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ABSTRACT

Many database operations have a low compute to memory ac-

cess ratio. In heterogeneous systems, where a graphics processing

unit (GPU) is interconnected via PCIe, the data transfer bottleneck

is perceived as insurmountable to achieving performance gains

on these memory-bound database primitives. On the other hand,

several compute-bound database operations have been shown to

achieve significant performance gains using the GPU. This leads

to CPU-only memory-bound applications having an increasingly

non-negligible impact on database query throughput. In this pa-

per we examine several of these overlooked algorithms, including

(i) batched predecessor searches; (ii) multiway merging; and, (iii)

partitioning. We examine the performance of parallel CPU-only,

GPU-only, and hybrid CPU/GPU approaches, and show that hybrid

algorithms achieve respectable performance gains. We develop a

model that considersmainmemory accesses and PCIe data transfers,

which are two major bottlenecks for hybrid CPU/GPU algorithms.

The model lets us analytically determine how to distribute work

between the CPU and GPU to maximize resource utilization while

minimizing load imbalance. We show that our model can accurately

predict the fraction of work to be sent to each architecture, and

consequently, confirms that these overlooked database primitives

can be accelerated despite their memory-bound nature.

CCS CONCEPTS

· Information systems→ Data management systems; ·Comput-

ing methodologies→ Parallel algorithms; · Computer systems

organization → Single instruction, multiple data.
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1 INTRODUCTION

Many compute-intensive database operations have been paral-

lelized using new hardware such as graphics processing units

(GPUs). Such operations include index searches [23, 30, 35], join

operations [4, 27], and range queries [24]. While compute-intensive

operations have seen performance gains using GPUs, many data-

base primitives have not been accelerated due to their perceived

work-efficiency. Typically, such algorithms perform many opera-

tions in-memory and have a low compute to memory access ratio.

These algorithms are generally considered to be memory-bound

and are not considered as candidates for acceleration. However,

as more computationally intensive database operations become

less expensive through the exploitation of massively parallel ar-

chitectures, some of these overlooked algorithms begin to have a

non-negligible impact on database query throughput.

One approach to improve the performance of this class ofmemory-

bound algorithms is to develop hybrid parallel algorithms that use

both CPU and GPU resources, where each architecture performs

part of the total computation. Several algorithms have been de-

signed for parallel computation on multi-core CPUs, which split

the work between processing elements. However, most GPU re-

search is dedicated to GPU-only approaches which solve the entire

computation on the GPU. This is a missed opportunity, as both the

CPU and GPU can be used to compute these database primitives.

In current heterogeneous CPU/GPU systems, the GPU global

memory bandwidth is an order of magnitude higher than the CPU-

GPU interconnect (e.g., PCIe v3.0 has 32 GiB/s bidirectional band-

width [33] and Nvidia Volta has 900 GiB/s global memory band-

width [32]). Thus, for data-intensive memory-bound algorithms,
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the CPU-GPU interconnect is the performance bottleneck. How-

ever, if this bottleneck can be overcome, there is an opportunity to

exploit the GPU’s high memory bandwidth.

In this paper, we propose accelerating the unacceleratableÐwhich

we define asmemory-bound database primitives that are well-suited

to a hybrid CPU/GPU execution but not necessarily a GPU-only

execution. As a demonstration of the potential improvement over

CPU-only primitives, we develop hybrid CPU/GPU algorithms to

efficiently solve the following problems: (i) batched predecessor

searches; (ii) multiway merging; and, (iii) k-way partitioning.

These three database primitives are used in several database

applications. For instance, partitioning and multiway merging are

used in several sorting algorithms which are used in łdistinctž and

łorder byž SQL queries [38]. Multiway merging is useful in other

contexts, such as indexing [17], and partitioning is used in many

database approximation problems [20]. Predecessor searches are

frequently used as part of index searches [39].

Algorithms that solve the three database primitives onmulti-core

CPUs are dominated by main memory accesses. And, as described

above, the primary bottleneck in GPU algorithms are CPU-GPU

data transfers. Thus, we focus on main memory accesses when

modeling both CPU and GPU performance. Since both the CPU and

GPU access main memory in łblocksž and have internal caches, we

use the well-known external memory (EM) model [1] (also known

as the disk access model (DAM)). To minimize memory accesses,

we base our CPU, GPU, and hybrid approaches on algorithms that

are known to be optimal in the EM model.

