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Fig. 1. A prototypical example of a heterogeneous shape model collection with highly consistent correspondence maps generated from our tensor approach
and optimized across the entire collection. These maps simultaneously encodes structural and functional similarities and variances. The corresponding regions
of each object in the shape collections is shown with matching color. The induced shape maps additionally enable applications in shape segmentation and

sub-region weighted shape co-clustering.

Establishing high-quality correspondence maps between geometric shapes
has been shown to be the fundamental problem in managing geometric
shape collections. Prior work has focused on computing efficient maps be-
tween pairs of shapes, and has shown a quantifiable benefit of joint map
synchronization, where a collection of shapes are used to improve (denoise)
the pairwise maps for consistency and correctness. However, these existing
map synchronization techniques place very strong assumptions on the input
shapes collection such as all the input shapes fall into the same category
and/or the majority of the input pairwise maps are correct. In this paper,
we present a multiple map synchronization approach that takes a hetero-
geneous shape collection as input and simultaneously outputs consistent
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dense pairwise shape maps. We achieve our goal by using a novel tensor-
based representation for map synchronization, which is efficient and robust
than all prior matrix-based representations. We demonstrate the usefulness
of this approach across a wide range of geometric shape datasets and the
applications in shape clustering and shape co-segmentation.
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1 INTRODUCTION

Digital shape collections are a rich resource of information for di-
verse data driven applications. Developing effective tools to analyze
and organize them is a central research problem in geometry pro-
cessing and machine learning. Prior related papers have focused on
computing shape correspondence maps across all pairs of shapes in
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the collection. Such shape maps facilitate the propagation and aggre-
gation of shape information, enabling diverse data driven process-
ing for texture and animation transfer [Kraevoy and Sheffer 2004;
Schreiner et al. 2004; Sumner and Popovié¢ 2004], browsing [Gao
et al. 2015; Huang et al. 2014; Kim et al. 2012; Xu et al. 2013], co-
analysis [Fish et al. 2016; Hu et al. 2012; Huang et al. 2011; Sidi et al.
2011; van Kaick et al. 2013], abstraction [Yumer and Kara 2012], and
modeling/synthesis [Funkhouser et al. 2004; Kreavoy et al. 2007].
Yet existing techniques have primarily focused on homogeneous
shape collections, e.g., a collection of human body models [Giorgi
et al. 2007] or a collection of chair models of similar style (c.f. [Kim
et al. 2013, 2012]).

In this paper, we present a framework for analyzing heteroge-
neous shape collections, e.g., those downloaded from different in-
ternet model repositories. In contrast to homogeneous shape collec-
tions, heterogeneous shape collections usually exhibit significant
geometric variabilities, e.g., different part configurations. We demon-
strate that establishing high-quality maps across heterogeneous
shape collections provides unique opportunities for analyzing and
hierarchically organizing such shape collections. Consider shape
segmentation, a fundamental task in shape analysis, we show that
one can identify parts of a shape through shape differences induced
from shape maps. For example, chair back is a part because it is
added to a stool. As another example, we can recognize chair legs as
a part through the difference between a swivel basis and a four-leg
basis (See Figure 1).

Besides variability-driven part discovery, we also show how to
use shape maps to derive meaningful cluster structures of a het-
erogeneous shape collection. Specifically, when computing maps
between pairs of shapes in isolation (we call them initial maps in this
paper) using an off-the-shelf shape matching method, intra-cluster
maps tend to be more accurate than inter-cluster maps. In other
words, if we can accurately recover the underlying ground-truth
maps, then the differences between the initial maps and the recov-
ered maps provide meaningful affinity scores for shape clustering.
Compared to standard shape clustering approaches that are based
on shape descriptors and/or shape similarity scores, this approach
is particularly suitable for fine-grained classification, e.g., different
poses of the same person. Another unique feature of this approach
is that clustering can be performed region-wise, e.g., map differ-
ences within backs/seats/legs of chairs, providing great flexibility
in exploring shape collections.

To make such applications possible, it is vital to establish high-
quality maps across heterogeneous shape collections. This is a quite
challenging task because we need both to link corresponding re-
gions that undergo significant geometric changes (e.g., chair backs
under different fine-grained classes) and to identify regions that
should not be matched (e.g., from swivel basis to rocking basis).
Despite significant advances in shape matching (c.f. [van Kaick et al.
2011]) and particularly more recent works on matching a shape
collection jointly to improve the maps between pairs of shapes (or
map synchronization) [Chen et al. 2014; Cosmo et al. 2017; Huang
et al. 2014; Huang and Guibas 2013; Huang et al. 2012, 2019; Kim
et al. 2012; Nguyen et al. 2011; Wang et al. 2013; Zhang et al. 2019],
the outputs of state-of-the-art approaches remain insufficient for
high-quality analysis of heterogeneous shape collections.
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In this paper, we introduce a novel method for map synchro-
nization that nicely addresses the performance barrier among exist-
ing map synchronization approaches. Our approach is motivated
from a recent trend that utilizes high-order tensor decompositions
to solve challenging problems in machine learning and relevant
fields [Anandkumar et al. 2014; Cichocki et al. 2015; Kolda and Bader
2009; Lahat et al. 2015; Lu et al. 2016; Sidiropoulos et al. 2017]. In par-
ticular, we show how to formulate map synchronization as solving a
low canonical polyadic (CP) rank (c.f.[Ashraphijuo and Wang 2017])
tensor recovery problem. This formulation is further enhanced by
a pre-filtering operation that enforces the cycle-consistency con-
straint along 3-cycles [Huang and Guibas 2013; Nguyen et al. 2011].
Combing them together, our approach can recover accurate maps
among a heterogeneous shape collection from highly noisy and
incomplete maps computed between pairs of shapes in isolation.
We provide an analysis to justify the effectiveness of our approach
against matrix-based map synchronization techniques. The result-
ing maps enable the applications described above, i.e., analyzing
shape variability for shape segmentation and utilizing map residuals
for shape clustering.

Compared with recent works on shape segmentation that focused
on supervised learning [Guo et al. 2015; Kalogerakis et al. 2017, 2010;
Yi et al. 2017a,b], our data-driven shape segmentation approach is
completely unsupervised. We argue that such unsupervised data-
driven approaches are useful in many settings not only because
labeling shape parts are costly and error-prone, but also how to
define meaningful parts is quite subjective (c.f.[Yi et al. 2016]) .

We have evaluated our map synchronization approach on two
benchmark datasets SHRECO07 [Giorgi et al. 2007] and ShapeNet-
Core [Chang et al. 2015]. Experimental results show that our ap-
proach significantly outperforms state-of-the-art matrix based map
synchronization techniques. In particular, on heterogeneous data
sets such as ShapeNetCore, the performance gain of our approach
is salient against existing approaches. Moreover, for the task of
shape segmentation on ShapeNetCore, our approach achieves state-
of-the-art performance, particular on categories that show large
geometric and topological variabilities. For the task of clustering
heterogeneous shape collections, our approach outperforms alter-
native approaches that are based on shape descriptors and popular
shape distance metrics.

In summary, we present the following contributions in this paper:

e We introduce a novel tensor map synchronization approach
for establishing high-quality correspondence maps across a
heterogeneous shape collection;

e We introduce a novel data-driven shape segmentation ap-
proach that utilizes maps to explore shape variabilities for
identifying meaningful shape parts and decompositions;

e We introduce a novel shape clustering approach that lever-
ages map residuals to cluster heterogeneous shape collections;

2 RELATED WORKS

The problems considered in this paper are relevant to four sub-
research areas, namely, map synchronization, tensor decomposition,
data-driven shape segmentation, and shape clustering. Due to space
constraints, we focus on the most relevant prior works.
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Map Synchronization. Formally speaking, map synchronization
concerns the task of optimizing maps among a shape collection
jointly to improve the maps computed between each of the pairs
of shapes. Existing works on map synchronization fall into two
categories: combinatorial optimization based techniques and ma-
trix optimization based techniques. Combinatorial optimization
based techniques follow the general methodology of applying cycle-
consistency criterion (namely, composition of maps along cycles
of length three (3-cycles) shall equal to identity maps) to improve
maps computed between each pair of shapes [Huang et al. 2006;
Huber 2002; Nguyen et al. 2011; Zach et al. 2010]. A limitation of
these approaches is that one has to sample many inconsistent cy-
cles to enforce the cycle-consistency constraint. In contrast, matrix
optimization based approaches utilize the equivalence between the
cycle-consistency constraint and the positive semidefinite or low-
rank structure of the matrix that stores pair-wise maps in blocks
(c.f.[Huang and Guibas 2013]). This leads to simple and effective
formulations of map synchronization as low-rank matrix recovery.
From the optimization point of view, people have introduced con-
vex optimization techniques [Chen et al. 2014; Huang and Guibas
2013; Leonardos et al. 2017; Wang and Singer 2013] and non-convex
optimization techniques such as alternating minimization [Zhou
et al. 2015], reweighted least squares [Chatterjee and Govindu 2013;
Huang et al. 2017], reweighted factorization [Arrigoni et al. 2018],
and spectral techniques [Pachauri et al. 2013; Shen et al. 2016].
However, existing matrix-based map synchronization techniques
are rather insufficient for establishing high-quality maps across a
heterogeneous shape collection. Our approach combines and then
extends both types of approaches. Specifically, we enforce the con-
sistency along 3-cycles to pre-filter incorrect maps. The results are
then fed into a low-CP-rank tensor recovery framework that is
generalized from low-rank matrix recovery techniques.

