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ABSTRACT

Many applications require clustering data using an unsupervised
approach. One such clustering algorithm is Dbscan, which is inher-
ently sequential, thus limiting parallelization opportunities. Con-
sequently, several recent works have proposed novel shared- and
distributed-memory approaches for scaling Dbscan. We propose
BPS-HDbscan, a shared-memory CPU/GPU approach that clusters
on the billion-point scale. The major pillars of BPS-HDbscan are as
follows: (i) distance calculation avoidance in dense data regions; (ii)
efficient merging of subclusters; (iii) obviating limited GPU mem-
ory capacity by both batching the result set and partitioning the
input dataset; and, (iv) computing data partitions in parallel, which
effectively exploits both CPU and GPU resources. BPS-HDbscan is
highly efficient, and to our knowledge, is the first shared-memory
Dbscan algorithm to cluster on the billion point scale.
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1 INTRODUCTION

The Density-Based Spatial Clustering of Applications with Noise
(Dbscan) [9] algorithm uses two input parameters: ϵ and minpts,
where the former is a search radius, and the latter is the minimum
number of points required to form a cluster. The parameters specify
a density threshold that informs cluster creation and expansion.

Dbscan has been intensely studied due to its utility in many ap-
plications. For example, in astrophysics, large-scale surveys require
clustering millions or billions of objects. A major science goal of
the Gaia mission [5] is to map the Milky Way galaxy and under-
stand its structure, such as the distribution and morphology of star
clusters, which can be detected through Dbscan [2, 6]. Dbscan
has also been used in other astronomical contexts, for instance,
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to understand galaxy morphology [20], or environmental effects
on radio galaxies [19]. However, modern astronomical surveys are
large. The Gaia catalog contains 1.69 billion objects, which makes
data analysis a significant challenge. Therefore, advances in parallel
clustering algorithms are needed to address recent and near-future
surveys and missions. We use the Gaia catalog to demonstrate the
utility of our approach.

We consider the problem of clustering a dataset, D, of pi ∈ D

points, where i = 1, . . . , |D |, in shared-memory using multi-core
CPUs and many-core GPUs. We focus on spatial data (e.g., in the
astronomical context), and use the Euclidean distance. Dbscan has
a worst-case quadratic complexity, but a spatial index can decrease
the complexity to O(|D |log|D |) [9], where |D | is the dataset size1.

The parallel computing community has focused on breaking the
sequential nature of Dbscan to exploit parallelization opportuni-
ties [13, 23, 30]. Both the Mr. Scan [30] and the PDSDBSCAN [23]
algorithms cluster in parallel and then merge clusters to produce
the final cluster assignments. Hybrid-DBSCAN [13, 14] formulates
the problem as a self-join with a distance similarity predicate (on
the GPU), followed by cluster assignment (on the CPU).

We propose BPS-HDbscan that can cluster on the order of a
billion data points on a single computer, using multi-core CPUs
and many-core GPUs. We make the following key contributions:

• We advance an approach that avoids expensive distance calcula-
tions as a function of Dbscan parameters and data properties.
• We address twomemory limitations: (i) batching to incrementally
compute the ϵ-neighborhood of points on the GPU; and, (ii)
partitioning the input dataset such that each data partition and
all algorithm components fit within the GPU’s global memory.
• We exploit both CPU and GPU architectures by clustering par-
titions and performing intra-partition tasks in parallel. This en-
sures that CPU and GPU resources remain saturated with work.
• A strength of BPS-HDbscan is a combination of several algorith-
mic design decisions inspired by previous work [14, 23, 30].
• To our knowledge, BPS-HDbscan is the first shared-memory
Dbscan algorithm to cluster on the billion-point scale. Previ-
ous work on this scale uses distributed-memory; therefore, our
algorithm requires fewer computational resources.

The paper is organized as follows: Section 2 gives an overview
of Dbscan and related work; Section 3 outlines leveraged previ-
ous work; Section 4 presents our method for avoiding distance
calculations; Section 5 proposes the data partitioning and reconcili-
ation strategy for processing large datasets; Section 6 presents the
performance evaluation; and finally, Section 7 concludes the paper.

1See [26] for a comprehensive discussion of practical ranges of the ϵ parameter.
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2 BACKGROUND

2.1 The DBSCAN Clustering Algorithm

We give a brief overview of Dbscan, but refer the reader to the
original paper [9], or Algorithm 1 in [23] for more information.