The external memory model considers a fixed internal memory

sizeM , block size B, and accessing a block of B elements (called an

I/O) has unit cost. All computation in internal memory is considered

free. While this model is well-known, it oversimplifies the perfor-

mance impacts of modern memory systems. For example, CPUs

have multi-level cache hierarchies and use approximate łLRU-likež

page replacement policies [28] that are difficult to model. Addition-

ally, GPU memory transfers can be overlapped and rely on pinned

memory buffers to achieve peak throughput [15]. Thus, rather than

considering a fixed memory size M and block size B, we use the

total number of main memory elements loaded/stored as our perfor-

mance metric. We base our approaches on EM-optimal algorithms

to minimize main memory accesses by both the CPU and GPU,

and use benchmarks and experimental results to further improve

performance on our hardware platform. In Table 1 we summarize

the algorithms that we consider in this work, along with the total

number of elements loaded/stored in main memory, as well as the

total work performed, according to the standard RAM model [6].

See Table 2 for descriptions of the parameters used. To simplify

our analysis, we omit small additive terms (e.g., +k) from the total

number of main memory accesses. We note that, in our GPU algo-

rithms, since we overlap data transfers to and from the GPU, the

total data accessed is the maximum unidirectional data transferred

(not the total elements accessed in main memory).

In the context of hybrid CPU/GPU algorithms formemory-bound

database primitives, this paper makes the following contributions:

• We show that the EM model can be used to design efficient in-

memory hybrid CPU/GPU memory-bound database primitives.

Table 1: Summary of algorithms considered in this paper, to-

tal elements loaded/stored from main memory, and asymp-

totic time complexity in the RAMmodel. We omit small ad-

ditive terms for loads/stores and, for the GPU, we compute

it as themaximum unidirectional data transferred, since we

overlap data transfers. The parameter µ depends on thehard-

ware which is optimized experimentally.

Algorithm Arch. Elements accessed in
memory

RAM Complexity

Batched Pred. Search CPU 3n O (n)
Batched Pred. Search GPU 2n O (n logn)
Multiway Merge CPU 2n O (n logk )
Multiway Merge GPU n O (n logk )
k -way Partition CPU 2n ⌈logµ k ⌉ O (n logk )

k -way Partition GPU n O ((n+nbk ) log
n
nb

)

• We demonstrate that when the CPU and GPU require the same

amount of data transferred into their respective architectures per

work unit computed, the best hybrid performance is achieved

when the majority of computation is performed by the CPU.

• We find that when an algorithm requires a large memory cache

to avoid many random memory accesses, the hybrid algorithm

achieves the best performance when the majority of the work is

assigned to the GPU.

• We show that our model is very accurate at splitting the work

between CPU and GPU architectures.

• Across most experimental scenarios we find that the hybrid

CPU/GPU database primitives outperform CPU- and GPU-only

approaches.

The paper is organized as follows. Section 2 outlines related

work. Section 3 describes the hybrid database primitives and models

that we propose. In Section 4 we experimentally demonstrate the

effectiveness of the hybrid algorithms, and the utility of the models.

Finally, Section 5 concludes the paper.

2 BACKGROUND & RELATEDWORK

In what follows, we give an overview of the problem, then we

discuss several categories of related work, including GPU modeling

studies, the database primitives that we implement in this work,

and optimizations related to data transfers.

2.1 Problem Statement

For each of our database primitives we implement CPU-only, GPU-

only, and hybrid CPU/GPU algorithms.We consider a platformwith

multi-core CPUs and a GPU, where the total response time includes

all data transfers to and from the GPU and related overheads. The

final result of each algorithm is stored in main memory. We assume

that each algorithm can exceed the GPU’s global memory capacity.

However, each algorithm may not exceed main memory capacity,

as we do not consider the impact of disk accesses in this work.

2.2 Modeling Studies

There is a substantial body of work modeling the performance of

applications on GPUs and general models of GPU computation.