Tensor Decomposition. Tensor decomposition [Kolda and Bader
2009; Sidiropoulos et al. 2017] emerged as a powerful tool in reveal-
ing intrinsic and coherent structure of high dimensional data. It
has been successfully applied to many data science fields, including
signal processing [De Lathauwer et al. 2007; Muti and Bourennane
2005; Sidiropoulos et al. 2000], computer vision [Shashua and Hazan
2005; Vasilescu and Terzopoulos 2002; Vlasic et al. 2005], and data
mining [Anandkumar et al. 2014; Sun et al. 2006, 2005]. Tensors
provide a natural way to capture coherencies across all dimensions.
Such dependencies are often lost in flattened matrix formulations,
especially when some form of vectorization is deployed. Our tensor
approach is similarly motivated, and we show how to design tensor
representations and algorithms to recover low-rank tensors for map
synchronization. Our approach is mostly relevant to [Sharan and
Valiant 2017], which proposes an alternating optimization scheme
for tensor decomposition that preserves orthogonality among fac-
tors. In this paper, we extend the approach to low-CP-rank tensor
recovery with only partial observations.

Data-driven Shape Segmentation. Jointly segmenting a collection
of similar shapes has been studied extensively in the literature [Hu
et al. 2012; Huang et al. 2011, 2014; Sidi et al. 2011; van Kaick et al.
2013; Wang et al. 2012; Yumer and Kara 2012]. Most of these tech-
niques enforce consistency of segmentations across similar shapes

to boost the performance of segmenting individual shapes. However,
these techniques are mostly suitable for shape collections that show
small geometrical and topological variablities (e.g. organic shapes),
and are not designed for large-scale man-made shape collections (e.g.
ShapeNetCore) that show large structural variabilities. In contrast,
our approach is based on analyzing geometrical and topological
variabilities of 3D shapes in order to derive meaningful shape parts
(e.g. the main difference between chairs and stools indicate that
chair back is a meaningful part). [Huang et al. 2014] presents a first
attempt in this direction, we introduce a novel approach based on
analyzing null spaces of functional maps [Ovsjanikov et al. 2012].

Shape Clustering. Existing works on shape clustering fall into
two major categories, namely descriptor based and graph-clustering
based. Descriptor based approaches compute a descriptor for each
shape so that similar shapes have similar descriptors. Shape clus-
tering is then formulated as clustering data points in the descriptor
space via single-linkage clustering [Gan et al. 2007], k-means [Ohbuchi
et al. 2008], and sub-space clustering [Hu et al. 2012]. These tech-
niques work well for classifying shapes into general categories but
they perform poorly for fine-grained classification tasks where the
shape differences are subtle. Graph-clustering builds a similarity
graph that links similar shapes. Our approach falls into this cat-
egory. However, we use the difference between each input map
and corresponding recovered map to establish the similarity graph.
Our approach does not require an external shape similarity metric
and the underlying clusters are derived solely from input maps.
Recently, [Bajaj et al. 2018] introduced an approach that performs
simultaneous clustering and mapping using a matrix-based map
representation. Our approach shares the similar idea of using maps
to extract shape clusters. However, our approach explicitly utilizes
the fact that intra-cluster maps are more accurate than inter-cluster
maps, leading to additional performance gains.

3 PROBLEM STATEMENT AND APPROACH OVERVIEW

In this section, we present an overview of our tensor map synchro-
nization approach (Section 3.1) as well as its applications in shape
segmentation and shape clustering (Section 3.2).

3.1 Overview of Tensor Map Synchronization

We first formally describe our tensor map synchronization problem.
We then present an overview of our approach.

Problem Statement. We study map synchronization under par-
tial similarity. Specifically, consider a collection of shapes S =
{S1,- -+ ,Sp} that are partially similar to each other. Following the
convention in [Huang et al. 2014], we assume that there exists an
universal shape S, and each shape S; is a partial observation of S.
Without losing generality, we assume the input shapes and the uni-
versal shape are given by sets. In the following, we denote the sizes
of S; and S as |S;| = m; and |S| = m, respectively (note that m is
reserved for the dimension of functional spaces, which will be used
later). With Ql.* we denote the underlying embedding map from S;
to S. Note that these Ql.* are unknowns and to be determined. The
input to map synchronization is given by maps computed along
an observation graph G = (S, &), where every edge (i,j) € & is
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Fig. 2. Approach overview. (a) Input heterogeneous shape collection. (b) Initial pairwise (possibly noisy) shape correspondence maps computed using any
off-the-shelf shape matching algorithm. Note that not all pairwise correspondences are required, furthermore these initial maps may be inaccurate and
possibly link sub-regions that should not be matched (e.g. a tubular back frame support of one chair is linked to the tubular leg of another). (c) Our tensor
map synchronization approach combines a pre-filtering operation by enforcing consistency along 3-cycles and a low-CP-rank tensor recovery procedure to
generate all consistent correspondences. (d) Our resulting optimized and consistent maps can be directly used to perform accurate shape segmentation. () We
use the difference between initial maps and recovered maps to perform weighted and consistent shape clustering (i.e. by exploiting that intra-cluster initial
maps possess greater accuracy than inter-cluster initial maps, suitable weights are assigned).

associated with a partial map Pl’f that links a subset of elements of
S; and a subset of elements of ;. Each Pl’;’ is pre-computed using
an off-the-shelf algorithm and may contain incorrect correspon-
dences. Following the convention, we represent the partial map
Pl’j" € {0,1}™X™Mi a5 a binary matrix of dimension mj X m; 1 Like-
wise, we represent the embedding map Qi* € {o, 1}ﬁ><ﬁ,- as a matrix
of dimension m X m;. Our goal is to recover the universal shape S
and the embedding maps QF,1 < i < n from Pll;‘ V(i,j) € & The
final output consists of recovered maps P;; = Q]TQi between all
pairs of shapes that are induced from the embedding maps.

As we will discuss shortly, we employ the functional map repre-
sentation [Ovsjanikov et al. 2012] for efficient coding and inference
of shape maps across the input shape collection. Let 7(S;) and F(S)
be the functional spaces associated with S; and S, respectively. In this
setting, our goal is to compute Y; : F(S;) — F(S),1 < i < n, each
of which is a functional representation of the point-based embed-
ding map Q;,1 < i < n. Note that similar to the point-based setting
described above, we seek to recover the latent functional space F(S)
and the functional embedding maps Y; together. In contrast, F(S;)
are pre-computed.

Approach Overview. As illustrated in Figure 2, the central idea of
our approach is to consider triplets of shapes. Specifically, we enforce
the consistency of maps along each cycle of length 3. The resulting
correspondences are regarded as partial and noisy observations of an
underlying 3D tensor that admits a low-CP-rank decomposition. We
show how to recover the underlying low-CP-rank tensor through
continuous optimization under the L2-norm, which is followed by
a rounding procedure. In particular, we leverage alternating mini-
mization to recover the underlying low-CP-rank tensor effectively.
Compared with matrix-based map synchronization techniques [Ba-
jaj et al. 2018; Chen et al. 2014; Huang and Guibas 2013; Shen et al.
2016], our tensor-based map synchronization approach exhibits two

1 This notation is consistent with the fact that if e, €0, 1™ is the indicator vector of
p-th element on S;, then Plf;fep gives the indicator vector of its corresponding element
on Sj
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advantages. First, the 3-cycle consistency filtering step can greatly
reduce the noise among the input maps. Second, each slice of the
low-CP-rank tensor corresponds to a data matrix for matrix-based
map synchronization techniques. Our tensor-based synchronization
has the advantage that it enforces consistency among these matrix-
based map synchronizations. The technical details are explained in
Section 4.1.

