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Fig. 1. A prototypical example of a heterogeneous shape model collection with highly consistent correspondence maps generated from our tensor approach
and optimized across the entire collection. These maps simultaneously encodes structural and functional similarities and variances. The corresponding regions
of each object in the shape collections is shown with matching color. The induced shape maps additionally enable applications in shape segmentation and
sub-region weighted shape co-clustering.

Establishing high-quality correspondence maps between geometric shapes

has been shown to be the fundamental problem in managing geometric

shape collections. Prior work has focused on computing efficient maps be-

tween pairs of shapes, and has shown a quantifiable benefit of joint map

synchronization, where a collection of shapes are used to improve (denoise)

the pairwise maps for consistency and correctness. However, these existing

map synchronization techniques place very strong assumptions on the input

shapes collection such as all the input shapes fall into the same category

and/or the majority of the input pairwise maps are correct. In this paper,

we present a multiple map synchronization approach that takes a hetero-

geneous shape collection as input and simultaneously outputs consistent
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dense pairwise shape maps. We achieve our goal by using a novel tensor-

based representation for map synchronization, which is efficient and robust

than all prior matrix-based representations. We demonstrate the usefulness

of this approach across a wide range of geometric shape datasets and the

applications in shape clustering and shape co-segmentation.
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1 INTRODUCTION
Digital shape collections are a rich resource of information for di-

verse data driven applications. Developing effective tools to analyze

and organize them is a central research problem in geometry pro-

cessing and machine learning. Prior related papers have focused on

computing shape correspondence maps across all pairs of shapes in
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the collection. Such shape maps facilitate the propagation and aggre-

gation of shape information, enabling diverse data driven process-

ing for texture and animation transfer [Kraevoy and Sheffer 2004;

Schreiner et al. 2004; Sumner and Popović 2004], browsing [Gao

et al. 2015; Huang et al. 2014; Kim et al. 2012; Xu et al. 2013], co-

analysis [Fish et al. 2016; Hu et al. 2012; Huang et al. 2011; Sidi et al.

2011; van Kaick et al. 2013], abstraction [Yumer and Kara 2012], and

modeling/synthesis [Funkhouser et al. 2004; Kreavoy et al. 2007].

Yet existing techniques have primarily focused on homogeneous

shape collections, e.g., a collection of human body models [Giorgi

et al. 2007] or a collection of chair models of similar style (c.f. [Kim

et al. 2013, 2012]).

In this paper, we present a framework for analyzing heteroge-

neous shape collections, e.g., those downloaded from different in-

ternet model repositories. In contrast to homogeneous shape collec-

tions, heterogeneous shape collections usually exhibit significant

geometric variabilities, e.g., different part configurations. We demon-

strate that establishing high-quality maps across heterogeneous

shape collections provides unique opportunities for analyzing and

hierarchically organizing such shape collections. Consider shape

segmentation, a fundamental task in shape analysis, we show that

one can identify parts of a shape through shape differences induced

from shape maps. For example, chair back is a part because it is

added to a stool. As another example, we can recognize chair legs as

a part through the difference between a swivel basis and a four-leg

basis (See Figure 1).

Besides variability-driven part discovery, we also show how to

use shape maps to derive meaningful cluster structures of a het-

erogeneous shape collection. Specifically, when computing maps

between pairs of shapes in isolation (we call them initial maps in this

paper) using an off-the-shelf shape matching method, intra-cluster

maps tend to be more accurate than inter-cluster maps. In other

words, if we can accurately recover the underlying ground-truth

maps, then the differences between the initial maps and the recov-

ered maps provide meaningful affinity scores for shape clustering.

Compared to standard shape clustering approaches that are based

on shape descriptors and/or shape similarity scores, this approach

is particularly suitable for fine-grained classification, e.g., different

poses of the same person. Another unique feature of this approach

is that clustering can be performed region-wise, e.g., map differ-

ences within backs/seats/legs of chairs, providing great flexibility

in exploring shape collections.

To make such applications possible, it is vital to establish high-

quality maps across heterogeneous shape collections. This is a quite

challenging task because we need both to link corresponding re-

gions that undergo significant geometric changes (e.g., chair backs

under different fine-grained classes) and to identify regions that

should not be matched (e.g., from swivel basis to rocking basis).

Despite significant advances in shape matching (c.f. [van Kaick et al.

2011]) and particularly more recent works on matching a shape

collection jointly to improve the maps between pairs of shapes (or

map synchronization) [Chen et al. 2014; Cosmo et al. 2017; Huang

et al. 2014; Huang and Guibas 2013; Huang et al. 2012, 2019; Kim

et al. 2012; Nguyen et al. 2011; Wang et al. 2013; Zhang et al. 2019],

the outputs of state-of-the-art approaches remain insufficient for

high-quality analysis of heterogeneous shape collections.

