CPU/GPU approaches
and classifications). Many such CPU/GPU algorithms have signif-
icant computational requirements. We depart from these studies,
since we consider highly memory-bound algorithms with minimal
computation that are not typical candidates for GPU acceleration.
To reiterate, our problem requires computing the result and trans-
ferring it back to the host. Therefore, many of the advancements in
the GPU algorithms we study are not applicable to our scenario, as
the output of these algorithms resides on the GPU, and not on the
host. Typically these GPU-efficient algorithms are used as a sub-
routine for other GPU kernels, so hybrid approaches such as ours
can use them to maximize overall performance. For completeness,
below we discuss advances in the GPU primitives that we consider
in this work.

Since predecessor searches are memory bound, few works have
considered optimizing them on GPUs [3, 21]. Batched predeces-
sor searches on the GPU were optimized for execution in shared
memory by Karsin et al. [21]. This work focuses on avoiding bank
conflicts in shared memory and finds that their two algorithms
that eliminate or avoid bank conflicts are more efficient than their
naive reference implementation. Berney et al. [3] considered the
performance of predecessor search in global memory on the GPU
by looking at different search tree layouts. However, neither of
these works consider the cost of CPU/GPU data transfers, which is
the focus of this work.

Merging is a building block of many fundamental algorithms
(i.e., sorting), so several previous works have looked at ways of
optimizing it on GPU architectures [16, 19, 22]. Green et al. [16]
and Hou et al. [19] optimized pairwise mergesort algorithms, and
Karsin et al. [22] designed a GPU-efficient multiway mergesort
algorithm.

Partitioning, like merging, is a building block of some sorting
algorithms (e.g., distribution sort). While it has been extensively
studied on the CPU [34], it has only been considered on the GPU
in the context of sorting, i.e., it has been used as a subroutine for
GPU-efficient distribution sort algorithms [7, 26]. We note that the

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

algorithms that these papers propose were designed for older GPUs
and may not perform as well on newer architectures [22].

Many of the efforts in the literature outlined in this section
focus on improving the performance of GPU computation. Since
the CPU/GPU performance of the algorithms that we consider are
bound by data transfers (PCle bandwidth), we ignore the cost of
computation. Thus, we do not consider such optimizations in this
work.

2.4 Data Transfer Optimizations

The work of Fang et al. [9] studied reducing GPU memory transfer
overheads by compressing data on the CPU. Similarly, Funke et
al. [12] improve query throughput by using compiler optimizations
that merge operations together and reduce bandwidth demand.
Since we consider hybrid algorithms, we wish to avoid the addi-
tional CPU computation overhead of these techniques, so we do
not use them in this work.

Gowanlock and Karsin [15] proposed a heterogeneous sorting
algorithm for CPU/GPU architectures. They demonstrated that
there are several overlooked bottlenecks in CPU/GPU computa-
tion, including pinned memory allocation cost and host-to-host
memory copies. We employ some of their strategies for our hy-
brid algorithms. In particular, we use multiple CUDA streams to
overlap PCle data transfers in each direction with computation on
the CPU and GPU. Also, we use small pinned memory buffers to
avoid the expensive allocation cost. This is particularly important
for the memory-bound algorithms that we study. Because the total
execution time is low relative to compute-bound applications, small
sources of overhead can have a large impact on performance.

3 HYBRID ALGORITHMS

We use the notation in Table 2 when describing our algorithms.

Table 2: Summary of notation and descriptions.

Description

n Input size.

P The number of CPU cores.

a Measured read/write bandwidth between CPU and main memory for the
CPU component of a hybrid algorithm.

3 Measured unidirectional bandwidth between the GPU’s global memory
and main memory over PCle.

H Number of partition buckets in a single pass. The parameter is a function
of the memory system and we optimize it experimentally.

ng The number of batches. The total work is divided into these disjoint
independent workloads.

HtoD | A data transfer from host to device.

DtoH | A data transfer from device to host.

3.1 Saturated Bandwidth Assumption

As discussed in Section 1, we use the external memory model to
ensure that our algorithms minimize the number main memory ac-
cesses. For the CPU and GPU, this translates to minimizing the total
number of main memory elements loaded or stored. For the GPU,
this corresponds to the total amount of data transferred from main
memory to global memory. However, data transfer time depends on
platform-specific characteristics regarding memory bandwidth and
data transfer efficiency. Thus, to avoid over-complicating the model,

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

we assume that all data transfers saturate memory bandwidth and
achieve peak throughput. On the CPU, this corresponds to the peak
bandwidth of main memory and for the GPU this is the peak PCle
bandwidth.

Since the algorithms we consider are memory bound and easily
parallelizable, we are able to saturate both main memory bandwidth
and PCIe bandwidth. We saturate main memory bandwidth using
the CPU by employing multiple threads for reading/writing data. On
the GPU, we use several CUDA streams to saturate PCle bandwidth,
where CPU threads orchestrate memory transfers between the host
and GPU. We also use the pinned memory data transfer techniques
of Gowanlock and Karsin [15] to maximize CPU-GPU data transfer
performance.

3.2 Optimality Assumption

In the CPU-only, GPU-only, and hybrid variants of the algorithms
that we describe in Table 1, all of the algorithms are optimal in
the external memory model. We transfer the minimum amount of
data between main memory and the respective architectures. This
assumption guides the design of I/O efficient database primitives.

3.3 Hybrid Primitives Using Batches

The three algorithms that we consider are parallelizable across ar-
chitectures while minimizing memory accesses. We accomplish this
by breaking up the total work into several batches of divisible work-
loads that can be computed independently on either architecture.
We define nj, to be the number of batches. We set nj, to be suffi-
ciently high such that the total work for each batch is low to avoid
the effects of load imbalance at the end of the computation. For
batched predecessor search and partitioning, we arbitrarily select
np = 400, while for multiway merge, we make nj, a function of k
to ensure data transfers are sufficiently large to mitigate overheads.
The resulting batch size allows us to execute batches that fit within
global memory while the total memory footprint may exceed global
memory capacity. However, the total memory footprint does not
exceed main memory capacity, as all processing occurs in-memory.