In Section 4.2, we show how to adapt our approach under the func-
tional map representation [Huang et al. 2014; Ovsjanikov et al. 2012;
Wang et al. 2013], which effectively addresses issues of generating
consistent samples and scaling to large-scale datasets.

To further enhance the scalability of our approach to large-scale
datasets, we introduce a transductive approach that first performs
tensor map synchronization on a coreset of shapes sampled from
the input shape collection, and then establishes maps between the
remaining shapes and this coreset. This approach enables us to com-
pute high-quality maps among many thousands of shapes. Technical
details are explained in Section 4.3.

3.2 Overview of Applications

The output of our map synchronization algorithm enables many
downstream applications, and we focus on two of them in this paper,
namely, shape segmentation and shape clustering. In this section,
we present an overview of these two applications. Section 7 and
Section 6 elaborate some technical details.

Application in Shape Segmentation. We present a novel approach
for shape segmentation that utilizes shape maps to explore shape
differences. The key idea is that if there is structural variability
between two shapes, then their difference naturally corresponds
to a shape part or a collection of shape parts (e.g. the difference
between a chair and a stool indicates that the chair back is a part).
Under functional map representation, such shape differences can be
easily encoded as null spaces of linear maps. We present a simple
approach that aggregates null spaces between a source shape to
other shapes into a part decomposition of the source shape.
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Application in Shape Clustering. Our shape clustering approach is
based on the observation that when input shape collection falls into
multiple clusters, intra-cluster maps tend to be more accurate than
inter-cluster maps. In other words, if we define the affinity score
between two shapes based on the difference between each input
map and the recovered map (i.e. a small difference between maps
leads to a large score), then when recovered maps are accurate, such
affinity scores provide informative cues for identifying underlying
clusters, i.e. intra-cluster pairs usually have large affinity scores and
inter-cluster pairs usually have small affinity scores. Specifically,
we show that spectral clustering on affinity scores recovers the
underlying clusters.

4 TENSOR MAP SYNCHRONIZATION

In this section, we introduce our tensor-based map synchronization
approach in details. We begin with describing our approach under
the point-based setting in Section 4.1. We then show how to modify
the approach under the functional representation for scalable map
synchronization in Section 4.2. Finally, we show how to modify
our approach to perform map synchronization on very large shape
collections in Section 4.3.

4.1 Tensor Point-Based Map Synchronization

The key idea of our approach is to formulate map synchroniza-
tion as recovering a low-CP-rank tensor, and the measurements
for recovery come from analyzing the consistency of maps along
3-cycles.

3-Cycle Consistency Filtering. We evaluate the consistency of ini-
tial maps along triplets of shapes. Specifically, for each triplet of
shapes (S;, Sj, S ), where (i, j), (j, k), (i, k) € &, we introduce a bi-
nary diagonal matrix

c;f;?k = diag(c;jx) € {0, 1}

where ¢;jx € {0, 1}™i is a vector derived from PZ.‘, P]”;C and P]’c'i

Specifically, for the partial self-map P;c'iP]’ZPl’;’ on S; that is induced

from the 3-cycle i —» k — j — i, we set c;;‘k(p) = 1if and only if
p is mapped to p itself in P]’C"IPJ‘ZPZ’ Otherwise, we set cgfk (p) =0.

The resulting vector ci:'? essentially indicates which elements of S;

k
possess consistent CorI{espondences along this 3-cycle.
Note that such consistency check can effectively remove incor-
rect correspondences, particularly on shape collections that exhibit
large geometric variabilities. As shown in Figure 3, the fraction of

incorrect correspondences in the filtered maps Pl’;Cl’;’k is usually

significantly reduced from that in Pl?;‘, while the majority of the
input correspondences are preserved in the filtered maps.
Moreover, compared with the methodology of computing fully
consistent maps along 3-cycles[Nguyen et al. 2011], our approach
enforces 3-cycle consistency at the correspondence level. This shows
a clear advantage because our approach is still effective even when
every input map contains some incorrect correspondences. On the
other hand, we will later show how to aggregate such partially
consistent correspondences along 3-cycles (some of which are still
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Fig. 3. Cumulative distribution functions of the initial maps {Pll;‘} and
the filtered correspondences {Ri;k }. As empirical comparisons, we also
show results of our tensor map synchronization approach and matrix-based
technique described in[Huang et al. 2014]. Note that the low-CP-rank ten-
sor recovery formulation further enhances map quality. (Left) SHREC07-
Human[Giorgi et al. 2007] 85.2% input correspondences are preserved in
the filtered maps. (Right) ShapeNetCore-Chair[Chang et al. 2015] 82.3%
input correspondences are preserved in the filtered maps.

incorrect as shown in Figure 3) into consistent full maps across the
entire shape collection.

Low-CP-rank Tensor for Map Synchronization. We recover the
underlying maps P;j,1 < i, j < n by solving a low-CP-rank tensor
recovery problem, where Pg.‘C Z’lk’ 1 <i,j,k < nare treated as noisy
and incomplete measurements of this tensor. Consideran X n xn
block tensor R € RNXNX" where N = 3, m;. The (j, i, k)-th block
Rjik € R™XMixX1 of R which we treat it as a matrix of dimension
mj X mj, is given by
e { P;}‘C;}‘k @i, 1), G, k), (i., k)yeé& )

0 otherwise

R;
To motivate our low-CP-rank recovery approach, let us gain some
insights about the structure of R in the case where we have pairwise
maps between all pairs of shapes, and where all the input pairwise
maps Pll;' are correct. Let matrix Q € R™™N collect all the under-
lylng maps Qi7l <i<n, ie. Q = (le U 7Ql’l) = (QL e ’qﬁ)T,
where q; € {0,1}N,1 < i < m indicates which shapes contain
the i-th element of the universal shape as well as the correspond-
ing indices. As each column of Q only contains one non-zero ele-
ment, it is easy to see that q; are orthogonal with each other. Let
0 = (011, -+ ,0n1) € R™*" We again write down the rows of
0 = Q.-+ @) " . The following proposition characterizes the
structure of R when the measurements are complete and correct:

PROPOSITION 4.1. Suppose we have input maps between all pairs of
shapes and these input maps are correct. Then the tensor R introduced
in (1) admits the following CP decomposition[Kolda and Bader 2009]:

Ml

R=) q®q®eq, 2

~
1l
—_

where ® denotes the tensor operator.

Proof: The proof is straight-forward because an element R (p”, p) =
1 if and only if (1) the p-th element of S; and the p’-th element of S;

ACM Trans. Graph., Vol. 38, No. 4, Article 106. Publication date: July 2019.
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correspond to the same element of the universal shape, and (2) Sy
also contains this element. |

Map Synchronization via Alternating Minimization. Generally
speaking, when a tensor R admits a CP decomposition of the form

m
R =} a;®b; ®c; for some underlying vectorsaj,by,¢c;,1 <1 <m,
I=1
a common approach for recovering a;, b; and ¢; from R is to solve
a L2-minimization problem [Sharan and Valiant 2017; Zhang et al.
2018], i.e.,

m
min ||R— Y a;®b; ® |3 3)
{ar,bs,er} ; 7
where || - ||# is the tensor Frobenius norm [Golub and Van Loan

1996]. Our setting differs from this standard setting in three ways.
First, we have additional constraints among a;,b;,¢;,1 < I < m,e.g.
a; = by, and a; are orthogonal with each other. Second, the elements
in R are noisy. Third, we only have partial measurements of R.