In this paper, we introduce a novel method for map synchro-

nization that nicely addresses the performance barrier among exist-

ing map synchronization approaches. Our approach is motivated

from a recent trend that utilizes high-order tensor decompositions

to solve challenging problems in machine learning and relevant

fields [Anandkumar et al. 2014; Cichocki et al. 2015; Kolda and Bader

2009; Lahat et al. 2015; Lu et al. 2016; Sidiropoulos et al. 2017]. In par-

ticular, we show how to formulate map synchronization as solving a

low canonical polyadic (CP) rank (c.f.[Ashraphijuo and Wang 2017])

tensor recovery problem. This formulation is further enhanced by

a pre-filtering operation that enforces the cycle-consistency con-

straint along 3-cycles [Huang and Guibas 2013; Nguyen et al. 2011].

Combing them together, our approach can recover accurate maps

among a heterogeneous shape collection from highly noisy and

incomplete maps computed between pairs of shapes in isolation.

We provide an analysis to justify the effectiveness of our approach

against matrix-based map synchronization techniques. The result-

ing maps enable the applications described above, i.e., analyzing

shape variability for shape segmentation and utilizing map residuals

for shape clustering.

Compared with recent works on shape segmentation that focused

on supervised learning [Guo et al. 2015; Kalogerakis et al. 2017, 2010;

Yi et al. 2017a,b], our data-driven shape segmentation approach is

completely unsupervised. We argue that such unsupervised data-

driven approaches are useful in many settings not only because

labeling shape parts are costly and error-prone, but also how to

define meaningful parts is quite subjective (c.f.[Yi et al. 2016]) .

We have evaluated our map synchronization approach on two

benchmark datasets SHREC07 [Giorgi et al. 2007] and ShapeNet-

Core [Chang et al. 2015]. Experimental results show that our ap-

proach significantly outperforms state-of-the-art matrix based map

synchronization techniques. In particular, on heterogeneous data

sets such as ShapeNetCore, the performance gain of our approach

is salient against existing approaches. Moreover, for the task of

shape segmentation on ShapeNetCore, our approach achieves state-

of-the-art performance, particular on categories that show large

geometric and topological variabilities. For the task of clustering

heterogeneous shape collections, our approach outperforms alter-

native approaches that are based on shape descriptors and popular

shape distance metrics.

In summary, we present the following contributions in this paper:

• We introduce a novel tensor map synchronization approach

for establishing high-quality correspondence maps across a

heterogeneous shape collection;

• We introduce a novel data-driven shape segmentation ap-

proach that utilizes maps to explore shape variabilities for

identifying meaningful shape parts and decompositions;

• We introduce a novel shape clustering approach that lever-

ages map residuals to cluster heterogeneous shape collections;

2 RELATED WORKS
The problems considered in this paper are relevant to four sub-

research areas, namely, map synchronization, tensor decomposition,

data-driven shape segmentation, and shape clustering. Due to space

constraints, we focus on the most relevant prior works.
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Map Synchronization. Formally speaking, map synchronization

concerns the task of optimizing maps among a shape collection

jointly to improve the maps computed between each of the pairs

of shapes. Existing works on map synchronization fall into two

categories: combinatorial optimization based techniques and ma-

trix optimization based techniques. Combinatorial optimization

based techniques follow the general methodology of applying cycle-

consistency criterion (namely, composition of maps along cycles

of length three (3-cycles) shall equal to identity maps) to improve

maps computed between each pair of shapes [Huang et al. 2006;

Huber 2002; Nguyen et al. 2011; Zach et al. 2010]. A limitation of

these approaches is that one has to sample many inconsistent cy-

cles to enforce the cycle-consistency constraint. In contrast, matrix

optimization based approaches utilize the equivalence between the

cycle-consistency constraint and the positive semidefinite or low-

rank structure of the matrix that stores pair-wise maps in blocks

(c.f.[Huang and Guibas 2013]). This leads to simple and effective

formulations of map synchronization as low-rank matrix recovery.

From the optimization point of view, people have introduced con-

vex optimization techniques [Chen et al. 2014; Huang and Guibas

2013; Leonardos et al. 2017; Wang and Singer 2013] and non-convex

optimization techniques such as alternating minimization [Zhou

et al. 2015], reweighted least squares [Chatterjee and Govindu 2013;

Huang et al. 2017], reweighted factorization [Arrigoni et al. 2018],

and spectral techniques [Pachauri et al. 2013; Shen et al. 2016].

However, existing matrix-based map synchronization techniques

are rather insufficient for establishing high-quality maps across a

heterogeneous shape collection. Our approach combines and then

extends both types of approaches. Specifically, we enforce the con-

sistency along 3-cycles to pre-filter incorrect maps. The results are

then fed into a low-CP-rank tensor recovery framework that is

generalized from low-rank matrix recovery techniques.

Tensor Decomposition. Tensor decomposition [Kolda and Bader

2009; Sidiropoulos et al. 2017] emerged as a powerful tool in reveal-

ing intrinsic and coherent structure of high dimensional data. It

has been successfully applied to many data science fields, including

signal processing [De Lathauwer et al. 2007; Muti and Bourennane

2005; Sidiropoulos et al. 2000], computer vision [Shashua and Hazan

2005; Vasilescu and Terzopoulos 2002; Vlasic et al. 2005], and data

mining [Anandkumar et al. 2014; