GPU-Accelerated Similarity Self-Join
for Multi-Dimensional Data

Michael Gowanlock
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, AZ, US.A.
michael.gowanlock@nau.edu

ABSTRACT

The similarity self-join finds all objects in a dataset that are within a
search distance, €, of each other. As such, the self-join is a building
block of many algorithms. In high dimensions, indexing structures
become increasingly ineffective at pruning the search, making the
self-join challenging to compute efficiently. We advance a GPU-
accelerated self-join algorithm targeted towards high dimensional
data. The massive parallelism afforded by the GPU and high ag-
gregate memory bandwidth makes the architecture well-suited for
data-intensive workloads. We leverage a grid-based GPU-tailored
index to perform range queries, and propose the following optimiza-
tions: (i) a trade-off between candidate set filtering and index search
overhead by exploiting properties of the index; (ii) reordering the
data based on variance in each dimension to improve the filtering
power of the index; and (iii) a pruning method for reducing the
number of expensive distance calculations. Our algorithm generally
outperforms a parallel CPU state-of-the-art approach.

CCS CONCEPTS

« Information systems — Data management systems; « Comput-
ing methodologies — Parallel algorithms; » Computer systems
organization — Single instruction, multiple data.

KEYWORDS

GPGPU, High-dimensional data, Index structure, In-memory data-
base, Query optimization, Self-join

ACM Reference Format:

Michael Gowanlock and Ben Karsin. 2019. GPU-Accelerated Similarity Self-
Join for Multi-Dimensional Data. In International Workshop on Data Manage-
ment on New Hardware (DaMoN’19), July 1, 2019, Amsterdam, Netherlands.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3329785.3329920

1 INTRODUCTION

The similarity self-join is a building block of several algorithms [3, 5,
8, 22, 36], and is fundamental to many established methods [12, 15].
We focus on the distance similarity self-join that finds all objects

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6801-8/19/07...$15.00
https://doi.org/10.1145/3329785.3329920

Ben Karsin
Department of Computer Science
Université libre de Bruxelles
Brussels, Belgium
Benjamin.Karsin@ulb.ac.be

within a Euclidean distance of each other. Self-join research ad-
dresses either low [16] or high [4, 20, 39] dimensionality. Typically,
indexes (e.g., R-trees [29], kd-trees [10], and quad trees [23]) are
used to reduce the number of distance comparisons when perform-
ing neighborhood searches. They accomplish this by eliminating a
large number of points before performing distance comparisons by
pruning the search space. In low dimensionality (low-D), the data
points (or feature vectors) are often more frequently co-located;
therefore, there are often more neighbors on average in compar-
ison to high dimensionality (high-D) [32]. The large number of
resulting candidate points requires in a large number of distance
calculations, which become a performance bottleneck. However,
in high-D, index searches become increasingly exhaustive due to
the well-known curse of dimensionality [9, 21, 34, 45] that requires
searching a large fraction of the dataset. Thus, there is both more
index search overhead, and distance calculations that are needed
to refine potential candidates within e.

Graphics processing units (GPUs) obtain high computational
throughput through massive parallelism and high aggregate mem-
ory bandwidth. The self-join is well-suited for the GPU because it
requires many independent distance calculations. Therefore, the
GPU can be exploited to process increasingly exhaustive searches
necessitated by high dimensional data. In this context, we propose
several optimizations that improve performance on the GPU, and
make the following contributions:

o We exploit trading index filtering power for decreased search
cost to optimize high-D index searches.

e We improve the filtering power of the index by reordering
the data in each dimension using statistical properties.

e We mitigate the cost of reducing index filtering power by
proposing a technique that prunes the candidate set by com-
paring points based on an un-indexed dimension.

e We show that our algorithm is resilient to the worst-case
data distribution.

e We evaluate the performance of our self-join algorithm on a
range of synthetic and real-world datasets and demonstrate
that it outperforms a state-of-the-art algorithm.

The paper is organized as follows. Section 2 provides background
material, Section 3 formalizes the problem, and outlines leveraged
work, Section 4 presents novel self-join optimizations, Section 5
evaluates our approach, and finally, we conclude the paper and
discuss future work in Section 6.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

2 BACKGROUND

In this section, we outline related work on similarity joins in shared
and distributed memory, and GPU indexing techniques. We begin by
outlining the motivation for using the GPU for database operations.

2.1 Motivation: Using the GPU for
Fundamental Database Operations

The proliferation of GPUs to solve problems in many fields of com-
puter science, including within the database community, has been
motivated by several facets of the architecture. The memory band-
width on the GPU is much greater than the CPU [1], which makes
the GPU an attractive architecture for solving data-intensive prob-
lems. Also, the GPU has many cores, which can be most efficiently
utilized for high throughput applications that are common to many
classes of database queries. Furthermore, GPUs have been noted
for having a greater energy efficiency than the CPU for many ap-
plications [42], and have been employed for their relatively low
monetary cost per unit metric (e.g., floating point operations per
second) [30, 44]. Due to the characteristics outlined above, the most
powerful supercomputers rely on GPUs. At the time of writing,
five of the top ten supercomputers in the world use GPUs (Top500
November 2018 listing [2]). The architectural features of the GPU
are well-suited to many parallel database applications; therefore,
we advocate for exploiting the GPU to improve the performance of
the distance similarity self-join.

2.2 Similarity-Joins and the State-of-the-art

The similarity-join is a well-studied problem [6, 8, 12, 14, 20, 33].
Here, we discuss those works that address high-D data. GESS [20]
assigns feature vectors to hypercubes, and then performs an in-
tersection query on these hypercubes to compute the similarity
join. The method relies on data replication and duplication removal
from the result set. LSS [39] utilizes the GPU, and transforms the
similarity join into a sort-and-search problem. Interval searches are
needed, and the authors use space filling curves to reduce interval
size and search overhead. The Super-EGO algorithm [33] has been
shown to be effective for similarity-joins on both low-D and high-D
data. The algorithm uses the “epsilon grid order” [13] method. It
uses a non-materialized grid to find nearby points that may be
within the search distance. Then, based on a query point’s cell and
nearby cells, the algorithm prunes the search for points by filtering
on n-dimensional coordinates. Unlike previous work [13], Super-
EGO exploits statistical properties of the data. In [33], Super-EGO
outperforms GESS [20], and LSS [39], so we compare our work to
Super-EGO.

