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ABSTRACT

The similarity self-join finds all objects in a dataset that are within a

search distance, ϵ , of each other. As such, the self-join is a building

block of many algorithms. In high dimensions, indexing structures

become increasingly ineffective at pruning the search, making the

self-join challenging to compute efficiently. We advance a GPU-

accelerated self-join algorithm targeted towards high dimensional

data. The massive parallelism afforded by the GPU and high ag-

gregate memory bandwidth makes the architecture well-suited for

data-intensive workloads. We leverage a grid-based GPU-tailored

index to perform range queries, and propose the following optimiza-

tions: (i) a trade-off between candidate set filtering and index search

overhead by exploiting properties of the index; (ii) reordering the

data based on variance in each dimension to improve the filtering

power of the index; and (iii) a pruning method for reducing the

number of expensive distance calculations. Our algorithm generally

outperforms a parallel CPU state-of-the-art approach.

CCS CONCEPTS

· Information systems→ Data management systems; ·Comput-

ing methodologies→ Parallel algorithms; · Computer systems

organization → Single instruction, multiple data.
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1 INTRODUCTION

The similarity self-join is a building block of several algorithms [3, 5,

8, 22, 36], and is fundamental to many established methods [12, 15].

We focus on the distance similarity self-join that finds all objects
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within a Euclidean distance of each other. Self-join research ad-

dresses either low [16] or high [4, 20, 39] dimensionality. Typically,

indexes (e.g., R-trees [29], kd-trees [10], and quad trees [23]) are

used to reduce the number of distance comparisons when perform-

ing neighborhood searches. They accomplish this by eliminating a

large number of points before performing distance comparisons by

pruning the search space. In low dimensionality (low-D), the data

points (or feature vectors) are often more frequently co-located;

therefore, there are often more neighbors on average in compar-

ison to high dimensionality (high-D) [32]. The large number of

resulting candidate points requires in a large number of distance

calculations, which become a performance bottleneck. However,

in high-D, index searches become increasingly exhaustive due to

the well-known curse of dimensionality [9, 21, 34, 45] that requires

searching a large fraction of the dataset. Thus, there is both more

index search overhead, and distance calculations that are needed

to refine potential candidates within ϵ .

Graphics processing units (GPUs) obtain high computational

throughput through massive parallelism and high aggregate mem-

ory bandwidth. The self-join is well-suited for the GPU because it

requires many independent distance calculations. Therefore, the

GPU can be exploited to process increasingly exhaustive searches

necessitated by high dimensional data. In this context, we propose

several optimizations that improve performance on the GPU, and

make the following contributions:

• We exploit trading index filtering power for decreased search

cost to optimize high-D index searches.

• We improve the filtering power of the index by reordering

the data in each dimension using statistical properties.

• We mitigate the cost of reducing index filtering power by

proposing a technique that prunes the candidate set by com-

paring points based on an un-indexed dimension.

• We show that our algorithm is resilient to the worst-case

data distribution.

• We evaluate the performance of our self-join algorithm on a

range of synthetic and real-world datasets and demonstrate

that it outperforms a state-of-the-art algorithm.

The paper is organized as follows. Section 2 provides background

material, Section 3 formalizes the problem, and outlines leveraged

work, Section 4 presents novel self-join optimizations, Section 5

evaluates our approach, and finally, we conclude the paper and

discuss future work in Section 6.
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2 BACKGROUND

In this section, we outline related work on similarity joins in shared

and distributedmemory, and GPU indexing techniques.We begin by

outlining the motivation for using the GPU for database operations.

2.1 Motivation: Using the GPU for
Fundamental Database Operations

The proliferation of GPUs to solve problems in many fields of com-

puter science, including within the database community, has been

motivated by several facets of the architecture. The memory band-

width on the GPU is much greater than the CPU [1], which makes

the GPU an attractive architecture for solving data-intensive prob-

lems. Also, the GPU has many cores, which can be most efficiently

utilized for high throughput applications that are common to many

classes of database queries. Furthermore, GPUs have been noted

for having a greater energy efficiency than the CPU for many ap-

plications [42], and have been employed for their relatively low

monetary cost per unit metric (e.g., floating point operations per

second) [30, 44]. Due to the characteristics outlined above, the most

powerful supercomputers rely on GPUs. At the time of writing,

five of the top ten supercomputers in the world use GPUs (Top500

November 2018 listing [2]). The architectural features of the GPU

are well-suited to many parallel database applications; therefore,

we advocate for exploiting the GPU to improve the performance of

the distance similarity self-join.