For example, Schaa and Kaeli [36] propose a multi-GPU model for
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predicting application response time. The model considers multi-

GPU contention for PCIe bandwidth, network bandwidth, and disk

access throughput. Their model achieves high accuracy across six

applications. Another model [25] combines ideas from the BSP [40],

PRAM [11], and QRQW [13, 14] models to create a general model

of GPU computation. Other works model GPU performance vs.

power trade-offs [18], which are of particular importance in large

distributed-memory clusters that consume significant power.

In contrast to some of these previous efforts, we do not consider

the cost of computation. Also, we address the question of splitting the

work between CPU and GPU architectures, instead of focusing on

GPU-only algorithms. To our knowledge, no other works address

modeling the work splitting strategy that we propose in this paper.

2.3 Database Primitives Explored in this Work

In general, many studies are łGPU-onlyž, and only optimize GPU

computation, while minimally involving the host (e.g., using the

host to perform data transfers, and other operations peripheral to

the computation itself). However, there is a growing trend towards

using both the CPU and the GPU to maximize resource utilization

(see Mittal and Vetter [29] for an overview of CPU/GPU approaches

and classifications). Many such CPU/GPU algorithms have signif-

icant computational requirements. We depart from these studies,

since we consider highly memory-bound algorithms with minimal

computation that are not typical candidates for GPU acceleration.

To reiterate, our problem requires computing the result and trans-

ferring it back to the host. Therefore, many of the advancements in

the GPU algorithms we study are not applicable to our scenario, as

the output of these algorithms resides on the GPU, and not on the

host. Typically these GPU-efficient algorithms are used as a sub-

routine for other GPU kernels, so hybrid approaches such as ours

can use them to maximize overall performance. For completeness,

below we discuss advances in the GPU primitives that we consider

in this work.

Since predecessor searches are memory bound, few works have

considered optimizing them on GPUs [3, 21]. Batched predeces-

sor searches on the GPU were optimized for execution in shared

memory by Karsin et al. [21]. This work focuses on avoiding bank

conflicts in shared memory and finds that their two algorithms

that eliminate or avoid bank conflicts are more efficient than their

naive reference implementation. Berney et al. [3] considered the

performance of predecessor search in global memory on the GPU

by looking at different search tree layouts. However, neither of

these works consider the cost of CPU/GPU data transfers, which is

the focus of this work.

Merging is a building block of many fundamental algorithms

(i.e., sorting), so several previous works have looked at ways of

optimizing it on GPU architectures [16, 19, 22]. Green et al. [16]

and Hou et al. [19] optimized pairwise mergesort algorithms, and

Karsin et al. [22] designed a GPU-efficient multiway mergesort

algorithm.

Partitioning, like merging, is a building block of some sorting

algorithms (e.g., distribution sort). While it has been extensively

studied on the CPU [34], it has only been considered on the GPU

in the context of sorting, i.e., it has been used as a subroutine for

GPU-efficient distribution sort algorithms [7, 26]. We note that the

algorithms that these papers propose were designed for older GPUs

and may not perform as well on newer architectures [22].

Many of the efforts in the literature outlined in this section

focus on improving the performance of GPU computation. Since

the CPU/GPU performance of the algorithms that we consider are

bound by data transfers (PCIe bandwidth), we ignore the cost of

computation. Thus, we do not consider such optimizations in this

work.

2.4 Data Transfer Optimizations

The work of Fang et al. [9] studied reducing GPU memory transfer

overheads by compressing data on the CPU. Similarly, Funke et

al. [12] improve query throughput by using compiler optimizations

that merge operations together and reduce bandwidth demand.

Since we consider hybrid algorithms, we wish to avoid the addi-

tional CPU computation overhead of these techniques, so we do

not use them in this work.

Gowanlock and Karsin [15] proposed a heterogeneous sorting

algorithm for CPU/GPU architectures. They demonstrated that

there are several overlooked bottlenecks in CPU/GPU computa-

tion, including pinned memory allocation cost and host-to-host

memory copies. We employ some of their strategies for our hy-

brid algorithms. In particular, we use multiple CUDA streams to

overlap PCIe data transfers in each direction with computation on

the CPU and GPU. Also, we use small pinned memory buffers to

avoid the expensive allocation cost. This is particularly important

for the memory-bound algorithms that we study. Because the total

execution time is low relative to compute-bound applications, small

sources of overhead can have a large impact on performance.