The Dbscan [9] algorithm clusters data using density Ð points
co-located in a dense region are clustered together, and points in
underdense regions are considered outliers or noise. The ϵ parame-
ter specifies a search distance, and the minpts parameter specifies a
density threshold. A point is considered a core point if it finds at least
minpts neighbors within its ϵ-neighborhood (a multi-dimensional
range query with a distance ϵ). Given a core point, and its neighbors
within ϵ , the algorithm then searches the ϵ-neighborhoods of these
neighbors, and points having at least minpts neighbors are added
to a list of points to search. Therefore, if a point q is reachable
by a core point, p, then q is added to the cluster, and q may ex-
pand the cluster if it has at least minpts within its ϵ-neighborhood.
Thus, the algorithm chains points together. Border points are de-
fined as those that do not have at least minpts points within their
ϵ-neighborhood and do not expand the cluster, but are reachable by
a core point. After a cluster has been computed through searching
the ϵ-neighborhoods of all points in the cluster, the algorithm then
selects the next non-visited point, and the next cluster is started if
the point is a core point. Points without sufficient neighbors that
are not reachable by a core point in a cluster are assigned to noise.
For each point, the algorithm outputs an assignment to a cluster or
noise. Dbscan performs ϵ-neighborhood searches on all points in
the dataset, which makes the algorithm computationally expensive.
However, indexing schemes reduce the complexity of Dbscan [26].

2.2 Overview of Related Work

We give an overview of related work. However, in Section 2.3 we
focus on three key advances in the literature. There have been
many optimizations to Dbscan including distributed-memory al-
gorithms [23, 30] including MapReduce [7, 16], Spark [18, 27], ap-
proximate distributed-memory solutions [24], parallel multi-core
CPU approaches [11], and algorithms for the GPU [1, 4, 13]. It is
well-known that Dbscan executes in a sequential nature; clusters
are expanded through ϵ-neighborhood searches and points in the
neighborhood may be assigned to the cluster. Therefore, a major
challenge to parallelization is to break the sequential nature of the
algorithm to exploit opportunities for concurrent tasks/operations.
In GPU algorithms, such as the CUDA-DClust [4], and distributed-
memory algorithms [23, 24, 30] the overarching approach is to
generate subclusters with multiple threads or processes, and then
merge the subclusters to generate the final clusters. This allows
for parallel clustering across processing elements, which is needed
to scale Dbscan on a single computer using multi-core CPUs or
GPUs, or across multiple distributed-memory compute-nodes.

2.3 Key Advances in the Literature

Below, we highlight three key Dbscan advances that we leverage.

Dense Box Algorithmś A distributed-memory GPU-accelerated
Dbscan algorithm was proposed by Welton et al. [30]. The au-
thors cluster billions of points in distributed-memory using GPU-
equipped nodes, and make several optimizations to the CUDA-
DClust [4] algorithm. Of particular interest to our work in this
paper is their łdense box algorithmž that will assign points to a
cluster if they exist in a dense region. If there are at least ≥minpts

points within a 2-D region of ϵ/(2
√
2) × ϵ/(2

√
2), the points in this

łdense boxž are assigned to a cluster, as the points are guaranteed
to be within ϵ of each other. This avoids all distance calculations
between the points within this dense box region. Welton et al. [30]
points out that their detection of dense boxes adds little additional
complexity, as the dense boxes are already generated by their mod-
ified kd-tree index [3] that they use for ϵ-neighborhood searches.
We use a similar dense box algorithm approach as [30].
Disjoint Set Data Structureś A distributed-memory multi-core
CPU Dbscan algorithm was proposed by Patwary et al. [23]. The
authors observe the inherent sequential nature of the Dbscan algo-
rithm, where the cluster expansion phase yields few opportunities
for parallelism. Consequently, a major contribution in Patwary et
al. [23] is to concurrently cluster the dataset in parallel by having
multiple processes cluster their own local points. After all processes
have clustered their local data points, the clusters are merged into
the final clusters. Their approach relies on using the disjoint set data
structure [10], where each point is initially considered to be within
its own cluster. During the cluster expansion phase, when a point
is to be added to a cluster (e.g., it is within the ϵ-neighborhood of a
core point), only pointers need to be updated to represent a point
and the cluster it belongs to. This approach is far more efficient than
updating cluster assignments each time a point’s cluster id may
change as a function of the points encountered during the cluster
expansion phase, or when merging subclusters. In this paper, we
use the disjoint set data structure to update cluster assignments.
Hybrid CPU/GPU Algorithmś Gowanlock et al. [13, 14] pro-
posed a hybrid CPU/GPU approach. In contrast to CUDA-DClust [4],
the ϵ-neighborhood of each point in D is computed using a grid-
based index on the GPU, which is then used as input to a modified
Dbscan algorithm on the CPU; thus, the ϵ-neighborhood of each
point has been precomputed. Patwary et al. [23] and Welton et
al. [30] ameliorate the sequential nature of the algorithm by clus-
tering in parallel and then merge to create the final clusters, and
Gowanlock et al. [13] performs all of the ϵ-neighborhood searches
in parallel before assigning the points to clusters. An additional
benefit of Hybrid-Dbscan in Gowanlock et al. [13, 14] is that they
address large result set sizes that exceed the GPU’s global memory
capacity. We employ Hybrid-Dbscan in this work.

3 LEVERAGING HYBRID-DBSCAN

Hybrid-Dbscan [13, 14] computes the ϵ-neighborhood of all points
on the GPU, and the data is used by Dbscan for clustering on the
CPU, thus eliminating CPU index searches (Section 2.3). Compared
to Hybrid-Dbscan, BPS-HDbscan supports datasets that exceed
GPU global memory by partitioning the data, concurrently cluster-
ing the data partitions, and avoiding distance calculations in dense
regions. Thus, Hybrid-Dbscan is limited to smaller datasets, and
BPS-HDbscan is needed to cluster on the billion-point scale.
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We leverageHybrid-Dbscan for computing the ϵ-neighborhood
of points on the GPU, and clustering on the CPU. We present the
high-level details of the index and batching scheme, but refer the
reader to [13, 14] for more detail.
Indexing Scheme ś Hybrid-Dbscan uses a grid-based indexing
scheme for the GPU, with cells of length ϵ . Therefore, to perform
an ϵ-neighborhood search around a query point (the point being
searched) in a given cell, points that may be within ϵ are guaranteed
to be within adjacent cells, and the cell containing the point (9 total
cells in 2-D). Having all points search the same number of cells
reduces thread divergence in the kernel, in comparison to having
execution pathways that may diverge (such as having threads per-
form parallel tree traversals in tree-based indexes [13]). While we
use this grid-based indexing structure, we make a minor modifica-
tion proposed by Gowanlock & Karsin [12], which is to only index
non-empty grid cells. Thus, the size of the index is a function of the
space occupied by the data, and not the entire bounding volume,
which was not the case in [13]. We denote the index as I .

Since we only store non-empty cells, and use a lookup array for
the grid cells and data points, the space complexity is O(|D |); in-
cluding constant factors, the worst case is 4|D |. This small indexing
structure allows us to use more of the GPU’s global memory for
other purposes, such as processing larger datasets or partitions.
Batching Scheme ś Hybrid-Dbscan also uses a batching scheme
such that the total result set size can exceed the GPU’s global
memory capacity. A key novelty of the batching scheme is that
it samples the dataset to determine the number of batches to be
executed, nb , by estimating the total result set size. This has the
advantage of not requiring result set buffer overflow mitigation.

The GPU kernel counts the number of points within ϵ of a sample
of pi ∈ D, and then estimates the total result set size. We use ns
CUDA streams for concurrent data transfers to/from the GPU and
computation on the GPU. At minimum, we use ns = nb = 3. We
use asynchronous data transfers of the result set for each batch into
pinned memory buffers as a staging area, where the aggregate size
is ns ·bs . On one GPU, we use bs = 108; thus, at minimum, the total
size of pinned memory buffers on the host is 3 × 108. This size is
doubled when we use two GPUs. We set the overestimation factor
to 0.25 (denoted as α in [13]) to accommodate reference points
(detailed in Section 4.4) that have a larger search distance.