2.2 Similarity-Joins and the State-of-the-art

The similarity-join is a well-studied problem [6, 8, 12, 14, 20, 33].

Here, we discuss those works that address high-D data. GESS [20]

assigns feature vectors to hypercubes, and then performs an in-

tersection query on these hypercubes to compute the similarity

join. The method relies on data replication and duplication removal

from the result set. LSS [39] utilizes the GPU, and transforms the

similarity join into a sort-and-search problem. Interval searches are

needed, and the authors use space filling curves to reduce interval

size and search overhead. The Super-EGO algorithm [33] has been

shown to be effective for similarity-joins on both low-D and high-D

data. The algorithm uses the łepsilon grid orderž [13] method. It

uses a non-materialized grid to find nearby points that may be

within the search distance. Then, based on a query point’s cell and

nearby cells, the algorithm prunes the search for points by filtering

on n-dimensional coordinates. Unlike previous work [13], Super-

EGO exploits statistical properties of the data. In [33], Super-EGO

outperforms GESS [20], and LSS [39], so we compare our work to

Super-EGO.

2.3 GPU Self-Join on Low-Dimensional Data

Gowanlock and Karsin [27] studied the self-join problem on the

GPU for low-D data using a grid-based index, and demonstrated

that between 2 and 6 dimensions, the self-join outperforms both

canonical search-and-refine and state-of-the-art approaches (i.e.,

Super-EGO). They show that index search overhead increases expo-

nentially with dimensionality, and they limit their work to low-D

data. In this work, we use a similar indexing structure, but we

propose optimizations for high-D self-joins.

2.4 Indexing on the GPU

There are twomajor indexing strategies for the GPU: (i) index-trees,

similar to those that have been shown to provide good performance

on the CPU, such as the R-tree [29, 41]; or (ii) non-hierarchical

indexes, such as grids or binning. Several works propose efficient

indexes for points or other objects on the GPU [15, 26, 34, 35, 37, 46].

Kim et al. [34] designed an R-tree for the GPU to optimize in-

dex searches that avoids many of the drawbacks of executing tree

traversals on the GPU. A major drawback of tree traversals is that

their irregular instructions cause thread divergence. This diver-

gence reduces the parallel efficiency on the GPU due to the single

instruction multiple thread (SIMT) architecture [40]. Later, the same

research group presented a hybrid R-tree indexing approach [35]

that splits the R-tree between the CPU and GPU by assigning parts

of the algorithm with more regular and irregular instruction flows

to the GPU and CPU, respectively. The reduction in irregular in-

structions allows the GPU to achieve better performance. Likewise,

the approach used in [37] for computing range queries on moving

objects using the CPU and GPU addressed many of the idiosyn-

crasies of the GPU’s architecture. Therefore, the design space for

efficient GPU indexing techniques is large, so efficient GPU-only

and CPU/GPU indexing techniques remain largely an open problem

with little consensus on the best indexing approach.

2.5 Distributed-Memory Similarity Joins

High-D self-joins are expensive for even moderate dataset sizes.

While the literature above focus on scaling up the self-join, sev-

eral other works scale out across nodes in a cluster. A MapRe-

duce [19] self-join [24] reduces data duplication compared to pre-

vious work [43], by using łdimension groupsž, where they per-

form the self-join on subsets of the data dimensions first, and then

union these subsets to obtain the final result. Similarly, the works

of [17] and [18] use MapReduce for similarity joins, and employ

sampling-based techniques for data partitioning to achieve good

load balancing. Distributed-memory works are not directly rele-

vant to GPU self-joins, as exploiting the GPU requires considering

a much smaller degree of task granularity.

