
KNN-Joins Using a Hybrid Approach:
Exploiting CPU/GPUWorkload Characteristics

Michael Gowanlock
Northern Arizona University

School of Informatics, Computing, and Cyber Systems

Flagstaff, AZ, U.S.A.

michael.gowanlock@nau.edu

ABSTRACT

KNearest Neighbor (KNN) joins are used inmany scientific domains

for data analysis, and are building blocks of several well-known

algorithms. KNN -joins find the KNN of all points in a dataset.

However, KNN searches are computationally expensive, and many

GPU KNN algorithms focus on the high-dimensional case that

plainly gives a performance advantage to the GPU rather than the

CPU. Consequently, in this work, we focus on a hybrid CPU/GPU

approach for the low-dimensional KNN -join problem. In particular,

we utilize a work queue that prioritizes computing data points

in high density regions on the GPU, and low density regions on

the CPU, thereby taking advantage of each architecture’s relative

strengths. Our approach, HybridKNN-Join, is shown to effectively

augment a state-of-the-art multi-core CPU algorithm. We propose

optimizations that (i)maximize GPU query throughput by assigning

the GPU larger batches of work than the CPU; (ii) increaseworkload

granularity to optimize GPU resource utilization; and, (iii) limit load

imbalance between CPU and GPU architectures. Furthermore, the

work queue utilized in our approach shows promise for the general

purpose division of work for other hybrid CPU/GPU algorithms.

KEYWORDS

Heterogeneous Systems, In-memory Database, Nearest Neighbor

Search, Query Optimization

ACM Reference Format:

Michael Gowanlock. 2019. KNN-Joins Using a Hybrid Approach: Exploiting

CPU/GPU Workload Characteristics. In General Purpose Processing Using

GPU (GPGPU-12), April 13, 2019, Providence, RI, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3300053.3319417

1 INTRODUCTION

The performance of data-intensive computations such as K nearest

neighbor (KNN) searches are often limited by the memory bottle-

neck. The high aggregate memory bandwidth of graphics process-

ing units (GPUs) (e.g., 900 GiB/s on the Nvidia Volta [1]) results in

roughly an order-of-magnitude increase in memory bandwidth over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GPGPU-12, April 13, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6255-9/19/04. . . $15.00
https://doi.org/10.1145/3300053.3319417

the CPU. Therefore, GPUs are well-suited to data-intensive work-

loads. However, it is well-known that data transfers to and from

the GPU are a bottleneck, which can decrease the performance ad-

vantages afforded by the GPU. Additionally, many data-dependent

workloads, such as the KNN -join studied in this work, can have

irregular execution patterns that make the GPU potentially unsuit-

able for the algorithm due to thread divergence and serialization

that degrades performance [15]. Thus, it is not clear that the GPU

will lead to performance gains over multi-core CPU approaches.

We study theKNN self-join problem, which is outlined as follows:

given a database, D, of points, find all of the K nearest neighbors

of each point. We focus on the self-join because it is a common

task in scientific data processing (e.g., within an astronomy cat-

alog, find the closest five objects of all objects within a feature

space [35]). KNN searches are used in many applications, such

as the k-means [16], and Chameleon [19] clustering algorithms.

Consequently, KNN searches have been well studied [5, 27, 31],

including GPU [28] algorithms. However, many GPU approaches

only minimally involve the host, which underutilize CPU resources.

Many GPU-accelerated KNN algorithms focus on optimizing

brute force approaches, which highlight performance in high di-

mensional feature spaces and often compute a distance matrix [4,

11, 17, 23]. The key idea is to compute the distance between a query

point and all other points in D, then select the K neighbors with

the smallest distances to the query point. The algorithms are often

intractable for large datasets because the brute force approach has a

quadratic complexity. An index data structure can be used to reduce

the quadratic complexity of brute force searches on the CPU or

GPU, by reducing the number of point comparisons [5, 27, 28, 31].

Given the context above, we outline the major goals of this work.

Addressing Low-Dimensionality on the GPU: The abovemen-

tioned brute force KNN searches in high-dimensional spaces are

clearly well-suited to the GPU compared to the CPU due to the large

number of distance calculations that need to be computed. But, it is

not clear that the GPU can significantly outperform parallel CPU

approaches in low dimensionality. We address KNN searches in up

to 6-D, which is largely the domain of CPU KNN algorithms.

Transforming the GPU-Accelerated Similarity Join into the

KNN-Join: Recent work has proposed a similarity self-join for the

GPU that finds all points within a search distance ϵ of a query point

using an index [12]. The similarity join can be used to construct

part of a KNN search by searching within a distance ϵ of a query

point, and if there are ≥ K neighbors within ϵ , order the neighbors

by distance and select the nearest K neighbors. We leverage an

efficient GPU similarity join algorithm in our approach.

33

GPGPU-12, April 13, 2019, Providence, RI, USA Michael Gowanlock

Concurrent Exploitation of CPU and GPUResources: In con-

trast to GPU-only approaches, we use both the CPU and GPU by

assigning query points to either architecture to find their respective

KNN . We leverage the distance similarity join described above for

the GPU to process high data density regions, and a parallel CPU

KNN algorithm for processing low density regions.

To our knowledge, our algorithm is the first to splitKNN searches

between architectures. We make the following contributions:

• We propose a hybrid CPU/GPU approach for solving the KNN

self-join problem that combines a distance similarity join for the

GPU with a multi-core CPU KNN algorithm.

• The GPU component of our HybridKNN-Join algorithm solves

the KNN problem using range queries. We show how to select a

search distance, ϵ , such that the GPU join is likely to find at least

K neighbors for each query point.

• We present a work queue to distribute queries to the CPU and

GPU. The work queue prioritizes assigning query points with

significant computation to the GPU.

• The throughput-oriented GPU requires processing large quanti-

ties of query points in batches to achieve peak performance. This

can lead to load imbalance between the CPU and GPU. We pro-

pose a method to mitigate load imbalance between architectures.