3.1 Hybrid-Dbscan Algorithm Overview

We give a brief algorithmic overview of Hybrid-Dbscan (see [13,
14] for additional details). Note that the only difference between
the description of Hybrid-Dbscan in Gowanlock et al. [13, 14] and
that used in this paper is that we only index non-empty grid cells.
Furthermore, in our description of Hybrid-Dbscan in Algorithm 1,
the algorithm takes as input the index, I , as we assume it has already
been computed. For illustrative purposes, we have separated the
computation of the neighbortable, N , from Hybrid-Dbscan, as we
refer to it when we outline BPS-HDbscan in Section 5.1.

Hybrid-Dbscan is outlined in Algorithm 1. The neighbortable,
N , is computed on the GPU and is defined as the neighbors within ϵ
of all query points,Q (line 2). A modified Dbscan algorithm (line 3)
is executed on the CPU that uses N , Q , and minpts to compute
the assignment of points to clusters, which are returned on line 4.

Algorithm 1 The Hybrid-Dbscan Algorithm.

1: procedure Hybrid-Dbscan(D , I , ϵ , minpts, Q )
2: N ← neighborTableGPU(D , I , ϵ , Q )
3: CDbscan ← Dbscan(N , Q , minpts)
4: return CDbscan

5: procedure neighborTableGPU(D , I , ϵ , Q )
6: N ← ∅;
7: nb ← estimateBatches(D , I , ϵ , bs )
8: for k ∈ {1, 2, . . . , nb } do
9: R ← ∅; gpuResultSet← ∅
10: gpuResultSet← GPUCalcGlobal(D , I , ϵ , Q , k )
11: R ← SortByKey(gpuResultSet)
12: N ← N ∪ ConstructNeighborTable(R)

13: return N

For space, we omit presenting the modified Dbscan algorithm. In
Gowanlock et al. [13],Q contains all point ids, i , inpi ∈ D. However,
BPS-HDbscan uses a query set Q , that may not contain all pi ∈ D.

We outline the construction of the neighbortable, N , as follows.
The algorithm initializes N on line 6. Next, the number of batches,
nb , from the batch estimator are computed, and a loop is entered
which computes all batches (lines 7ś8). Result set buffers are initial-
ized on line 9. The GPU kernel is executed on line 10 which takes
as input D, the index, I , ϵ , the query ids, Q , and the batch number,
k , and generates gpuResultSet, which is a list of key/value pairs:
the key is a point pi ∈ D, and the value is an id of a point within ϵ

of the key. Thus, gpuResultSet contains key/value pairs (a, b) where
dist(pa ,pb ) ≤ ϵ , and dist is the Euclidean distance function between
pa and pb . The gpuResultSet is intermediate data stored in global
memory on the GPU. Next, gpuResultSet is sorted by key (line 11),
such that each point’s neighbors within ϵ are stored contiguously
in memory. The sorted array is transferred and stored in R on the
host. Using R, the host (CPU) then constructs the neighbortable, N ,
by storing the neighbors within ϵ of each point (line 12). We use
ns = 3 streams to overlap data transfers and computation; therefore,
the loop on line 8 is executed in parallel by 3 CPU threads.

4 DISTANCE CALCULATION AVOIDANCE

We describe a similar approach to Welton et al. [30] that eliminates
computing the distances between points if they exist in very dense
regions, and exploits the disjoint set data structure utilized by Pat-
wary et al. [23]. Our dense box algorithm is denoted as DenseBox.

The dense box algorithm in Welton et al. [30], uses spatial di-
visions in their index to detect dense boxes, and thus, eliminating
dense boxes has little cost. In contrast, since we useHybrid-Dbscan
which employs an ϵ-length grid cell index, we need to generate a
separate grid for theDenseBox computation. Consequently,Dense-
Box can degrade performance if we employ the algorithm on a
dataset that has few dense regions. We propose an approach that
dynamically enables or disables DenseBox as a function of the data
distribution and Dbscan parameters, such that DenseBox does not
degrade performance. DenseBox is outlined as follows.

4.1 Merging Adjacent Dense Boxes

We create a grid with cells of length ϵ/(2
√
2). Next, we mark all cells

that have at least minpts points contained within as dense boxes.
The points contained within these boxes are by definition core
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points of a cluster. Using cells of length ϵ/(2
√
2) guarantees that

adjacent dense boxes contain points that are within ϵ of each other.
Figure 1 shows an example where four dense boxes are detected
(cells with dashed outlines). In our algorithm, wemerge dense boxes
that are adjacent to each other (the three dense boxes on the left
with dashed outlines are merged in Figure 1). The points in the
single dense box on the right with the blue dashed outline are not
merged with the other dense boxes because they are not adjacent,
and are not guaranteed to contain points within ϵ of each other.