To adapt (3) in our setting, we consider the following modifica-
tions. First, since the number of non-zero elements of R is generally
significantly larger than the number of variables in aj, b;, ¢;, we
simply relax the dependencies among aj, by, ¢;. We will enforce
these constraints after recovering these latent factors. Such a relax-
ation aligns with the lifting methodology in compressed sensing
and low-rank matrix recovery [Candes et al. 2011, 2012]. Moreover,
to address noisy measurements, we propose to still use the L2-norm.
In contrast to the popular choice of using the L1-norm for recov-
ery [Candes et al. 2011], we found that using the L2-norm works
quite well in our setting. This can be understood from the facts
that (1) noisy pairwise maps, no matter correctness, have bounded
norms, i.e. the elements of R are either 1 or 0; 2) the optimal solution
to L2-norm minimization is highly relevant to leading eigenvector
computation, which has proven to be effective for matrix-based
map synchronization techniques (c.f. [Pachauri et al. 2013; Shen
et al. 2016]); and 3) one can still perform rounding for recovery.
Finally, instead of using tensor Frobenius norm directly, we enforce
the partial observations specified by Cg‘lk’ 1 < i,j,k < n, which
encode results of the 3-cycle consistency filtering step. Combining
these modifications together, we arrive at the following optimization
problem for tensor-based map synchronization:

m

e in 2
mlr’nBr,nlze Z 1B;ik (R - Z a;0b;®c))- Cijk”T (4)
1<i,j,k<n =1
subjectto A= (aj,---,amp),
B=(by, - ,bs),
C=(c1, - cm) (5)

where for every tensor R’ € RNXNX" that admits the same block
structure as R, B;;(R) € R™jXMi extracts the (j, i, k)-th block of
R’ as a matrix of dimension m; X m;. Note that the value of m is
automatically inferred from the input and will be discussed shortly.
Motivated from the success of using alternating minimization for
low-CP-rank tensor factorization [Kolda and Bader 2009; Sharan
and Valiant 2017], we solve (5) via alternating minimization.
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The initial values of A and B are given by spectral decomposition
of a n x n block data matrix P € RN*N that encodes Pil;.‘, (i,j)e &
in blocks:

(6)

Let (A;(P),u;(P)),1 < I < N be the eigenvalues and corresponding

eigenvectors of P sorted in increasing order. Following [Chen et al.

2014; Keshavan et al. 2010], we set m so that it has the largest gap in

Az (P) = Az741(P). Accordingly, we let A = B = (u1(P), - - - , uz(P)) -
1 1

diag()nlE @P),--- ,A%(P)), or in other words, ABT gives the low-rank
approximation of P with respect to the L2-norm. In addition, we set
¢; = 1,1 < I < m, which are optimal when the input shapes are
fully similar with each other.

Given the initial values of A, B and C, we alternate between
optimizing one of them to minimize (4) while fixing the remaining
two. In this case, (4) becomes quadratic in the active variables whose
optimal values can be obtained by solving a linear system. We apply
the same procedure for B and C as well. The details are left to
Appendix A.

Since we have relaxed the constraints among A and B when per-
forming low-CP-rank tensor recovery (See (2)), we have to enforce
these constraints when computing Q. After obtaining the optimal
solutions of A and B, we compute Q by optimizing

in PR
Pj; = { Pij @L)es

0  otherwise

min | AB" - Q" QI3 )

Same as spectral map synchronization [Pachauri et al. 2013; Shen

et al. 2016], the optimal Q is given by the top m eigenvectors of

M. We then apply the procedure described in [Chen et al.

2014] to obtain an approximate binary solution to (7).

The computational cost of this alternating minimization proce-
dure is O(N3mn,;), where ng; is the total number of alternating
minimizations (We set n,; = 100 in this paper). Please refer to
Appendix A for a detailed analysis.

Comparison to Matrix-Based Synchronization Techniques. The cen-
tral idea of matrix-based synchronization approaches is to recover a
low-rank matrix from noisy measurements of its elements that are
given by the input maps, e.g. matrix P in (6) (c.f. [Bajaj et al. 2018;
Chen et al. 2014; Huang and Guibas 2013; Shen et al. 2016]). The
advantage of our approach is two-fold. First, our 3-cycle consistency
filtering scheme can effectively improve the signal-to-noise ratio
among the remaining correspondences. Suppose we divide the input
maps into the cluster of correct maps and the cluster of incorrect
maps. For simplicity, we assume maps across different clusters are
inconsistent. Let pcorn and pipcorn be the average numbers of input
maps that are associated with each shape in the correct cluster and
the incorrect cluster, respectively. Then before 3-cycle consistency

filtering, the signal-to-noise ratio is pp £or

After 3-cycle consistency

incor

2
filtering, the signal-to-noise ratio becomes at least Peor_ (the actual
incor

ratio depends on how consistent the maps in the incorrect cluster
are). In addition, although 3-cycle consistency filtering reduces the
total number of input correspondences, the number of remaining
correspondences is still significantly higher than what is required
for recovery (which is linear in the total number of sample points).
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Fig. 4. Our tensor map approach recovers high-quality consistent maps

across a heterogeneous shape collection with large structural variability.
(Top-row) Noisy initial maps estimated between pairs of shapes in isola-
tion. We show two pairs from the Table category in ShapeNetCore [Chang
et al. 2015]. Corresponding sub-regions are colored same. The multi-color
structural sub-regions show mismatch correspondence (i.e. leg and base of
the tables). (Bottom) Jointly optimized shape maps between the same pairs,
showing more accurate correspondence maps (i.e. table tops are matched
and even leg supports are matched consistently). Note that our joint tensor
map computation utilizes all the shapes in the collection to achieve this
greater accuracy.

Hence the improved signal-to-noise ratio provides a foundation for
low-rank based techniques to recover the underlying ground-truth
maps (c.f. [Chen et al. 2014; Huang and Guibas 2013; Huang et al.
2017; Shen et al. 2016]).

We can understand the additional advantage of our tensor formu-
lation by rewriting the objective function in (5) as

n
F(AB,C) = )" gi(A,B,c™),

k=1
n n m
T
k(A B, ") i= 3" 3 1Bk (R) = > eparb] 1%
i=1 j=1 I=1
where ¢;”" = (1, , ck7) denotes the k-th row of C. Intuitively,
each gy (A, B, ¢;”") seeks to perform matrix-based map synchroniza-

tion from each slice of R. The advantage of (5) comes from the fact
that instead of performing matrix-based map synchronizations in-
dependently, it enforces the consistency among all slices (i.e. A and
B are shared among different slices) and is more resilient to noisy
measurements in R. In other words, while matrix-based recovery
techniques can leverage the uncorrelated random noise within each
slice of R (c.f. [Chen et al. 2014; Huang and Guibas 2013; Huang
et al. 2017; Shen et al. 2016]), our approach utilizes the uncorrelated
random noise across the entire R for robust recovery.

4.2 Tensor Functional Map Synchronization

A major limitation of the approach described in the preceding sec-
tion is that typically one can only place dozens of sample points
per shape, leading to a scalability issue on large-scale datasets. To
address this issue, we propose to use a functional map representa-
tion [Ovsjanikov et al. 2012], which has proven to be quite effective
for map synchronization [Huang et al. 2014; Wang et al. 2013]. In the
following paragraph, we give a brief introduction to the functional
map representation. Please refer to [Huang et al. 2014; Ovsjanikov
et al. 2012; Wang et al. 2013] and the references therein for more
details.

ALGORITHM 1: High level algorithm flow for tensor-based map syn-
chronization.

input: Pre-computed functional space 7(S;) for each shape S;. Initial
maps Pl’;‘ associated with an observation graph G = (S, &).
output: A latent function space F(S) and embedding maps
Y;: F(Si) = F(S,1<i<n

1: Convert Pl’;’ into its corresponding functional map X l‘;‘
2: Perform 3-cycle consistency filtering to obtain a mask M for
ijk
each 3-cycle.
3: Perform low-CP-rank tensor recovery from X :;M Z’ x to obtain
latent variables A,B and C via (9).
4 Recover Y; from latent variables A and B via (10).

Functional maps provide effective low-dimensional encodings
of maps between pairs of shapes. This is done by associating each
shape S; with a low-dimensional linear functional space F(S;) of
dimension m (m = 30 in this paper). The basis of F(S;) is usu-
ally given by the leading k eigenvectors of the Laplacian matrices
on S; [Ovsjanikov et al. 2012; Wang et al. 2013]. ¥ (S;) provides a
platform to effectively approximate indicators of primal elements
such as points, feature points and segments (c.f. [Ovsjanikov et al.
2012; Wang et al. 2013]). This representation allows us to repre-
sent the relation between shape S; and shape S; by a linear map
Xij € R™™ - F(S;) — F(S;) between these two functional spaces.
We can convert the initial map Pl’;’ into a functional map X ;7 by
solving a linear system (c.f. [Ovsjanikov et al. 2012]). In the other di-
rection, we can convert a linear map into a point-based map through
nearest neighbor search in the embedding space [Ovsjanikov et al.
2012]. Another key advantage of the functional map representation
is to address inconsistent sampling, which is an issue under the
point-based setting described in the preceding section.