3 HYBRID ALGORITHMS

We use the notation in Table 2 when describing our algorithms.

Table 2: Summary of notation and descriptions.

Description
n Input size.
p The number of CPU cores.
α Measured read/write bandwidth between CPU and main memory for the

CPU component of a hybrid algorithm.
β Measured unidirectional bandwidth between the GPU’s global memory

and main memory over PCIe.
µ Number of partition buckets in a single pass. The parameter is a function

of the memory system and we optimize it experimentally.
nb The number of batches. The total work is divided into these disjoint

independent workloads.
HtoD A data transfer from host to device.
DtoH A data transfer from device to host.

3.1 Saturated Bandwidth Assumption

As discussed in Section 1, we use the external memory model to

ensure that our algorithms minimize the number main memory ac-

cesses. For the CPU and GPU, this translates to minimizing the total

number of main memory elements loaded or stored. For the GPU,

this corresponds to the total amount of data transferred from main

memory to global memory. However, data transfer time depends on

platform-specific characteristics regarding memory bandwidth and

data transfer efficiency. Thus, to avoid over-complicating the model,
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we assume that all data transfers saturate memory bandwidth and

achieve peak throughput. On the CPU, this corresponds to the peak

bandwidth of main memory and for the GPU this is the peak PCIe

bandwidth.

Since the algorithms we consider are memory bound and easily

parallelizable, we are able to saturate both main memory bandwidth

and PCIe bandwidth. We saturate main memory bandwidth using

the CPU by employingmultiple threads for reading/writing data. On

the GPU, we use several CUDA streams to saturate PCIe bandwidth,

where CPU threads orchestrate memory transfers between the host

and GPU. We also use the pinned memory data transfer techniques

of Gowanlock and Karsin [15] to maximize CPU-GPU data transfer

performance.

3.2 Optimality Assumption

In the CPU-only, GPU-only, and hybrid variants of the algorithms

that we describe in Table 1, all of the algorithms are optimal in

the external memory model. We transfer the minimum amount of

data between main memory and the respective architectures. This

assumption guides the design of I/O efficient database primitives.

3.3 Hybrid Primitives Using Batches

The three algorithms that we consider are parallelizable across ar-

chitectures while minimizing memory accesses. We accomplish this

by breaking up the total work into several batches of divisible work-

loads that can be computed independently on either architecture.

We define nb to be the number of batches. We set nb to be suffi-

ciently high such that the total work for each batch is low to avoid

the effects of load imbalance at the end of the computation. For

batched predecessor search and partitioning, we arbitrarily select

nb = 400, while for multiway merge, we make nb a function of k

to ensure data transfers are sufficiently large to mitigate overheads.

The resulting batch size allows us to execute batches that fit within

global memory while the total memory footprint may exceed global

memory capacity. However, the total memory footprint does not

exceed main memory capacity, as all processing occurs in-memory.

3.4 Batched Predecessor Search

We outline the batched predecessor search as follows. Let A be

a set of keys sorted in non-decreasing order, where each key is

denoted as ai , where i = 1, 2, . . . ,n, and B be a set of queries sorted

in non-decreasing order, where each query is denoted as bj , where

j = 1, 2, . . . ,n. For each query, bj ∈ B, the batched predecessor

search finds the largest value of i , such that ai ≤ bj . While A and B

can vary in size, for simplicity, we assume |A| = |B | = n.

We focus on the batched predecessor search because it can be

used as a subroutine in database operations. Additionally, comput-

ing a single query will be unable to saturate GPU resources.

3.4.1 GPU Algorithm. To exploit the GPU’s massive parallelism, it

is crucial that each query, bj , be independent of all other queries.

Thus, to perform the batch predecessor search on the GPU, we

execute the Thrust library’s [2] upper bound binary search, which

requires O(nlogn) work. Recall that we assume the GPU work is

ignored. Consequently, we only consider data transfer to/from the

GPU. The batched predecessor search requires sending a total of 2n

elements to the GPU (HtoD), and sending n elements from the GPU

back to the host (DtoH ). Considering only the data transferred, the

total data transferred with constant factors is 2n + n = 3n.