Figure 1: Example of dense

boxes detected having

minpts ≥ 5 (dashed outlines).

The three adjacent dense boxes

on the left cannot be merged

with the densebox on the right,

because they are separated by a

non-dense box.

ϵ

2
√
2

ϵ

4.2 Merging Non-Adjacent Dense Boxes

While dense boxes can be detected and merged if they are adjacent
to each other, another case is where two dense boxes may be sepa-
rated by a non-dense box cell of length ϵ/(2

√
2) and may need to be

merged because they contain points that are within ϵ of each other.
However, since these dense boxes are not adjacent, they are not
guaranteed to contain any points within ϵ of each other, and cannot
be simply merged, as in Section 4.1. Figure 2(a) shows two dense
boxes (dashed blue outline) that are separated by a non-dense box,
and none of the points are within ϵ of each other. These two dense
boxes should not be merged. Figure 2(b) shows the case where two
dense boxes are separated by a non-dense box, and some of the
points are within ϵ of each other. In this case, the two dense boxes
should be merged. To detect a merge, only one point within a dense
box needs to be within ϵ of a point in the other dense box. This is
because dense boxes are guaranteed to contain ≥ minpts points. We
merge non-adjacent dense boxes with each other when we detect
that they should be merged (as in Figure 2(b)).

(a)

ϵ

2
√
2

(b)

ϵ

2
√
2

Figure 2: Dense boxes separated by a non-dense box. (a)

Dense boxes do notmerge (no pair of points between the two

dense boxes arewithin ϵ). (b) Dense boxesmerge (at least one

pair of points between the two dense boxes are within ϵ).

4.3 Merging Dense Boxes & Dbscan Clusters

Points that are not assigned to a dense box must be clustered with
Hybrid-Dbscan [13, 14] (Section 3). These clusters may merge

with dense boxes. Figure 3 shows an example with cells of length
ϵ , where a cluster generated by Hybrid-Dbscan (points in black)
need to merge with a dense box (red points within the blue dashed
outline box). Points within the dense box are within ϵ of the points
in the Dbscan cluster, and the two clusters are merged.

Figure 3: Example of merging a

dense box and Hybrid-Dbscan

cluster.

ϵ

4.4 Detection of Dense Box Merges

Merges between non-adjacent dense boxes (Section 4.2) and be-
tween dense boxes and Dbscan clusters (Section 4.3) must be de-
tected. To detect these merges, we require finding whether points
within the dense boxes and/or Dbscan clusters are within ϵ of each
other. However, since we explicitly do not perform ϵ-neighborhood
searches around dense box points, and do not consider the dense
box points when generating the Dbscan clusters, there is no ex-
pansion of ϵ-neighborhoods between points that merge the two
clusters in the same manner as the original Dbscan algorithm.

We propose to use reference points to detect merges. Given our
grid with cells of length ϵ , we place a reference point in each non-
empty cell. Then, when we compute the ϵ-neighborhood of all
points not found within a dense box using Hybrid-Dbscan, we
also compute neighborhood searches around the reference points.
The points in the neighborhood around each reference point may
contain points that are part of one or more dense boxes or Hybrid-
Dbscan clusters. Given the distance between these points, we can
then determine whether a merge should occur.

Figure 4: Example reference point

with a 1.5ϵ-neighborhood search. The

reference point detects a merge be-

tween the Hybrid-Dbscan cluster

and the dense box. Other reference

points are shown in the center of non-

empty cells.

1.5ϵ

ϵ

Figure 4 shows an example of merging using reference points.
A reference point is in the center of the grid. We perform a 1.5ϵ-
neighborhood search around each reference point (a search distance
of ϵ would miss potential merges). The 1.5ϵ-neighborhood of the
reference point will contain all of the points in the Dbscan cluster
(black points), and the dense box cluster (points within the dashed
outline). Then, we compare the points between the two clusters.
If any single point within a dense box is within ϵ of a point in
the Dbscan cluster, then we merge the two clusters. Likewise, we
merge two dense boxes if a point in each are within ϵ of each other
(Figure 2(b)). Thus, we detect merges between: (i) two non-adjacent
dense boxes; and (ii) a dense box and a Hybrid-Dbscan cluster.