3 PROBLEM OUTLINE & PREVIOUS
INSIGHTS

3.1 Problem Statement

Let D be a database of points (or feature vectors). Each point in the

database is denoted as pi , where i = 1, 2, . . . , |D |. Each pi ∈ D has

coordinates inn dimensions, where each coordinate is denoted as x j
where j = 1, 2, . . . ,n. Thus, the coordinates of point pi are denoted

as: pi = (x1,x2, . . . ,xn ). We refer to the x j -coordinate value of

point pi as pi (x j ). As with most prior related work (Section 2), we

focus on the Euclidean distance. We find all pairs of points that

are within a distance ϵ of each other. We say that points a ∈ D

and b ∈ D are within the ϵ distance when dist(a,b) ≤ ϵ , where

dist(a,b) =
√

∑n
j=1(a(x j ) − b(x j ))2. Thus, the result set contains

tuples (a ∈ D, b ∈ D), where a and b are within ϵ of each other.

We assume that the dataset, result, and working memory do not

exceed main memory capacity. However, we accommodate result

sets that exceed the GPU’s global memory capacity.
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The similarity self-join is a special case of the similarity join. If

we let E be a set of entry points in an index (defined similarly to

the definition above) and Q be a set of query points, the similarity

join finds all points in Q within the ϵ distance of E, i.e., Q ⋉ϵ E.

In contrast, the self-join is simply E ▷◁ϵ E. Thus, the self-join is

relevant to the similarity-join problem as well.

Theworst-case complexity of the self-join,O(|D |2), can be simply

implemented as a nested loop join [31]. However, as discussed in

Section 2, indexes can be used to reduce the quadratic complexity by

reducing the number of point comparisons by pruning the search.

3.2 Leveraging Previous Insights

In Section 4, we outline our novel methods for performing the self-

join in high-D. However, we leverage several optimizations from the

literature that are relevant to the self-join. In particular, we use the

grid-based GPU index presented by Gowanlock & Karsin [27], that

builds on prior work [28]. These papers also advanced a batching

scheme, which we use to process self-join result sets that may

exceed the GPU’s global memory capacity. We briefly describe the

batching and indexing techniques that we reuse, and note that we

cannot directly use the low-D methods [27] for high-D self-joins.

Grid-Based Indexing on the GPU – We utilize a grid index for

computing the self-join. As mentioned in Section 2, the state-of-

the-art join algorithm for high-D data, Super-EGO [33], also uses

a grid-based technique for efficiently computing the self-join. We

refer the reader to the work of Gowanlock et al. [28] for an in-

depth description of the index, which the authors used in 2-D

for clustering with DBSCAN [22]. A major difference between the

indexing scheme used in this work and that of Gowanlock et al. [28]

is that we do not index empty cells, as the space complexity would

be intractable for high-D (as also discussed in [27]).

The GPU grid index from Gowanlock et al. [28] is constructed as

follows. On the host, the data points, D, are sorted into unit-length

bins in each dimension. This ensures that data points near each

other in the n-dimensional space are near each other in memory.

Each grid cell is of length ϵ , which ensures that for a given point,

only the adjacent cells need to be searched to find points that are

within the ϵ distance. This bounds the search on the GPU to regu-

larize the instruction flow. For demonstrative purposes and without

loss of generality, we assume a grid with edges starting at 0 in

each dimension, and assign points to cells by simply computing

the cell’s n-dimensional coordinates from the point’s (pi ) coordi-

nates as follows: (x1/ϵ , x2/ϵ , . . . , xn/ϵ). The points are not stored

within the grid structure, rather, the points belonging to a grid cell

are stored in a lookup array that each grid cell references when

finding the points contained within. This minimizes the memory

needed to store the points within a grid cell. Lastly, since we only

store non-empty cells, we create a lookup array that stores the

linearized ids of the non-empty grid cells. As shown by Gowanlock

and Karsin [27], the storage requirements simplify to the size of the

dataset, O(|D |). This compact index structure allows more space

on the GPU to be allocated for other purposes, such as larger input

and result set sizes.