Paper organization: Section 2 presents background material; Sec-

tion 3 recaps leveraged GPU self-join literature; Section 4 presents

the hybrid KNN self-join and optimizations; Section 5 evaluates

our approach; and finally, Section 6 concludes the paper.

2 BACKGROUND

The KNN self-join is outlined as follows. Let D be a database of

n-dimensional points (or feature vectors) denoted as pi ∈ D, where

i = 1, 2, . . . , |D |. For each point in the database, pi ∈ D, we find

its K nearest neighbors, excluding the point itself. To compute

the distance between two points, pa and pb , we use the Euclidean

distance as follows: dist(pa ,pb) =
√

∑n
j=1(pa (x j) − pb (x j))

2, where

x j denotes the point’s coordinate in dimension j. We assume an

in-memory scenario where the entire database fits within the global

memory of a GPU, and the entire result set (theK nearest neighbors

of each point) fits within main memory on the host; however, the

entire result set may exceed GPU global memory capacity. The KNN

self-join is denoted as D ▷◁KNN D. However, the KNN self-join

problem and optimizations are also directly applicable to the case

where there are two datasets R and S that are joined, R ⋉KNN S .

2.1 Related Work

We present an overview of several categories of related work below.

Hybrid Algorithms ś Using both the CPU and GPU is needed

to achieve peak performance in heterogeneous systems (see [26]

for a survey of hybrid algorithms). Several works split the work

between the CPU and GPU at runtime. For instance, Li et al. [24]

parallelize Cryo-EM 3D reconstruction, and assign tasks to the

CPU or GPU depending on the workload. Deshpande et al. [8] filter

images based on the degree of parallelism that varies across image

regions, where the GPU is assigned the highly parallel regions and

the CPU is assigned the remaining regions. Similarly to these works,

HybridKNN-Join dynamically schedules the query points onto the

architecture most suitable for the workload.

KNN Searches and Joins ś KNN searches are a fundamental ma-

chine learning algorithm. Consequently, there have been many

works on optimizing the KNN search and join [3, 5, 27, 28, 31ś34].

We describe a sample of the literature below.

An R-tree is used to find the KNN in [31] that uses a branch-

and-bound recursive algorithm that first gets an estimate of the

KNN and then performs backtracking on subtrees to find the exact

neighbors. Backtracking in tree-based solutions [28, 31] is used to

ensure that at least K nearest neighbors are found.

While the E2LSH [3] algorithm performs range queries, and is

not designed for KNN , it can be used to find nearest neighbors by

constructing several data structures corresponding to increasing

search radii, and querying them in ascending order by distance

until K neighbors are found [2]. We employ a similar increasing

search radius strategy for the GPU component of our work.

The Approximate Nearest Neighbors (ANN) algorithm can be

used to efficiently find both the approximate and the exact neigh-

bors [5]. Approximate solutions are motivated by prohibitively

expensive high-dimensional exact KNN searches. Related to ANN

is the Fast Library for ANN (FLANN) [27], which achieves good

performance using a parallel search over a randomized kd-forest.

While FLANN outperforms ANN for one scenario in [27], the com-

parison was between a parallel (FLANN) and sequential algorithm

(ANN). Since ANN is considered state-of-the-art, we parallelize and

incorporate it into HybridKNN-Join.

Indexing Techniques ś Central to our approach is using an ap-

propriate index for the architecture. Indexes for the CPU have been

designed to be work-efficient, such as index-trees (e.g., kd-trees [6],

quad-trees [9], and R-trees [14]), and they are constructed as a func-

tion of the data distribution. In contrast, there are data-oblivious

methods, such as statically partitioned grids [12].

With the proliferation of general purpose computing on graph-

ics processing units (GPGPU) there has been debate whether the

community should use the tree-based approaches, or data-oblivious

methods for the GPU. The disadvantage of index-trees is that they

contain many branch instructions, which can reduce the parallel ef-

ficiency of the GPU due to the SIMT architecture. A GPU R-tree [21]

was optimized to reduce thread divergence. Later, the same research

group showed that it is better to perform the tree traversal on the

CPU and perform the scanning of the leaf nodes on the GPU [22].

This shows that the GPU should be leveraged through the use of

regularized instructions, yielding low thread divergence. Conse-

quently, we use a non-hierarchical indexing technique with low

thread divergence for our GPU join operation.

Range Queries and Joins ś Our hybrid approach uses range

queries on the GPU to performKNN searches. A join operation with

a distance predicate can be implemented as several range queries.

The multi-core CPU join algorithm in [18] uses a non-materialized

grid, and exploits the data distribution to efficiently perform a simi-

larity join over a search distance, ϵ , and the algorithm was shown

to outperform the E2LSH [3], and LSS [25] algorithms. A GPU

self-join was presented in [12] that was shown to be efficient on

low-dimensional data. We leverage some of the optimizations in the

GPU self-join work [12] as they are effective for executing range

queries that can be used to solve KNN searches on the GPU.

34

KNN-Joins Using a Hybrid Approach:

Exploiting CPU/GPU Workload Characteristics GPGPU-12, April 13, 2019, Providence, RI, USA

3 RECAP OF PREVIOUS SELF-JOIN WORK

HybridKNN-Join leverages the distance similarity self-join work

of Gowanlock & Karsin [12], which was evaluated on up to n = 6

dimensions. The authors used an efficient indexing scheme and

batching scheme from [13], and proposed a technique to reduce

the number of duplicate computations. The approach was shown

to outperform a state-of-the-art multi-core approach across many

experimental scenarios; therefore, we employ their work in the

GPU component of HybridKNN-Join. We outline the optimizations

from [12], that we use to efficiently solve the KNN -join on the GPU.

