KNN-Joins Using a Hybrid Approach:
Exploiting CPU/GPU Workload Characteristics

Michael Gowanlock
Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Flagstaff, AZ, US.A.
michael.gowanlock@nau.edu

ABSTRACT

K Nearest Neighbor (KNN) joins are used in many scientific domains
for data analysis, and are building blocks of several well-known
algorithms. KNN-joins find the KNN of all points in a dataset.
However, KNN searches are computationally expensive, and many
GPU KNN algorithms focus on the high-dimensional case that
plainly gives a performance advantage to the GPU rather than the
CPU. Consequently, in this work, we focus on a hybrid CPU/GPU
approach for the low-dimensional KNN-join problem. In particular,
we utilize a work queue that prioritizes computing data points
in high density regions on the GPU, and low density regions on
the CPU, thereby taking advantage of each architecture’s relative
strengths. Our approach, HYBRIDKNN-Jo1N, is shown to effectively
augment a state-of-the-art multi-core CPU algorithm. We propose
optimizations that (i) maximize GPU query throughput by assigning
the GPU larger batches of work than the CPU; (ii) increase workload
granularity to optimize GPU resource utilization; and, (iii) limit load
imbalance between CPU and GPU architectures. Furthermore, the
work queue utilized in our approach shows promise for the general
purpose division of work for other hybrid CPU/GPU algorithms.

KEYWORDS

Heterogeneous Systems, In-memory Database, Nearest Neighbor
Search, Query Optimization

ACM Reference Format:

Michael Gowanlock. 2019. KNN-Joins Using a Hybrid Approach: Exploiting
CPU/GPU Workload Characteristics. In General Purpose Processing Using
GPU (GPGPU-12), April 13, 2019, Providence, RI, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3300053.3319417

1 INTRODUCTION

The performance of data-intensive computations such as K nearest
neighbor (KNN) searches are often limited by the memory bottle-
neck. The high aggregate memory bandwidth of graphics process-
ing units (GPUs) (e.g., 900 GiB/s on the Nvidia Volta [1]) results in
roughly an order-of-magnitude increase in memory bandwidth over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GPGPU-12, April 13, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6255-9/19/04...$15.00
https://doi.org/10.1145/3300053.3319417

33

the CPU. Therefore, GPUs are well-suited to data-intensive work-
loads. However, it is well-known that data transfers to and from
the GPU are a bottleneck, which can decrease the performance ad-
vantages afforded by the GPU. Additionally, many data-dependent
workloads, such as the KNN-join studied in this work, can have
irregular execution patterns that make the GPU potentially unsuit-
able for the algorithm due to thread divergence and serialization
that degrades performance [15]. Thus, it is not clear that the GPU
will lead to performance gains over multi-core CPU approaches.

We study the KNN self-join problem, which is outlined as follows:
given a database, D, of points, find all of the K nearest neighbors
of each point. We focus on the self-join because it is a common
task in scientific data processing (e.g., within an astronomy cat-
alog, find the closest five objects of all objects within a feature
space [35]). KNN searches are used in many applications, such
as the k-means [16], and Chameleon [19] clustering algorithms.
Consequently, KNN searches have been well studied [5, 27, 31],
including GPU [28] algorithms. However, many GPU approaches
only minimally involve the host, which underutilize CPU resources.

Many GPU-accelerated KNN algorithms focus on optimizing
brute force approaches, which highlight performance in high di-
mensional feature spaces and often compute a distance matrix [4,
11, 17, 23]. The key idea is to compute the distance between a query
point and all other points in D, then select the K neighbors with
the smallest distances to the query point. The algorithms are often
intractable for large datasets because the brute force approach has a
quadratic complexity. An index data structure can be used to reduce
the quadratic complexity of brute force searches on the CPU or
GPU, by reducing the number of point comparisons [5, 27, 28, 31].

Given the context above, we outline the major goals of this work.
Addressing Low-Dimensionality on the GPU: The abovemen-
tioned brute force KNN searches in high-dimensional spaces are
clearly well-suited to the GPU compared to the CPU due to the large
number of distance calculations that need to be computed. But, it is
not clear that the GPU can significantly outperform parallel CPU
approaches in low dimensionality. We address KNN searches in up
to 6-D, which is largely the domain of CPU KNN algorithms.
Transforming the GPU-Accelerated Similarity Join into the
KNN-Join: Recent work has proposed a similarity self-join for the
GPU that finds all points within a search distance € of a query point
using an index [12]. The similarity join can be used to construct
part of a KNN search by searching within a distance € of a query
point, and if there are > K neighbors within €, order the neighbors
by distance and select the nearest K neighbors. We leverage an
efficient GPU similarity join algorithm in our approach.

GPGPU-12, April 13,2019, Providence, RI, USA

Concurrent Exploitation of CPU and GPU Resources: In con-
trast to GPU-only approaches, we use both the CPU and GPU by
assigning query points to either architecture to find their respective
KNN. We leverage the distance similarity join described above for
the GPU to process high data density regions, and a parallel CPU
KNN algorithm for processing low density regions.

To our knowledge, our algorithm is the first to split KNN searches
between architectures. We make the following contributions:

e We propose a hybrid CPU/GPU approach for solving the KNN
self-join problem that combines a distance similarity join for the
GPU with a multi-core CPU KNN algorithm.

o The GPU component of our HyBRIDKNN-JoIN algorithm solves
the KNN problem using range queries. We show how to select a
search distance, €, such that the GPU join is likely to find at least
K neighbors for each query point.

e We present a work queue to distribute queries to the CPU and
GPU. The work queue prioritizes assigning query points with
significant computation to the GPU.

o The throughput-oriented GPU requires processing large quanti-
ties of query points in batches to achieve peak performance. This
can lead to load imbalance between the CPU and GPU. We pro-
pose a method to mitigate load imbalance between architectures.

Paper organization: Section 2 presents background material; Sec-
tion 3 recaps leveraged GPU self-join literature; Section 4 presents
the hybrid KNN self-join and optimizations; Section 5 evaluates
our approach; and finally, Section 6 concludes the paper.

2 BACKGROUND

The KNN self-join is outlined as follows. Let D be a database of
n-dimensional points (or feature vectors) denoted as p; € D, where
i =1,2,...,|D|. For each point in the database, p; € D, we find
its K nearest neighbors, excluding the point itself. To compute
the distance between two points, p, and pp, we use the Euclidean

distance as follows: dist(pa, pp) = \/Z;?:l(pa(Xj) - pp(x;))?, where
x;j denotes the point’s coordinate in dimension j. We assume an
in-memory scenario where the entire database fits within the global
memory of a GPU, and the entire result set (the K nearest neighbors
of each point) fits within main memory on the host; however, the
entire result set may exceed GPU global memory capacity. The KNN
self-join is denoted as D =g nN D. However, the KNN self-join
problem and optimizations are also directly applicable to the case
where there are two datasets R and S that are joined, R X g NN S.

2.1 Related Work

We present an overview of several categories of related work below.
Hybrid Algorithms — Using both the CPU and GPU is needed
to achieve peak performance in heterogeneous systems (see [26]
for a survey of hybrid algorithms). Several works split the work
between the CPU and GPU at runtime. For instance, Li et al. [24]
parallelize Cryo-EM 3D reconstruction, and assign tasks to the
CPU or GPU depending on the workload. Deshpande et al. [8] filter
images based on the degree of parallelism that varies across image
regions, where the GPU is assigned the highly parallel regions and
the CPU is assigned the remaining regions. Similarly to these works,

34

Michael Gowanlock

HyBRIDKNN-JoIN dynamically schedules the query points onto the
architecture most suitable for the workload.