2.3 GPU Self-Join on Low-Dimensional Data

Gowanlock and Karsin [27] studied the self-join problem on the
GPU for low-D data using a grid-based index, and demonstrated
that between 2 and 6 dimensions, the self-join outperforms both
canonical search-and-refine and state-of-the-art approaches (i.e.,
Super-EGO). They show that index search overhead increases expo-
nentially with dimensionality, and they limit their work to low-D
data. In this work, we use a similar indexing structure, but we
propose optimizations for high-D self-joins.

Michael Gowanlock and Ben Karsin

2.4 Indexing on the GPU

There are two major indexing strategies for the GPU: (i) index-trees,
similar to those that have been shown to provide good performance
on the CPU, such as the R-tree [29, 41]; or (ii) non-hierarchical
indexes, such as grids or binning. Several works propose efficient
indexes for points or other objects on the GPU [15, 26, 34, 35, 37, 46].

Kim et al. [34] designed an R-tree for the GPU to optimize in-
dex searches that avoids many of the drawbacks of executing tree
traversals on the GPU. A major drawback of tree traversals is that
their irregular instructions cause thread divergence. This diver-
gence reduces the parallel efficiency on the GPU due to the single
instruction multiple thread (SIMT) architecture [40]. Later, the same
research group presented a hybrid R-tree indexing approach [35]
that splits the R-tree between the CPU and GPU by assigning parts
of the algorithm with more regular and irregular instruction flows
to the GPU and CPU, respectively. The reduction in irregular in-
structions allows the GPU to achieve better performance. Likewise,
the approach used in [37] for computing range queries on moving
objects using the CPU and GPU addressed many of the idiosyn-
crasies of the GPU’s architecture. Therefore, the design space for
efficient GPU indexing techniques is large, so efficient GPU-only
and CPU/GPU indexing techniques remain largely an open problem
with little consensus on the best indexing approach.

2.5 Distributed-Memory Similarity Joins

High-D self-joins are expensive for even moderate dataset sizes.
While the literature above focus on scaling up the self-join, sev-
eral other works scale out across nodes in a cluster. A MapRe-
duce [19] self-join [24] reduces data duplication compared to pre-
vious work [43], by using “dimension groups”, where they per-
form the self-join on subsets of the data dimensions first, and then
union these subsets to obtain the final result. Similarly, the works
of [17] and [18] use MapReduce for similarity joins, and employ
sampling-based techniques for data partitioning to achieve good
load balancing. Distributed-memory works are not directly rele-
vant to GPU self-joins, as exploiting the GPU requires considering
a much smaller degree of task granularity.

3 PROBLEM OUTLINE & PREVIOUS
INSIGHTS

3.1 Problem Statement

Let D be a database of points (or feature vectors). Each point in the
database is denoted as p;, where i = 1,2,...,|D|. Each p; € D has
coordinates in n dimensions, where each coordinate is denoted as x;
where j = 1,2,...,n. Thus, the coordinates of point p; are denoted
as: p; = (x1,x2,...,%n). We refer to the xj-coordinate value of
point p; as p;(x;). As with most prior related work (Section 2), we
focus on the Euclidean distance. We find all pairs of points that
are within a distance e of each other. We say that points a € D
and b € D are within the e distance when dist(a,b) < €, where
dist(a,b) = \/Z;lzl(a(xj) = b(xj))?. Thus, the result set contains
tuples (a € D, b € D), where a and b are within € of each other.
We assume that the dataset, result, and working memory do not

exceed main memory capacity. However, we accommodate result
sets that exceed the GPU’s global memory capacity.

GPU-Accelerated Similarity Self-Join for Multi-Dimensional Data

The similarity self-join is a special case of the similarity join. If
we let E be a set of entry points in an index (defined similarly to
the definition above) and Q be a set of query points, the similarity
join finds all points in Q within the € distance of E, i.e., Q x¢ E.
In contrast, the self-join is simply E > E. Thus, the self-join is
relevant to the similarity-join problem as well.

The worst-case complexity of the self-join, O(|D|?), can be simply
implemented as a nested loop join [31]. However, as discussed in
Section 2, indexes can be used to reduce the quadratic complexity by
reducing the number of point comparisons by pruning the search.

3.2 Leveraging Previous Insights

In Section 4, we outline our novel methods for performing the self-
join in high-D. However, we leverage several optimizations from the
literature that are relevant to the self-join. In particular, we use the
grid-based GPU index presented by Gowanlock & Karsin [27], that
builds on prior work [28]. These papers also advanced a batching
scheme, which we use to process self-join result sets that may
exceed the GPU’s global memory capacity. We briefly describe the
batching and indexing techniques that we reuse, and note that we
cannot directly use the low-D methods [27] for high-D self-joins.
Grid-Based Indexing on the GPU - We utilize a grid index for
computing the self-join. As mentioned in Section 2, the state-of-
the-art join algorithm for high-D data, Super-EGO [33], also uses
a grid-based technique for efficiently computing the self-join. We
refer the reader to the work of Gowanlock et al. [28] for an in-
depth description of the index, which the authors used in 2-D
for clustering with DBSCAN [22]. A major difference between the
indexing scheme used in this work and that of Gowanlock et al. [28]
is that we do not index empty cells, as the space complexity would
be intractable for high-D (as also discussed in [27]).

The GPU grid index from Gowanlock et al. [28] is constructed as
follows. On the host, the data points, D, are sorted into unit-length
bins in each dimension. This ensures that data points near each
other in the n-dimensional space are near each other in memory.
Each grid cell is of length €, which ensures that for a given point,
only the adjacent cells need to be searched to find points that are
within the € distance. This bounds the search on the GPU to regu-
larize the instruction flow. For demonstrative purposes and without
loss of generality, we assume a grid with edges starting at 0 in
each dimension, and assign points to cells by simply computing
the cell’s n-dimensional coordinates from the point’s (p;) coordi-
nates as follows: (x1/€, x2/€, ... , xp/€). The points are not stored
within the grid structure, rather, the points belonging to a grid cell
are stored in a lookup array that each grid cell references when
finding the points contained within. This minimizes the memory
needed to store the points within a grid cell. Lastly, since we only
store non-empty cells, we create a lookup array that stores the
linearized ids of the non-empty grid cells. As shown by Gowanlock
and Karsin [27], the storage requirements simplify to the size of the
dataset, O(|D|). This compact index structure allows more space
on the GPU to be allocated for other purposes, such as larger input
and result set sizes.

Figure 1 shows an example 2-D grid. The non-empty gray cells
with linearized cell ids are shown. Consider a point in cell 24. To
find all of its neighbors within €, it needs to search the adjacent cells

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

.

2 |=14 18

3 23 | 24

.