3.1 Indexing Technique

We use a grid-based indexing scheme for the GPU (see [12, 13] for

more detail) with cells of length ϵ . The index only stores non-empty

grid cells, as indexing all cells may exceed the memory capacity of

the GPU. The index, denoted asG , uses a series of lookup arrays to

find relevant points in the index. A range query around a point is

carried out by performing distance calculations between points in

each adjacent cell of the point (and the cell containing the point).

The number of adjacent cells is 3n (e.g., in 2-D there are 9 total

grid cells). The space complexity of the index is O(|D |). This small

memory footprint allows for larger datasets and result set sizes to

be processed on the GPU.

3.2 Batching Scheme

We give a brief overview of the GPU batching scheme in [12]. The

size of the total result set for a join operation, which contains the

neighbors of each point within a distance ϵ , can be larger than the

GPU’s global memory capacity. To process large datasets or values

of ϵ , a batching scheme is needed to incrementally process the join,

by querying a fraction of D at each kernel invocation until range

queries have been performed on all pi ∈ D. We select a number

of batches to execute by first estimating the total result set size

(using a lightweight kernel), which yields an estimate, e , of the total

result set size. Given a buffer size of bs (the size of a buffer to store

the result set of a batch), we compute the total number of batches

to be nb = ⌈e/bs ⌉. This obviates failure-restart strategies that can

waste computation. We use 3 CUDA steams (a minimum of nb = 3),

which overlaps the execution of the kernel and data transfers to

exploit bidirectional PCIe bandwidth, and concurrent host and GPU

tasks. We use bs = 108 for each stream.

4 HYBRIDKNN-JOIN AND OPTIMIZATIONS

4.1 Splitting Work Between Architectures

As discussed in Section 1, we focus on a hybrid CPU/GPU approach

that performs the KNN search using the CPU and GPU.

A range query finds all points,pi ∈ D, within a search distance, ϵ ,

of a query point. Thus, to construct a KNN -join using a range query,

there are several facets of the problem to consider. The ϵ search

distance is required to ensure that the nearest points from a query

point are found. For a given search that returns > K neighbors, the

distances between points are compared to determine which of the

points are nearest to the query point. However, while a range query

will return all points within ϵ , there is no guarantee that all (or any)

of the points will have K neighbors. In principle, the selection of ϵ

could be large such that all points have at leastK nearest neighbors;

however, this would lead to significant computational overhead, as

some points in the dataset may find a large fraction of the entire

dataset necessitating a significant number of distance calculations.

(a) (b)

Dense Region: Good for the GPU Sparse Region: Good for the CPU

Figure 1: Example query points assigned to either the GPU

or CPU and possible indexing strategies for each. (a) The

GPU is proficient at processing high density regions with a

non-hierarchical grid. (b) The CPU is proficient for low den-

sity regionswith an index-tree (kd-tree partitioning shown).

Figure 1 shows an example of a spatially partitioned region with

query points shown as larger red points. In Figure 1 (a), there are

many nearby neighbors; thus, there are a significant number of

distance calculations and filtering needed to find the K nearest

neighbors. However, in Figure 1 (b), the query point is located in

a sparse region. Thus, a large range query would be needed to

find at least K neighbors. Spatially partitioning the data using a

grid in Figure 1 (a) is reasonable, as it is likely K neighbors will be

found by checking adjacent cells (e.g., assume K = 3). In contrast,

in Figure 1 (b), the grid is not effective. Had a grid been used, the

adjacent cells would not contain any nearby points. In this case, a

data-aware index (e.g., kd-tree [6] partitioning shown in Figure 1 (b))

is better suited to finding data in sparse regions. Furthermore, as

there are fewer points nearby the query point in Figure 1 (b), there

is a low degree of candidate point filtering overhead.

Given this illustrative example, the GPU and associated index-

ing scheme in Section 3.1 is good for processing the scenario in

Figure 1 (a) due to the large amount of filtering overhead needed

(the massive parallelism of the GPU is well-suited to distance cal-

culations), and low index search overhead; whereas the scenario in

Figure 1 (b) is good for finding the KNN on the CPU due to the low

degree of filtering overhead and associated data-aware indexing

scheme for low density regions. Therefore, the motivation for split-

ting the work between CPU and GPU is based on the suitability of

each architecture to find the KNN of a given query point.

4.2 Hybrid KNN-Join Overview

We exploit the relative strengths of CPU and GPU architectures. The

GPU is proficient at processing large batches of queries when the

kernel can exploit the high memory bandwidth and massive paral-

lelism afforded by the architecture. The CPU is better at processing

irregular instruction flows, and thus, is well-suited to tree-based

indexes that are comprised of many branch instructions.

4.2.1 CPU KNN Component (Hybrid-CPU). We use the publicly

available1 ANN CPU implementation [5] that uses a kd-tree index.

The algorithm is efficient for both approximate and exact solutions

1ANN can be found here: http://www.cs.umd.edu/~mount/ANN/.

35

GPGPU-12, April 13, 2019, Providence, RI, USA Michael Gowanlock

to the KNN problem, and we execute the algorithm such that we

obtain the exact nearest neighbors. As noted in other work [30],

ANN uses global variables in its functions, which are not conducive

to shared-memory parallelism. We obviate this limitation by paral-

lelizing ANN using MPI where the K nearest neighbors of query

points are found independently by each process rank. The results

are written directly to an MPI shared memory window and thus we

avoid communication between ranks. We refer to the multi-core

CPU approach of HybridKNN-Join as Hybrid-CPU.

4.2.2 GPU-Join Component (Hybrid-GPU). In CPU-based KNN

searches [31], backtracking is used to ensure that K neighbors

are found for each point searched. Likewise, the E2LSH [3] CPU

algorithm for range queries has been used for KNN searches by

expanding the search radius until ≥ K neighbors are found for each

point. As an example of expanding the search radius, Figure 2 (a)

shows where K = 5 neighbors are found when ϵ = 1, whereas Fig-

ure 2 (b) shows an example where ϵ needs to be expanded to ϵ = 2

to find at least K = 5 neighbors. Backtracking or expanding the

search radius is a query-centric approach that is beneficial for mod-

ern CPUs that can take advantage of the memory hierarchy (e.g.,

benefiting from locality during tree traversals), but is unsuitable

for a batched GPU execution.