3.4 Batched Predecessor Search

We outline the batched predecessor search as follows. Let A be
a set of keys sorted in non-decreasing order, where each key is
denoted as a;, where i = 1,2, ..., n, and B be a set of queries sorted
in non-decreasing order, where each query is denoted as bj, where
j = 1,2,...,n. For each query, b; € B, the batched predecessor
search finds the largest value of i, such that a; < b;. While A and B
can vary in size, for simplicity, we assume |A| = |B| = n.

We focus on the batched predecessor search because it can be
used as a subroutine in database operations. Additionally, comput-
ing a single query will be unable to saturate GPU resources.

3.4.1 GPU Algorithm. To exploit the GPU’s massive parallelism, it
is crucial that each query, bj, be independent of all other queries.
Thus, to perform the batch predecessor search on the GPU, we
execute the Thrust library’s [2] upper bound binary search, which
requires O(nlogn) work. Recall that we assume the GPU work is
ignored. Consequently, we only consider data transfer to/from the
GPU. The batched predecessor search requires sending a total of 2n
elements to the GPU (HtoD), and sending n elements from the GPU

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright

back to the host (DtoH). Considering only the data transferred, the
total data transferred with constant factors is 2n + n = 3n.

Our model assumes that all data transfers are overlapped be-
tween HtoD and DtoH, thus fully exploiting bidirectional PCle
memory bandwidth. While in practice not all HtoD and DtoH data
transfers will be overlapped, this assumption allows us to negate
some of the data transfer overhead in our model. If we let s and
r be the total number of HtoD and DtoH elements transferred, re-
spectively, then the total data we consider transferred is max(s, r).
For the batch predecessor search, the data transferred is therefore
max(2n, n) = 2n.

3.4.2 CPU Algorithm. In contrast to the GPU algorithm, the par-
allel CPU algorithm can take advantage of the batched execution.
Instead of performing binary searches, the CPU algorithm executes
a merge find (finding the index without merging) for each b; € B.
Merge find has been used in other algorithms, such as set inter-
section [8]. The algorithm is trivially parallelized by assigning ny
batches of sublists of A and B to each processor, where each pro-
cessor performs a scan over several batches of size n/n;, elements
to find the predecessor of each query. Thus, the total work is O(n)
across all p processors.

We read a total of 2n elements from main memory into the CPU,
and write n elements back to main memory. Therefore, the total
data transferred with constant factors is: 2n + n = 3n.

3.4.3 Hybrid Algorithm. To combine the GPU and CPU algorithms,
we split the work between each architecture, where we assign a
fraction of the n queries to the CPU and GPU. As noted in Sec-
tion 3.3, we split the work into a number of divisible workloads
called batches, which allows us to assign work to the CPU or GPU.
For the batched predecessor search, we split A and B into nj, value
disjoint batches based on the values in each. This ensures that
all batches can be computed independently on either architecture.
Each batch is denoted as B;, where i = 1,2,. .., np. Figure 1 shows
an illustrative example of splitting A and B into disjoint batches.
Since A and B are sorted, we find the pivots in B as a function of
the values in A by performing a binary search for the index that
splits the data based on a given value a € A, such that we obtain
value-disjoint batches. For example, if x € B; and y € Bj;1, then
x < y. Because the batches are value-disjoint, each batch contains
X % elements from A and B. Since n;, < n, the time to generate the
batches is negligible compared to the time to process the batches.

A BB BB]E] FroPos]

[Bry- Bny, |

B [Bi[B | B [B[B]

Figure 1: Illustrative example of splitting A and B into value-
disjoint batches for the batched predecessor search.

We model evenly splitting the queries based on PCle and mem-
ory bandwidth to obtain low load imbalance (i.e., architectures
finish computing their respective queries at similar times). Let f
be the unidirectional bandwidth over PCle, and « be the memory
bandwidth between the CPU and main memory when simultane-
ously reading and writing, where § and « are given in elements

Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives

per second. For a given platform, § and « can be obtained through
simple microbenchmarks.

The total time to execute the CPU- and GPU-only algorithms are
denoted as TCPY and TGPY | respectively, and we estimate them
to be:

3 2
TCPUzgnandTGPUz z. (1)

To split the work between architectures, let f be the fraction
of n elements computed on the CPU, where 1 — f is the fraction
of n computed on the GPU. Using the total work in our model
(Equation 1) and substituting f for n, let

3 2(1 -
rerv 2 ¥ g porv 2 202 0) @
a B
We compute f as a function of the parameters a and f, and set
TCPU = TGPU guch that we model each architecture completing
its computation at the same time. Therefore,

3f_20-1)

r ®
2a

f= 20 +3f°)

Thus, given the constants a and f, we obtain the fraction of
the total queries that should be executed on the CPU and GPU to
minimize load imbalance.

3.5 Multiway Merging

We define the problem of multiway merging as follows. Given input
array A consisting of k sublists, denoted as Sj, where j = 1,2,. ...k,
each of size ¥ and sorted in non-decreasing order, we wish to output
the n total elements in sorted order. Furthermore, we assume that
k is small enough that we can load elements from each sublist into
memory without degrading CPU cache utilization. In the CPU-only,
GPU-only and hybrid algorithms described below, all are optimal in
the external memory model, as we transfer the minimum amount
of data between main memory and the respective architecture.

3.5.1 GPU Algorithm. Our GPU multiway merge algorithm begins
by dividing A into n;, batches that contain elements from all k lists
that form an interval of the sorted result. That is, batch B; contains
roughly n—"b elements from A and, if x € B; and y € Bj41, then

x <y, forany 1 < i < np. We define SJ’: to be the subset of the

sublist S; that is in batch B;, so B; = ‘Lle S]l To divide A into these
batches that are value-disjoint and o]f roughly equal size, we find
pivots that define the range of values contained in each batch. We
consider small values of k in this work to find pivots that divide A
into our ny, batches with minimal overhead.

Using a number of CUDA streams (and pinned memory to achieve
peak throughput), we transfer batches to the GPU and merge each
batch into a sorted list. We perform this merging on each batch by
repeatedly using the Thrust library’s [2] pairwise merge (e.g., pair-
wise merging k — 1 times). Sorted batches are then transferred back
to main memory. We form the final output by simply concatenating
the sorted batches together (i.e., B1Bz ... By,).