6 47

Figure 1: Example of searching the grid index in 2-D. The
non-empty cells are shaded. Numbers refer to linearized cell
ids.

(and its origin cell), which are encompassed by the black dashed
line. In n dimensions, there are 3™ cells to search. However, the
points in the cells are not guaranteed to be within €, so distance
calculations between the query point and all points in cells 18, 23,
24, and 32 are needed to determine which are within €.

The self-join is executed on the GPU with a kernel that uses |D]|
threads. Each thread is assigned a point and finds all neighbors
within the e distance. The threads write the result to a buffer as
key/value pairs, where the key is a point and the value is a point
within € of the key. After all threads have completed finding their
respective neighbors, the key/value pairs are sorted on the GPU,
and returned to the host.

Bounding the search to neighboring cells using the grid reduces

thread divergence, which can degrade GPU performance [40]. This
is because all searches require examining the same number of cells
regardless of the point, and the cells are traversed in the same man-
ner. In contrast, indexes that are constructed based on the data dis-
tribution, such as R-trees, would require irregular searches (threads
take different branches during tree traversals), which would in-
crease thread divergence in a warp.
Batching Scheme — An efficient batching scheme is needed to
incrementally compute the self-join to accommodate result sets
that exceed the GPU’s global memory capacity. We employ the
method from [28], and provide a summary of their work. First, a
kernel is executed that finds all of the neighbors within € for a
fraction of the points in the dataset, which estimates the total result
set size. This kernel invocation takes negligible time in comparison
to the total time needed to execute the self-join, as only a fraction
of points are searched. The number of batches, nj,, are computed
based on a batch size, b, and the estimated total result size.

The batching scheme allows for overlap of data transfers to and
from the GPU, GPU computation, and host-side operations. It is
preferable to overlap these components of the algorithm to maxi-
mize concurrent resource utilization. Thus, we use a minimum of 3
CUDA streams, and hence batches (n;, > 3). We allocate 3 pinned
memory buffers on the host, as they are needed for asynchronous
data transfers [40]. For result set sizes that exceed 3 x 108, we set a

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

batch size of bs = 108 (the total neighbors found within € of each
point). Thus, each stream has a buffer of size bs = 102,

4 HIGH-D SELF-JOIN OPTIMIZATIONS

In this section, we introduce our optimizations that are designed to
improve high-dimensional self-join performance.

4.1 Index Selectivity

In high-D, there are fewer co-located neighbors because, as the
hypervolume increases, the distance between objects increases [32].
However, with increasing dimension, index filtering power de-
creases and search performance degrades. There is a trade-off be-
tween index filtering power and search overhead: reducing search
overhead results in an index with less filtering power, yielding larger
candidate set sizes that are filtered using distance calculations.
The GPU is a suitable architecture for making a trade-off be-
tween filtering power and search overhead, as the GPU is designed
to achieve high computational throughput and thus excels at com-
puting the distances between points in parallel. Therefore, to avoid
the overheads associated with searches in higher dimensions, we
use a less rigorous index search at the cost of increased filtering
overhead. To illustrate why this trade-off is important in the context
of the grid indexing scheme, the number of adjacent cells required
to check is 3"; in 2-D, this is only 9 cells, but in 6-D, this is 729 cells.
We decrease the filtering power and search overhead by indexing
only k dimensions of the n-dimensional points, where 2 < k < n,
thus projecting the points into k dimensions. To resolve whether
points are within e of the query point, we compute the Euclidean
distance in all n dimensions, and thus obtain the correct result.
Since we index in fewer than n dimensions, each cell has n — k
unconstrained dimensions, resulting in less filtering power.

4.2 Dimensionality Reordering by Variance

Index searches are increasingly exhaustive and more expensive
in higher dimensions. The statistical properties of high-D feature
vectors can be exploited to improve the filtering power of the index
to prune the search space and eliminate points that are not within €
(e.g., see [33] in related work, Section 2). The dimensions of the data
that have the greatest variance should improve the pruning power
of index searches and, since we may not index all dimensions, it is
important to select dimensions that optimize the pruning power.
Otherwise, if we select the first k dimensions, we may inadvertently
index on dimensions that yield minimal pruning power.

Figure 2(a) shows an example dataset of 10 points in 6 dimen-
sions generated in the range [0,1]. We can see that the first two
dimensions have a low degree of variance. Thus, if we index k = 3
dimensions (and not all n = 6), we will have a low amount of index
filtering power due to low variance in the first two dimensions.
Assuming that the grid cells are of length € = 0.2, we find that
dimensions 1 and 2 will only produce a single cell in their dimen-
sions (denoted by the shaded regions), and thus will not reduce the
number of points within €. Selecting dimensions with the greatest
variance improves the filtering power (i.e., dimensions 5, 3, and 6 in
Figure 2(a)). If we reorder the data by decreasing variance, then we
obtain Figure 2(b). Now, each of the first 3 dimensions spans 5 grid
cells (assuming € = 0.2), resulting in fewer points when searching.

Michael Gowanlock and Ben Karsin

Dimension Dimension
(@) (b)
1 2 3 4 5 6 1 2 3 4 5 6
1.0 1.0
L] L] L] L] L]]] L]
0.8 — o 0.8 — °
s | °® s | e8| °|"°
0.6 0.6 —
IR slolo|t]i
0.4 K 04— 8 H
S| ® 8| e 8|18 e f°
02— — e o | e 02— o e | e
o bl.l°l.]¢ g Lelols]® |
5 6 2 4 1 3 1 2 3 4 5 6

Variance Rank (1-highest) Variance Rank (1-highest)

Figure 2: Dimensionality reordering by variance on a 6-D
dataset having |D| = 10 indexing k = 3 dimensions. (a) input
dataset; (b) reordering the point coordinates from largest
to smallest variance in each dimension. Red points denote
those used to index k = 3 dimensions with high variance.
Shaded cells denote indexed area.

We note that in Figure 2, it seems like the number of cells should
be maximized and not the variance. While data with high variance
will tend to produce more cells, it is possible to have many cells
in a dimension with low variance (e.g., one point per cell, and the
remaining points in a single cell, as in dimension 4 in Figure 2(b)).

To re-order the dimensions by their variance, we use a sample
of 1% of |D| and estimate the variance in each dimension. Then,
we reorder the coordinate values in each dimension of p; € D,
such that the values are in descending order from highest to lowest
variance. Thus, when we index the first k dimensions (Section 4.1),
they potentially have greater filtering power than the initial input
dataset. Reordering dimensions does not impact the correctness of
the result, as we are simply swapping the coordinate values of the
points. This requires O(|D|n) work, which is negligible compared to
performing the self-join. We denote the optimization that reorders
the data by variance in each dimension as REORDER. If we index
k < n dimensions, but do not use REORDER, we simply index the
first k dimensions of the input dataset.