KNN Searches and Joins — KNN searches are a fundamental ma-
chine learning algorithm. Consequently, there have been many
works on optimizing the KNN search and join [3, 5, 27, 28, 31-34].
We describe a sample of the literature below.

An R-tree is used to find the KNN in [31] that uses a branch-
and-bound recursive algorithm that first gets an estimate of the
KNN and then performs backtracking on subtrees to find the exact
neighbors. Backtracking in tree-based solutions [28, 31] is used to
ensure that at least K nearest neighbors are found.

While the E2LSH [3] algorithm performs range queries, and is
not designed for KNN, it can be used to find nearest neighbors by
constructing several data structures corresponding to increasing
search radii, and querying them in ascending order by distance
until K neighbors are found [2]. We employ a similar increasing
search radius strategy for the GPU component of our work.

The Approximate Nearest Neighbors (ANN) algorithm can be

used to efficiently find both the approximate and the exact neigh-
bors [5]. Approximate solutions are motivated by prohibitively
expensive high-dimensional exact KNN searches. Related to ANN
is the Fast Library for ANN (FLANN) [27], which achieves good
performance using a parallel search over a randomized kd-forest.
While FLANN outperforms ANN for one scenario in [27], the com-
parison was between a parallel (FLANN) and sequential algorithm
(ANN). Since ANN is considered state-of-the-art, we parallelize and
incorporate it into HyBRIDKNN-JOIN.
Indexing Techniques — Central to our approach is using an ap-
propriate index for the architecture. Indexes for the CPU have been
designed to be work-efficient, such as index-trees (e.g., kd-trees [6],
quad-trees [9], and R-trees [14]), and they are constructed as a func-
tion of the data distribution. In contrast, there are data-oblivious
methods, such as statically partitioned grids [12].

With the proliferation of general purpose computing on graph-

ics processing units (GPGPU) there has been debate whether the
community should use the tree-based approaches, or data-oblivious
methods for the GPU. The disadvantage of index-trees is that they
contain many branch instructions, which can reduce the parallel ef-
ficiency of the GPU due to the SIMT architecture. A GPU R-tree [21]
was optimized to reduce thread divergence. Later, the same research
group showed that it is better to perform the tree traversal on the
CPU and perform the scanning of the leaf nodes on the GPU [22].
This shows that the GPU should be leveraged through the use of
regularized instructions, yielding low thread divergence. Conse-
quently, we use a non-hierarchical indexing technique with low
thread divergence for our GPU join operation.
Range Queries and Joins — Our hybrid approach uses range
queries on the GPU to perform KNN searches. A join operation with
a distance predicate can be implemented as several range queries.
The multi-core CPU join algorithm in [18] uses a non-materialized
grid, and exploits the data distribution to efficiently perform a simi-
larity join over a search distance, €, and the algorithm was shown
to outperform the E’LSH [3], and LSS [25] algorithms. A GPU
self-join was presented in [12] that was shown to be efficient on
low-dimensional data. We leverage some of the optimizations in the
GPU self-join work [12] as they are effective for executing range
queries that can be used to solve KNN searches on the GPU.

KNN-Joins Using a Hybrid Approach:
Exploiting CPU/GPU Workload Characteristics

3 RECAP OF PREVIOUS SELF-JOIN WORK

HyBRIDKNN-JoIN leverages the distance similarity self-join work
of Gowanlock & Karsin [12], which was evaluated onup ton = 6
dimensions. The authors used an efficient indexing scheme and
batching scheme from [13], and proposed a technique to reduce
the number of duplicate computations. The approach was shown
to outperform a state-of-the-art multi-core approach across many
experimental scenarios; therefore, we employ their work in the
GPU component of HyBRIDKNN-JoIN. We outline the optimizations
from [12], that we use to efficiently solve the KNN-join on the GPU.

3.1 Indexing Technique

We use a grid-based indexing scheme for the GPU (see [12, 13] for
more detail) with cells of length €. The index only stores non-empty
grid cells, as indexing all cells may exceed the memory capacity of
the GPU. The index, denoted as G, uses a series of lookup arrays to
find relevant points in the index. A range query around a point is
carried out by performing distance calculations between points in
each adjacent cell of the point (and the cell containing the point).
The number of adjacent cells is 3" (e.g., in 2-D there are 9 total
grid cells). The space complexity of the index is O(|D|). This small
memory footprint allows for larger datasets and result set sizes to
be processed on the GPU.

3.2 Batching Scheme

We give a brief overview of the GPU batching scheme in [12]. The
size of the total result set for a join operation, which contains the
neighbors of each point within a distance €, can be larger than the
GPU’s global memory capacity. To process large datasets or values
of €, a batching scheme is needed to incrementally process the join,
by querying a fraction of D at each kernel invocation until range
queries have been performed on all p; € D. We select a number
of batches to execute by first estimating the total result set size
(using a lightweight kernel), which yields an estimate, e, of the total
result set size. Given a buffer size of bs (the size of a buffer to store
the result set of a batch), we compute the total number of batches
to be ny, = [e/bs]. This obviates failure-restart strategies that can
waste computation. We use 3 CUDA steams (a minimum of n; = 3),
which overlaps the execution of the kernel and data transfers to
exploit bidirectional PCle bandwidth, and concurrent host and GPU
tasks. We use bs = 108 for each stream.

4 HYBRIDKNN-JOIN AND OPTIMIZATIONS

4.1 Splitting Work Between Architectures

As discussed in Section 1, we focus on a hybrid CPU/GPU approach
that performs the KNN search using the CPU and GPU.

A range query finds all points, p; € D, within a search distance, €,
of a query point. Thus, to construct a KNN-join using a range query,
there are several facets of the problem to consider. The € search
distance is required to ensure that the nearest points from a query
point are found. For a given search that returns > K neighbors, the
distances between points are compared to determine which of the
points are nearest to the query point. However, while a range query
will return all points within €, there is no guarantee that all (or any)
of the points will have K neighbors. In principle, the selection of €

35

GPGPU-12, April 13, 2019, Providence, RI, USA

could be large such that all points have at least K nearest neighbors;
however, this would lead to significant computational overhead, as
some points in the dataset may find a large fraction of the entire
dataset necessitating a significant number of distance calculations.

(@) (b) L

o

L —
°
]

]
. . °

]
Dense Region: Good for the GPU Sparse Region: Good for the CPU

Figure 1: Example query points assigned to either the GPU
or CPU and possible indexing strategies for each. (a) The
GPU is proficient at processing high density regions with a
non-hierarchical grid. (b) The CPU is proficient for low den-
sity regions with an index-tree (kd-tree partitioning shown).

Figure 1 shows an example of a spatially partitioned region with
query points shown as larger red points. In Figure 1 (a), there are
many nearby neighbors; thus, there are a significant number of
distance calculations and filtering needed to find the K nearest
neighbors. However, in Figure 1 (b), the query point is located in
a sparse region. Thus, a large range query would be needed to
find at least K neighbors. Spatially partitioning the data using a
grid in Figure 1 (a) is reasonable, as it is likely K neighbors will be
found by checking adjacent cells (e.g., assume K = 3). In contrast,
in Figure 1 (b), the grid is not effective. Had a grid been used, the
adjacent cells would not contain any nearby points. In this case, a
data-aware index (e.g., kd-tree [6] partitioning shown in Figure 1 (b))
is better suited to finding data in sparse regions. Furthermore, as
there are fewer points nearby the query point in Figure 1 (b), there
is a low degree of candidate point filtering overhead.

Given this illustrative example, the GPU and associated index-
ing scheme in Section 3.1 is good for processing the scenario in
Figure 1 (a) due to the large amount of filtering overhead needed
(the massive parallelism of the GPU is well-suited to distance cal-
culations), and low index search overhead; whereas the scenario in
Figure 1 (b) is good for finding the KNN on the CPU due to the low
degree of filtering overhead and associated data-aware indexing
scheme for low density regions. Therefore, the motivation for split-
ting the work between CPU and GPU is based on the suitability of
each architecture to find the KNN of a given query point.

4.2 Hybrid KNN-Join Overview

We exploit the relative strengths of CPU and GPU architectures. The
GPU is proficient at processing large batches of queries when the
kernel can exploit the high memory bandwidth and massive paral-
lelism afforded by the architecture. The CPU is better at processing
irregular instruction flows, and thus, is well-suited to tree-based
indexes that are comprised of many branch instructions.

4.2.1 CPU KNN Component (HyBriD-CPU). We use the publicly
available! ANN CPU implementation [5] that uses a kd-tree index.
The algorithm is efficient for both approximate and exact solutions

1 ANN can be found here: http://www.cs.umd.edu/~mount/ANN/.

GPGPU-12, April 13,2019, Providence, RI, USA

to the KNN problem, and we execute the algorithm such that we
obtain the exact nearest neighbors. As noted in other work [30],
ANN uses global variables in its functions, which are not conducive
to shared-memory parallelism. We obviate this limitation by paral-
lelizing ANN using MPI where the K nearest neighbors of query
points are found independently by each process rank. The results
are written directly to an MPI shared memory window and thus we
avoid communication between ranks. We refer to the multi-core
CPU approach of HyBRIDKNN-JoIin as HyBrID-CPU.

4.2.2 GPU-Join Component (HyBriD-GPU). In CPU-based KNN
searches [31], backtracking is used to ensure that K neighbors
are found for each point searched. Likewise, the E2LSH [3] CPU
algorithm for range queries has been used for KNN searches by
expanding the search radius until > K neighbors are found for each
point. As an example of expanding the search radius, Figure 2 (a)
shows where K = 5 neighbors are found when € = 1, whereas Fig-
ure 2 (b) shows an example where € needs to be expanded to € = 2
to find at least K = 5 neighbors. Backtracking or expanding the
search radius is a query-centric approach that is beneficial for mod-
ern CPUs that can take advantage of the memory hierarchy (e.g.,
benefiting from locality during tree traversals), but is unsuitable
for a batched GPU execution.

Figure 2: A KNN search around two query points (larger red
points at the centers) where K = 5. Shaded region denotes
the range required to find K = 5 points. (a) K = 5 neighbors
are found with € = 1. (b) K = 5 neighbors are found when the
search distance is expanded to € = 2.

To transform range queries with a distance € into a KNN search
that considers the throughput-oriented nature of the GPU, we use a
batched execution that allows our GPU component, HyBRID-GPU,
to fail to find at least K points for each point searched. The overall
idea that we will outline in Section 4.4 is the following: (i) the failed
queries are added back to a work queue to be processed by either
HyBRrID-GPU or HyBRID-CPU in the future; and (ii) we dynamically
re-index HyBRID-GPU with an increased € value when it reaches
a threshold number of searches that did not yield > K neighbors
per point. Thus, each query point assigned to HyBRID-GPU is not
guaranteed to find its KNN because we use a single e-distance
when executing the kernel. Therefore, we refrain from using the
query-centric approaches (e.g., backtracking, or increasing € for
individual point searches) on the GPU because this would lead to
increased divergence in the kernel and intra-warp load imbalance.

4.3 HyYBRID-GPU: Selecting the Search Distance

The input parameter to a KNN search is K; but HyBRID-GPU needs
an e-distance which is expected to find at least K neighbors for

36

Michael Gowanlock

each point. Analytically deriving € is feasible when the input data
distribution is known. However, real-world datasets have data dis-
tributions that make an analytical approach intractable.

Consider a search distance, €™, that on average finds K neigh-
bors per p; € D. Therefore, some points will find > K neighbors,
and some will find < K neighbors. We derive ¢™" which is used
as an initial search distance for HyBRID-GPU.

We rely on the execution of two GPU kernels that sample the
dataset to determine a good value of €. First, we simply sample D,
and compute the mean distance between points, denoted as e™¢%™.
Next, we define a number of bins, nbi"s, that store the frequency of
the distances between pairs of points that fall within the distance
bin, where the width of each bin is eme“"/nbins. We then select a
fraction of the total points in the dataset and compute the distance
between each of these points and every other point in D, and store
the distances in the respective bin, where any distance > ¢™¢4"
is not stored (using a search distance of €™¢%" will return a large
fraction of the dataset; much larger than any reasonable value of K).
We compute the cumulative number of points in each bin. Let B4
denote the distance bins, whered = 1,2, ..., nbins Each B, stores:
(i) its distance range denoted as [292“1”, B;"d), where B;t‘"t =
(d -1)- (€mean/nbin5)) and B;"d =d- (Emean/nbirw); (ii) the
number of points found within its distance range [B(Sit art, Bs”d),
denoted as B7%; (iii), and the cumulative number of points in the
bin (including bins with points at lower distances), denoted as
B, where 8 = Zzzl B7. This yields a relationship between the
search distance and the average number of neighbors that will
be found. e™" corresponds to the query distance that yields K
cumulative neighbors, where ™" = (Bfim” + B;”d)/Z, where
Bl <K<8B4 '

We select € = €™, which on average finds K neighbors for each
searched point. Figure 3 shows a 2-D example of a search within
the grid, where the grid cell length is equal to the search radius and
thus the search is bound to adjacent cells (Section 3.1).

Figure 3: A 2-D example of
the search radius ¢™", which

probabilistically contains K (
neighbors per p; € D.

4.4 Assigning Work using a Work Queue

The GPU should execute range queries for points in dense regions,
and the CPU should perform the KNN search in sparse regions
(Figure 1). We begin by estimating the total amount of work required
to execute each p; € D. We repurpose the grid index that is sent to
the GPU (Sections 3.1 and 4.3) to estimate the total work. For each
pi € D, we check the total number of points that are found within
the point’s grid cell. This information requires simply performing
a scan over the index’s non-empty grid cell array. For each point
found within a given cell, the total number of points found within
the cell are assigned to the point as an approximation of the amount
of work that will need to be computed for that point. Then, we
sort this array in non-increasing order by the number of points in
each cell. Since the number of points in a cell will trace the data

KNN-Joins Using a Hybrid Approach:
Exploiting CPU/GPU Workload Characteristics

density in the immediate region around each point, this yields an
estimate of the total amount of work for each point. Alternatively,
we could count the number of neighbors in each point’s cell and the
adjacent cells that are to be searched to compute the total number
of distance calculations; however, this would require substantial
work, and thus we employ the simple procedure outlined above to
estimate the work required of each point.

The GPU is efficient at performing distance calculations in high
density regions, and the CPU is efficient at computing the lower
density regions. Figure 4 shows a work queue illustration, where
an array C stores the number of points within the cell of each point
pi € D. For example, pg4 and ps3 both have 32 points in their cell.
In contrast, the last point in C, p7, only has a single point in its cell
(itself). The work queue assigns HyBRID-CPU query points starting
at C[|D|] in decreasing order, and assigns HYBRID-GPU query points
starting at C[1] in increasing order. Thus, the queries assigned to
the CPU progressively require more work, and the queries assigned
to the GPU progressively require less work. Depending on the data
distribution, HyBRID-GPU may only compute the KNN of a small
fraction of D, but perform similar levels of work as HyBrip-CPU.

pi [64]39] [3]e0[53[s2]0a61] [77[14]93] [45[51[37]32][24]27]

C [32[32] [32[32]32]20]20]20] T20[20[20] [a[a[u]1]1]1]
1 2 ---30 313233 3435---50 51 52--- 95 96 97 98 99 |D| = 100

—_— —
HyBrip-GPU Hysrip-CPU
Figure 4: Example of a work queue with |D| = 100 data points.
An array, C, stores the number of points within each cell
for each p; € D. C is sorted in non-increasing order, where
HyBRID-GPU is assigned points with the greatest amount
of work, and HYBRID-CPU is assigned points with the least
amount of work.

We outline several work queue performance considerations.

Load Imbalance — Performance degrades while one architecture

waits for the other to finish processing their queries.

o Work Queue Overhead — While the smallest work unit (a single
query point) would lead to the best load balancing, there is over-
head when accessing a work queue, and thus assigning batches
of queries reduces work queue overhead. This is independent of
the architecture requesting work to compute.

e Maintaining GPU Throughput — The GPU requires large batches

of queries to maintain high query throughput, as executing a

single query point on the GPU will underutilize its resources. In

contrast, the CPU does not suffer from this limitation.

This is similar to the classical trade-off between load imbalance
and work queue overhead (e.g., static vs. dynamic scheduling of for
loops in OpenMP [7]). However, this scenario is different than this
classical scenario, as the GPU requires larger query batches than
the CPU to maintain high throughput. This can negatively impact
load balancing, as the GPU may be assigned a large batch of points
to compute towards the end of the computation, which would leave
the CPU cores idle while waiting for the GPU to complete its work.

We propose several design decisions for the work queue to miti-
gate load imbalance while maintaining high GPU query throughput.

37

GPGPU-12, April 13, 2019, Providence, RI, USA

We allow HYBRID-GPU to be assigned two types of batches: (i)
large monolithic batches containing a substantial fraction of p; € D;
and, (ii) small batches. For a derived e value, HYBRID-GPU may
not find the KNN for each point assigned to it (Section 4.3). Each
pi € D that fails to find KNN is added back to the work queue,
and may be found by either HYBRID-GPU (when € is expanded) or
HyBRrRID-CPU in the future. At each monolithic batch round, we
reduce the batch size by a factor of two. We denote n/"9€ to be the
size of the monolithic batch as a fraction of | D|.

A drawback of the monolithic batches is that HyBRID-GPU can
request many query points to compute and starve the CPU (HyBRID-
CPU) of work. Consequently, we implement a window of reserved
query points for the CPU to compute during monolithic batch
processing. Thus, each time the GPU requests a monolithic batch,
the work queue manager determines the maximum number of GPU
points that can be assigned to HYBrRID-GPU, such that the CPU has
at least a minimum number of points to compute. We denote the
size of the fraction |D| points reserved for HyBrID-CPU as nCwin,

Using n€"", and the fraction |D| points that have already been
processed by the CPU and GPU, denoted as nCproc and nGproc,

respectively, if we let nﬁarg ¢ be the size of the monolithic batch at
round /, then the size at round [+ 1 is as follows:

large large
I+1 1

Therefore, the monolithic batch size at round [+ 1 is either half
the size of the monolithic batch at [, or a smaller size, as a function
of the fraction of queries already computed and the window of
reserved queries, until nlarge — o

,maX(O, 1-n

n Gproc _ nCprac _ nCwin)] .

=min[0.5n

Once the monolithic batch size decreases to n!479¢ = 0, HyBRID-

GPU reverts to smaller batches and no queries are reserved for
HyBRrID-CPU (n€Wi" = 0), such that: (i) the GPU is still utilized;
and, (ii) the GPU and CPU finish their computation at similar
times. However, there may be a substantial number of queries to
compute despite (potentially) executing several monolithic batches,
as the CPU window will have reserved queries from being added to
monolithic batches. We denote ns4!! as the size of each smaller
HyBRrID-GPU (non-monolithic) batch, and n€FY as the size of each
HyBrID-CPU batch, both given as a fraction of |D]|.

HyBRID-GPU may fail to find the KNN for many points if € is not
increased. As C stores points from most to least work, with each
processed GPU batch, there are more query points that fail to find
their KNN. Thus, when using the small or monolithic batches, we
dynamically re-index HYBRID-GPU by increasing € by a distance of
€™in /2 when on the previous batch, HyBriD-GPU failed to find the
KNN of at least 25% of its assigned points. This dynamic approach
attempts to reach a trade-off between (i) not increasing e too much
which is expensive; and, (ii) not failing to find too many query
points in the batch. Re-indexing occurs in parallel using threads to
reduce the time where the GPU is idle due to expanding €. Finally,
when 95% of the query points have found their KNN, we then
decrease the batch sizes assigned to the CPU and GPU to n“FV /2
and ns™mall 1 respectively. These smaller batches (half of the initial
size) mitigates load imbalance at the end of the computation.

Figure 5 illustrates the monolithic batches from the work queue
being assigned to HyBRID-GPU and small batches of queries as-
signed to HyBRID-CPU. Figure 5 (a) shows an initial work queue,

GPGPU-12, April 13,2019, Providence, RI, USA

where 1/3 of D (n!979¢ = 1/3) is assigned to HyBrID-GPU, and
1/3 of the queries must be reserved for the CPU (n“™i" = 1/3). In
Figure 5 (b), after HYBRID-GPU processes its queries from the first
batch, some of the queries will be solved and some will have failed
to find the KNN (shown as partially complete). The vertical lines
denote n'@"9¢ (dashed line) and n€*" (solid line). The CPU is guar-
anteed to find the KNN of each query point, thus the queries are
shown as complete. Comparing Figure 5 (a) and (b) we see that the
maximum GPU batch size does not increase substantially because
nlarge s halved between rounds. Comparing Figure 5 (c) and (d),
the window of reserved CPU queries decreases the queries avail-
able for HyBRID-GPU to compute using a monolithic batch. After

nlarge = o HyBrID-GPU reverts to smaller batches of size ns™4!,

D Not Yet Assigned Partially Complete . Complete

Max.

nlarge

@1/3 |
—
HyBrID-GPU

Max. GPU Batch Size CPU Window

l

—
HysBripD-CPU

!
—
|
T
|

77777777777777777 7777

!
1
(b) 1/6 |/////////////////////‘ |
T
|

(o) 1/12 [525%7

777777777777 777777]
Ry

(@ 1/24 |

Figure 5: Assigning monolithic batches of queries from the
work queue to HYBRID-GPU and queries to HyBRID-CPU
(small HYyBRID-GPU batch rounds not shown). (a) Initial
work queue with n!979¢ = nCwin = 1/3 (b) After processing
a monolithic batch, some queries have been computed by
HyBRrRID-GPU and HyBRrID-CPU, and the monolithic batch
size deceases. (c¢) The CPU window reduces the monolithic
batch size. (d) After processing with HyBRID-GPU the mono-
lithic batch rounds are finished as n/479¢ = 0,

Note that we have made several parameter selection decisions.
We dynamically re-index HyBRID-GPU when 25% of queries fail to
find at least K neighbors in the previous batch. Furthermore, we
use half of the small GPU batch sizes (n°™4!!), and the CPU batch
size (n°PU) when 95% of the queries have found their KNN in the
dataset to obviate load imbalance at the end of the computation.
While these parameters are arbitrarily selected, we believe that they
are reasonable design decisions (e.g., similarly, OpenMP guided
scheduling reduces the chunk size with increasing iteration [7]).

4.5 GPU: Optimizing Task Granularity

In the self-join work that we leverage [12], a single thread is as-
signed to each point in the dataset, where the thread finds all points
within € of its assigned point. This approach was tenable because
the total number of threads is large (|D|). Since HYBRID-GPU may

38

Michael Gowanlock

only process a small fraction of D in a batch, then the GPU’s re-
sources may be underutilized if we use one thread per point. Also,
the GPU hides high memory latency by performing fast context
switching between resident threads. Thus, oversubscribing the GPU
by using more threads than cores is needed to saturate resources.

Figure 6: Using <
multiple threads °
to compute the
distances between
points in 2-D. .

Thread ids

We divide the work of the distance calculations for a single point
between multiple threads to increase task granularity. Figure 6
shows an example of using multiple threads per query point. The
query point (red) is shown in the middle cell. The distances between
the query point and the six points are computed in an adjacent
cell (dashed blue outline). This example shows three threads each
computing the distances between two points.

We assign a static number of threads per query point for per-
forming the distance calculations, where the number of threads are
referred to as t (e.g., t = 32 denotes using 32 threads per point).
An advantage of this approach is that the number of threads per
point can be selected to reduce intra-warp thread divergence. For
example, if 32 threads per point are used, then a full warp will com-
pute the distance between a given point and the candidate points.
There should be low divergence because each thread in the warp
executes similar execution pathways. Drawbacks include: (i) too
many threads per point increase overhead; and (ii) query points in
lower density regions may not need a large number of threads, and
such threads will have minimal work. There is a trade off between
assigning too few or too many threads per point. We assume that
the number of threads selected to compute the distance calculations
for each point should evenly divide the size of a warp (32 threads).
This eliminates the possibility of the threads assigned to a point
spanning multiple warps and increasing divergence.

4.6 Algorithm Overview

We outline HYBRIDKNN-JoIN in Algorithm 1 as follows. Obtaining
the process rank and importing the dataset occurs on lines 2-3. We
use an MPI implementation and have 1 master GPU rank and several
CPU ranks which begin their primary execution on lines 4 and 21,
respectively. For brevity, we do not show the work queue rank, as
it simply assigns query points to the GPU and CPU ranks.

The HYBRID-GPU rank initializes the result set (line 5). Next,
the value of €™" is selected (Section 4.3) on line 6, and then e is
set using this value on line 7 (we use e™" later, which is why we
declare both € and emi”). Next, we construct the index, G, as a
function of D, and € on line 8. Then, the algorithm gets a number
of queries from the work queue rank on line 9 and stores them in
QOPU | A while loop is entered on line 10 that iterates until there
are no more queries to compute (i.e., |0SPV| = 0). Using the batch
estimator, the number of GPU batches is computed on line 11 (recall
from Section 3.2 that the batch estimator computes the total number

KNN-Joins Using a Hybrid Approach:
Exploiting CPU/GPU Workload Characteristics

of batches so that HyBRID-GPU can process result sets larger than
global memory). For clarity, note that these batches differ from the
batches of queries obtained from the work queue (Q¢FY).

The algorithm loops over all of the batches (line 12). At each
iteration, the GPUJoINKERNEL is executed (line 13), which computes
the result set for a single batch. On line 14 the result of the join
operation is filtered (the result is in the form of key/value pairs
which are filtered to reduce duplicate keys), and store only points
in QCPU that have at least K neighbors. On line 15, after all of the
batches have been computed, those query points executed on the
GPU that have < K neighbors are assigned to the 0¥/ set, and
these queries are added back to the work queue on line 16.

On lines 17-19, the algorithm will dynamically re-index HyBRID-
GPU with a larger € value if > 25% of points in QFU found < K
neighbors (Sections 4.2.2 and 4.4). And finally, on line 20, the rank
retrieves work for the next batch from the work queue.

Regarding HYBRID-CPU, on line 22, queries are obtained from
the work queue rank. Assuming there are queries to process, a
while loop is entered on line 23, which computes the result of the
KNN search for its batch of queries on line 24. The next batch of
work is obtained from the work queue rank on line 25, and the loop
continues until their are no additional queries to compute.

Algorithm 1 HyBRIDKNN-JoIn Algorithm

1: procedure HYBRIDKNN-JoIN(K, b;)
2 myRank « getRank()
3 D « importData()
4 if myRank = GPU Master Rank then > GPU Rank
5: KNNresult « 0
6: €™Min selectEpsilon(D)
7 € «— emin
8 G « constructIndex(D, €)
9: QGPU getWork()
10: while [QFPU| > 0 do
11: np < computeNumGPUBatches(bs, Q€Y €)
12: forie1,2,..., ny do
13: kernResult[i] «— GPUJoinKernel(D, Q9FY, G, e, i)
14: KNNresult «— KNNresult U filterKeys(kernResult[i])
15: QF“” « findFailedPnts(KNNresult, QCFU)
16: addFailuresToWorkQueue(Q* aily
17: if |QFeil|/|QCPYU| > 0.25 then
18: € «— € +0.5¢™in
19: G « constructIndex(D, €)
20: QOFPU getWork()
21: else > CPU Ranks
22: QFPU getWork()
23: while |Q€PY| > 0 do
24: KNNresult « KNNresult U HyBrip-CPU (Q€PYV myRank)
25: QFPU getWork()
26: return
27: procedure GPUJOINKERNEL(D, QGPU, G, €, i)
28: resultSet «— 0
29: gid « getGloballd(i)
30: queryPoint « getPoint(gid, QFV)
31: adjCells « getAdjCells(G, queryPoint)
32: for cell € adjCells.min,. . . ,adjCells.max do
33: pntResult «— pntResult U calcDistancePts(queryPoint, cell, €)
34: resultSet « resultSet U pntResult
35: return resultSet

We describe the HyBRID-GPU join kernel, but refer the reader
to [12] for more detail. We make two minor changes to the self-join
kernel to accommodate HyBRIDKNN-JoIn. First, we add a query

39

GPGPU-12, April 13, 2019, Providence, RI, USA

set, as we do not want to compare all points to each other, as range
queries are only needed for those points in 9PV . Second, we allow
multiple threads to process an individual point (Section 4.5). In the
GPU join kernel shown in Algorithm 1, the result set is initialized
(line 28), and then the global thread id is computed (line 29). Next,
the query point assigned to the thread is stored (line 30), and a loop
iterates over all adjacent cells (lines 31-32). The point assigned to
the thread is compared to all points in the adjacent cells, where a
result is stored when a point is found to be within € of the query
point (lines 33-34). The result is stored as key/value pairs, where
the key is the query point id, and the results are both the point id
within € of the key, and the distance between the points.

If more than one thread computes the distance between a query
point and points in neighboring cells, then each thread only com-
putes a fraction of the points in the cell on line 33 (see Figure 6).

5 EXPERIMENTAL EVALUATION
5.1 Datasets

We focus on low-dimensional KNN-joins due to their utility in many
applications. Additionally, related work has consistently shown
that GPU-accelerated KNN searches outperform CPU approaches
at high dimensionality [11, 20], due to the increased cost of distance
calculations. Thus, the GPU may be unsuitable to low-dimensional
KNN-joins, and we target this low-dimensionality scenario.