Figure 1 shows an example 2-D grid. The non-empty gray cells

with linearized cell ids are shown. Consider a point in cell 24. To

find all of its neighbors within ϵ , it needs to search the adjacent cells

6543210
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Figure 1: Example of searching the grid index in 2-D. The

non-empty cells are shaded. Numbers refer to linearized cell

ids.

(and its origin cell), which are encompassed by the black dashed

line. In n dimensions, there are 3n cells to search. However, the

points in the cells are not guaranteed to be within ϵ , so distance

calculations between the query point and all points in cells 18, 23,

24, and 32 are needed to determine which are within ϵ .

The self-join is executed on the GPU with a kernel that uses |D |

threads. Each thread is assigned a point and finds all neighbors

within the ϵ distance. The threads write the result to a buffer as

key/value pairs, where the key is a point and the value is a point

within ϵ of the key. After all threads have completed finding their

respective neighbors, the key/value pairs are sorted on the GPU,

and returned to the host.

Bounding the search to neighboring cells using the grid reduces

thread divergence, which can degrade GPU performance [40]. This

is because all searches require examining the same number of cells

regardless of the point, and the cells are traversed in the same man-

ner. In contrast, indexes that are constructed based on the data dis-

tribution, such as R-trees, would require irregular searches (threads

take different branches during tree traversals), which would in-

crease thread divergence in a warp.

Batching Scheme – An efficient batching scheme is needed to

incrementally compute the self-join to accommodate result sets

that exceed the GPU’s global memory capacity. We employ the

method from [28], and provide a summary of their work. First, a

kernel is executed that finds all of the neighbors within ϵ for a

fraction of the points in the dataset, which estimates the total result

set size. This kernel invocation takes negligible time in comparison

to the total time needed to execute the self-join, as only a fraction

of points are searched. The number of batches, nb , are computed

based on a batch size, bs , and the estimated total result size.

The batching scheme allows for overlap of data transfers to and

from the GPU, GPU computation, and host-side operations. It is

preferable to overlap these components of the algorithm to maxi-

mize concurrent resource utilization. Thus, we use a minimum of 3

CUDA streams, and hence batches (nb ≥ 3). We allocate 3 pinned

memory buffers on the host, as they are needed for asynchronous

data transfers [40]. For result set sizes that exceed 3 × 108, we set a
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batch size of bs = 108 (the total neighbors found within ϵ of each

point). Thus, each stream has a buffer of size bs = 108.

4 HIGH-D SELF-JOIN OPTIMIZATIONS

In this section, we introduce our optimizations that are designed to

improve high-dimensional self-join performance.

4.1 Index Selectivity

In high-D, there are fewer co-located neighbors because, as the

hypervolume increases, the distance between objects increases [32].

However, with increasing dimension, index filtering power de-

creases and search performance degrades. There is a trade-off be-

tween index filtering power and search overhead: reducing search

overhead results in an indexwith less filtering power, yielding larger

candidate set sizes that are filtered using distance calculations.

The GPU is a suitable architecture for making a trade-off be-

tween filtering power and search overhead, as the GPU is designed

to achieve high computational throughput and thus excels at com-

puting the distances between points in parallel. Therefore, to avoid

the overheads associated with searches in higher dimensions, we

use a less rigorous index search at the cost of increased filtering

overhead. To illustrate why this trade-off is important in the context

of the grid indexing scheme, the number of adjacent cells required

to check is 3n ; in 2-D, this is only 9 cells, but in 6-D, this is 729 cells.

We decrease the filtering power and search overhead by indexing

only k dimensions of the n-dimensional points, where 2 ≤ k < n,

thus projecting the points into k dimensions. To resolve whether

points are within ϵ of the query point, we compute the Euclidean

distance in all n dimensions, and thus obtain the correct result.

Since we index in fewer than n dimensions, each cell has n − k

unconstrained dimensions, resulting in less filtering power.

4.2 Dimensionality Reordering by Variance

Index searches are increasingly exhaustive and more expensive

in higher dimensions. The statistical properties of high-D feature

vectors can be exploited to improve the filtering power of the index

to prune the search space and eliminate points that are not within ϵ

(e.g., see [33] in related work, Section 2). The dimensions of the data

that have the greatest variance should improve the pruning power

of index searches and, since we may not index all dimensions, it is

important to select dimensions that optimize the pruning power.