Our model assumes that all data transfers are overlapped be-

tween HtoD and DtoH , thus fully exploiting bidirectional PCIe

memory bandwidth. While in practice not all HtoD and DtoH data

transfers will be overlapped, this assumption allows us to negate

some of the data transfer overhead in our model. If we let s and

r be the total number of HtoD and DtoH elements transferred, re-

spectively, then the total data we consider transferred is max(s, r ).

For the batch predecessor search, the data transferred is therefore

max(2n,n) = 2n.

3.4.2 CPU Algorithm. In contrast to the GPU algorithm, the par-

allel CPU algorithm can take advantage of the batched execution.

Instead of performing binary searches, the CPU algorithm executes

a merge find (finding the index without merging) for each bj ∈ B.

Merge find has been used in other algorithms, such as set inter-

section [8]. The algorithm is trivially parallelized by assigning nb
batches of sublists of A and B to each processor, where each pro-

cessor performs a scan over several batches of size n/nb elements

to find the predecessor of each query. Thus, the total work is O(n)

across all p processors.

We read a total of 2n elements from main memory into the CPU,

and write n elements back to main memory. Therefore, the total

data transferred with constant factors is: 2n + n = 3n.

3.4.3 Hybrid Algorithm. To combine the GPU and CPU algorithms,

we split the work between each architecture, where we assign a

fraction of the n queries to the CPU and GPU. As noted in Sec-

tion 3.3, we split the work into a number of divisible workloads

called batches, which allows us to assign work to the CPU or GPU.

For the batched predecessor search, we split A and B into nb value

disjoint batches based on the values in each. This ensures that

all batches can be computed independently on either architecture.

Each batch is denoted as Bi , where i = 1, 2, . . . ,nb . Figure 1 shows

an illustrative example of splitting A and B into disjoint batches.

Since A and B are sorted, we find the pivots in B as a function of

the values in A by performing a binary search for the index that

splits the data based on a given value a ∈ A, such that we obtain

value-disjoint batches. For example, if x ∈ Bi and y ∈ Bi+1, then

x < y. Because the batches are value-disjoint, each batch contains

≈ n
nb

elements fromA and B. Since nb ≪ n, the time to generate the

batches is negligible compared to the time to process the batches.

B . . .B1 B2 B3 B4 B5 Bnb−1 Bnb

A . . .B1 B2 B3 B4 B5 Bnb−1 Bnb

Figure 1: Illustrative example of splittingA and B into value-

disjoint batches for the batched predecessor search.

We model evenly splitting the queries based on PCIe and mem-

ory bandwidth to obtain low load imbalance (i.e., architectures

finish computing their respective queries at similar times). Let β

be the unidirectional bandwidth over PCIe, and α be the memory

bandwidth between the CPU and main memory when simultane-

ously reading and writing, where β and α are given in elements
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per second. For a given platform, β and α can be obtained through

simple microbenchmarks.

The total time to execute the CPU- and GPU-only algorithms are

denoted as TCPU and TGPU , respectively, and we estimate them

to be:

TCPU =
3n

α
and TGPU =

2n

β
. (1)

To split the work between architectures, let f be the fraction

of n elements computed on the CPU, where 1 − f is the fraction

of n computed on the GPU. Using the total work in our model

(Equation 1) and substituting f for n, let

TCPU =
3f

α
, and TGPU =

2(1 − f )

β
. (2)

We compute f as a function of the parameters α and β , and set

TCPU = TGPU , such that we model each architecture completing

its computation at the same time. Therefore,

3f

α
=

2(1 − f )

β
(3)

f =
2α

2α + 3β
. (4)

Thus, given the constants α and β , we obtain the fraction of

the total queries that should be executed on the CPU and GPU to

minimize load imbalance.

3.5 Multiway Merging

We define the problem ofmultiway merging as follows. Given input

arrayA consisting of k sublists, denoted as Sj , where j = 1, 2, . . . ,k ,

each of size n
k
and sorted in non-decreasing order, wewish to output

the n total elements in sorted order. Furthermore, we assume that

k is small enough that we can load elements from each sublist into

memory without degrading CPU cache utilization. In the CPU-only,

GPU-only and hybrid algorithms described below, all are optimal in

the external memory model, as we transfer the minimum amount

of data between main memory and the respective architecture.