We employ two classes of synthetic datasets with different work-
load characteristics. The UNIF- class of datasets contains uniformly
distributed data points. The Expo- class of datasets contains expo-
nentially distributed data points with A = 40. Datasets are generated
in 2, 4, and 6 dimensions for both classes, and contain |D| = 107
points. We also employ two 2-D real-world datasets: Gaia which
contains |D| = 2.5 X 107 positions of astronomical objects from the
Gaia catalog [10], and Osm which contains |D| = 2.5x 107 positions
from Open Street Map data [29] after point de-duplication.

5.2 Experimental Methodology

All HyBrIDKNN-Join CPU code is written in C/C++, compiled
using the GNU compiler (v. 5.4.0) with the O3 flag. The GPU code is
written in CUDA v. 9. We use OpenMPI v. 3.1.1 for parallelizing host-
side tasks (discussed in Section 4.2.1). The work queue performs
minimal work; however, we parallelize it using two OpenMP threads
for assigning queries to HyBRID-CPU and HyBRID-GPU, as we
need to wait on HyBRID-GPU without blocking HyBRID-CPU from
obtaining new work. Also, we use OpenMP for parallelizing index
construction when re-indexing HyBrID-GPU.

Our platform consists of an NVIDIA GP100 GPU with 16 GiB
of global memory, and has 2x E5-2620 v4 2.1 GHz CPUs, with 16
total physical cores. The HyBRID-GPU kernel uses 256 threads per
block. In the experiments, we exclude the time needed to load the
dataset or construct the HyBRID-CPU indexes or the initial HYBRID-
GPU index (see Section 5.3). The response time of performing the
KNN search on the CPU and GPU is measured after the indexes
have been constructed by HyBriD-CPU. All other components of
the algorithm are included in the response time (e.g., finding the
search distance for HyBRID-GPU, ordering the workload for the
work queue). Time measurements are averaged over 3 trials.

GPGPU-12, April 13,2019, Providence, RI, USA

Table 1: Summary of notation, and parameters. Default val-
ues shown in parentheses where applicable.

Descriptive Notation

Michael Gowanlock

Table 2: Response time (s) when varying ¢ for ¢ = 1, 8,32 and
K = 8,32,128 on Gaia, Osm, UNI1F4D, and UN1F6D datasets.
Excepting t, the default parameter values in Table 1 are used.
The lowest response time is shown in bold face for each K.

n The dimensionality of the data.
K The number of nearest neighbors found for each p; € D.
€ The search distance for HYBRID-GPU that may dynamically expand. t [1 [8 [32
HysriD-CPU Parallel CPU component of HYBRIDKNN-JOIN. K=28
Hysrip-GPU GPU component of HyBRIDKNN-JOIN. GAIA 25.258 25.548 25.893
HyBrIDKNN-JoIN | The proposed CPU/G.PU app.roach. i Osm 37.340 31.812 32.017
CPU-ONLY Parallel CPU-only reference implementation.
Parameter Notation UN1r4D 14.960 14.101 15.655
nlarge (0.4) Initial monolithic batch size for HyBrID-GPU as a fraction of |D|. Unir6D 43.850 43.779 52.362
psmall (0.005) Small batch size for HyBriD-GPU as a fraction of |D|. K=32
nCwin (0.4) Window size of reserved queries for HyBRID-CPU during monolithic Gara 27.123 23.669 25377
batch rounds as a fraction of |D|. Osm 36.509 32437 31.707
nCPU (0.005) Batch size for HyBrip-CPU as a fraction of |D|. Unir4D 21.733 20.942 21.698
t(8) Number of threads assigned to each query point for HyBrip-GPU. UNIF6D 91.988 75.275 85.136
K =128
GAIA 43.703 42.251 41.193
. . . Osm 36.067 33.182 30.844
Table 1 summarizes notation, parameters, and their default val- OniedD 13002 39300 TRy
ues. Note that the initial monolithic batch size (n/479€) and the UNIF6D 188.299 167.552 175.122

window size of reserved CPU queries (n€"in) are both 40% of |D.
Increasing n'@"9¢ beyond 40% is unlikely to greatly improve per-
formance as the larger the value of n/4"9€, the more queries that
fail to find > K neighbors. nsmall and nCPU are 0.5% of |D|, which
is selected to minimize load imbalance, while not assigning too few
queries per batch, which can increase work queue overhead.

5.3 Implementations

We compare HyBRIDKNN-JoIn to a CPU-only implementation, as
described below. We do not use a GPU-only implementation because
it would be designed differently (e.g., removal of the work queue,
pipelining index construction, and other designs).

+«CPU-ONLY - We compare to a multi-core CPU ANN [5] imple-
mentation that obtains the exact neighbors, as described in Sec-
tion 4.2.1. We compare HYBRIDKNN-JoIN to CPU-ONLY to demon-
strate the performance gains yielded by the GPU. We execute CPU-
ONLY with 16 processes that perform KNN searches, and 1 process
for the work queue. There is no communication between ANN pro-
cess ranks, as they find the KNN independently and write results
directly to shared memory. Recall that we needed to parallelize
ANN using MPIL. We have each process rank independently con-
struct its own kd-tree which is queried in batches. Since ANN does
not perform parallel index construction and we cannot share the
index between processes, we exclude this index construction time.
*HYBRIDKNN-JoIN - Our hybrid approach uses: HyBrID-CPU
with 15 processes, and HyBRID-GPU and the work queue each use
1 process. HYBRID-CPU uses one less process than CPU-ONLy.

5.4 Results

5.4.1 Overheads. We quantify the percentage of the total response
time of major overheads when K = 32 on the UnIF- and Expo-
classes of datasets. The time to find € (Section 4.3) ranges from 4.9%
(Un1E2D) to 1.1% (UN1F6D), and these percentages for ordering the
work queue workload (Section 4.4) range from 5.5% (UN1F2D) to 0.8%
(Un1F6D). Thus, these overheads are amortized on larger workloads;
however, they are non-negligible on the smaller workloads.

5.4.2 GPU Kernel Task Granularity. HYBRID-GPU uses a number of
threads (t) to process each point (Section 4.5). Since the size of each

40

batch assigned from the work queue to HYBRID-GPU, |QCPY|, can
vary (e.g., due to decreasing monolithic batch sizes), it is important
that sufficient threads are executed, such that GPU resources remain
saturated, which is achieved through oversubscription.

Table 2 shows the total response time for a selection of datasets,
and values of K (8, 32, 128) and ¢ threads (1, 8, and 32) assigned
to perform the distance calculations for each query point. From
Table 2 we observe that on K = 8 and K = 32, assigning t=8
leads to the best response time on three of four of the datasets. At
K = 128 on Ga1a and OsM, t=32 threads yields the best response
time, whereas on UN1F4D and UNIF6D, this value is t=8. Because
the real world Gaia and Osm datasets contain more points than
UnN1r4D and UNIF6D, we attribute this to the increased workload
in the former two datasets that benefit from additional threads.
The larger the workload (larger datasets and K), the greater the
potential for load imbalance when searching for the neighbors of
each point. Thus, more threads can decrease the time to compute
individual query points, which reduces load imbalance.

5.4.3 Work Queue Performance Characteristics. We examine per-
formance as a function of the selection of the monolithic batch size
and load imbalance between HyBRID-CPU and HyBriD-GPU. The
selection of the monolithic batch size, n/479¢, has several perfor-
mance implications. A large n!%79¢ will decrease the fraction of
queries that HyBRID-GPU is able to successfully compute in the
first batch round, as € is selected to find on average K neighbors
per p; € D (Section 4.3). A small value of n!4"9¢ will decrease GPU
throughput, where GPU resources may not be saturated.