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Figure 2 shows an illustration of splitting the sorted sublists Sj,
with k = 4 sublists. Each batch is processed by a single CUDA
stream, but multiple streams are used for merging the batches, B;.

Note that since we assume all bidirectional data transfers are
overlapped in CUDA streams to/from the GPU, our model estimates
that a total of n elements are transferred between main memory
and the GPU.

B, B, By By Bs Bny-1 Bn,
so[si[stst]si]s] s/ s]
s [s]s[S[s]s] s>] 53" |
s [si]si]st]si][st] [si] s3]
s [silsi [stsi]si] EAREAE

Figure 2: Illustrative example of splitting k = 4 sorted sub-
lists to be transferred to the GPU to be merged. Each indi-
vidual batch B; is merged using a single CUDA stream.

3.5.2 CPU Algorithm. The CPU algorithm simply uses the GNU
parallel mode extensions [37] to perform a multiway merge. The
algorithm reads a total of n elements into the CPU and writes a
total of n elements back to main memory. Thus, the total number
of elements accessed by this algorithm is 2n.

3.5.3 Hybrid Algorithm. As with the predecessor search, we com-
bine the GPU and CPU algorithms by splitting the work between
each architecture, where we assign a fraction of the nj, batches to
the CPU and the GPU. We use the same method of computing f as
we did for predecessor search in Section 3.4.3.

2
TCPU — 2 4nd TOPU = 2 (5)
a
Thus we compute f to be:
a
= . 6
f a+2p (©)

3.6 Partitioning

We consider the problem of k-way partitioning (or simply partition-
ing). Given an unsorted list, A, of n elements, we wish to partition
A into k buckets Ay, A, ..., Ay of roughly equal size such that
each bucket is value-disjoint. That is, for any two elements a € A;
and b € Aj,if i < j, then a < b. This problem is also known as
distribution and is a subroutine of many algorithms, including dis-
tribution sort (also known as multiway quicksort). In the RAM and
EM models, the lower bounds for partitioning n elements into k
buckets is O(nlog k) and O(logyy,/ g k), respectively. The external
memory bound can be achieved by repeatedly partitioning n into
% buckets (which can be done in a single I/O-efficient scan). We
note that if k = n, partitioning is equivalent to sorting.
Partitioning involves (i) finding pivots for each bucket (k total);
(ii) determining which bucket each element is in; and, (iii) moving
each element into contiguous memory with other elements in the
same bucket. Since we focus on the memory-bound “bucketing”
portion of the problem, we assume that the pivots are given and
no more than a constant factor more than # elements will end up

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

in any bucket. The I/O-efficient approach for partitioning reads
the data while maintaining a local cache for each bucket. When
one becomes full, it is written to the bucket in main memory. Thus,
in the external memory model, a cache of a size B is needed for
each bucket, so it can be partitioned into % buckets during a single
scan. If k > %, multiple scans are required, so n elements can be
partitioned in % [log,;, g k11/Os. Since we do not use a fixed M and
B, we define p to be the number of buckets partitioned at each pass
over the data (i.e., the % in the I/O model). Figure 3 illustrates how
we can partition an unsorted input into k buckets by partitioning
Unsorted input
HEEENEN
L]

I I | | ‘ I | | I | I | | I ‘ coo k buckets
by repeatedly partitioning into y buckets, as is performed by
our CPU-only algorithm.

log, k | | | | -+t buckets

into y buckets for log,, k rounds.
RN
NN\
| L]

Figure 3: Illustration of partitioning an input into k buckets
3.6.1 GPU Algorithm. Recall that, in the external memory model,
we require [logy, g k] rounds to partition into k buckets. Rather
than fixed memory and block size, we use a single parameter, 1,
that is based on the amount of data that can be loaded into internal
memory without losing performance. For the GPU, we know that
internal memory (global memory) is large in relation to n. For
example, on our hardware platform, main memory has a maximum
capacity of 128 GiB, while our GPU has 16 GiB of global memory.
Thus, we can conclude that y is large and, for reasonable values of
k, we can partition into k buckets in a single round.

With the large internal memory, the high computational through-
put, and efficient libraries available on the GPU, we further sim-
plify our k-way partitioning algorithm by sorting batches internally
rather than bucketing elements. Thus, our GPU k-way partition-
ing algorithm operates as follows. We first transfer the k pivots
to the GPU. We then divide the input into n; equal batches and
sort each batch on the GPU. After sorting each batch, the GPU
performs binary search to determine which portions of the batch
belong to each bucket and transfers this information back to the
CPU. Finally, when copying the batch from global memory back
into main memory, the data is simply placed in the correct bucket.

Using this algorithm, we simply transfer the pivots and data
in each batch to the GPU once and then send the result back
to the host. Since data transfers are overlapped and we ignore
small additive constants, we say that the GPU accesses n elements.
We note that the GPU internally performs much more work (i.e.,
O(nlog 7+ + npklog 7-) work in the RAM model), but we do not
consider internal work in our analysis.

3.6.2 CPU Algorithm. Unlike the GPU, the CPU has a much smaller
cache size, and, although we do not used a fixed M due to the multi-
level cache, we know that y is much smaller for the CPU than the
GPU. Therefore, we cannot assume that k < y and we must use
multiple passes to partition for large values of k. At the first pass,

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright

we partition the input into y buckets. At the next pass, we further
partition each bucket into y buckets (for y? partitions), and so on
(illustrated in Figure 3).

Our CPU implementation uses multiple threads, so each thread
is assigned a subset of the input and maintains a cache for each
bucket. The input is scanned and, as caches become full, threads
write them to a shared output in main memory. At each pass, each
thread maintains p small caches (we use 1024 elements per cache).
We assume that the k pivots of each round fit in cache as well and
are read at the beginning. Thus, during each pass, each of the p
threads reads & elements and writes 2 elements back, for a total
of 2n elements among all threads. Our CPU k-way partitioning
algorithm loads and stores a total of (2n + k)[log 4 k] elements in
main memory (omitting small additive terms). We experimentally
investigate the performance impact of y and determine the best
value for our platform in Section 4.