3.5.1 GPU Algorithm. Our GPU multiway merge algorithm begins

by dividing A into nb batches that contain elements from all k lists

that form an interval of the sorted result. That is, batch Bi contains

roughly n
nb

elements from A and, if x ∈ Bi and y ∈ Bi+1, then

x < y, for any 1 ≤ i ≤ nb . We define Sij to be the subset of the

sublist Sj that is in batch Bi , so Bi =
k⋃

j=1
Sij . To divide A into these

batches that are value-disjoint and of roughly equal size, we find

pivots that define the range of values contained in each batch. We

consider small values of k in this work to find pivots that divide A

into our nb batches with minimal overhead.

Using a number of CUDA streams (and pinnedmemory to achieve

peak throughput), we transfer batches to the GPU and merge each

batch into a sorted list. We perform this merging on each batch by

repeatedly using the Thrust library’s [2] pairwise merge (e.g., pair-

wise merging k − 1 times). Sorted batches are then transferred back

to main memory. We form the final output by simply concatenating

the sorted batches together (i.e., B1B2 . . . Bnb ).

Figure 2 shows an illustration of splitting the sorted sublists Sj ,

with k = 4 sublists. Each batch is processed by a single CUDA

stream, but multiple streams are used for merging the batches, Bi .

Note that since we assume all bidirectional data transfers are

overlapped in CUDA streams to/from the GPU, our model estimates

that a total of n elements are transferred between main memory

and the GPU.

S4 . . .S1
4 S2

4 S3
4 S4

4 S5
4 S

nb−1

4
S
nb
4

S3 . . .S1
3 S2

3 S3
3 S4

3 S5
3 S

nb−1

3
S
nb
3

S2 . . .S1
2 S2

2 S3
2 S4

2 S5
2 S

nb−1

2
S
nb
2

S1 . . .S1
1 S2

1 S3
1 S4

1 S5
1 S

nb−1

1
S
nb
1

B1 B2 B3 B4 B5 Bnb−1 Bnb

Figure 2: Illustrative example of splitting k = 4 sorted sub-

lists to be transferred to the GPU to be merged. Each indi-

vidual batch Bi is merged using a single CUDA stream.

3.5.2 CPU Algorithm. The CPU algorithm simply uses the GNU

parallel mode extensions [37] to perform a multiway merge. The

algorithm reads a total of n elements into the CPU and writes a

total of n elements back to main memory. Thus, the total number

of elements accessed by this algorithm is 2n.

3.5.3 Hybrid Algorithm. As with the predecessor search, we com-

bine the GPU and CPU algorithms by splitting the work between

each architecture, where we assign a fraction of the nb batches to

the CPU and the GPU. We use the same method of computing f as

we did for predecessor search in Section 3.4.3.

TCPU =
2n

α
and TGPU =

n

β
. (5)

Thus we compute f to be:

f =
α

α + 2β
. (6)

3.6 Partitioning

We consider the problem of k-way partitioning (or simply partition-

ing). Given an unsorted list, A, of n elements, we wish to partition

A into k buckets A1,A2, . . . ,Ak of roughly equal size such that

each bucket is value-disjoint. That is, for any two elements a ∈ Ai
and b ∈ Aj , if i < j, then a < b. This problem is also known as

distribution and is a subroutine of many algorithms, including dis-

tribution sort (also known as multiway quicksort). In the RAM and

EM models, the lower bounds for partitioning n elements into k

buckets isO(n logk) andO( nB logM/B k), respectively. The external

memory bound can be achieved by repeatedly partitioning n into
M
B buckets (which can be done in a single I/O-efficient scan). We

note that if k = n, partitioning is equivalent to sorting.

Partitioning involves (i) finding pivots for each bucket (k total);

(ii) determining which bucket each element is in; and, (iii) moving

each element into contiguous memory with other elements in the

same bucket. Since we focus on the memory-bound łbucketingž

portion of the problem, we assume that the pivots are given and

no more than a constant factor more than n
k
elements will end up
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to the CPU (i.e., f = 0.307). Figure 9(c) indicates that the model

prediction is quite accurate, with the best performance achieved

when f = 0.35 being only slightly faster than the predicted value

of 0.3.