This is similar to the eight łrepresentative pointsž that represent
a dense box in Welton et al. [30], such that it can be merged when
encountered by the point expansion phase. We find that we can use
a single reference point to capture the clusters to merge.

We compute the 1.5ϵ-neighborhoods of the reference points
when we compute the ϵ-neighborhoods of the points not found
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within dense boxes using Hybrid-Dbscan, and thus, we capitalize
on amortizing GPU overheads during these kernel invocations. We
adapt the batching scheme of Hybrid-Dbscan (Section 3) to BPS-

HDbscan, by also including in our calculations of the total result
set size the 1.5ϵ-neighborhood of each reference point. Thus, we
modify the expected total result set size, to reflect this larger search
area, and the number of reference points.

4.5 Merging using Disjoint Sets

There can be a large number of merges between dense boxes and
other dense boxes or Hybrid-Dbscan clusters. Thus, relabeling a
point’s cluster assignment at every merge would be very expensive.
To avoid excessive updates to cluster assignments, we use the dis-
joint set data structure [10] which records merges between clusters.
After all clusters have been merged, we then update the cluster
assignment list once using a single scan for each pi ∈ D.

We first label all dense boxes as clusters, where each dense box
is given an enumerated cluster id. The disjoint set is initialized
using the total number of cluster ids, where each dense box is rep-
resented by a single element. Then, we find all dense boxes that
are adjacent to each other (Section 4.1), and union those dense box
ids. The union(x ,y) operation in the disjoint set data structure [10]
finds the two sets containing the dense boxes, x , and y, and com-
bines or merges the sets. Likewise, we obtain the list of clusters
from Hybrid-Dbscan, and use the neighborhoods yielded by the
reference points to detect merges between two non-adjacent dense
boxes (Section 4.2), or between Hybrid-Dbscan clusters and dense
boxes (Section 4.3). Thus, the three types of merges employ the
disjoint set data structure.

The disjoint set data structure [10] is highly efficient. The amor-
tized search (and union) operations occur in nearly O(1) time in
practice, as the search procedure has been shown to increase with
the inverse of Ackermann’s function [28]. After all of the merges
have occurred, we use the mapping of elements in the disjoint set
to update the list of cluster ids.

The disjoint set data structure has been used in the multi-core
distributed-memory Dbscan approach of Patwary et al. [23], and is
used in their work to allowmultiple threads (or processes) to cluster
subclusters of the data in parallel and then merge the subclusters.
This approach is very similar to our merging of dense boxes with
each other or with Hybrid-Dbscan clusters.

4.6 Selectively Using the Dense Box Algorithm

As discussed in Welton et al. [30], the dense box algorithm is not
useful in all contexts. First, if ϵ is sufficiently large and the value
of minpts is low, then there are likely to be many dense boxes.
However if ϵ is small, then the probability of at least minpts points
being contained within a dense box is very low. Furthermore, if
the value of minpts is high, then this also decreases the probabil-
ity of at least minpts points being contained within a dense box.
Note that increasing the search radius, ϵ , typically increases the
computational complexity of Dbscan, as more points need to be
checked to determine if they are within ϵ . However, increasing ϵ
increases the probability that points are found within a dense box.
Therefore, DenseBox can dramatically reduce the complexity of
clustering with high ϵ , and may even make clustering with high

ϵ more efficient than a lower value of ϵ , which is an unintuitive
consequence of the algorithm.

DenseBox has a cost. We must first partition the dataset into
cells of length ϵ/(2

√
2) and compute which cells are dense boxes.We

also need to reconcile merges between DenseBox clusters and/or
Hybrid-Dbscan clusters using reference points. Therefore, if the
fraction of data points in D that can be detected using DenseBox is
low, then it is not advantageous to use theDenseBox algorithm, and
we can simply use Hybrid-Dbscan from Gowanlock et al. [13, 14].
However, DenseBox should be employed if it can significantly
reduce the number of ϵ-neighborhood searches.