A similarity between point-based maps and functional maps is
that both of them can be represented as matrices. In fact, point-
based maps can be considered special functional maps, under delta
functional basis (c.f. [Ovsjanikov et al. 2012]). It turns out we can
extend our tensor-based map synchronization approach under the
point-based setting for functional maps by following three simple
modifications (see Algorithm 1 for the overall flow). First, we modify
the 3-cycle consistency filtering step to accommodate approximate
cycle-consistency. Specifically, for each correspondence (p, q) in-
duced from partial self-map P]’C’iPJlZPZ‘, we set c;;'k(p) = 1if and
only if

ds,(p,q) < € - diam(S;),

where dg, (-, ) is the distance metric on S; (i.e. geodesic distance
for organic shapes and Euclidean distance for man-made shapes).
diam(S;) is the diameter of S; with respect to ds,. We use € = 0.05
for all of our experiments. As there are many vertices on a given 3D
model and the initial maps are usually inaccurate, allowing approxi-
mate cycle-consistency brings more signals for map computation.
On the other hand, the continuity of basis functions can indeed fuse
approximately consistent correspondences.
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In the second modification, we convert each initial map Pl‘;‘ and

the mask CZ’k into their functional forms as

in _ T ~in
Muk F Cl]k

n_ T
Xll;' =F; P;;-’Fi, Fi,
where F; € R™iX™ ig the matrix that stores the functional basis
of F(S;) in its columns. Consider a n X n X n block tensor Z €
R(rm)x(nm)xn whose (j, i, k)-th block, which we treat it as a matrix
of dimension m X m, is given by

XM (i), (k). ) € &
ik = Y

®)

0 otherwise

We apply the same procedure to recover the functional represen-
tations Y; € R™*™ 1 < i < n of the latent maps Q;,1 < i < n. We
first solve

min Z
A,B,C

3

i 2
Z-Y aebec) MLl ()

1<i,j,k<n I=1
We then solve the following optimization problem to obtain the
latent functional maps Y = (Y1,---,Yy):
: T Ty 2
min ||AB" =Y Y 10
in | 1% (10)

In the same spirit as the projection operator under the point-based
setting, we convert the induced functional map X lr] = YjT Y; from
S; to S;j into a point-based map P;‘j following [Rodola et al. 2017].
This operation can be considered as a counterpart of the projection
operation in the point-based setting (c.f. [Chen et al. 2014]). Finally,
we convert Pl.*j into the final functional map Xl.*j using [Rodola et al.
2017]. As shown in Figure 4, our approach can identify accurate
correspondences under large structural variability. In addition, our
approach can also remove extraneous correspondences in the initial
maps.

4.3 Transductive Map Synchronization

In this section, we present an efficient map synchronization ap-
proach for very large-shape collections. Instead of applying our
tensor-based map synchronization approach on the entire input
shape collection S, we decompose S = S; U S, into a coreset S
and a remaining set S;. In our experiments, we compute S¢ by
applying farthest-point-sampling ([Eldar et al. 1997]) on S with
respect to a shape descriptor (i.e., GPS[Rustamov 2007] for organic
shapes and D2[Osada et al. 2002] for man-made shapes). We then
apply our tensor map synchronization approach on S, obtaining a
latent shape space S and for each shape S; € S, an embedding map
Y; : F(Si) = F(S). We then fix Y;,i € S, and compute for each
shape S; € S, its embedding map Y; : F(S;) — F(S).

Specifically, for each shape S; € Sy, let N; € S be a random set
of core shapes to which we will link S;. When S is small, we simply
treat N; = S¢. When S, is large, we compute N; as a random subset
of S;. Let Xii’.' be the initial functional map from S; to Sj, where
Sj € Nj. We solve the following optimization problem to obtain the
embedding map Y;,VS; € S;:

min Z 1Yy - ximiz 11)
Yi S;eN;
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The optimal solution to (11) is given by a closed-form expression

IR 2NN ]

S;EN; S;eN;

We apply the same procedure as Section 4.2 to round the induced
functional maps X l* = YTY; into point-based maps and then ap-
ply (11) to solve the embedding map again, which gives the final
embedding map Y; for shape S;.

5 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our tensor
map synchronization approach.

5.1 Experimental Setup

Dataset. We consider two benchmark datasets that are widely
used for evaluating shape maps. The first benchmark dataset is
SHRECO07 [Giorgi et al. 2007]. SHRECO07 consists of 20 categories,
where each category has 20 shapes. Same as [Kim et al. 2011], we pick
11 categories (Human, Glasses, Airplane, Ant, Teddy, Hand, Plier,
Fish, Bird, Armadillo and Fourleg) that are suitable for inter-shape
matching. For each category, we compute the initial maps between
all pairs of shapes using blended intrinsic map (or BIM), which is
a state-of-the-art method for inter-shape matching. These maps
are converted into functional maps using the technique described
in [Ovsjanikov et al. 2012].

The second benchmark dataset is ShapeNetCore [Chang et al.
2015], which contains 50K man-made shapes in 55 categories. We
pick 9 popular categories (Aeroplane, Bicycle, Boat, Bus, Car, Chair,
Motorbike, Sofa, Train). These categories exhibit larger variabili-
ties in geometry and topology than categories in SHRECO07. For
categories with more than 400 shapes, we perform farthest point
sampling using the D2 descriptor [Osada et al. 2002] to sample
400 shapes (which form the coreset) for experimental evaluation.
We first use our tensor map synchronization approach to compute
consistent maps within each coreset. Since it is still too costly to
compute consistent maps within the coresets, we randomly connect
each shape with 64 other shapes for map computation. Note that we
do not connect each shape with adjacent shapes (e.g. with similar
shape descriptors), as we would like to establish maps between di-
verse shapes to explore shape variability. We will utilize such shape
variability to derive shape parts. Given the consistent maps com-
puted within each coreset, we then use the approach described in 4.3
to establish consistent maps for the remaining shapes. Regarding
the initial maps, we employ the FFD alignment procedure described
in [Huang et al. 2014]. We then convert these correspondences into
functional maps using [Ovsjanikov et al. 2012].

Baseline Approaches. For experimental evaluation, we compare
our approach against four state-of-the-art map synchronization
approaches. The first baseline approach is cycle-voting [Nguyen et al.
2011]. Our approach differs from cycle-voting in terms of the tensor
formulation for map recovery and the fact that we leverage partially
consistent maps. The second baseline is FuncSync [Huang et al.
2014], which is a state-of-the-art map synchronization approach
that leverages low-rank matrix recovery under the functional map
representation. The third baseline is [Cosmo et al. 2017], which is
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Fig. 5. SHRECO07-Evaluation. Quantitative evaluation of our tensor map approach and prior baseline approaches on 11 categories of the SHREC07 dataset
[Giorgi et al. 2007]. We compare against four baseline approaches: Cosmo17 [Cosmo et al. 2017], Nguyen11 [Nguyen et al. 2011], Huang14 [Huang et al. 2014],
and Sun18 [Sun et al. 2018]. We show both (Left) results without factoring out the underlying symmetry and (Right) results after factoring out the underlying
symmetry. The correspondence accuracy charts are best visualized in color and digitally zoomed in.

a state-of-the-art approach under the point-based representation.
We use 128 sample points across all experiments. The last baseline
is [Sun et al. 2018], which leverages the Kronecker product operator
to synchronize maps among symmetric objects. As a by-product,
it also promotes consistent correspondence pairs across the input
shapes, which ultimately boost the quality of synchronized shape
maps.

Evaluation Protocol. For both SHREC07 and ShapeNetCore, we
evaluate the geodesic distance between each predicted correspond-
ing point and its corresponding annotated feature point. This geo-
desic distance is normalized by the diameter of the target shape (in
geodesic distance as well). The same as [Cosmo et al. 2017; Huang
et al. 2014; Kim et al. 2011], we report the percentage of corre-
spondences whose errors fall within a varying threshold, i.e. the
cumulative probability.