Since our model accurately predicts a good value of f , this sug-

gests that we are achieving peak bandwidth utilization between

main memory and the CPU, and between main memory and the

GPU’s global memory over PCIe. If we did not achieve peak band-

width utilization, then our model would yield an inaccurate value

of f .

4.7 Discussion

Our model is able to accurately split work between CPU and GPU

architectures. This verifies our assumptions about these memory-

bound database algorithms and lets us make several important

observations that we discuss as follows.

(1) The external memory model is a powerful starting point for

memory-bound algorithms Ð we can simply ignore the cost

of computation and focus on the two performance drivers:

main memory accesses and PCIe data transfers.

(2) By focusing on the two performance drivers outlined above,

we learn that algorithms with more random memory ac-

cesses (i.e., partitioning) are better suited to the GPU, be-

cause the internal memory is large and thus, the random

memory accesses do not significantly degrade performance.

In contrast, the CPU relies on its small multi-level cache to

mitigate against slow accesses to main memory; however,

random memory accesses reduce the ability of the modern

CPU to exploit locality, and the cache becomes ineffective.

(3) The experimental results of Section 4 also indicate that the

GPU can substantially improve the performance of algo-

rithms that have sequential data access patterns (i.e., prede-

cessor searches and multiway merging). Sequential memory

access patterns are highly efficient on the CPU due to high

spatial locality and subsequently, low cache miss rates. How-

ever, multi-core CPUs are starved for data due to limited

memory bandwidth.

(4) Since CPU performance is limited by main memory band-

width, increasing the number of CPU cores will not signif-

icantly improve performance on the algorithms studied in

this paper.

(5) Increasing the CPU-GPU data transfer bandwidth (e.g., with

the new NVLink interconnect [32]) will further reduce the

response time of the GPU-only algorithm, making hybrid ac-

celeration over a CPU-only approach even more significant.

5 CONCLUSIONS

In this work, we considered three memory-bound database prim-

itives that are typically not candidates for acceleration on GPUs

due to the need to perform slow data transfers. However, consider

that the measured read/write bandwidth on our platform with 16

threads is α = 19.56 GiB/s, whereas the measured unidirectional

PCIe bandwidth is β = 11 GiB/s. The łslowž PCIe interconnect is

not significantly slower than the read/write bandwidth between

the CPU and main memory. Thus, we can still exploit the GPU

for memory-bound database primitives that are often considered

unsuitable for GPU acceleration.

Our model only considers main memory accesses and data trans-

fers over PCIe and ignores computation. The model enables assign-

ing the CPU and GPU batches of work such that low load imbalance

between architectures is achieved. If an algorithm is better suited

to the CPU (i.e., predecessor searches) or the GPU (i.e., multiway

merge, partitioning), then the model will assign more work to the

respective architecture. At first glance, all of the algorithms stud-

ied in this paper are seemingly unsuitable for execution on the

GPU. However, our model and experimental results demonstrate

that there are significant performance benefits to using a hybrid

approach.

New interconnects, such as NVLink [10] or PCIe v.5 [33] will im-

prove the benefits of using GPUs for memory-bound algorithms, by

allowing an increase in the fraction of the total work computed on

the GPU. For example, our measured PCIe unidirectional bandwidth

is 11 GiB/s (69% of the peak bandwidth of 16 GiB/s). If 69% of PCIe

v.5 unidirectional bandwidth (64 GiB/s [33]) is achieved, then in our

model, β = 44 GiB/s. Thus, for batched predecessor searches (as an

example algorithm), our hybrid algorithm would perform only 23%

of the total workload on the CPU. Therefore, if current hardware

trends continue, the GPU will become increasingly suitable for a

much larger class of algorithms, thus expanding the niche of GPU

database operations.

Futurework includes investigatingwhether compression schemes

or other memory transfer optimizations can alleviate some of the

bottlenecks, despite the computational overhead. Also, this work

motivates the study of other fundamental database operations that

have not been considered for GPU acceleration.
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