4.3 Searching on an Un-indexed Dimension

By indexing only k < n dimensions, we reduce the indexing over-
head by reducing the number of grid cells, which is exponential
with k. However, this comes at the cost of reduced filtering power,
resulting in more distance calculations. In this section we introduce
a technique of searching on an un-indexed dimension to further
reduce the number of necessary distance calculations. Consider an
input set with n dimensions that is indexed on k < n dimensions
using the indexing scheme presented in Section 3.2. For a given
point p in cell C, and neighbor cell Cy,, we compare p to each point
q € Cp to determine if p and g are within a distance € of each
other. Since we have indexed k dimensions, the points contained
in Cy, are only filtered by these k dimensions. Thus, if we consider
dimension u that is not indexed, each point in Cj, can have any
value in this dimension. Currently, we must perform a distance
comparison on all g € Cp, which includes such points that may be

GPU-Accelerated Similarity Self-Join for Multi-Dimensional Data

|
Ca Cb [
AN
z 6 |
T€E P |
1 q{j.(: g
p* d4
| 0y : |Q1|f12|fI3|(I4III5|tIe|Q7|
—————:——.612—- 1
\ N ™ N candidate points
-] -a-d-4d g s
Y e .

Figure 3: Example of the soRTIDU optimization. We first
sort points within each cell by z-coordinate. We then search
query point p into the list of Cj, to find r and scan and com-
pare points until s is reached.

very distant from p in dimension u (i.e., |p(u) — q(u)| > €). There-
fore, we propose an optimization called SORTIDU to only compare
p with q € Cy, if they are within € distance along the u-coordinate.
We accomplish this by first sorting the points within each cell by
increasing u-coordinate. When comparing p with all g € Cp, we
first search p(u) into the points in Cp, to find the point r with the
smallest u-coordinate that is still within € of p (i.e, [p(u) —r(u)| < €).
We then scan points in Cp, by increasing u coordinate until we
reach point s with more than the € distance in the u-coordinate (i.e.,
|[p(u) — s(u)| > €). Figure 3 illustrates an example of the SORTIDU
optimization. In this example, the z-axis is not indexed and we use
the soRTIDU to reduce the number of candidate points we have to
consider, from q1,qz2, . . ., q7 (7 points) to q2, . . ., g5 (4 points). We
note that we only perform this optimization on one un-indexed
dimension and all other un-indexed dimensions remain unfiltered.
If every point in Cp, is within € from p, then sorTIDU provides
no performance improvement. However, for reasonably small €
values, this can significantly reduce the number of candidate points.
This comes at the cost of sorting and searching. If we consider that
cell Cy, has |Cyp| points, we must perform |Cp| distance calculations
without the SORTIDU optimization. However, SORTIDU reduces this
to (log |Cp| + m) calculations, where m is the number of points in
Cp, with u-coordinate within € of p(u). While sORTIDU requires that
we sort points within each cell, we only have to sort once for all
point evaluations. We can apply the sORTIDU optimization even
when we index all dimensions (i.e., k = n), where we sort each cell
by one of the indexed dimensions. But, we expect more significant
benefits when we apply SORTIDU to an un-indexed dimension.

4.4 Short Circuiting the Distance Calculation

The cost of the distance calculation increases with dimensional-
ity. We incrementally compute the distance, and if the partial sum
exceeds € before the entire distance is calculated, we stop the cal-
culation early. Short-circuiting has been used in other works, such
as SUPER-EGO [33]. We denote this optimization as SHORTC.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Algorithm 1 GPU-JoIiN Algorithm

1: procedure GPU-JoIiN(e, n, k, bs)
2: D « importData()

3 D « reorderVariance(D)

4 G « constructIndex(D, k)

5: np < computeNumBatches(bs)

6: result « 0

7 fori €1,...,np do

8 kernelResult[i] « selfJoinKernel(D, G, n, k, €)

9 result « result U constructNeighborTable(kernelResult[i])
10: return

11: procedure SELFJOINKERNEL(D, G, n, k, €)

12: resultSet «— 0

13: gid « getGloballd()

14: point « getPoint(gid, D)

15: adjCells « getAdjCells(G, k, point)

16: for cell € adjCells.min,. . . ,adjCells.max do

17: pntResult «— pntResult U calcDistancePts(point, cell, n, €)
18: resultSet « resultSet U pntResult
19: return resultSet

4.5 Outline of the Algorithm

Algorithm 1 begins by re-ordering the input set, D, by variance, if
REORDER is enabled (line 3). Next, the index is computed using the
dataset and the number of indexed dimensions, k (line 4). Then, the
number of batches, np, to be executed are computed using the batch
size, bs (line 5). The algorithm then loops over all of the batches
(line 7) and executes them on the GPU (line 8, detailed below). The
result of each batch is stored as key/value pairs, where the key is
a query point and the value is a point within the € distance (i.e.,
for each query point p; there may be multiple result pairs (p;, pj)).
Since the keys are often redundant (multiple points are within €
of a given point), they are stored without redundant information
using constructNeighborTable, and stored in the final result (line 9).

Each batch is executed by the SELFJoINKERNEL GPU kernel. First,
the result set for the batch is initialized (line 12), the global id of
the thread is obtained (line 13), and the point, p; € D is computed
as a function of the global id (line 14). Next, all of the adjacent
non-empty cells are computed from G (the index), k, and the point
(line 15). The algorithm loops over each neighbor cell (line 16), and
computes the distance between the query point and all of the points
within the neighbor cell to determine if they are within € (line 17).
After the points within € of the query point have been added to the
result set, the kernel returns (lines 18-19). Function calcDistancePts
differs when using SORTIDU or SHORTC.

Parts of Algorithm 1 are pipelined. The loop on line 7 is executed
in parallel. For each batch, four components may be executed in
parallel: (i) the kernel parameters relevant to the batch are sent
to the GPU; (ii) the GPU kernel, SELFJOINKERNEL, computes the
self-join result for the batch; (iii) the result is transferred back to
the host; and, (iv) finally the neighbor table is constructed. Up to
four concurrent tasks can be executed, where overlapping data
transfers and computation hides communication overhead.