3.6.3 Hybrid Algorithm. The hybrid approach to partition is quite
simple since the input data does not need to be preprocessed at
all. We simply divide our initial input into nj, batches and assign a
subset of batches to the GPU and a subset to the CPU. We then per-
form the above algorithms on the assigned batches. Once both the
CPU and GPU finish processing their batches, we simply combine
the two sets of buckets. We note that we can actually combine the
sets of buckets while we are transferring the data back from the
GPU so that there is minimal additional overhead.

To determine how much work to assign to the CPU versus the
GPU, we first estimate the time to partition on the CPU and GPU
(similarly to Section 3.4.3):

TCPU _ (2n)llog,, k1 and TGPU = ™

)
Thus, the fraction of work that we assign to the CPU is
a
= — (8)
f a + (2p[log,, k1)

Note that the number of passes required by the CPU algorithm
(computed by p and k) dictates the work distribution between the
CPU and GPU, in addition to the main memory and PCle bandwidth.

4 EVALUATION
4.1 Experimental Methodology

Our platform contains 2X Intel Xeon E5-2620 v4 processors, with
16 total physical cores, at a clock rate of 2.1 GHz, and 128 GiB of
main memory, equipped with a Quadro GP100 with 16 GiB of global
memory. The host code is compiled with the GNU compiler with
the O3 optimization flag and parallelized using OpenMP [5], and
the GPU code is written in CUDA 9 [31]. All results are averaged
over 5 trials, and all algorithms use 64-bit data elements. Since
all algorithms are designed to use divisible workloads that are
executed in batches, across all batched predecessor search and
partitioning experiments, we select nj, = 400 batches to be executed.
For multiway merge, we use a variable batch size based on k to
ensure that data transfers are sufficiently large to achieve peak
throughput.

Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives

We demonstrate the performance of CPU-only, GPU-only, and
hybrid primitives (for each of the algorithms we study in Table 1).
Their configurations are described as follows.

e CPU-only: The CPU-only algorithms are executed with 16
threads (the number of physical cores on the platform).

e GPU-only: The GPU-only algorithms are executed using 8
streams (with 8 CPU threads) to saturate memory bandwidth for
HtoD and DtoH data transfers. Also, each stream uses pinned
memory buffers to incrementally copy the data in either direction
(HtoD or DtoH) for each of the arrays described in the respective
algorithms. Each pinned memory buffer is of size 8 MiB, which
is reused for data transfers in each stream. Since the pinned
memory buffers are small, we obviate expensive allocation costs.
See [15] for an overview of pinned memory allocation costs.

e Hybrid: The hybrid algorithm simply combines the CPU-only
and GPU-only algorithms above, using a total of 24 threads.

In many algorithms that focus on improving the performance of
the algorithm itself (e.g., on-GPU sorting [22]), it is customary to
evaluate the sensitivity of the algorithm to different input distribu-
tions. Examples in the context of sorting include: high frequency
of duplicates in a list, exponentially distributed input lists, or the
list is already sorted. Since data transfers dominate response time,
and we exclude all computation in our models of each algorithm,
we do not perform any such data distribution sensitivity studies.

4.2 Microbenchmarks

To obtain a, we execute a simple microbenchmark which simulta-
neously reads and writes 5 GiB of 64-bit integers stored in main
memory using 16 threads to saturate memory bandwidth. We ob-
tain a = 19.56 GiB/s on our platform. Figure 4 shows the scalability
of the microbenchmark. For comparison purposes, we plot the read
only memory bandwidth (reading 10 GiB of 64-bit integers) and
observe that the memory bandwidth is significantly higher than
when performing both reading and writing. This is likely due to
prefetching, which is not possible when writing to main memory.

& 60

@ == Read Only

\LE/ = = = Read and Write

= 10

Bl

2

o

e

x b

o 20 K »

.

g‘ 0t ee? Ceote
r

5 |e*

= 0

2 4 6 8 10 12 11 16
Threads
Figure 4: Main memory bandwidth vs. the number of
threads. Multiple threads are needed to saturate memory
bandwidth. Simultaneous reading and writing has lower
throughput than reading only.

To obtain 5, we transfer 10 GiB from pinned memory on the host
to global memory on the GPU. We use the profiler to measure the
bandwidth, and we obtain = 11 GiB/s.

4.3 Batched Predecessor Search

Using our model, which splits the queries between the CPU and
GPU for the batched predecessor search (Equation 4), and the values

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Total Memory Footprint 3n (GiB

Total Memory Footprint 3n (GiB N
2235 44.70 " 67.06 89.41 111.76
0.4

2235 44.70 67.06 89.41 11%.7(‘,
15

-~ CPU-only —e— Hybrid: Load Imbalance
+-4+= GPU-only

=101 —e— Hybrid

38

-

Load Imbalance
()

0.0 -
1 2 3 1 5 1 2 3 4
Size x10° (n) Size x10° (n)
(@) (b)

o

Figure 5: (a) Response time vs. input size (n) comparing CPU-
only, GPU-only, and hybrid batched predecessor search algo-
rithms, where the total memory footprint, 3n, is plotted in
GiB on the top horizontal axis. (b) The load imbalance of the
hybrid algorithm in (a).

of a and f from microbenchmarks, we compute f = 0.54 (the
fraction of queries sent to the CPU). Figure 5(a) plots the response
time vs. the input size of the search, query and result set arrays
(n), where the total memory footprint is 3n. The execution time
for both CPU-only and GPU-only algorithms are shown, which
demonstrates that the CPU is more efficient than the GPU. The
hybrid approach that splits the queries between CPU and GPU is
more efficient than CPU-only. For instance, when n = 5 X 10°, the
speedup of the hybrid approach over CPU-only is 1.18%, which is
respectable, given that the GPU is limited by both PCIe bandwidth
and is typically unsuitable for memory-bound database primitives.