5.2 Analysis of Results

Map Synchronization Quality. As shown in Figure 5 and Figure 6,
our approach can significantly improve the quality of maps on
SHRECO07 and ShapeNetCore. The improvements are roughly consis-
tent when varying the threshold for defining the cumulative proba-
bility. So to simplify the discussion, we evaluate the cumulative prob-
ability by setting epin = 0.1. Based on the level of improvements, we
can roughly classify the categories in SHREC07 and ShapeNetCore

into three groups. The first group collects categories where our ap-
proach shows the salient improvements and the recovered maps are
mostly correct (the cumulative probability of recovered maps is close
to 100% for the selected range of errors). These categories include Hu-
man, Armadillo, Teddy and Fourleg from SHREC07, and Car, Chair,
Bus and Sofa from ShapeNetCore. The cumulative probability of
recovered maps/corresponding absolute improvement on these cate-
gories are 90%/23% (Human), 83%/20% (Armadillo), 82%/20% (Teddy),
82%/31% (Fourleg), 88%/28% (Car), 85%/23% (Chair),83%/20% (Bus),
and 80%/20% (Sofa), respectively. The second group collects cate-
gories where our approach yields salient improvements while there
are some incorrect maps in the recovered set (the cumulative proba-
bility of recovered maps is less than 100%). These categories include
Glasses, Ant, and Fish from SHRECO07, and Aeroplane, Train, Bicy-
cle, and Motorbike from ShapeNetCore. The cumulative probability
of recovered maps/corresponding absolute improvement on these
categories are 70%/20% (Glasses), 65%/18% (Ant), 62%/21% (Fish),
75%/22% (Aeroplane), 70%/19% (Train), 65%/25% (Bicycle), 62%/20%
(Motorbike), respectively. The third group collects categories where
our approach only exhibits modest improvements. These categories
are Bird and Airplane from SHRECO07, and Boat from ShapeNetCore.
The cumulative probability of recovered maps/corresponding abso-
lute improvement on these categories are 53%/15% (Bird), 42%/14%
(Airplane), 55%/17% (Boat), respectively. We can observe two pat-
terns from these categories. First, the cumulative probabilities of
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Fig. 6. ShapeNetCore-Evaluation. Quantitative evaluation of the proposed approach and baseline approaches on 9 categories of the ShapeNetCore
dataset[Chang et al. 2015]. We compare our approach against four baseline approaches: Cosmo17 [Cosmo et al. 2017], Nguyen11 [Nguyen et al. 2011],

Huang14 [Huang et al. 2014], and Sun18 [Sun et al. 2018].
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Fig. 7. Map graph visualization. We show the sub-graph of correct maps among the input maps and the recovered maps. We say a map is correct if the
mean error among annotated features is below 0.1. For categories from ShapeNetCore (e.g. Car, Aeroplane and Boat), we draw a vertex sub-graph among 20
randomly picked shapes to make the visualization uncluttered. (Top) Sub-graph of correct input maps. (Bottom) Sub-graph of correctly recovered maps.

recovered maps are correlated with the quality of initial maps. This
is expected, as our approach requires that a good portion of the input
maps are correct in order to recover the underlying ground-truth
maps. Second, the improvements are also related to whether the
shapes in a particular category is symmetric or not. On those cate-
gories (e.g. Bird, Ant, Airplane), the absolute improvements become
salient after factoring out the underlying symmetries (c.f. [Kim et al.
2011]) (See Figure 5(Right) and Figure 6(Right)). In particular, on Air-
plane and Bird, the absolute improvements become 24%(Airplane)
and 20%(Bird) after factoring out the underlying symmetry.

To further understand the performance of our approach across
these groups, we plot map quality measured using ground-truth
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annotations for both the input maps and the recovered maps. To
simplify the analysis, we say a map is good if the average geodesic
error over the annotated feature points is below 0.1. In addition,
we pick one exemplar category per dataset from each group (see
Figure 7) for additional analysis. For Fourleg in the first group, its
sub-graph of correct maps already forms a strongly connected graph,
which provides a strong foundation for suppressing the noise in the
input maps. As a result, the graph of correct recovered maps be-
comes a clique. The correct initial maps of Car also forms a strongly
connected graph. Likewise, the graph of correct recovered maps is
a clique as well.
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Fig. 8. Map graph visualization. We show the sub-graph (top) of only consistent (correct) maps amongst all the pairwise input maps and also the recovered
correct maps (below). We say a map is correct if the mean error among annotated features is below 0.1. For categories from ShapeNetCore, we draw a vertex
sub-graph among 20 randomly picked shapes to make the visualization un-clutterred. Note that each row shows the results of using different methods on the
same category. (Top) Sub-graphs of correct maps when applying different approaches on ShapeNetCore-Motorbike. (Bottom) Sub-graph of correct maps when

applying different approaches on SHREC07-Ant.

For Hand in the second group, its sub-graph of correct maps
becomes less strongly connected. In fact, we can view this sub-graph
as a collection of two densely connected components while the edges
between these two connected components are significantly sparser.
In this regime, our approach can still recover most of the underlying
maps. This again shows the power of the tensor formulation, which
is able to separate the signal from the noise despite the fact that
a significant portion of the maps between these components are
incorrect. The sub-graph of Aeroplane shows a similar behavior,
and our approach can still recover most of the underlying maps.

Finally, for Bird in the third category, the graph of correct in-
put maps consists of mostly disconnected components. In this case,
many recovered maps between these components are still incor-
rect. However, our approach can still nicely recover the underlying
ground-truth maps within each component and some maps between
the components. Note that we utilize a hard threshold to determine
a map is correct or not. It follows that some correct recovered maps
are attributed to the fact that we synchronize a few maps that are
close to be correct.

Baseline Comparison. Our approach outperforms baseline ap-
proaches across all categories. On categories in the first group, our
approach yields slightly better results than that of [Sun et al. 2018]
and [Huang et al. 2014]. This is due to the fact that the fraction
of correct initial maps is significant, and matrix based map syn-
chronization techniques are already delivering good results. Still,
our approach produces better results, particularly in the regime
when the cut-off threshold is small. We can also observe the ad-
vantage of our approach from the sub-graph of correct initial maps
and the sub-graph of correctly recovered maps on Motorbike (see
Figure 8(Top)).

On categories in the second group, our approach outperforms
baseline approaches significantly. The relative performance gains

on Glasses, Ant, Fish, Aeroplane, Train, Bicycle, Motorbike are 9%,
5%, 7%, 10%, 5%, 2%, and 3%, respectively. This shows the clear
advantage of the tensor formulation for separating signals from
noise in the regime of relatively low signal-to-noise ratio. We can
also observe the advantage of our approach in Figure 8(Bottom). Our
approach can nicely recover most of the underlying ground-truth
maps between shapes in different clusters. In contrast, all baseline
approaches fail to recover many such inter-component maps. On
the other hand, all approaches can nicely recover the underlying
ground-truth maps within each component.

On categories in the third group, our approach still outperforms
baseline approaches by a considerable margin. The relative per-
formance gains on Bird, Airplane, and Boat are 7%, 8%, and 2%,
respectively.

Runtime Analysis. Our approach is fairly efficient. The computa-
tional cost on ShapeNetCore with 400 shapes and 30 basis functions
is 3 hours 40 minutes on a machine with 8-core 3.4GHZ CPU and
128G main memory.

5.3 Ablation Study

We proceed to compare our approach with two alternative ap-

proaches. In the first alternative approach, we employ [Huang et al.

2014] but replace the input map of each block with X 5. =2 Xijk-
k

Note that this is a strong baseline as X S is derived from enforcing the
cycle-consistency consistency constraint among triplets of objects.
In the second alternative approach, we use a sequential approach to
perform the low-rank tensor decomposition. Specifically, we first
reshape Z into a matrix of dimension vec(Z) € n x (nm)? (i.e. along
the dimension of ¢) and perform SVD to derive the rank-1 approxi-
mation ¢ - f7 of Z (i.e. with respect to the L2-norm), where ¢ € R”

and f € R""™ We then reshape f into a matrix mat(f) € R"™m*nm
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Fig. 9. Ablation study. Comparison between our approach and two alter-
native approaches on benchmark datasets. Our approach delivers the best
performance. (Baseline-1) 3-cycle pre-filtering + matrix-based map recovery.
(Baseline-II) 3-cycle pre-filtering + sequential low-CP-rank tensor recovery.

and perform SVD to derive the decomposition A- BT for f. We apply
the same approach in Section 4.2 to obtain the latent maps from A
and B.

As shown in Figure 9, our approach outperforms two alternative
approaches. The improvements are consistent across all three groups
of categories. This shows the advantage of using the full CP decom-
position for map synchronization. Moreover, our approach yields
the largest performance gains on the second group of categories.
This is not surprising due to low signal-to-noise ratios for cate-
gories within this group. To maximize the quality of the recovered
maps, one has to utilize the full tensor formulation. Furthermore,
both our approach and two alternative approaches are superior to
baseline approaches. In other words, it is beneficial to combine 3-
cycle consistency prefiltering and low-rank matrix/tensor recovery
techniques.

6 APPLICATION IN SHAPE SEGMENTATION

In this section, we describe how to apply our map synchronization
approach for the application of joint shape segmentation. We begin
with introducing our approach in Section 6.1. We then evaluate our
approach in Section 6.2.

6.1 Approach

A popular criterion for jointly segmenting a collection of shapes
is to enforce the consistency of segmentations across the entire
shape collection [Huang et al. 2011; Sidi et al. 2011; Wang et al.
2012; Yumer and Kara 2012]. However, this approach is not ideal for
heterogeneous shape collections that exhibit large geometric and
topological variabilities. We propose to use a different criterion that
is inspired from the variability of shapes, namely, we call a region of
a shape Sy a part if either it is replaced on another shape Sy (four-leg
basis to swivel basis) or it is removed on Sy (chair to stool).