5 EXPERIMENTAL EVALUATION
5.1 Datasets

We use real and synthetic datasets. We use some of the real-world
datasets used to evaluate Super-Ego, denoted as SUPER-EGO [33]
(ColorHist and LayoutHist). We normalize all datasets in the range

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

[0,1] as required by SUPER-EGO. Real-world datasets were obtained
from UCI ML repository [38]. Datasets are as follows:

e Color Histogram, ColorHist— 32-D image features, and 68,040
points.

e Layout Histogram, LayoutHist— 32-D image features and
66,616 points.

e Supersymmetry Particles, SuSy- 18-D kinematic properties
of 5 million particles from the Large Hadron Collider. Used
for classification [7].

e Song Prediction Dataset, Songs— 90-D extracted features of
songs, with 415,345 points. Used for classification [11].

We use real-world datasets to evaluate performance of high-D
self-joins. However, the similarity joins rely on statistical techniques
for improving index efficacy. The worst case scenario for our algo-
rithm is when there is low variance across all dimensions, reducing
the impact of dimensionality reordering (Section 4.2). To evalu-
ate performance on such worst-case inputs, we generate synthetic
datasets with an exponential distribution with A = 40. We generate
16, 32, and 64-dimensional synthetic datasets, with coordinates in
[0,1] and with |D| = 2 x 10°, denoted Syn- (Syn16D2M, Syn32D2M,
and Syn64D2M). The datasets use an exponential distribution to
ensure that in high-D, there are some neighbors within €.

5.2 Experimental Methodology

The GPU code is written in CUDA and executed on an NVIDIA
GP100 GPU with 16 GiB of global memory. The C/C++ host code is
compiled with the GNU compiler (v. 5.4.0) and O3 optimization flag.
The platform that executes all experiments has 2x E5-2620 v4 2.1
GHz CPUs, with 16 total physical cores. Our self-join CUDA kernel
uses 256 threads per block, and uses 32-bit floats for consistency
with SUPER-EGO. We exclude the time to load the dataset and
construct the index. We include the time to execute the self-join,
store the result set on the host and other host-side operations, and
perform dimensionality reordering. Thus, we include the response
time of components used in other works to make a fair comparison.
We perform experiments across datasets and € values such that
we do not have too many (e.g., |D|?) or too few (e.g., 0) total results.
Thus, the values of € should represent values that are pragmatically
useful to a user of the self-join algorithm. We define the selectivity of
the self-join as Sp = (|R| — |D|)/|D|, where |R| is the total result set
size. This yields the average number of points within €, excluding
a point, pg, finding itself (i.e., a result tuple: (p, € D,p, € D)).
We report the selectivity in our plots so that our results can be
reproduced and to demonstrate that the respective experimental
scenario is meaningful. Our experiments cover a range of € values
that include those used by Kalashnikov [33] to evaluate SUPER-EGO.
GPU-BRUTEFORCE- We compare our approach to a O(|D|?) brute
force algorithm. We simply assign one thread per query point which
then computes the distance between the query point and all other
points in D. However, unlike the GPU-JoIN kernel, we do not re-
turn the result, and instead simply count the total number of points
within e. Thus, we only execute a single kernel invocation, which
yields a lower bound on the brute force response time. Since all
points are compared to each other, performance is roughly inde-
pendent of ¢; therefore, in our results we show the brute force time
corresponding to a single € value (the median € in the plots).

Michael Gowanlock and Ben Karsin

Reference Implementation (SUPER-EGO) — Super-EGO [33]
performs fast self-joins on multidimensional data and has been
shown to outperform other algorithms on low-D and high-D data.
We use a multi-threaded implementation of Super-EGO, using 16
threads on 16 physical cores (the number of cores on our platform).
We normalize the datasets in the range [0,1] in each dimension,
as needed by the algorithm. We compute the total time using the
time to ego-sort and join on 32-bit floats and exclude the other
components (e.g., loading the dataset and indexing).

5.3 Results

5.3.1 Performance on Small Datasets. We compare GPU-JOIN to
SupER-EGO, for n = 32 and varying €, using some of the same
datasets as those used by Kalashnikov [33]. We do not use any
optimizations except indexing k < n dimensions (Section 4.1). We
discuss the selection of k in an upcoming section. Figure 4 plots
response time vs. € on ColorHist and LayoutHist. We find that across
all datasets, GPU-JoIN tends to outperform SurPErR-EGO (which
uses 16 cores/threads). In Figure 4(b) we see that GPU-JoIin and
SupeR-EGO have nearly identical performance when e < 0.15, but
diverge when € > 0.15. The reason the performance of GPU-Join
does not degrade significantly with € is because these datasets are
relatively small and there is not enough work to fully saturate the
GPU’s resources. Thus, as € increases, the response time does not
increase in the same manner as SUPER-EGO. We observe that GPU-
Join outperforms GPU-BRUTEFORCE across almost all values of e,
except when € = 0.5 on ColorHist (Figure 4(a)). When € = 0.5, the
selectivity is very high, so for each query point, GPU-JoIN needs to
compute the distance to a large fraction of the other points in the
dataset. Interestingly, GPU-BRUTEFORCE outperforms SUPER-EGO
on some of the larger € values.

30 8
eGP U-JOIN m—fem= GPU-JOIN
—— SUPEREGO 6 m—— SUPEREGO
“a 201 ===' GPU-BRUTEFORCE o === GPU-BrRUTEFORCE
L2 [
E E
=10 =
0 : { -
).0 01 02 03 04 0.5 .0 01 02 03 04 05

€ €

(a) ColorHist (32-D) (b) LayoutHist (32-D)

Figure 4: Response time vs. € on the real-world datasets used
in SUPER-EGO [33]. k = 6 dimensions are indexed. Values of
Sp are in the range (a) 4-26k, and (b) 3-1.1k.

5.3.2 Index Dimension Reduction & Reordering. Recall from Sec-
tion 4.1 that, by indexing k < n dimensions, we reduce the search
overhead but increase the number of necessary Euclidean distance
calculations. We also reorder the points to exploit variance in the
dimensions of the data (Section 4.2), maximizing the the filtering
power of the dimensions that we do index.