Figure 5(b) plots the fraction load imbalance for the hybrid algo-
rithm!, which illustrates that the model does not accurately predict
an even split for the batched predecessor search. We find that the
fraction load imbalance is between 0.16 and 0.32. This large load
imbalance is due to our assumption that all data transfers are over-
lapped. For this algorithm, we find that there are time periods
where HtoD and DtoH data transfers do not occur concurrently.
This degrades the GPU’s expected throughput.

4.4 Multiway Merge

From Equation 6, we obtain f = 0.47 for the fraction of queries
sent to the CPU. We evaluate the performance of the model for
different values of k where k € {2, 8,32}, where the size of each
sublist S; = % i = 1,2,...,k. Note that due to the amount of
memory required to perform multiway merging on the device, we
set np = &ko().z Figures 6(a), (c), and (e) plot algorithm response
time vs. input size when k = 2, 8, and 32 respectively, and similarly
Figures 6(b), (d), and (f) plot hybrid load imbalance vs. n.

For k = 2 we see the CPU-only algorithm outperforms both the
GPU-only and hybrid algorithms for n < 8.0x10° (Figure 6(a)). This
results in an average slowdown of 0.77x for the hybrid algorithm.
When n = 8.0x10°, we observe a speedup of 1.03x, and thus predict
that for n > 8.0 x 107 the hybrid algorithm will provide a speedup

!Load imbalance is computed as: |[TCPV — TOPU /T, where TCPV and TCPU are
the times when the CPU and GPU finish executing their batches, respectively, and T
is the total response time.

ZBecause we do pairwise merging, and in order to fulfill the assumption of overlapping
data transfers, we allocate memory on the device for 2 - k - ﬁ - ng 64 bit integers,
where ng is the number of CUDA streams. Therefore, we cannot use a constant value
of ny, across all values of k.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Total Memory Footprint 2n gGiB) Total Memory Footprint 21 gGiB)
149 208 447 506 745 894 1043 1192 149 208 447 506 745 80.4 1043 1102
15 1.00
—-#- CPU-only —&— Hybrid: Load Imbalance
-=+4-+ GPU-only 0.75
= 101 —e— Hybrid e

\‘_’_‘\.—*\‘

Load Imbalance
&

12 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Size x10° (n) Size x10° (n)
@ (b)
Total Memory Footprint 2n gGiB) Total Memory Footprint 2n (GiB}
2[}10 208 ALT 506 745 894 1043 119.2 J}w 208 447 59.6 745 804 1043 1192
bl
—-- CPU-only —— Hybrid: Load Imbalance
154 ¥ GPU-only
—e— Hybrid = 0.2

6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 !
Size x10° (n)

Size x10° (n)
© (d)
Total Memory Footprint 2n gGiB Total Memory Footprint 2n (GiB?
149 208 AL7 506 745 804 1043 119.2 19 208 447 59.6 745 894 1043 119.2

1
0.5
| -~ cPU-only A
20+ 4+ GPU-only ¥ 4

—@— Hybrid: Load Imbalance

2 3 4 5 6 7 8
Size x10° (n)

SIS

Load Imbalance

—

—

Size x10° (n)
(e

Figure 6: (a), (c), and (e) Response time vs. input size (n)
when k = 2,8,32 respectively, comparing CPU-only, GPU-
only, and hybrid multiway merge algorithms, where the to-
tal memory footprint, 2n, is plotted in GiB on the top hori-
zontal axis. (b), (d), and (f) The load imbalance of the hybrid
algorithm in (a), (c), and (e).

over the CPU-only algorithm. In Figure 6(b), we see load imbalances
between 0.42 and 0.56, with an average of 0.48. In Section 4.6 we
elaborate on the cause of the load imbalance in the multiway merge
algorithm.

When k = 8, we find that the GPU outperforms the CPU for each
value of n. We observe in Figure 6(c) the effectiveness of the hybrid
algorithm, which achieves a speedup over both the CPU-only and
GPU-only algorithms. For example, when n = 8 x 10°, the speedup
is 1.40x over the GPU-only approach, and 1.95X over the CPU-only
algorithm. Overall, an average speedup of 1.50X is observed over
the GPU-only algorithm. Figure 6(d) plots the load imbalance vs.
n. We find load imbalance between 0.04 and 0.15, with an average
of 0.09. This indicates that the value of f selected by the model
provides good load balancing and results in good performance for
multiway merging when k = 8.

In the case where k = 32, we again see the hybrid algorithm
resulting in speedup over the CPU-only and GPU-only algorithms.
An average speedup of 1.83x is obtained over the CPU-only al-
gorithm, while an average speedup of 1.17X is observed over the
GPU-only algorithm (Figure 6(e)). However, we see further degra-
dation of CPU-only performance with growing values of n, and

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright

32 6

7
o= k=256 E -~ CPUonly =k |
164 —— ki =1024 - 54 W CPUonly =32 |
= h\e R — | = GPU-only n
—_— /
) = | —e— Hybrid /
£ " £ o
= , = 5’_ I o
——u--u
2 2
VRN e@POg AR A
1t (buckets per pass) k
(a) (b)

Figure 7: (a) Average response time vs. u for several k values
when n = 10°. (b) Average response time vs. k for CPU-only,
GPU-only, and hybrid algorithms where n = 10°.

Total Memory Footprint 3n (GiB

R T (GiB? 76 2235 4470 67.06 89.41 111.76

2235 44.70 67.06 89.41 11

20
16 —-&- CPU-only o —— Hybrid: Load Imbalance
)1 -4+ GPU-only POt
& o] —e— Hybrid =02
P)
E g £
E 201 /\"’\
4 S
0 0.0 -
1 2 3 4 5 1 2 3 4 5
Size x10° (n) Size x10° (n)
@ (b)

Figure 8: (a) Response time vs. input size (n) comparing CPU-
only, GPU-only, and hybrid partitioning algorithms for k =
1024 buckets, where the total memory footprint, 3n, is plot-
ted in GiB on the top horizontal axis. (b) The load imbalance
of the hybrid algorithm in (a).

thus the performance of the hybrid algorithm is reduced. Consider
the case where n = 8.0 X 10°. Here a speedup of 1.02x is achieved
over the GPU-only algorithm, and we expect that for n > 8.0 x 10°
the GPU-only algorithm may outperform the hybrid algorithm. Fig-
ure 6(f) displays an average load imbalance of 0.28, demonstrating
that the model does not accurately predict a good value of f for
k =32.