(a)

1.0 1.5 2.0

(b)

1.0 1.5 2.0

Figure 2: A KNN search around two query points (larger red

points at the centers) where K = 5. Shaded region denotes

the range required to find K = 5 points. (a) K = 5 neighbors

are found with ϵ = 1. (b)K = 5 neighbors are found when the

search distance is expanded to ϵ = 2.

To transform range queries with a distance ϵ into a KNN search

that considers the throughput-oriented nature of the GPU, we use a

batched execution that allows our GPU component, Hybrid-GPU,

to fail to find at least K points for each point searched. The overall

idea that we will outline in Section 4.4 is the following: (i) the failed

queries are added back to a work queue to be processed by either

Hybrid-GPU orHybrid-CPU in the future; and (ii)we dynamically

re-index Hybrid-GPU with an increased ϵ value when it reaches

a threshold number of searches that did not yield ≥ K neighbors

per point. Thus, each query point assigned to Hybrid-GPU is not

guaranteed to find its KNN because we use a single ϵ-distance

when executing the kernel. Therefore, we refrain from using the

query-centric approaches (e.g., backtracking, or increasing ϵ for

individual point searches) on the GPU because this would lead to

increased divergence in the kernel and intra-warp load imbalance.

4.3 Hybrid-GPU: Selecting the Search Distance

The input parameter to a KNN search is K ; but Hybrid-GPU needs

an ϵ-distance which is expected to find at least K neighbors for

each point. Analytically deriving ϵ is feasible when the input data

distribution is known. However, real-world datasets have data dis-

tributions that make an analytical approach intractable.

Consider a search distance, ϵmin , that on average finds K neigh-

bors per pi ∈ D. Therefore, some points will find ≥ K neighbors,

and some will find < K neighbors. We derive ϵmin which is used

as an initial search distance for Hybrid-GPU.

We rely on the execution of two GPU kernels that sample the

dataset to determine a good value of ϵ . First, we simply sample D,

and compute the mean distance between points, denoted as ϵmean .

Next, we define a number of bins, nbins , that store the frequency of

the distances between pairs of points that fall within the distance

bin, where the width of each bin is ϵmean/nbins . We then select a

fraction of the total points in the dataset and compute the distance

between each of these points and every other point in D, and store

the distances in the respective bin, where any distance > ϵmean

is not stored (using a search distance of ϵmean will return a large

fraction of the dataset; much larger than any reasonable value of K).

We compute the cumulative number of points in each bin. Let Bd
denote the distance bins, where d = 1, 2, . . . ,nbins . Each Bd stores:

(i) its distance range denoted as [Bstar t
d

,Bend
d
), where Bstar t

d
=

(d − 1) · (ϵmean/nbins), and Bend
d

= d · (ϵmean/nbins); (ii) the

number of points found within its distance range [Bstar t
d

,Bend
d
),

denoted as Bn
d
; (iii), and the cumulative number of points in the

bin (including bins with points at lower distances), denoted as

Bc
d
, where Bc

d
=

∑d
a=1 B

n
a . This yields a relationship between the

search distance and the average number of neighbors that will

be found. ϵmin corresponds to the query distance that yields K

cumulative neighbors, where ϵmin
= (Bstar t

d
+ Bend

d
)/2, where

Bc
d−1
< K ≤ Bc

d
.

We select ϵ = ϵmin , which on average findsK neighbors for each

searched point. Figure 3 shows a 2-D example of a search within

the grid, where the grid cell length is equal to the search radius and

thus the search is bound to adjacent cells (Section 3.1).

Figure 3: A 2-D example of

the search radius ϵmin , which

probabilistically contains K

neighbors per pi ∈ D.

ϵmin

4.4 Assigning Work using a Work Queue

The GPU should execute range queries for points in dense regions,

and the CPU should perform the KNN search in sparse regions

(Figure 1).We begin by estimating the total amount of work required

to execute each pi ∈ D. We repurpose the grid index that is sent to

the GPU (Sections 3.1 and 4.3) to estimate the total work. For each

pi ∈ D, we check the total number of points that are found within

the point’s grid cell. This information requires simply performing

a scan over the index’s non-empty grid cell array. For each point

found within a given cell, the total number of points found within

the cell are assigned to the point as an approximation of the amount

of work that will need to be computed for that point. Then, we

sort this array in non-increasing order by the number of points in

each cell. Since the number of points in a cell will trace the data

36

KNN-Joins Using a Hybrid Approach:

Exploiting CPU/GPU Workload Characteristics GPGPU-12, April 13, 2019, Providence, RI, USA

density in the immediate region around each point, this yields an

estimate of the total amount of work for each point. Alternatively,

we could count the number of neighbors in each point’s cell and the

adjacent cells that are to be searched to compute the total number

of distance calculations; however, this would require substantial

work, and thus we employ the simple procedure outlined above to

estimate the work required of each point.

The GPU is efficient at performing distance calculations in high

density regions, and the CPU is efficient at computing the lower

density regions. Figure 4 shows a work queue illustration, where

an arrayC stores the number of points within the cell of each point

pi ∈ D. For example, p64 and p53 both have 32 points in their cell.

In contrast, the last point inC , p27, only has a single point in its cell

(itself). The work queue assigns Hybrid-CPU query points starting

atC[|D |] in decreasing order, and assignsHybrid-GPU query points

starting at C[1] in increasing order. Thus, the queries assigned to

the CPU progressively require more work, and the queries assigned

to the GPU progressively require less work. Depending on the data

distribution, Hybrid-GPU may only compute the KNN of a small

fraction of D, but perform similar levels of work as Hybrid-CPU.