Figure 5(a) plots the response time vs. k on SuSy where ¢ =
0.01 with and without using REORDER. In both cases, we see that

GPU-Accelerated Similarity Self-Join for Multi-Dimensional Data

3000 600
=fe=_GPU-JOIN == GPU-JoIN
=4#= GPU-JOIN: REORDER =4#= GPU-JOIN: REORDER
4 6 8 10 12 4 6 8 10 12

k (Indexed Dimensions)

k (Indexed Dimensions)

(a) SuSy (18-D), € = 0.01 (b) Songs (90-D), € = 0.005

Figure 5: Response time vs. indexed dimension, k.

performance degrades when too few or too many dimensions are
indexed due to increased point comparisons or search overhead,
respectively. When we reorder the data by variance, the response
time is significantly reduced, particularly for small k. Since the data
is indexed in the first k dimensions, when we do not use REORDER
it is possible that the indexed dimensions will have high variance
by chance, providing good performance. However, if they do not,
performance will significantly degrade. In the worst case, variance
is so small that we must perform O(|D|?) distance comparisons. In
such a case, using REORDER can significantly improve the ability
of the index to prune the search for points within €. Figure 5(b)
shows the same plot for the Songs dataset where € = 0.005. This is
an example where the first k < 12 dimensions have low variance,
thereby generating a grid with few cells and low index filtering
power. We note that when k = 12, using REORDER increases response
time compared to not using the optimization. This is because, while
REORDER exploits variance to improve the index filtering power, it
also increases the number of cells and therefore the search overhead.
For either SuSy or Songs, REORDER significantly reduces the response
time when 3 < k < 8, which is a large range from which to select
k. From these experimental results, we can simply select k = 6
dimensions. However, in the next section, we show how (and why)
a good value of k can be selected.

5.3.3 The Number of Indexed Dimensions. Indexing k < n dimen-
sions provides a trade-off between distance comparisons and search
overhead. We describe a method to select a good value of k. Real-
world high-D datasets do not allow us to use analytical methods to
estimate the amount of work needed to perform the self-join. For
example, we cannot analytically compute the average number of
cells searched, the average number of point comparisons, and the
average number of neighbors per point. Thus, we use a sampling
technique to understand these data-dependent characteristics.

For a given value of k, we execute GPU-JoIN for a fraction f of
the data points, and record the number of point comparisons (points
that are tested to be within € of each other), denoted as . With the
sample, we estimate the total number of memory operations needed
for the distance comparisons as j - +. We can select a good value
of k, by comparing the total number of memory operations for: (i)
distance comparisons; and, (ii) searching whether the cells exist

(ie., |D|3klogz(|G|), where |G| is the total number of non-empty
cells).

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

2.00e+13
=—&— Point Comparisons
8 150e+13{ === Index Cell Searches
2
S Total
<<
= 1.00e+13
S
5
= 5.00e+12
0.00e-+00) |
2 4 6 8 10 12

k (Indexed Dimensions)

Figure 6: The number of index search and point comparison
memory accesses on Syn16D2M.

Figure 6 plots the number of memory operations vs. k on Syn16D2M.
A reduction in distance comparison memory operations occurs as
k increases, indicating that indexing on more dimensions reduces
the number of distance comparisons. Few memory operations are
need for cell searches when k < 8, but the exponential increase
in the number of adjacent cells with increasing k makes index-
ing k > 10 degrade performance. Regardless of dataset, indexing
k > 10 is likely to degrade performance. Regarding index memory
accesses only, in practice we can select a value of k within a fairly
large range, k < 10, without significant performance loss. Thus,
we do not need excessive parameter tuning of k to achieve good
performance. Consequently, we index on k = 6 dimensions.

5.3.4 Larger Real World Datasets. Figure 7(a) plots the response
time vs. € on SuSy. Note that SuSy is two orders of magnitude larger
(D] = 5 x 10°) than those used in Figure 4. Results indicate that,
for the SuSy dataset, SORTIDU reduces response time by a reason-
able margin (e.g., at € = 0.01, using SORTIDU and REORDER is 38%
faster than REORDER alone), though the sHORTC optimization has a
negligible effect. Using all optimizations, GPU-JoIN outperforms
SuPER-EGO across all values of €, with speedups up to 1.61x at
€ =0.01.

Figure 7(b) plots the response time vs. € on the 90-D Songs dataset.
We observe that using SORTIDU reduces the response time at lower
values of €. In contrast to the SuSy dataset (Figure 7(a)), SHORTC
yields a significant reduction in response time on the Songs dataset
(Figure 7(b)) due to its much higher dimensionality. We note that
SupER-EGO also employs an optimization that short circuits the
distance calculation. The speedup (or slowdown) over SUPER-EGO
ranges from 1.53% (e = 0.005) to 0.92x (¢ = 0.01). GPU-JoIN out-
performs SUPER-EGO across all experiments, except for a slight
slowdown on Songs at € = 0.01, indicating that SUPER-EGO is com-
petitive with GPU-JoIN under some experimental scenarios. On the
SuSy and Songs datasets, GPU-BRUTEFORCE does not outperform
GPU-Join or Super-EGO.

5.3.5 Synthetic Datasets. We use synthetic datasets to understand
when GPU-JoIN cannot exploit REORDER (Section 4.2) because the
variance is nearly the same in each dimension. We utilize synthetic
datasets with an exponential distribution as it ensures that we will
find a reasonable number of neighbors for a given €, similarly to the
high-D real-world datasets. Figure 8 plots the response time vs. € on

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

10!

10°
=z
9]
E
= 2
10°
=—4§— GPU-JOIN: REORDER — SUPEREGO
==@=— GPU-JOIN: REORDER/SORTIDU === GPU-BRUTEFORCE
o= GPU-JOIN: REORDER/SORTIDU/SHORTC
10t : - =
0.0100 0.0125 0.0150 0.0175 0.0200
€
(a) SuSy (18-D)
10*
+ GPU-JOIN: REORDER m—— SUPEREGO
w==@== GPU-JOIN: REORDER/SORTIDU === GPU-BRUTEFORCE
e GPU-JOIN: REORDER/SORTIDU/SHORTC
10%

Time (s)

102

1
10 0.005 0.006 0.007 0.008 0.009 0.010

€
(b) Songs (90-D)

Figure 7: Response time vs. €. k = 6 dimensions are indexed.
Values of Sp are in the range (a) 5-781, and (b) 4-1.9k.

16, 32, and 64-D synthetic datasets. GPU-JoIN outperforms SUPER-
EGO on all scenarios, with the smallest performance gain a speedup
of 1.84x on the smallest workload (Figure 8(a), € = 0.03) and the
largest speedup of 8.25x on Syn32D2M with € = 0.08. Both SUPER-
EGO and GPU-JoIn exploit the statistical properties of the data.
However, these results indicate that the index search performance
of SupER-EGO is more dependent on the statistical properties of the
data. Thus, in cases where the variance is similar across dimensions,
GPU-Join is likely to significantly outperform Super-EGO. We
also find that GPU-Join outperforms GPU-BRUTEFORCE across all
datasets in Figure 8, which implies that GPU-JoIN index search
performance does not degrade to a brute force search on these
datasets.