Under the functional map setting, we can capture such variability
by analyzing the null space of a functional map X;; € R™*™ :
F(S1) — F(S2). In practice, even for the recovered maps of our
approach, their null spaces are not perfect, meaning we have to
determine their null spaces numerically. In this paper, we compute
these null spaces using the following procedure. First, we compute
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the singular value decomposition of X7 as

m)).

. 1
X1z = UpS12Vyh,  Spp = diag('y),--- 7"§z

12>

We then determine the dimension of the null space of Xj, by de-
tecting the largest gap [* = 1r<nla<x og) - 01(;’1), where al(;nﬂ) =0.
silsm
The dimension of the null space is then given by m — I*. With Vi,
we denote the resulting null space. We say a null space non-trivial
if its dimension is bigger than 0.
Intuitively, each non-trivial null space shall correspond to indica-
tor functions of a missing part. Formally speaking, we can define

the distance between a point on a shape to this null space as
d(p.Vi2) = min [Ifp = Vizxa I/ lIfp I,

where f}, is the projection of the delta function of p on this functional
space. It is clear that when p is within the underlying missing part,
then d(p, Vlz) is small. Otherwise d(p, Vlz) is large. We cut shape S;
into two parts using the median of d(p, Vi2).

Each non-trivial null space generates a cut of the input shape.
We aggregates these segmentation cues by adapting the approach
of RandomizedCut [Golovinskiy and Funkhouser 2008]. Figure 10
illustrates segmenting a chair model based on its differences to other
chair models.

6.2 Experimental Evaluation

We have evaluated our approach on five categories of the shape seg-
mentation dataset described in [Yi et al. 2016]. For experimental eval-
uation, we employ the Rand index score[Rand 1971]. In addition, we
consider three baseline approaches for unsupervised segmentation,
namely, co-segmentation [Sidi et al. 2011], sub-space clustering [Hu
et al. 2012], and consistent latent space (or consistentLB) [Wang
et al. 2013].

As shown in Table 1, Our tensor map approach achieves state-of-
the-art results on Chair, Airplane, Table and Guitar shape collections.
A characteristic of these categories is that their geometric variations
are big, which provide sufficient signals for identifying the under-
lying segments. However, for the Car collection, where the shape

B -

Induced null spaces

-

Fig. 10. We compute the segmentation of each shape based on its differ-
ence to other shapes. These differences are captured by the null spaces of
functional maps. Each induced null space is visualized by the the distance
from the indicator of each point to this null space. Red means small and
blue means large.
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Fig. 11. Joint shape segmentation. We show joint shape segmentation results when increasing the size of the input shape collection. (Left) On a relatively
small shape collection, our approach leads to inconsistent results. (Right) on a large shape collection, our approach leads to consistent segmentation results.
Note that our approach does not utilize geometric segmentation cues on each shape. The segmentations are induced from shape differences derived from

consistent shape maps.

Table 1. Shape segmentation result. Rand index score [Rand 1971] of
three baseline approaches and our approach on five rigid classes[Yi et al.
2016].

‘ Chair Table Airplane Guitar Car
Co-segmentation | 19.12% 17.34% 16.85% 14.37% 16.27%

Sub-space 16.59% 13.21% 10.17% 12.09% 9.38%
ConsistentLB | 13.21% 14.15% 12.33% 11.20% 10.53%
Ours 11.03% 9.52% 9.13% 7.96% 19.20%

variation is small, our approach is not as competitive as the base-
line approach of [Hu et al. 2012]. These experiments demonstrate
the effectiveness of exploring shape variability as a compliment of
existing approaches for joint shape segmentation.

We have also tested the performance of our approach while in-
creasing the size of the input shape collection. As shown in Figure 11,
the performance of our approach improves as the size of input shape
collection increases. For small shape collections, our approach may
yield under-segmentations and/or inconsistent segmentations. We
can understand this from the fact that a small shape collection may
not provide sufficient variability cues for segmentation, and such
cues tend to be unstable. In our experiments, we found that the
segmentation results become steady with more than 30 shapes on
the categories we have tested.

7 APPLICATION IN SHAPE CLUSTERING

In this section, we describe how to apply our map synchroniza-
tion approach for the application of shape clustering. We begin

with introducing our approach in Section 7.1. We then evaluate our
approach in Section 7.2.

7.1 Approach

Our goal is to divide a heterogeneous shape collection into clusters
of similar shapes (e.g., those that belong to the same categories).
Existing approaches for shape clustering (or object clustering in
general) fall into two categories (c.f.[Berkhin 2006; Xu and Wunsch
2005]). The first category of approaches leverages suitable object
descriptors and computes object clusters so that objects in the same
clusters have similar object descriptors (c.f.[Berkhin 2006; Xu and
Wunsch 2005]). The second category of approaches constructs a
similarity graph by connecting similar objects with respect to some
affinity scores (c.f.[Berkhin 2006; Xu and Wunsch 2005]). These
methods then perform graph clustering to obtain the shape clusters.
The key to the success of the second category of approaches is to
determine a meaningful affinity score. Our approach falls into the
second category. However, our innovation is to define the affinity
scores based on the input maps associated with pairs of objects.
As we will demonstrate immediately, such affinity scores are more
powerful and flexible than state-of-the-art approaches introduced
in the literature.

Specifically, our affinity score is based on the intuition that when
considering object maps among objects that fall into multiple clus-
ters, intra-cluster maps are likely to be more accurate than inter-
cluster maps. In fact, for optimization-based pairwise shape match-
ing techniques (e.g., preservation of geodesic distances[Kim et al.
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Fig. 12. Human Shape Clustering. (Left) Visualization of the affinity
scores among the input shapes. We draw an edge between two shapes
if their score is above 0.1. The induced edge lengths are given by the first
two eigenvectors of the Graph Laplacian of the affinity matrix. We can see
that shapes are densely connected within each cluster than across differ-
ent clusters. (Right) The resulting clusters. We visualize each cluster by
removing inter-cluster edges. For each cluster, we show the rest pose of the
person that is most represented in that cluster. Please refer to Table 2 for a
quantitative evaluation.

2011]), the optimal map is usually close to the ground-truth when
the two input shapes are close. In contrast, when the two input
shapes are less similar, the corresponding optimization problem
becomes hard to solve (e.g., leading to local minimums) and the
optimal map tends to drift away from the underlying ground-truth.
This motivates us to define the affinity score for each object pair
based on the difference between the input map and the recovered
map. As our map synchronization approach can accurately recover
the underlying ground-truth, this affinity score turns out to provide
powerful signals for separating objects from different clusters.

More precisely, we first compute for each edge (i, j) € & aresidual
error r;j defined as

1

rij = (I = X[IZ + 11X - X[H2) (12)
We then define the affinity score w;; as
rizj . .
wij = exp(—g , o := median ;réllr\} rij. (13)

Finally, we use the spectral graph clustering approach described
in [Belkin and Niyogi 2001], which determines the number of under-
lying clusters by detecting the spectral gap and performs k-means
clustering on the leading eigenvectors to recover the underlying
clusters. Since this is a standard graph-based clustering approach,
we refer to [Belkin and Niyogi 2001] for the technical details.

7.2 Experimental Results

We have applied our shape clustering approach to two challenging
datasets that exhibit interesting cluster structures.

Human Dataset. The first dataset is a human dataset that con-
sists of 12 different persons with 20 poses per person. The first 10
persons are taken from the testing set of the FAUST dataset [Bogo
et al. 2014]. The 11th category is given by the Male category of the
TOSCA dataset [Bronstein et al. 2008]. The last category is given by
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Table 2. Rand index score. We compare our approach with three base-
line approaches with respect to the Rand-index score[Rand 1971] (in per-
centages, and the lower the better): Shape-Des[Wu et al. 2015], which is
based on comparing geodesic shape distributions; Image-Des[Su et al. 2015],
which is based on comparing concatenated multi-view shape descriptors;
SMAC(Bajaj et al. 2018], which is based on spectral clustering in map-based
embedding spaces.

‘Human‘ Chair ‘Chair—Back Chair-Leg

Shape-Des |24.13%|20.17%| 25.12% 16.43%
Image-Des | 9.78% | 8.78% 7.51% 6.93%
Dis Distance | 12.13% | 14.23% | 11.89% 13.21%
SMAC 8.42% | 6.23% 7.86% 8.72%
Ours 2.79% | 3.19% | 4.39% 3.82%

randomly sampling 20 shapes from the SCAPE dataset [Anguelov
et al. 2005]. We use blended intrinsic maps to compute initial maps
between all pairs of shapes. We then apply our approaches to recover
consistent shape maps and derive the underlying clusters. Figure 12
shows the affinity scores derived from pairwise shape maps. We can
see that the affinity scores nicely indicate the underlying structures.
In addition, our approach accurately recovers different poses of the
individual persons except that we mis-clustered four shapes.