1

32

2

32
. . . 30

32

31

32

32

32

33

20

34

20

35

20
. . . 50

20

51

20

52

20
. . .

1 1 1 1 1 1

95 96 97 98 99 |D | = 100

C

pi 64 39 3 60 53 82 94 61 77 14 93 45 51 37 32 24 27

Hybrid-GPU Hybrid-CPU

Figure 4: Example of awork queuewith |D | = 100 data points.

An array, C, stores the number of points within each cell

for each pi ∈ D. C is sorted in non-increasing order, where

Hybrid-GPU is assigned points with the greatest amount

of work, and Hybrid-CPU is assigned points with the least

amount of work.

We outline several work queue performance considerations.

• Load Imbalance – Performance degrades while one architecture

waits for the other to finish processing their queries.

• Work Queue Overhead –While the smallest work unit (a single

query point) would lead to the best load balancing, there is over-

head when accessing a work queue, and thus assigning batches

of queries reduces work queue overhead. This is independent of

the architecture requesting work to compute.

• Maintaining GPU Throughput – The GPU requires large batches

of queries to maintain high query throughput, as executing a

single query point on the GPU will underutilize its resources. In

contrast, the CPU does not suffer from this limitation.

This is similar to the classical trade-off between load imbalance

and work queue overhead (e.g., static vs. dynamic scheduling of for

loops in OpenMP [7]). However, this scenario is different than this

classical scenario, as the GPU requires larger query batches than

the CPU to maintain high throughput. This can negatively impact

load balancing, as the GPU may be assigned a large batch of points

to compute towards the end of the computation, which would leave

the CPU cores idle while waiting for the GPU to complete its work.

We propose several design decisions for the work queue to miti-

gate load imbalance while maintaining high GPU query throughput.

We allow Hybrid-GPU to be assigned two types of batches: (i)

large monolithic batches containing a substantial fraction of pi ∈ D;

and, (ii) small batches. For a derived ϵ value, Hybrid-GPU may

not find the KNN for each point assigned to it (Section 4.3). Each

pi ∈ D that fails to find KNN is added back to the work queue,

and may be found by either Hybrid-GPU (when ϵ is expanded) or

Hybrid-CPU in the future. At each monolithic batch round, we

reduce the batch size by a factor of two. We denote nlarдe to be the

size of the monolithic batch as a fraction of |D |.

A drawback of the monolithic batches is that Hybrid-GPU can

request many query points to compute and starve the CPU (Hybrid-

CPU) of work. Consequently, we implement a window of reserved

query points for the CPU to compute during monolithic batch

processing. Thus, each time the GPU requests a monolithic batch,

the work queue manager determines the maximum number of GPU

points that can be assigned to Hybrid-GPU, such that the CPU has

at least a minimum number of points to compute. We denote the

size of the fraction |D | points reserved for Hybrid-CPU as nCwin .

Using nCwin , and the fraction |D | points that have already been

processed by the CPU and GPU, denoted as nCproc and nGproc ,

respectively, if we let n
larдe

l
be the size of the monolithic batch at

round l , then the size at round l + 1 is as follows:

n
larдe

l+1
=min

[

0.5n
larдe

l
,max

(

0, 1 − nGproc − nCproc − nCwin)
]

.

Therefore, the monolithic batch size at round l + 1 is either half

the size of the monolithic batch at l , or a smaller size, as a function

of the fraction of queries already computed and the window of

reserved queries, until nlarдe = 0.

Once the monolithic batch size decreases to nlarдe = 0, Hybrid-

GPU reverts to smaller batches and no queries are reserved for

Hybrid-CPU (nCwin
= 0), such that: (i) the GPU is still utilized;

and, (ii) the GPU and CPU finish their computation at similar

times. However, there may be a substantial number of queries to

compute despite (potentially) executing several monolithic batches,

as the CPU window will have reserved queries from being added to

monolithic batches. We denote nsmall as the size of each smaller

Hybrid-GPU (non-monolithic) batch, and nCPU as the size of each

Hybrid-CPU batch, both given as a fraction of |D |.

Hybrid-GPUmay fail to find the KNN for many points if ϵ is not

increased. As C stores points from most to least work, with each

processed GPU batch, there are more query points that fail to find

their KNN . Thus, when using the small or monolithic batches, we

dynamically re-index Hybrid-GPU by increasing ϵ by a distance of

ϵmin/2, when on the previous batch,Hybrid-GPU failed to find the

KNN of at least 25% of its assigned points. This dynamic approach

attempts to reach a trade-off between (i) not increasing ϵ too much

which is expensive; and, (ii) not failing to find too many query

points in the batch. Re-indexing occurs in parallel using threads to

reduce the time where the GPU is idle due to expanding ϵ . Finally,

when 95% of the query points have found their KNN , we then

decrease the batch sizes assigned to the CPU and GPU to nCPU /2

and nsmall /2, respectively. These smaller batches (half of the initial

size) mitigates load imbalance at the end of the computation.

Figure 5 illustrates the monolithic batches from the work queue

being assigned to Hybrid-GPU and small batches of queries as-

signed to Hybrid-CPU. Figure 5 (a) shows an initial work queue,

37

GPGPU-12, April 13, 2019, Providence, RI, USA Michael Gowanlock

where 1/3 of D (nlarдe = 1/3) is assigned to Hybrid-GPU, and

1/3 of the queries must be reserved for the CPU (nCwin
= 1/3). In

Figure 5 (b), after Hybrid-GPU processes its queries from the first

batch, some of the queries will be solved and some will have failed

to find the KNN (shown as partially complete). The vertical lines

denote nlarдe (dashed line) and nCwin (solid line). The CPU is guar-

anteed to find the KNN of each query point, thus the queries are

shown as complete. Comparing Figure 5 (a) and (b) we see that the

maximum GPU batch size does not increase substantially because

nlarдe is halved between rounds. Comparing Figure 5 (c) and (d),

the window of reserved CPU queries decreases the queries avail-

able for Hybrid-GPU to compute using a monolithic batch. After

nlarдe = 0, Hybrid-GPU reverts to smaller batches of size nsmall .