We propose to selectively use DenseBox when the data distri-
bution, ϵ , and minpts values are conducive to eliminating many
distance calculations (i.e., a substantial fraction of points within
the dataset are found in dense boxes). We use information from
our grid-based index to determine whether we should employ the
DenseBox algorithm. From our indexing procedure, we compute
the number of ϵ-length non-empty cells, denoted as |G |. Therefore,
we can compute the mean number of points per cell in the index.

The ratio of the area of the ϵ to ϵ/(2
√
2) length grid cells is as

follows: (ϵ2)/ ϵ 2

(2
√
2)2 = 8. Therefore, the mean number of points per

cell of length ϵ/(2
√
2) is |D |/8|G |. However, the data is not guaran-

teed to be uniformly distributed within these cells, and therefore
some cells will have more or less than |D |/8|G | points. Thus, some
of these ϵ/(2

√
2) length cells are likely to contain ≥minpts points

(meeting the dense box criterion), and others will not. Additionally,
it may be beneficial to employ DenseBox when we expect only a
fraction of D to be found in dense boxes.

We employ a heuristic to determine whether we should utilize
the DenseBox algorithm. If the following evaluates to true, we use
DenseBox: |D |/8|G | ≥ µ ·minpts, where the µ parameter controls
the threshold estimated number of points needed within a cell of
length ϵ/(2

√
2). We note the following observations:

·If µ = 1, then on average, we expect that at least minpts points are
found within each dense box length cell.
·If µ = 0, then dense box is enabled, regardless of the average
number of points in each cell.
·Low µ increases the probability that DenseBox is employed.
·µ > 1 is likely to rarely enable DenseBox, except when the dataset
has a few very overdense regions, or minpts is very small.

Selectively using DenseBox uses information from the ϵ-length
grid cell index regardless of whether DenseBox is utilized, which
is why it is not formulated in terms of the ϵ/(2

√
2) length grid cells.

We refer to using DenseBox dynamically as DBox-Dynamic.

5 CLUSTERING LARGE DATASETS

A drawback of the GPU is its limited global memory capacity.
Therefore, in cases where the dataset and all algorithm compo-
nents exceed global memory, the entire dataset must be divided
into np partitions. Clustering occurs on all partitions, and then
the partitions are merged. Likewise, data partitioning is needed in
distributed-memory implementations [23, 30] such that each node
can concurrently cluster separate regions of a dataset.

We sample D and bin this sampled data in the first dimension.
Then we simply partition D into np partitions, where each partition
has roughly the same number of points.
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Algorithm 2 BPS-HDbscan

1: procedure BPS-HDbscan(D , ϵ , minpts, np )
2: C ← ∅
3: C ← initClusterSets(np )
4: D ← partitionDataset(D, np )
5: for j ∈ {1, 2, . . . , np } do
6: CDBox ← ∅
7: CDbscan ← ∅
8: I ← constructIndex(D[j], ϵ )
9: if EnableDenseBox then
10: CDBox

, L← denseBox(D[j], ϵ, minpts)
11: M ← generateReferencePoints(ϵ, I )
12: Q ← L ∪M
13: N ← neighborTableGPU(D[j], I, ϵ, Q )
14: CDbscan ← Dbscan(N , L, minpts)
15: C[j] ← mergeClusters(D[j], M, N , CDBox

, CDbscan )
16: else
17: Q ← D[j]
18: C[j] ← Hybrid-Dbscan(D[j], I , ϵ , minpts, Q )

19: if np > 1 then

20: C ← reconcilePartitions(C, D)
21: else
22: C ← C[1]

return

are not shown, but are not particularly worthy of elaboration (e.g.,
concurrent execution of data-parallel operations in for loops).

Note that when we use the GPU when computing the neigh-
bortable (line 13 or line 18), we only allow a single thread computing
a partition to use the GPU at a given time. This is because we allo-
cate pinned memory buffers for the result set that are reused across
partitions for constructing the neighbortable (Section 3). Thus, if
multiple threads computing their respective partitions attempt to
use the GPU at the same time, then they must wait for each other
to obtain the resource. In the evaluation, we test using 1 or 2 GPUs.

DenseBox is executed based on the condition on line 9 in Algo-
rithm 2. In the evaluation, we test three DenseBox configurations:
off (thus using Hybrid-Dbscan), on, and dynamic.