6 DISCUSSION & CONCLUSIONS

In this work, we propose GPU-JoIN, an algorithm that leverages
the GPU’s massive parallelism and high memory bandwidth to effi-
ciently solve the self-join problem. We show that a grid-based index,
combined with index dimensionality reduction (indexing k < n),
reordering the data by the variance in each dimension (REORDER),
and distance calculation reduction (SORTIDU and SHORTC) signif-
icantly improves self-join performance over SUPER-EGO in most
experimental scenarios.

In Section 5, we demonstrated that GPU-JoIN is less sensitive to
the data distribution than the state-of-the-art SUPER-EGO. The char-
acteristics of the dataset set nevertheless have a significant impact

Michael Gowanlock and Ben Karsin

3500
; E GPU-JOIN: REORDER/
3000 SORTIDU/SHORTC
25001 ==@= SuPEREGO
o —=== GPU-BRUTEFORC

= 2000
E 1500
i)
1000t c e e et e]
500
0
0.03 0.04 0.05
€
(a) Syn16D2M (16-D)
12000

; E GPU-JOIN: REORDER/

S()RTIDU/SIIORTC
90001 —@— SurEREGO

6000

£
| e P
3000
0
0.08 0.09 0.10
€
(b) Syn32D2M (32-D)
30000
GPU-JOIN: RE 9
25000 + SORTIDI?/ISI\Iué{Ifj?;DER/
=== SUPEREGO
@20000 = === GPU-BRUTEFORCE
E 15000
F10000{ =777 TTTTT T
5000 N
O AN
0.16 0.17 0.18

€
(c) Syn64D2M (64-D)

Figure 8: Response time vs. € on synthetic datasets. k = 6
dimensions are indexed, and GPU-JoiN is configured using
all optimizations. Values of Sp are in the range (a) 4-1.2Kk, (b)
31-1.4k, and (c) 132-2.3k.

on the performance of GPU-JoIN. This is because the efficacy of
the indexing structures to prune the search in both SurErR-EGO and
GPU-JoIin depend on the variance of the data, which is a function
of the underlying data distribution.

In general, there are several common GPU bottlenecks that may
impact the performance of GPU-JoIn that depend on the data distri-
bution. The SIMT execution of modern GPUs requires that groups
of threads execute the same instructions to achieve peak perfor-
mance [40]. Thus, the data distribution has a direct impact on the
amount of warp divergence that occurs in GPU-JoIn. Recently, for
low-dimensional distance similarity self-joins, it was shown that

GPU-Accelerated Similarity Self-Join for Multi-Dimensional Data

threads with varying numbers of candidate points (or workloads)
will cause intra-warp load imbalance and divergence [25]. While
this work was for the low-dimensional case [25], intra-warp load
imbalance will have an impact on GPU-JoIin performance for the
high-dimensional case as well. Additionally, many of the optimiza-
tions discussed in Section 4 depend on statistical properties of the
dataset to improve performance (e.g., REORDER). Consequently, an
interesting direction of future work is to develop a model of the
workload and divergence as a function of the input data distribu-
tion. Such a model would provide insight into the performance
bottlenecks of GPU-JoIN and other indexing structures on the GPU.
These insights can help us develop more optimizations that further
improve GPU-JoIN performance and alternate approaches of solv-
ing the self-join problem on datasets for which existing methods
(e.g., SUPER-EGO or GPU-JoIN) may not perform well.

ACKNOWLEDGMENTS

We thank University of Hawaii HPC for platform use. This material
is based upon work supported by the National Science Founda-
tion under Grants 1849559, 1533823, and 1745331 and Fonds de la
Recherche Scientifique-FNRS under Grant no MISU F 6001 1.

REFERENCES

[1] [n.d.]. Nvidia Volta. http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf. Accessed: Oct. 5, 2018.

] [n.d.]. Top500. https://www.top500.0rg/lists/2018/06/. Accessed: Apr. 29, 2019.
[3] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. 1993. Efficient similarity
search in sequence databases. Foundations of data organization and algorithms
(1993), 69-84.

[4] Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In IEEE Symp. on Foundations
of Computer Science. 459-468.

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jérg Sander. 1999.
OPTICS: Ordering Points to Identify the Clustering Structure. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data. 49-60.

[6] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact
Set-similarity Joins. In Proc. of the Intl. Conf. on Very Large Data Bases. 918-929.

[7] P.Baldi, P. Sadowski, and D. Whiteson. 2014. Searching for exotic particles in
high-energy physics with deep learning. Nature Communications 5, Article 4308
(July 2014). arXiv:hep-ph/1402.4735

[8] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling Up All
Pairs Similarity Search. In Proc. of the Intl. Conf. on World Wide Web. 131-140.

[9] Richard E Bellman. 1961. Adaptive control processes: a guided tour. Princeton
University press.

[10] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Commun. ACM 18, 9 (1975), 509-517.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. 2011.

The Million Song Dataset. In Proc. of the 12th Intl. Conf. on Music Information

Retrieval.

[12] Christian Bohm, Bernhard Braunmiiller, Markus Breunig, and Hans-Peter Kriegel.

2000. High Performance Clustering Based on the Similarity Join. In Proc. of the

Intl. Conf. on Information and Knowledge Management. 298-305.

Christian Bohm, Bernhard Braunmiiller, Florian Krebs, and Hans-Peter Kriegel.

2001. Epsilon grid order: An algorithm for the similarity join on massive high-

dimensional data. In ACM SIGMOD Record, Vol. 30. 379-388.

[14] C. Bohm and H. P. Kriegel. 2001. A cost model and index architecture for the
similarity join. In Proc. 17th Intl. Conf. on Data Engineering. 411-420.

[15] Christian BShm, Robert Noll, Claudia Plant, and Andrew Zherdin. 2009. Index-
supported Similarity Join on Graphics Processors. In BTW. 57-66.

[16] Brent Bryan, Frederick Eberhardt, and Christos Faloutsos. 2008. Compact simi-
larity joins. In IEEE 24th Intl. Conf. on Data Engineering. 346-355.

[17] Gang Chen, Keyu Yang, Lu Chen, Yunjun Gao, Baihua Zheng, and Chun Chen.
2017. Metric similarity joins using MapReduce. IEEE Transactions on Knowledge
and Data Engineering 29, 3 (2017), 656—669.

[18] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. 2014. ClusterJoin: A Similarity
Joins Framework using Map-Reduce. Proceedings of the VLDB Endowment 7, 12
(2014), 1059-1070.

[19] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. CACM 51, 1 (2008), 107-113.