Otherwise, if we select the first k dimensions, we may inadvertently

index on dimensions that yield minimal pruning power.

Figure 2(a) shows an example dataset of 10 points in 6 dimen-

sions generated in the range [0,1]. We can see that the first two

dimensions have a low degree of variance. Thus, if we index k = 3

dimensions (and not all n = 6), we will have a low amount of index

filtering power due to low variance in the first two dimensions.

Assuming that the grid cells are of length ϵ = 0.2, we find that

dimensions 1 and 2 will only produce a single cell in their dimen-

sions (denoted by the shaded regions), and thus will not reduce the

number of points within ϵ . Selecting dimensions with the greatest

variance improves the filtering power (i.e., dimensions 5, 3, and 6 in

Figure 2(a)). If we reorder the data by decreasing variance, then we

obtain Figure 2(b). Now, each of the first 3 dimensions spans 5 grid

cells (assuming ϵ = 0.2), resulting in fewer points when searching.

(a)
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Figure 2: Dimensionality reordering by variance on a 6-D

dataset having |D | = 10 indexing k = 3 dimensions. (a) input

dataset; (b) reordering the point coordinates from largest

to smallest variance in each dimension. Red points denote

those used to index k = 3 dimensions with high variance.

Shaded cells denote indexed area.

We note that in Figure 2, it seems like the number of cells should

be maximized and not the variance. While data with high variance

will tend to produce more cells, it is possible to have many cells

in a dimension with low variance (e.g., one point per cell, and the

remaining points in a single cell, as in dimension 4 in Figure 2(b)).

To re-order the dimensions by their variance, we use a sample

of 1% of |D | and estimate the variance in each dimension. Then,

we reorder the coordinate values in each dimension of pi ∈ D,

such that the values are in descending order from highest to lowest

variance. Thus, when we index the first k dimensions (Section 4.1),

they potentially have greater filtering power than the initial input

dataset. Reordering dimensions does not impact the correctness of

the result, as we are simply swapping the coordinate values of the

points. This requiresO(|D |n)work, which is negligible compared to

performing the self-join. We denote the optimization that reorders

the data by variance in each dimension as reorder. If we index

k < n dimensions, but do not use reorder, we simply index the

first k dimensions of the input dataset.

4.3 Searching on an Un-indexed Dimension

By indexing only k < n dimensions, we reduce the indexing over-

head by reducing the number of grid cells, which is exponential

with k . However, this comes at the cost of reduced filtering power,

resulting in more distance calculations. In this section we introduce

a technique of searching on an un-indexed dimension to further

reduce the number of necessary distance calculations. Consider an

input set with n dimensions that is indexed on k < n dimensions

using the indexing scheme presented in Section 3.2. For a given

point p in cellCa and neighbor cellCb , we compare p to each point

q ∈ Cb to determine if p and q are within a distance ϵ of each

other. Since we have indexed k dimensions, the points contained

in Cb are only filtered by these k dimensions. Thus, if we consider

dimension u that is not indexed, each point in Cb can have any

value in this dimension. Currently, we must perform a distance

comparison on all q ∈ Cb , which includes such points that may be
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threads with varying numbers of candidate points (or workloads)

will cause intra-warp load imbalance and divergence [25]. While

this work was for the low-dimensional case [25], intra-warp load

imbalance will have an impact on GPU-Join performance for the

high-dimensional case as well. Additionally, many of the optimiza-

tions discussed in Section 4 depend on statistical properties of the

dataset to improve performance (e.g., reorder). Consequently, an

interesting direction of future work is to develop a model of the

workload and divergence as a function of the input data distribu-

tion. Such a model would provide insight into the performance

bottlenecks of GPU-Join and other indexing structures on the GPU.

These insights can help us develop more optimizations that further

improve GPU-Join performance and alternate approaches of solv-

ing the self-join problem on datasets for which existing methods

(e.g., Super-EGO or GPU-Join) may not perform well.
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