Figure 7 (a) and (b) plot the response time vs. nlarge for Untr2D
and UN1F6D, respectively. We set nC¥" = 0.4, thus during the
monolithic batch phase, 40% of p; € D are reserved for HyBrID-CPU,
thus nl279¢ < 0.6. Without setting a window size, performance
will degrade with large n@"9¢ as Hysrip-GPU will starve HYBRID-
CPU of queries to process. In Figure 7 (a)—(b), we find that nlarge
should not be too small, otherwise GPU resources will not be fully
utilized, which is shown by the initial decrease in response time
(e.g., comparing n!®"9¢ = 0.05 and 0.15 in Figure 7 (a)). However,

on UN1F2D, we see that too large a value of n!%79¢ will decrease

KNN-Joins Using a Hybrid Approach:
Exploiting CPU/GPU Workload Characteristics

15 120
—~14 —
i3 =100
g 5
E12 E g
i £ 80

0.05

g 0.05 0.15 0.25 0.35 0.45 0.55 0.65
plarge

0.15 0.25 0.35

nlarge

0.45 0.55 0.65

(a) Un1r2D (b) UN1F6D

Figure 7: Response time vs. monolithic batch size n!479¢

where K = 32. Excepting n/®"9¢, the default parameter val-
ues in Table 1 are used.

0.20
- UNIF2D
B vvirap
UNIF6D

Figure 8: Load imbal-
ance on the uniformly
distributed datasets for
K = 8,32,128. Default pa-
rameter values in Table 1
are used.

Load Imbalance
[
2 &

&

© o ©
»

performance. On this 2-D dataset, the CPU is very efficient and
HyBRID-GPU can reduce query points available for HyBRiD-CPU
to process. On the UN1r6D dataset, we find that the best value of
nlarge = 0.6, which shows that HyBrip-GPU should be configured
with large monolithic batches when computing larger workloads.
However, we find that in Figure 7 (b), nlarge can be selected in
a large range to achieve good performance (the times are similar
between n'979¢ = 0.35 — 0.6). Hence, we select n/479¢ = 0.4 in
Table 1 to achieve a compromise between small and large workloads.

We determine whether the configuration of the work queue is
able to mitigate load imbalance between CPU and GPU components.
Figure 8 shows the load imbalance for K = 8,32, 128 on the uni-
formly distributed datasets?. We observe that the load imbalance is
high on Un1r2D at K = 32, which can be caused by the GPU being
assigned queries right before the last CPU rank finishes its batch.
This occurrence is more likely when the workload/dimensionality is
low and HYBRID-CPU is very efficient at processing KNN searches.
On the 4-D and 6-D datasets, we find that the load imbalance is
< 10% and increases with K. With the exception of the smallest
workload, we find that HyBRIDKNN-JoIN achieves reasonably good
load balancing despite several confounding issues. To further miti-
gate load imbalance, additional approaches may include: (i) further
decreasing the batch size, which may not be ideal for HyBrip-GPU,
or (ii) forcing HYBRID-GPU to stop retrieving queries when only a
small number are left to compute.

5.4.4 Comparison of HyBRIDKNN-JoIN to CPU-ONLy. Figure 9 (a)-
(c) and (d)—(e) plots the response time vs. K on the uniform and
exponentially distributed synthetic datasets, respectively. We find
that on the 2-D datasets, HyBRIDKNN-JoIN does not yield a sub-
stantial performance gain over CPU-ONLY with the exception of
larger values of K. The overhead of finding a good € value adds
additional time that degrades performance when the workload is
relatively low (e.g., low dimensionality and K). However, on the

?Load imbalance is defined as: |[TCPY — TGPV |/T, where TCFPU is the time that
the last executing HyBRID-CPU rank finishes computation, TOFU is the time that the
HyBRID-GPU rank finishes computing its last batch, and T is the total response time.

41

GPGPU-12, April 13, 2019, Providence, RI, USA

x
—<— HyBRIDKNN-Joiv /*
-—¢-- CPU-ONLY v

/

—4— HyBriIDKNN-Joiv =~ #
60{ -+ CPU-Onwy s

—e— HYBRIDKNN-JoIN
--&-- CPU-ONLY

64 128 { 1 8 16 32 64 128 { 1 8

1 8 16 32 16 32 64 128
K K K
(a) Untr2D (b) Un1r4D (c) Untr6D
25 ~ 100 30(
. / —4— HyBRIDKNN-JoIN —<— HyBRIDKNN-JoIN /ﬁ
20 s 75] -—4-+ CPU-Ony vl ——¢= CPU-ONLY A
= o =200 ’
215 e =
g % g
e 10 F 100
- —e— HyBRIDKNN-JoOIN
M ---- CPU-OnLY
T3 1 2 o 18 "T7% T % & 18 "T % 1 32 & 1B
K K K
(d) Expo2D (e) Expo4D (f) Expo6D

Figure 9: Response time vs. K comparing HyBRIDKNN-Join
and CPU-ONLY on (a)-(c) uniformly, and (d)—(f) exponen-
tially distributed datasets. Default parameter values in Ta-
ble 1 are used.

>

'S

Frac. Queries Solved by GPU

0.5 —&— Unir2D 0.2 <« —&— UniF2D =8 = Exro2D
—4— UnIF4D —— UniF4D === Exro4D
—<— Unir6D —=&- Exro6D —<&— UNIF6D —=%- Exro6D
0.0 0.0
1 8 16 32 64 128 1 8 16 32 64 128
K K

(2) (b)

Figure 10: (a) Speedup of HYBRIDKNN-JoIN over CPU-ONLY
vs. K on synthetic datasets in Figure 9. Speedup increases
with dimensionality and K. (b) Fraction of query points
solved by HYBRID-GPU. Excepting 2-D datasets, the GPU
computes a larger fraction of D with increasing K.

other datasets (> 4 dimensions), we observe that HyBRIDKNN-JoIN
outperforms CPU-ONLY (excepting Figure 9 (e) at K = 1).

Figure 10 (a) plots the speedup of HyBRIDKNN-JoIN over CPU-
Onty for all datasets in Figure 9. The figure demonstrates that the
performance advantage of HYBRIDKNN-JoIN is beneficial when K is
large or when the dimensionality increases. Figure 10 (b) shows that
as K increases, the fraction of queries solved by HyBRID-GPU also
increases. Note that while the fraction of D computed by HYBRID-
GPU is generally <50%, HYBRID-GPU is computing the queries with
the greatest amount of work in the denser data regions.

Figure 11 (a) and (b) plot the response time vs. K on the real-
world Ga1a and OswMm datasets, respectively. While these datasets
are 2-D with |D| = 2.5 x 107 points, they show that across all of K
(except K = 1 on Ga1a), HyBRIDKNN-JoIN outperforms CPU-ONLY.
These datasets are larger than the synthetic ones in Figure 9, demon-
strating that even 2-D datasets benefit from a hybrid approach.

GPGPU-12, April 13, 2019, Providence, RI, USA

60 60
—=e— HyBRIDKNN-JOIN e —=&— HyBRIDKNN-JOIN
--e- CPU-ONLY --&- CPU-OnLY .
40 7401 gz —-e 7
Y e e gy
£ £
=20 =20
0 0
1 8 16 32 64 128 1 8 16 32 64 128
K K

(a) Ga1a (2-D) (b) Osm (2-D)

Figure 11: Response time vs. K on 2-D real-world datasets.
Default parameter values in Table 1 are used.