6 EXPERIMENTAL EVALUATION

6.1 Datasets

We cluster the coordinates (ra, dec) of objects in the Gaia catalog
(data release 2), which contains 1.69 billion points [5], and refer to
this dataset as Gaia. We also cluster OpenStreetMap (OSM) GPS
track data [22], and removed duplicate points in the dataset. The
OSM dataset consists of 473.7 million points after duplicate point
removal. We also select the first 50 million points in each dataset
for quantifying the correctness of BPS-HDbscan, and comparing
to a sequential implementation, denoted as Gaia50M and OSM50M .
These datasets have contrasting point distributions, allowing us to
compare performance under different workloads.

6.2 Experimental Methodology

Experimental Setup ś The GPU code is written in CUDA 9 [21],
and all C/C++ host code is compiledwith the GNU compiler with the
O3 optimization flag, and parallelized using OpenMP. We compare
the performance of BPS-HDbscan with Hybrid-Dbscan and R-

Tree (described below). We store the dataset as 32-bit floats. The
following parameters are fixed in the experimental evaluation: ns =
3, and bs = 108. See Table 1 for parameter descriptions.

We execute the CUDA kernel, GPUCalcGlobal, in Algorithm 1
with 256 threads per block. Experiments are averaged over 3 trials,
and executed on a platform with 2× Intel Xeon E5-2683 v4 (32
physical cores), clocked at 2.1 GHz, 256 GiB of RAM, and 2× Nvidia
Titan X GPUs (each with 12 GiB of global memory).

As discussed in Section 5.1, many of the BPS-HDbscan opera-
tions occur concurrently within a single partition. We use nested
parallelism in OpenMP for performing these tasks in parallel. We
allow multiple partitions to be computed concurrently, as specified
by the nc parameter. However, the majority of the host-side (CPU)
operations are memory-bound, so nc does not need to be large
to saturate memory bandwidth. Recall that the compute-intensive
ϵ-neighborhood searches occur on the GPU.

We quantify BPS-HDbscan correctness in Section 6.4. The qual-
ity metric is expensive and requires several weeks to compute. Thus,
in Section 6.4 (only in this section) we use a different platform, but
note that the output of BPS-HDbscan is identical across platforms.

Table 1: Summary of notation used in the evaluation.

Symbol Description
ϵ Input distance parameter to the algorithm.
minpts Input density parameter to the algorithm.
np The number of partitions generated from the input dataset.
nc The maximum number of concurrently executing partitions.
DBox-Off Disabling using DenseBox on all partitions.
DBox-On Enabling using DenseBox on all partitions.
DBox-Dynamic Selectively using DenseBox based on each partition’s data

distribution and Dbscan parameters.
µ Parameter in the DBox-Dynamic heuristic controlling the like-

lihood that DenseBox is enabled on a given partition.
nGPU The number of GPUs used (1 or 2).
bs The result set batch size used to compute the neighbortable

(N ). Each CUDA stream has a buffer of this size.
ns The number of CUDA streams used for each GPU. Used to

overlap data transfers and computation.
N The neighbortable that stores the ϵ -neighborhood of points.

Selection of Parameters ś As discussed in related work [13, 23,
26], the ϵ andminpts Dbscan parameters must be carefully selected
to not obtain too few or too many clusters. As such, we carefully
select ϵ and minpts. In the literature, the minpts value has been
selected to be fairly low, such as ≤ 25 [23], 4 [9], and 2 times the
dataset dimensionality [25]. Thus, we employ similarminpts values.

6.3 Algorithms & Configurations

We execute BPS-HDbscanwith three DenseBox algorithm options:
DBox-OffśDisablingDenseBox is equivalent to using theHybrid-
Dbscan algorithm of Gowanlock et al. [13, 14] to cluster the dataset.
Thus, when we do not use DenseBox, we simply use Hybrid-

Dbscan, and reconcile the partitions (merge clusters, etc.) as needed.
DBox-OnśWe use DenseBox on all partitions, regardless of the
data characteristics and input parameters. Thus, if DenseBox has
low utility on a partition (few points found in dense boxes), then
the algorithm may degrade performance compared to DBox-Off.
DBox-DynamicśWe selectively use DenseBox on a partition as
a function of the data characteristics (controlled by the parameter
µ). Depending on the parameters and data characteristics, some
partitions may employ DenseBox, and some may not.

We compare performance to a sequential CPU-only algorithm.
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