[11

[13

DaMoN’19, July 1, 2019, Amsterdam, Netherlands

[20] Jens-Peter Dittrich and Bernhard Seeger. 2001. GESS: A Scalable Similarity-join
Algorithm for Mining Large Data Sets in High Dimensional Spaces. In Proc. of
the ACM Intl. Conf. on Knowledge Discovery and Data Mining. 47-56.

Robert J. Durrant and Ata Kaban. 2009. When is ‘Nearest Neighbour’ Meaningful:

A Converse Theorem and Implications. Journal of Complexity 25, 4 (2009), 385-

397.

Martin Ester, Hans Kriegel, Jérg Sander, and Xiaowei Xu. 1996. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proc.

of the 2nd KDD. 226-231.

Raphael A. Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for

retrieval on composite keys. Acta informatica 4, 1 (1974), 1-9.

S. Fries, B. Boden, G. Stepien, and T. Seidl. 2014. PHiDJ: Parallel similarity self-join

for high-dimensional vector data with MapReduce. In 2014 IEEE 30th Intl. Conf.

on Data Engineering. 796-807.

Benoit Gallet and Michael Gowanlock. 2019. Load Imbalance Mitigation Opti-

mizations for GPU-Accelerated Similarity Joins. In Proc. of the 2019 IEEE Intl.

Parallel and Distributed Processing Symp. Workshops (IPDPSW), to appear.

Michael Gowanlock and Henri Casanova. 2016. Distance Threshold Similarity

Searches: Efficient Trajectory Indexing on the GPU. IEEE Transactions on Parallel

and Distributed Systems 27, 9 (2016), 2533-2545.

[27] M. Gowanlock and B. Karsin. 2018. GPU Accelerated Self-Join for the Distance

Similarity Metric. In 2018 IEEE Intl. Parallel and Distributed Processing Symp.

Workshops (IPDPSW). 477-486.

Michael Gowanlock, Cody M Rude, David M Blair, Justin D Li, and Victor

Pankratius. 2017. Clustering Throughput Optimization on the GPU. In Proc.

of the IEEE Intl. Parallel and Distributed Processing Symp. 832-841.

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.

In Proc. of Intl. Conf. on Management of Data. 47-57.

Gibran Hemani, Athanasios Theocharidis, Wenhua Wei, and Chris Haley. 2011.

EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level

graphics cards. Bioinformatics 27, 11 (2011), 1462-1465.

Edwin H. Jacox and Hanan Samet. 2007. Spatial Join Techniques. ACM Trans.

Database Syst. 32, 1, Article 7 (2007).

Edwin H. Jacox and Hanan Samet. 2008. Metric Space Similarity Joins. ACM

Trans. Database Syst. 33, 2, Article 7 (2008), 38 pages.

Dmitri V Kalashnikov. 2013. Super-EGO: fast multi-dimensional similarity join.

The VLDB Journal 22, 4 (2013), 561-585.

[34] Jinwoong Kim, Won-Ki Jeong, and Beomseok Nam. 2015. Exploiting Massive Par-
allelism for Indexing Multi-Dimensional Datasets on the GPU. IEEE Transactions
on Parallel and Distributed Systems 26, 8 (2015), 2258-2271.

[35] Jinwoong Kim and Beomseok Nam. 2018. Co-processing heterogeneous parallel

index for multi-dimensional datasets. J. Parallel and Distrib. Comput. 113 (2018),

195-203.

Krzysztof Koperski and Jiawei Han. 1995. Discovery of spatial association rules

in geographic information databases. In Advances in spatial databases. Springer,

47-66.

Francesco Lettich, Salvatore Orlando, Claudio Silvestri, and Christian S Jensen.

2017. Manycore GPU processing of repeated range queries over streams of moving

objects observations. Concurrency and Computation: Practice and Experience 29,

4(2017), e3881.

[38] M. Lichman. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/

ml

Michael D Lieberman, Jagan Sankaranarayanan, and Hanan Samet. 2008. A fast

similarity join algorithm using graphics processing units. In IEEE 24th Intl. Conf.

on Data Engineering. 1111-1120.

[40] NVIDIA. 2018. Pascal Tuning Guide. http://docs.nvidia.com/cuda/
pascal-tuning-guide/index.html. Accessed 18-June-2018.

[41] S.K. Prasad, M. McDermott, X. He, and S. Puri. 2015. GPU-based Parallel R-tree

Construction and Querying. In 2015 IEEE International Parallel and Distributed

Processing Symposium Workshop. 618-627.

Mahsan Rofouei, Thanos Stathopoulos, Sebi Ryffel, William Kaiser, and Majid

Sarrafzadeh. 2008. Energy-aware high performance computing with graphic

processing units. In Workshop on power aware computing and system.

[43] Thomas Seidl, Sergej Fries, and Brigitte Boden. 2013. MR-DS]J: Distance-Based
Self-Join for Large-Scale Vector Data Analysis with MapReduce. In BTW, Vol. 214.
37-56.

[44] H. So,]. Chen, B. Yiu, and A. Yu. 2011. Medical Ultrasound Imaging: To GPU or

Not to GPU? IEEE Micro 31, 5 (2011), 54-65.

Ilya Volnyansky and Vladimir Pestov. 2009. Curse of Dimensionality in Pivot

Based Indexes. In Proc. of the Second Intl. Workshop on Similarity Search and

Applications. 39-46.

[46] Jianting Zhang, Simin You, and Le Gruenwald. 2012. U2STRA: High-performance
Data Management of Ubiquitous Urban Sensing Trajectories on GPGPUs. In Proc.
of the ACM Workshop on City Data Management. 5-12.

[21

[22

[23

S
=}

[25

[26

[28

™
0,

[30

[31

[32

[33

[36

[37

[39

[42

[45

	Abstract
	1 Introduction
	2 Background
	2.1 Motivation: Using the GPU for Fundamental Database Operations
	2.2 Similarity-Joins and the State-of-the-art
	2.3 GPU Self-Join on Low-Dimensional Data
	2.4 Indexing on the GPU
	2.5 Distributed-Memory Similarity Joins

	3 Problem Outline & Previous Insights
	3.1 Problem Statement
	3.2 Leveraging Previous Insights

	4 High-D Self-Join Optimizations
	4.1 Index Selectivity
	4.2 Dimensionality Reordering by Variance
	4.3 Searching on an Un-indexed Dimension
	4.4 Short Circuiting the Distance Calculation
	4.5 Outline of the Algorithm

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Experimental Methodology
	5.3 Results

	6 Discussion & Conclusions
	Acknowledgments
	References