Not Yet Assigned Partially Complete Complete

Max.

nlarдe

(a) 1/3

(b) 1/6

(c) 1/12

(d) 1/24

Hybrid-GPU Hybrid-CPU

Max. GPU Batch Size CPU Window

Figure 5: Assigning monolithic batches of queries from the

work queue to Hybrid-GPU and queries to Hybrid-CPU

(small Hybrid-GPU batch rounds not shown). (a) Initial

work queue with nlarдe = nCwin
= 1/3. (b) After processing

a monolithic batch, some queries have been computed by

Hybrid-GPU and Hybrid-CPU, and the monolithic batch

size deceases. (c) The CPU window reduces the monolithic

batch size. (d) After processing withHybrid-GPU themono-

lithic batch rounds are finished as nlarдe = 0.

Note that we have made several parameter selection decisions.

We dynamically re-index Hybrid-GPU when 25% of queries fail to

find at least K neighbors in the previous batch. Furthermore, we

use half of the small GPU batch sizes (nsmall), and the CPU batch

size (nCPU) when 95% of the queries have found their KNN in the

dataset to obviate load imbalance at the end of the computation.

While these parameters are arbitrarily selected, we believe that they

are reasonable design decisions (e.g., similarly, OpenMP guided

scheduling reduces the chunk size with increasing iteration [7]).

4.5 GPU: Optimizing Task Granularity

In the self-join work that we leverage [12], a single thread is as-

signed to each point in the dataset, where the thread finds all points

within ϵ of its assigned point. This approach was tenable because

the total number of threads is large (|D |). Since Hybrid-GPU may

only process a small fraction of D in a batch, then the GPU’s re-

sources may be underutilized if we use one thread per point. Also,

the GPU hides high memory latency by performing fast context

switching between resident threads. Thus, oversubscribing the GPU

by using more threads than cores is needed to saturate resources.

Figure 6: Using

multiple threads

to compute the

distances between

points in 2-D.

ϵ

Points

p0 p1 p2 p3 p4 p5

Thread ids

t0 t1 t2 t0 t1 t2

We divide the work of the distance calculations for a single point

between multiple threads to increase task granularity. Figure 6

shows an example of using multiple threads per query point. The

query point (red) is shown in the middle cell. The distances between

the query point and the six points are computed in an adjacent

cell (dashed blue outline). This example shows three threads each

computing the distances between two points.

We assign a static number of threads per query point for per-

forming the distance calculations, where the number of threads are

referred to as t (e.g., t = 32 denotes using 32 threads per point).

An advantage of this approach is that the number of threads per

point can be selected to reduce intra-warp thread divergence. For

example, if 32 threads per point are used, then a full warp will com-

pute the distance between a given point and the candidate points.

There should be low divergence because each thread in the warp

executes similar execution pathways. Drawbacks include: (i) too

many threads per point increase overhead; and (ii) query points in

lower density regions may not need a large number of threads, and

such threads will have minimal work. There is a trade off between

assigning too few or too many threads per point. We assume that

the number of threads selected to compute the distance calculations

for each point should evenly divide the size of a warp (32 threads).

This eliminates the possibility of the threads assigned to a point

spanning multiple warps and increasing divergence.

4.6 Algorithm Overview

We outline HybridKNN-Join in Algorithm 1 as follows. Obtaining

the process rank and importing the dataset occurs on lines 2ś3. We

use anMPI implementation and have 1master GPU rank and several

CPU ranks which begin their primary execution on lines 4 and 21,

respectively. For brevity, we do not show the work queue rank, as

it simply assigns query points to the GPU and CPU ranks.

The Hybrid-GPU rank initializes the result set (line 5). Next,

the value of ϵmin is selected (Section 4.3) on line 6, and then ϵ is

set using this value on line 7 (we use ϵmin later, which is why we

declare both ϵ and ϵmin). Next, we construct the index, G, as a

function of D, and ϵ on line 8. Then, the algorithm gets a number

of queries from the work queue rank on line 9 and stores them in

QGPU . A while loop is entered on line 10 that iterates until there

are no more queries to compute (i.e., |QGPU | = 0). Using the batch

estimator, the number of GPU batches is computed on line 11 (recall

from Section 3.2 that the batch estimator computes the total number

38

KNN-Joins Using a Hybrid Approach:

Exploiting CPU/GPU Workload Characteristics GPGPU-12, April 13, 2019, Providence, RI, USA

of batches so that Hybrid-GPU can process result sets larger than

global memory). For clarity, note that these batches differ from the

batches of queries obtained from the work queue (QGPU).

The algorithm loops over all of the batches (line 12). At each

iteration, theGPUJoinKernel is executed (line 13), which computes

the result set for a single batch. On line 14 the result of the join

operation is filtered (the result is in the form of key/value pairs

which are filtered to reduce duplicate keys), and store only points

in QGPU that have at least K neighbors. On line 15, after all of the

batches have been computed, those query points executed on the

GPU that have < K neighbors are assigned to the QFail set, and

these queries are added back to the work queue on line 16.

On lines 17ś19, the algorithm will dynamically re-index Hybrid-

GPU with a larger ϵ value if ≥ 25% of points in QGPU found < K

neighbors (Sections 4.2.2 and 4.4). And finally, on line 20, the rank

retrieves work for the next batch from the work queue.

Regarding Hybrid-CPU, on line 22, queries are obtained from

the work queue rank. Assuming there are queries to process, a

while loop is entered on line 23, which computes the result of the

KNN search for its batch of queries on line 24. The next batch of

work is obtained from the work queue rank on line 25, and the loop

continues until their are no additional queries to compute.