4.5 Partitioning

As discussed in Section 3.6.3, our CPU partitioning algorithm relies
on the additional parameter, y, that determines the number of
rounds (and therefore amount of work) that the CPU must perform.
This in turn effects the fraction of work, f, that is assigned to the
CPU by the hybrid algorithm. Figure 7(a) plots the average response
time of CPU-only partitioning versus y, for several values of k and
n = 10°. These results indicate that using too small or too large a
value of y significantly degrades performance. This is expected, as
using a small value of y results in extra passes through memory,
while too large a value results in more cache misses. Thus, on our
platform we select y = 32 for all experiments.

Recall that the CPU-only and GPU-only algorithms perform
different amounts of work based on k and p. Thus, the number
of buckets, k, has a different impact on the performance of each
approach. Figure 7(b) plots the average response time of each al-
gorithm for varying k on inputs of n = 10° elements. When k is

Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

10 T 10

—&— Total time

Time (s)
Time (s)

—&— Total time

20 T

—&— Total time

0 !

0 : - , 0 -
0.00 025 050 075 100 0.00 0.25

f (Fraction Computed on CPU)
(a) Batched Predecessor Search, model: f = 0.54.

0.50
f (Fraction Computed on CPU)

(b) Multiway Merge, model: f = 0.47.

025 050 075 1.00
f (Fraction Computed on CPU)

(c) Partitioning, model: f = 0.31.

075 1.00

Figure 9: Hybrid model accuracy for all algorithms. The total response time, TPV and TOPU vs. f, are plotted, where T€PU
and TSPV are the times when the CPU and GPU finish computing their work. We show n = 4.0 x 10° for all algorithms. The
vertical dashed line in each plot denotes the modeled value of f. In (b) we use k = 8 for multiway merging, and in (c) we

perform partitioning with k = 1024 and p = 32.

very small (< 32), the CPU-only algorithm achieves the best perfor-
mance because only one pass is performed (¢ > k) with minimal
cache misses. However, for large k, using p = k (only one pass
through memory) results in many more cache misses, degrading
performance. Thus, for reasonably large k (i.e., k > 32), the hybrid
algorithm achieves the best performance.

We consider partitioning into k = 1024 buckets in experiments
hereafter. Using 1 = 32, k = 1024, and the o and f values measured
in Section 4.2, from Equation 8 we compute f = 0.307 for our hybrid
algorithm. Figure 8(a) plots the average execution time of the CPU-
only, GPU-only, and hybrid (using f = 0.3) partitioning algorithms
for various input sizes. We see that, across all input sizes, the hybrid
algorithm provides the best performance. Figure 8(b) plots the load
imbalance of the hybrid partitioning algorithm and indicates that
the f = 0.3 selected by our model provides good load balancing.
While we achieve good load balancing, the overheads of our hybrid
approach (e.g., avoiding race conditions when updating buckets)
reduces the maximum speedup that we achieve. Nevertheless, our
hybrid algorithm achieves an average speedup of 1.19X and 1.43X
over the GPU-only and CPU-only algorithms, respectively.

4.6 Comparison of Hybrid Algorithms:
Accuracy of Splitting the Work

For each algorithm (batched predecessor search, multiway merge,
and partitioning), we used the load imbalance between architectures
as a measure of how well the model split the work between the
CPU and GPU. Figure 9 plots the total time, TPV, and TPV vs,
f (the fraction of work computed on the CPU) for each algorithm,
where the modeled value of f is shown by the vertical dashed line.
For consistency, we show a single value of n = 4 x 10 across all
algorithms. The times TPV and TCFU are when the respective
architecture finishes computing their batches, thus the total time is
roughly max(TCPU, TGPU),

Regarding the batched predecessor search (Figure 9(a)) we ob-
serve that the model predicts a very good value for f. The modeled
value is f = 0.54, and the best value in the plot is f = 0.60. How-
ever, from Figure 5(b) we find that the load imbalance is 0.16. This

shows that even if the model can predict a good value for f, small
differences in f can yield significant load imbalance for the batched
predecessor search.

Figure 9(b) demonstrates the accuracy of the model’s predic-
tion of f for multiway merging when k = 8. We observe that the
optimal value of f is almost exactly the value predicted by our
model. Furthermore, we observed in Figure 6(d) that the model
very accurately predicts the value of f when k = 8, where the load
imbalance is between 0.04 and 0.16. However, we see in Figure 10
that plots the total response time for CPU-only and GPU-only vs.
k (where n = 4 x 10°), that the value of k greatly impacts CPU-
only performance, and thus, the accuracy of the model degrades
for other values of k. This explains the high load imbalance in Fig-
ure 6(b) and (f). We find that the value of k has a non-negligible
impact on CPU-only response time, which suggests that multi-
way merging is not entirely memory-bound, and computation has
an impact on performance. Since our model does not account for
computation, the model’s accuracy degrades for some values of k.

12

104~ GPU-only .
w4+ CPU-only :
________ -
-—-—--r:,r--":: '''' -

»

Time (s)
(3] = o [o2]

2 4 8 16 32
Number of Sublists (k)
Figure 10: Response time vs. number of sublists (k) for the
multiway merge algorithm, where both CPU-only and GPU-
only are shown. We show n = 4 x 10°.

As discussed in Section 3.6, for partitioning our model takes into
account the impact of k on CPU performance, as the CPU-only
algorithm accesses more data than the GPU-only algorithm. With
k = 1024 and p = 32, the CPU version must perform two passes
through memory, thus accessing twice as much memory as the GPU.
As a result, our model predicts a smaller fraction of work be given

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

to the CPU (i.e,, f = 0.307). Figure 9(c) indicates that the model
prediction is quite accurate, with the best performance achieved
when f = 0.35 being only slightly faster than the predicted value
of 0.3.

Since our model accurately predicts a good value of f, this sug-
gests that we are achieving peak bandwidth utilization between
main memory and the CPU, and between main memory and the
GPU’s global memory over PCle. If we did not achieve peak band-
width utilization, then our model would yield an inaccurate value

of f.