Table 2 compares our approach with four baseline approaches.
The first baseline approach performs k-means clustering with re-
spect to the GPS shape descriptor[Rustamov 2007], where we use [Pel-
leg and Moore 2000] to determine the number of clusters. The second
baseline performs k-means clustering with respect to the multi-view
image descriptor[Su et al. 2015] via calibrated front views. Again,
we use [Pelleg and Moore 2000] to determine the number of clusters.
The third baseline replaces the map residual error by the conformal
Wasserstein neighborhood dissimilarity distance(CWN) [Boyer et al.
2011]. Finally, the fourth baseline is based on [Bajaj et al. 2018],
which performs simultaneous mapping and clustering in the eigen-
space spanned by the leading eigen-vectors of a data matrix. It turns
out our approach significantly outperforms descriptor based shape
clustering approaches. We can understand this from the perspective
that the differences between shapes are subtle, and pure geodesic
and image-based descriptors cannot differentiate them. CWN per-
forms slightly better than descriptor based approaches, yet it still
possesses a gap to our approach. The major reason is that many
inter-shape maps are inaccurate, and thus they do not fully reflect
the actual shape variations. Finally, our approach also outperforms
[Bajaj et al. 2018], thanks to the power of our tensor formulation
for accurate recovery of the underlying ground-truth maps.

Chair Dataset. The second dataset is the chair dataset, which col-
lects 5 fine-grained chair classes (swivel, cantilever, sofa, windsor,
and fourleg) from the chair category of ShapeNetCore. To keep the
dataset balanced, we uniformly sample 20 shapes from a category
if the size of that category is bigger than 20. In total, we obtained
100 shapes. We perform three clustering tasks, where the first task
is based on clustering entire objects, and where the second task is
based on clustering with respect to individual parts (i.e., chair back
and chair legs). For the task of clustering entire objects, we follow
a similar procedure for the Human dataset to compute consistent
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Fig. 13. Chair Clustering. The top block shows the clustering results with
respect to the entire chair shapes. The middle block shows the clustering
results with respect to chair legs. The bottom block shows the clustering
results with respect to chair backs. Shapes in the same cluster are visualized
with the same color. Note that our approach identifies all underlying cluster
structures in each case.

shapes maps and use map residuals to obtain the underlying clus-
ters. The only difference is that we replace the input maps by FFD
alignments [Huang et al. 2014].

We again compare our approach to a similar set of four baseline
approaches as the Human dataset. For the first baseline, we use the
pre-trained PointNet++[Qi et al. 2017] model to compute a shape
descriptor for each shape. We apply the same procedure to deter-
mine the number of clusters and perform k-means to determine
the resulting clusters. The second baseline remains the same. The
third baseline is given by the conformal Wasserstein distance (or
CWD) with respect to the Euclidean distance. The last baseline is
again given on [Bajaj et al. 2018]. As shown in Figure 13 and Ta-
ble 2, our approach leads to better results than baseline approaches.
Specifically, our approach outperforms descriptor-based approaches
considerably. Note that both descriptor-based approaches utilize
cutting-edge deep learning techniques. This shows the advantage
of using map residuals for classifying fine-grained classes. The third
baseline leads to the lowest performance, due to relatively low qual-
ity initial maps on such a heterogeneous dataset. Likewise, our
approach leads to better results than [Bajaj et al. 2018], as we can
recover the underlying maps more accurately.

We now extend the approach to perform part-based clustering.
Specifically, we mark a 3D region specified by a 3D bounding box.

when evaluating the map residual, we only consider the map residu-
als within the region of each shape that is inside each 3D bounding
box. This is done by modifying the map residual as

1
rij = (1065 = X - P+ 106 - X - PiIE) . ()

where P; € R™™ and P; := X;;P; € R™ are the projection
matrices in the functional spaces associated with S; and Sj, respec-
tively.

As illustrated in Figure 13, by varying the specified 3D bounding
boxes, we can cluster the input shapes with respect to different
regions such as chair back and chair legs. For example, with re-
spect to chair backs our approach identifies three dominant modes
such as solid, open and windsor backs. Regarding chair legs, our ap-
proach clusters legs with distinctive styles such as fourlegs, swivel
legs, cantilever legs, and sofa legs. In addition, our approach also
outperforms baseline approaches (see Table 2).

8 DISCUSSION, LIMITATIONS AND FUTURE WORK

In this paper, we have introduced a new approach for map synchro-
nization. The key to our approach is a tensor-based representation
for explicitly encoding the consistency of maps among a collec-
tion of relevant objects. This leads to a simple formulation of map
synchronization as a low-rank tensor recovery. We have shown sig-
nificant advantages of this approach against existing matrix-based
approaches in terms of empirical performance on large-scale bench-
mark datasets. The effectiveness of this approach is demonstrated
on applications of clustering and co-segmentation of heterogeneous
shape collections. In each of the cases the structural matches are
vastly improved through our improved correspondence maps.

Our approach possesses a few limitations. First, our approach is
not particularly designed for symmetric objects. In particular, for ro-
tational symmetric objects, our approach only yields modest results.
To address this issue, it would be interesting to combine the lifting
approach described in [Sun et al. 2018] and the tensor formulation
described in this paper. Another limitation of our approach is that
the input graph & is favored to be a random graph or a geometric
graph. Otherwise, there may not be a sufficient number of 3-cycles
from & to perform effective tensor map synchronization.

There are also many opportunities for future research. First of
all, it is interesting to explore other low-rank tensor recovery tech-
niques based on tensor decomposition and with additional low-rank
regularization. Moreover, it would also be interesting to explore
other representations for map synchronization, e.g., a mixture of
matrix-based and tensor-based representations. Finally, one could
explore other tasks related to heterogeneous shape collections such
as hierarchical shape decomposition and shape synthesis using
multi-dimensional tensors .
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A DETAILS ABOUT ALTERNATING OPTIMIZATION

In this section, we provide details on the alternating minimization
procedure for optimizing (5), which is presented in the following
general form:

N N n m
Zzzwrst(Rrst - Zarlbslctl)z (15)
r=1s=1t¢t=1 =1

where w;s; encode the elements of C ]l?k

The idea of alternating minimization to alternate the optimiza-
tions of A, B and C. In this case, the objective function becomes
quadratic in the variables, and the optimal solution at each iteration
can be obtained by solving a linear system.
Optimizing A. When B and C are fixed, we can see that optimiza-
tions of different rows of A are decoupled:

n

. 2
. min E § wrst(Rrst — § arbsics)”,
rl, "

sArm

s=11t=1 =1

1<r<N (16)

Define H4" € R™ ™ and ¢*" € R™, whose elements are given by

Hf’l,r = Z Zwrstbslbsl’ctlctl’ 1<Ll'<m
s=1t=1
N N
gf Z Z Wwrstbsic Rrst, 1<l<m (17)
s=1t=1
It is easy to see that the optimal solution for
(@rt, - am) = (HAT) g (18)

Note that the complexities of forming matrix H4 and vector g are
O(N?nm?) and O(N?nm),respectively. Solving the linear system in
(18) costs O(Nm?). So the total computational cost for this step is
O(N? nmz). It should be noted that for large-scale systems, w;¢; are
sparse, so the computational cost is further reduced.

Optimizing B or C is done in a similar fashion. Define matrices
HB:s HCt ¢ RMX™ and vectors gB’S R gc’t € R™ whose elements
are given by

gBs .
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The optimal solutions are given by

-1
(bs1, - bog) " = HE* T gBe )

and

-1
(ct1, - segm)t = HOU g& L, (22)

respectively. Again, the complexity of optimizing B or C is O(N?nm?).
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Convergence rate. ([Bezdek and Hathaway 2003]) shows that un-
der the assumptions of (1) a local optimal Z a* ® b* ® c to (15) is

unique, (2) and the Hessian at this local opt1ma1 is positive definite,
and (3) we start from the an initial solution that is close to this
local optimal, then alternating minimization converges to this local
optimal in a geometric rate. In our experiments, we found that our

m
approach always converges to a stationary point }; a? ® b;‘ ® c;‘.

m
Note that although 3, aj* ® b ® c* may be unique, the values of
I=1

A*, B* and C* is dependent on the initial solution.
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