Algorithm 1 HybridKNN-Join Algorithm

1: procedure HybridKNN-Join(K , bs)
2: myRank← getRank()
3: D ← importData()
4: if myRank = GPU Master Rank then ▷ GPU Rank
5: KNNresult← ∅
6: ϵmin ← selectEpsilon(D)

7: ϵ ← ϵmin

8: G ← constructIndex(D , ϵ)

9: QGPU ← getWork()

10: while |QGPU | > 0 do

11: nb ← computeNumGPUBatches(bs , Q
GPU , ϵ)

12: for i ∈ 1, 2, . . . ,nb do

13: kernResult[i]← GPUJoinKernel(D , QGPU , G , ϵ , i)
14: KNNresult← KNNresult ∪ filterKeys(kernResult[i])

15: Q Fail ← findFailedPnts(KNNresult, QGPU)

16: addFailuresToWorkQueue(Q Fail)

17: if |Q Fail |/ |QGPU | > 0.25 then

18: ϵ ← ϵ + 0.5ϵmin

19: G ← constructIndex(D , ϵ)

20: QGPU ← getWork()

21: else ▷ CPU Ranks
22: QCPU ← getWork()

23: while |QCPU | > 0 do

24: KNNresult← KNNresult ∪ Hybrid-CPU (QCPU , myRank)

25: QCPU ← getWork()

26: return

27: procedure GPUJoinKernel(D , QGPU , G , ϵ , i)
28: resultSet← ∅
29: gid← getGlobalId(i)

30: queryPoint← getPoint(gid, QGPU)
31: adjCells← getAdjCells(G , queryPoint)
32: for cell ∈ adjCells.min,. . . ,adjCells.max do
33: pntResult← pntResult ∪ calcDistancePts(queryPoint, cell, ϵ)

34: resultSet← resultSet ∪ pntResult
35: return resultSet

We describe the Hybrid-GPU join kernel, but refer the reader

to [12] for more detail. We make two minor changes to the self-join

kernel to accommodate HybridKNN-Join. First, we add a query

set, as we do not want to compare all points to each other, as range

queries are only needed for those points inQGPU . Second, we allow

multiple threads to process an individual point (Section 4.5). In the

GPU join kernel shown in Algorithm 1, the result set is initialized

(line 28), and then the global thread id is computed (line 29). Next,

the query point assigned to the thread is stored (line 30), and a loop

iterates over all adjacent cells (lines 31ś32). The point assigned to

the thread is compared to all points in the adjacent cells, where a

result is stored when a point is found to be within ϵ of the query

point (lines 33ś34). The result is stored as key/value pairs, where

the key is the query point id, and the results are both the point id

within ϵ of the key, and the distance between the points.

If more than one thread computes the distance between a query

point and points in neighboring cells, then each thread only com-

putes a fraction of the points in the cell on line 33 (see Figure 6).

5 EXPERIMENTAL EVALUATION

5.1 Datasets

We focus on low-dimensionalKNN -joins due to their utility inmany

applications. Additionally, related work has consistently shown

that GPU-accelerated KNN searches outperform CPU approaches

at high dimensionality [11, 20], due to the increased cost of distance

calculations. Thus, the GPU may be unsuitable to low-dimensional

KNN -joins, and we target this low-dimensionality scenario.

We employ two classes of synthetic datasets with different work-

load characteristics. The Unif- class of datasets contains uniformly

distributed data points. The Expo- class of datasets contains expo-

nentially distributed data points with λ = 40. Datasets are generated

in 2, 4, and 6 dimensions for both classes, and contain |D | = 107

points. We also employ two 2-D real-world datasets: Gaia which

contains |D | = 2.5 × 107 positions of astronomical objects from the

Gaia catalog [10], andOsmwhich contains |D | = 2.5×107 positions

from Open Street Map data [29] after point de-duplication.

5.2 Experimental Methodology

All HybridKNN-Join CPU code is written in C/C++, compiled

using the GNU compiler (v. 5.4.0) with the O3 flag. The GPU code is

written in CUDA v. 9. We use OpenMPI v. 3.1.1 for parallelizing host-

side tasks (discussed in Section 4.2.1). The work queue performs

minimal work; however, we parallelize it using twoOpenMP threads

for assigning queries to Hybrid-CPU and Hybrid-GPU, as we

need to wait on Hybrid-GPU without blocking Hybrid-CPU from

obtaining new work. Also, we use OpenMP for parallelizing index

construction when re-indexing Hybrid-GPU.

Our platform consists of an NVIDIA GP100 GPU with 16 GiB

of global memory, and has 2× E5-2620 v4 2.1 GHz CPUs, with 16

total physical cores. The Hybrid-GPU kernel uses 256 threads per

block. In the experiments, we exclude the time needed to load the

dataset or construct the Hybrid-CPU indexes or the initial Hybrid-

GPU index (see Section 5.3). The response time of performing the

KNN search on the CPU and GPU is measured after the indexes

have been constructed by Hybrid-CPU. All other components of

the algorithm are included in the response time (e.g., finding the

search distance for Hybrid-GPU, ordering the workload for the

work queue). Time measurements are averaged over 3 trials.

39

GPGPU-12, April 13, 2019, Providence, RI, USA Michael Gowanlock

Table 1: Summary of notation, and parameters. Default val-

ues shown in parentheses where applicable.

Descriptive Notation

n The dimensionality of the data.

K The number of nearest neighbors found for each pi ∈ D .

ϵ The search distance for Hybrid-GPU that may dynamically expand.

Hybrid-CPU Parallel CPU component of HybridKNN-Join.

Hybrid-GPU GPU component of HybridKNN-Join.

HybridKNN-Join The proposed CPU/GPU approach.

CPU-Only Parallel CPU-only reference implementation.