4.7 Discussion

Our model is able to accurately split work between CPU and GPU
architectures. This verifies our assumptions about these memory-
bound database algorithms and lets us make several important
observations that we discuss as follows.

(1) The external memory model is a powerful starting point for
memory-bound algorithms — we can simply ignore the cost
of computation and focus on the two performance drivers:
main memory accesses and PCle data transfers.

(2) By focusing on the two performance drivers outlined above,
we learn that algorithms with more random memory ac-
cesses (i.e., partitioning) are better suited to the GPU, be-
cause the internal memory is large and thus, the random
memory accesses do not significantly degrade performance.
In contrast, the CPU relies on its small multi-level cache to
mitigate against slow accesses to main memory; however,
random memory accesses reduce the ability of the modern
CPU to exploit locality, and the cache becomes ineffective.

(3) The experimental results of Section 4 also indicate that the
GPU can substantially improve the performance of algo-
rithms that have sequential data access patterns (i.e., prede-
cessor searches and multiway merging). Sequential memory
access patterns are highly efficient on the CPU due to high
spatial locality and subsequently, low cache miss rates. How-
ever, multi-core CPUs are starved for data due to limited
memory bandwidth.

Since CPU performance is limited by main memory band-

width, increasing the number of CPU cores will not signif-

icantly improve performance on the algorithms studied in
this paper.

(5) Increasing the CPU-GPU data transfer bandwidth (e.g., with
the new NVLink interconnect [32]) will further reduce the
response time of the GPU-only algorithm, making hybrid ac-
celeration over a CPU-only approach even more significant.

“

~

5 CONCLUSIONS

In this work, we considered three memory-bound database prim-
itives that are typically not candidates for acceleration on GPUs
due to the need to perform slow data transfers. However, consider
that the measured read/write bandwidth on our platform with 16
threads is @ = 19.56 GiB/s, whereas the measured unidirectional
PCle bandwidth is § = 11 GiB/s. The “slow” PCle interconnect is
not significantly slower than the read/write bandwidth between
the CPU and main memory. Thus, we can still exploit the GPU

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright

for memory-bound database primitives that are often considered
unsuitable for GPU acceleration.

Our model only considers main memory accesses and data trans-
fers over PCle and ignores computation. The model enables assign-
ing the CPU and GPU batches of work such that low load imbalance
between architectures is achieved. If an algorithm is better suited
to the CPU (i.e., predecessor searches) or the GPU (i.e., multiway
merge, partitioning), then the model will assign more work to the
respective architecture. At first glance, all of the algorithms stud-
ied in this paper are seemingly unsuitable for execution on the
GPU. However, our model and experimental results demonstrate
that there are significant performance benefits to using a hybrid
approach.

New interconnects, such as NVLink [10] or PCle v.5 [33] will im-
prove the benefits of using GPUs for memory-bound algorithms, by
allowing an increase in the fraction of the total work computed on
the GPU. For example, our measured PCle unidirectional bandwidth
is 11 GiB/s (69% of the peak bandwidth of 16 GiB/s). If 69% of PCle
v.5 unidirectional bandwidth (64 GiB/s [33]) is achieved, then in our
model, f = 44 GiB/s. Thus, for batched predecessor searches (as an
example algorithm), our hybrid algorithm would perform only 23%
of the total workload on the CPU. Therefore, if current hardware
trends continue, the GPU will become increasingly suitable for a
much larger class of algorithms, thus expanding the niche of GPU
database operations.

Future work includes investigating whether compression schemes
or other memory transfer optimizations can alleviate some of the
bottlenecks, despite the computational overhead. Also, this work
motivates the study of other fundamental database operations that
have not been considered for GPU acceleration.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant OAC-1849559 and Fonds de la Recherche
Scientifique-FNRS under Grant no MISU F 6001 1.

REFERENCES

[1] Alok Aggarwal and Jeffrey Vitter. 1988. The input/output complexity of sorting
and related problems. Commun. ACM 31, 9 (1988), 1116-1127.

[2] Nathan Bell and Jared Hoberock. 2012. Thrust: a productivity-oriented library
for CUDA. GPU Computing Gems: Jade Ed. (2012).

[3] Kyle Berney, Henri Casanova, Alyssa Higuchi, Ben Karsin, and Nodari Sitchinava.

2018. Beyond Binary Search: Parallel In-Place Construction of Implicit Search

Tree Layouts. In Proceedings of the 32nd IEEE International Parallel and Distributed

Processing Symposium (IPDPS). 1070-1079.

Christian Bshm, Robert Noll, Claudia Plant, and Andrew Zherdin. 2009. Index-

supported Similarity Join on Graphics Processors. In BTW. 57-66.

[5] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. 2001. Parallel programming in OpenMP. Morgan Kaufmann.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[7] Frank Dehne and Hamidreza Zaboli. 2012. Deterministic Sample Sort for GPUs.
Parallel Processing Letters 22, 3 (2012).

[8] Shuai Ding, Jinru He, Hao Yan, and Torsten Suel. 2009. Using Graphics Processors
for High Performance IR Query Processing. In Proceedings of the 18th International
Conference on World Wide Web. 421-430.

[9] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database compression on

graphics processors. Proceedings of the VLDB Endowment 3, 1-2 (2010), 670-680.

D. Foley and J. Danskin. 2017. Ultra-Performance Pascal GPU and NVLink

Interconnect. IEEE Micro 37, 2 (2017), 7-17.

Steven Fortune and James Wyllie. 1978. Parallelism in random access machines. In

Proceedings of the tenth annual ACM symposium on Theory of computing. 114-118.

Henning Funke, Sebastian Bref3, Stefan Noll, Volker Markl, and Jens Teubner.

2018. Pipelined Query Processing in Coprocessor Environments. In Proceedings

—_
=t

=
S

[
o

=
&,

Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives DaMoN’19, July 1, 2019, Amsterdam, Netherlands

of the 2018 International Conference on Management of Data. ACM, 1603-1618.