6 DISCUSSION & CONCLUSIONS

Many of the GPU KNN works address high-dimensionality [4, 11,
17, 23]. Here, we advance a hybrid approach for low-dimensionality
that exploits the relative strengths of the CPU and GPU. GPU KNN
algorithms are less likely to achieve significant performance gains in
low-dimensionality due to highly efficient CPU algorithms, such as
ANN [5]. We find that the speedup over the parallel CPU approach
is < 2x; however, from Figure 10 (a), we clearly observe that the
speedup of HyBRIDKNN-JOIN is expected to be greater at higher
dimensionality and K than the scenarios examined in this paper.

We consider the throughput-oriented GPU vs. the low-latency
CPU. Our strategy assigns large batches to the GPU to maintain high
throughput, while the CPU ranks are assigned smaller chunks of
work. We largely mitigate load imbalance by reducing the batch size
assigned to the GPU depending on the number of completed queries,
and reserving queries for the CPU to prevent starvation. The work
queue allows new advances in GPU- and CPU-only algorithms to
be substituted into the framework to further improve performance.
More broadly, the work queue could be used as a general technique
to address other CPU/GPU algorithms with data-dependent perfor-
mance characteristics. Future work directions include application
to other algorithms and further work queue optimizations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant OAC-1849559.

REFERENCES

[1] [n.d.]. Nvidia Volta. http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf. Accessed: 31-01-2019.

[2] A Andoni and P Indyk. 2005. E?LSH 0.1 User Manual. http://www.mit.edu/

~andoni/LSH/manual.pdf.

Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In IEEE Symposium on Foun-

dations of Computer Science. 459-468.

Ahmed Shamsul Arefin, Carlos Riveros, Regina Berretta, and Pablo Moscato. 2012.

Gpu-fs-knn: A software tool for fast and scalable knn computation using GPUs.

PLOS ONE 7, 8 (2012), e44000.

Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y

Wu. 1998. An optimal algorithm for approximate nearest neighbor searching in

fixed dimensions. J. ACM 45, 6 (1998), 891-923.

[6] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. CACM 18, 9 (1975), 509-517.

Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff

McDonald. 2001. Parallel programming in OpenMP. Morgan Kaufmann.

A. Deshpande, 1. Misra, and P. J. Narayanan. 2011. Hybrid implementation of

error diffusion dithering. In 18th Intl. Conf. on High Performance Computing. 1-10.

Raphael A. Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for

retrieval on composite keys. Acta informatica 4, 1 (1974), 1-9.

4

[10]

(1]

[12]

(13

[14

[15

[16]

(17]

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34]

[35

Michael Gowanlock

Gaia Collaboration, Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J.,
Babusiaux, C., et al. 2018. Gaia Data Release 2 - Summary of the contents and
survey properties. Astronomy & Astrophysics 616 (2018), Al.

V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud. 2010. K-nearest neighbor
search: Fast GPU-based implementations and application to high-dimensional
feature matching. In 2010 IEEE Intl. Conf. on Image Processing. 3757-3760.

M. Gowanlock and B. Karsin. 2018. GPU Accelerated Self-Join for the Distance
Similarity Metric. In Proc. of the 2018 IEEE Intl. Parallel and Distributed Processing
Symposium Workshops. 477-486.

Michael Gowanlock, Cody M Rude, David M Blair, Justin D Li, and Victor
Pankratius. 2017. Clustering Throughput Optimization on the GPU. In Proc.
of the IEEE Intl. Parallel and Distributed Processing Symposium. 832-841.
Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.
In Proc. of ACM Intl. Conf. on Management of Data. 47-57.

Tianyi David Han and Tarek S. Abdelrahman. 2011. Reducing branch divergence
in GPU programs. In Proc. of the 4th Workshop on General Purpose Processing on
Graphics Processing Units. 3:1-3:8.

John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100-108.

Liheng Jian, Cheng Wang, Ying Liu, Shenshen Liang, Weidong Yi, and Yong Shi.
2013. Parallel data mining techniques on graphics processing unit with compute
unified device architecture (CUDA). The Journal of Supercomputing 64 (2013),
942-967.

Dmitri V Kalashnikov. 2013. Super-EGO: fast multi-dimensional similarity join.
The VLDB Journal 22, 4 (2013), 561-585.

George Karypis, Eui-Hong Han, and Vipin Kumar. 1999. Chameleon: Hierarchical
clustering using dynamic modeling. Computer 32 (1999), 68-75.

Kimikazu Kato and Tikara Hosino. 2012. Multi-GPU algorithm for k-nearest
neighbor problem. Concurrency and Computation: Practice and Experience 24, 1
(2012), 45-53.

Jinwoong Kim, Won-Ki Jeong, and Beomseok Nam. 2015. Exploiting Massive Par-
allelism for Indexing Multi-Dimensional Datasets on the GPU. IEEE Transactions
on Parallel and Distributed Systems 26, 8 (2015), 2258-2271.

Jinwoong Kim and Beomseok Nam. 2018. Co-processing heterogeneous parallel
index for multi-dimensional datasets. J. Parallel and Distrib. Comput. 113 (2018),
195-203.

Ivan Komarov, Ali Dashti, and Roshan M D’Souza. 2014. Fast k-NNG construction
with GPU-based quick multi-select. PLOS ONE 9, 5 (2014), €92409.

Linchuan Li, Xingjian Li, Guangming Tan, Mingyu Chen, and Peiheng Zhang.
2011. Experience of Parallelizing cryo-EM 3D Reconstruction on a CPU-GPU
Heterogeneous System. In Proc. of the 20th Intl. Symposium on High Performance
Distributed Computing. ACM, 195-204.

Michael D Lieberman, Jagan Sankaranarayanan, and Hanan Samet. 2008. A fast
similarity join algorithm using graphics processing units. In IEEE 24th Intl. Conf.
on Data Engineering. 1111-1120.

Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Comput. Surv. 47, 4 (2015), 69:1-69:35.

Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE Transactions on Pattern Analysis & Machine
Intelligence 11 (2014), 2227-2240.

Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. 2016. Parallel Tree Traversal
for Nearest Neighbor Query on the GPU. In 45th Intl. Conf. on Parallel Processing.
113-122.

OpenStreetMap. [n. d.]. https://blog.openstreetmap.org/2012/04/01/
bulk-gps-point-data/. Accessed 31-01-2019.

Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram,
Jialin Liu, Peter Sadowski, Evan Racah, Suren Byna, Craig Tull, Wahid Bhimyji,
Pradeep Dubey, et al. 2016. PANDA: Extreme Scale Parallel K-Nearest Neighbor
on Distributed Architectures. In Proc. of the 2016 Intl. Parallel and Distributed
Processing Symposium. 494-503.

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Nearest Neighbor
Queries. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data. 71-79.
Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jing Hu. 2004. Gorder: an efficient
method for KNN join processing. In Proc. of the Intl. Conf. on Very Large Data
Bases. 756-767.

Bin Yao, Feifei Li, and Piyush Kumar. 2010. K nearest neighbor queries and
knn-joins in large relational databases (almost) for free. In IEEE 26th Intl. Conf.
on Data Engineering. 4-15.

Cui Yu, Bin Cui, Shuguang Wang, and Jianwen Su. 2007. Efficient index-based
KNN join processing for high-dimensional data. Information and Software Tech-
nology 49, 4 (2007), 332-344.

Y. Zhang, H. Ma, N. Peng, Y. Zhao, and X.-b. Wu. 2013. Estimating Photometric
Redshifts of Quasars via the k-nearest Neighbor Approach Based on Large Survey
Databases. The Astronomical Journal 146, Article 22 (2013).