Parameter Notation

nlarдe (0.4) Initial monolithic batch size for Hybrid-GPU as a fraction of |D |.

nsmall (0.005) Small batch size for Hybrid-GPU as a fraction of |D |.

nCwin (0.4) Window size of reserved queries for Hybrid-CPU during monolithic
batch rounds as a fraction of |D |.

nCPU (0.005) Batch size for Hybrid-CPU as a fraction of |D |.
t (8) Number of threads assigned to each query point for Hybrid-GPU.

Table 1 summarizes notation, parameters, and their default val-

ues. Note that the initial monolithic batch size (nlarдe) and the

window size of reserved CPU queries (nCwin) are both 40% of |D |.

Increasing nlarдe beyond 40% is unlikely to greatly improve per-

formance as the larger the value of nlarдe , the more queries that

fail to find ≥ K neighbors. nsmall and nCPU are 0.5% of |D |, which

is selected to minimize load imbalance, while not assigning too few

queries per batch, which can increase work queue overhead.

5.3 Implementations

We compare HybridKNN-Join to a CPU-only implementation, as

described below.We do not use a GPU-only implementation because

it would be designed differently (e.g., removal of the work queue,

pipelining index construction, and other designs).

·CPU-Only ś We compare to a multi-core CPU ANN [5] imple-

mentation that obtains the exact neighbors, as described in Sec-

tion 4.2.1. We compare HybridKNN-Join to CPU-Only to demon-

strate the performance gains yielded by the GPU. We execute CPU-

Only with 16 processes that perform KNN searches, and 1 process

for the work queue. There is no communication between ANN pro-

cess ranks, as they find the KNN independently and write results

directly to shared memory. Recall that we needed to parallelize

ANN using MPI. We have each process rank independently con-

struct its own kd-tree which is queried in batches. Since ANN does

not perform parallel index construction and we cannot share the

index between processes, we exclude this index construction time.

·HybridKNN-Join ś Our hybrid approach uses: Hybrid-CPU

with 15 processes, and Hybrid-GPU and the work queue each use

1 process. Hybrid-CPU uses one less process than CPU-Only.

5.4 Results

5.4.1 Overheads. We quantify the percentage of the total response

time of major overheads when K = 32 on the Unif- and Expo-

classes of datasets. The time to find ϵ (Section 4.3) ranges from 4.9%

(Unif2D) to 1.1% (Unif6D), and these percentages for ordering the

work queueworkload (Section 4.4) range from 5.5% (Unif2D) to 0.8%

(Unif6D). Thus, these overheads are amortized on larger workloads;

however, they are non-negligible on the smaller workloads.

5.4.2 GPU Kernel Task Granularity. Hybrid-GPU uses a number of

threads (t) to process each point (Section 4.5). Since the size of each

Table 2: Response time (s) when varying t for t = 1, 8, 32 and

K = 8, 32, 128 on Gaia, Osm, Unif4D, and Unif6D datasets.

Excepting t , the default parameter values in Table 1 are used.

The lowest response time is shown in bold face for each K .

t 1 8 32

K = 8

Gaia 25.258 25.548 25.893

Osm 37.340 31.812 32.017

Unif4D 14.960 14.101 15.655

Unif6D 43.850 43.779 52.362

K = 32

Gaia 27.123 23.669 25.377

Osm 36.509 32.437 31.707

Unif4D 21.733 20.942 21.698

Unif6D 91.988 75.275 85.136

K = 128

Gaia 43.703 42.251 41.193

Osm 36.067 33.182 30.844

Unif4D 43.092 39.300 41.342

Unif6D 188.299 167.552 175.122

batch assigned from the work queue to Hybrid-GPU, |QGPU |, can

vary (e.g., due to decreasing monolithic batch sizes), it is important

that sufficient threads are executed, such that GPU resources remain

saturated, which is achieved through oversubscription.

Table 2 shows the total response time for a selection of datasets,

and values of K (8, 32, 128) and t threads (1, 8, and 32) assigned

to perform the distance calculations for each query point. From

Table 2 we observe that on K = 8 and K = 32, assigning t=8

leads to the best response time on three of four of the datasets. At

K = 128 on Gaia and Osm, t=32 threads yields the best response

time, whereas on Unif4D and Unif6D, this value is t=8. Because

the real world Gaia and Osm datasets contain more points than

Unif4D and Unif6D, we attribute this to the increased workload

in the former two datasets that benefit from additional threads.

The larger the workload (larger datasets and K), the greater the

potential for load imbalance when searching for the neighbors of

each point. Thus, more threads can decrease the time to compute

individual query points, which reduces load imbalance.

5.4.3 WorkQueue Performance Characteristics. We examine per-

formance as a function of the selection of the monolithic batch size

and load imbalance between Hybrid-CPU and Hybrid-GPU. The

selection of the monolithic batch size, nlarдe , has several perfor-

mance implications. A large nlarдe will decrease the fraction of

queries that Hybrid-GPU is able to successfully compute in the

first batch round, as ϵ is selected to find on average K neighbors

per pi ∈ D (Section 4.3). A small value of nlarдe will decrease GPU

throughput, where GPU resources may not be saturated.

Figure 7 (a) and (b) plot the response time vs. nlarдe for Unif2D

and Unif6D, respectively. We set nCwin
= 0.4, thus during the

monolithic batch phase, 40% ofpi ∈ D are reserved forHybrid-CPU,

thus nlarдe ≤ 0.6. Without setting a window size, performance

will degrade with large nlarдe , as Hybrid-GPU will starve Hybrid-

CPU of queries to process. In Figure 7 (a)ś(b), we find that nlarдe

should not be too small, otherwise GPU resources will not be fully

utilized, which is shown by the initial decrease in response time

(e.g., comparing nlarдe = 0.05 and 0.15 in Figure 7 (a)). However,

on Unif2D, we see that too large a value of nlarдe will decrease

40