[13] Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. 1996. The queue-read

queue-write asynchronous PRAM model. In European Conference on Parallel

Processing. Springer, 277-292.

Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. 1997. The Queue-Read

Queue-Write PRAM model: Accounting for contention in parallel algorithms.

SIAM . Comput. (1997), 638-648.

Michael Gowanlock and Ben Karsin. 2019. A Hybrid CPU/GPU Approach for

Optimizing Sorting Throughput. Parallel Comput. 85 (2019), 45-55.

[16] Oded Green, Robert McColl, and David A. Bader. 2012. GPU Merge Path: A GPU

Merging Algorithm. In Proceedings of the 26th ACM International Conference on

Supercomputing (ICS ’12). ACM, 331-340.

Steffen Heinz and Justin Zobel. 2003. Efficient single-pass index construction

for text databases. Journal of the American Society for Information Science and

Technology 54, 8 (2003), 713-729.

[18] Sunpyo Hong and Hyesoon Kim. 2010. An integrated GPU power and perfor-

mance model. In ACM SIGARCH Computer Architecture News, Vol. 38. 280-289.

Kaixi Hou, Weifeng Liu, Hao Wang, and Wu-chun Feng. 2017. Fast Segmented

Sort on GPUs. In Proceedings of the International Conference on Supercomputing

(ICS °17). ACM, Article 12, 10 pages.

[20] Yannis Ioannidis. 2003. Approximations in database systems. In International
Conference on Database Theory. Springer, 16-30.

[21] Ben Karsin, Henri Casanova, and Nodari Sitchinava. 2015. Efficient batched
predecessor search in shared memory on GPUs. In 2015 IEEE 22nd International
Conference on High Performance Computing (HiPC). 335-344.

[22] Ben Karsin, Volker Weichert, Henri Casanova, John Iacono, and Nodari Sitchinava.
2018. Analysis-driven Engineering of Comparison-based Sorting Algorithms
on GPUs. In Proceedings of the 2018 International Conference on Supercomputing.
86-95.

[23] Jinwoong Kim, Won-Ki Jeong, and Beomseok Nam. 2015. Exploiting Massive Par-
allelism for Indexing Multi-Dimensional Datasets on the GPU. IEEE Transactions
on Parallel and Distributed Systems 26, 8 (2015), 2258-2271.

[24] Jinwoong Kim, Sul-Gi Kim, and Beomseok Nam. 2013. Parallel multi-dimensional
range query processing with R-trees on GPU. J. Parallel and Distrib. Comput. 73,
8 (2013), 1195-1207.

[25] Kishore Kothapalli, Rishabh Mukherjee, M Suhail Rehman, Suryakant Patidar,
PJ Narayanan, and Kannan Srinathan. 2009. A performance prediction model
for the CUDA GPGPU platform. In 2009 IEEE International Conference on High
Performance Computing. IEEE, 463-472.

[26] Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. 2010. GPU sample sort. In

2010 IEEE International Symposium on Parallel & Distributed Processing. 1-10.

Michael D Lieberman, Jagan Sankaranarayanan, and Hanan Samet. 2008. A fast

similarity join algorithm using graphics processing units. In 2008 IEEE 24th Intl.

Conf. on Data Engineering. IEEE, 1111-1120.

[28] Nimrod Megiddo and Dharmendra S. Modha. 2004. Outperforming LRU with an

Adaptive Replacement Cache Algorithm. Computer 37, 4 (2004), 58-65.

Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous

Computing Techniques. ACM Comput. Surv. 47, 4, Article 69 (July 2015), 35 pages.

[30] Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. 2016. Parallel Tree Traversal

for Nearest Neighbor Query on the GPU. In 45th Intl. Conf. on Parallel Processing.

113-122.

NVIDIA. 2017. CUDA Programming Guide 9.0. http://docs.nvidia.com/cuda

Accessed: 17-05-2019.

[32] NVIDIA. 2017. Volta. http://images.nvidia.com/content/volta-architecture/pdf/

volta-architecture-whitepaper.pdf Accessed: 31-01-2019.

PCI-SIG. 2017. PCI-SIG DevCon 2017 Update. https://pcisig.com/sites/default/

files/files/PCI-SIG%20DevCon%202017%20Press%20Deck.pdf Accessed: 23-02-

2019.

[34] Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of
Main-memory Partitioning and Its Application to Large-scale Comparison- and
Radix-sort. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (SIGMOD °14). 755-766.

[35] Sushil K Prasad, Michael McDermott, Xi He, and Satish Puri. 2015. GPU-based Par-
allel R-tree Construction and Querying. In 2015 IEEE Intl. Parallel and Distributed
Processing Symposium Workshops. 618-627.

[36] D. Schaa and D. Kaeli. 2009. Exploring the multiple-GPU design space. In IEEE
Intl. Parallel & Distributed Processing Symposium. 1-12.

[37] Johannes Singler and Benjamin Konsik. 2008. The GNU libstdc++ parallel mode:
software engineering considerations. In Proceedings of the 1st international work-
shop on Multicore software engineering. ACM, 15-22.

[38] David Taniar and J. Wenny Rahayu. 2002. Parallel Database Sorting. Inf. Sci. 146,
1-4 (Oct. 2002), 171-219.

[39] Vassilis J Tsotras and Nickolas Kangelaris. 1995. The snapshot index: an I/O-
optimal access method for timeslice queries. Information Systems 20, 3 (1995),
237-260.

[40] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103-111.

[14

[15

[17

[19

[
)

[29

(31

[33

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Problem Statement
	2.2 Modeling Studies
	2.3 Database Primitives Explored in this Work
	2.4 Data Transfer Optimizations

	3 Hybrid Algorithms
	3.1 Saturated Bandwidth Assumption
	3.2 Optimality Assumption
	3.3 Hybrid Primitives Using Batches
	3.4 Batched Predecessor Search
	3.5 Multiway Merging
	3.6 Partitioning

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Microbenchmarks
	4.3 Batched Predecessor Search
	4.4 Multiway Merge
	4.5 Partitioning
	4.6 Comparison of Hybrid Algorithms: Accuracy of Splitting the Work
	4.7 Discussion

	5 Conclusions
	Acknowledgments
	References

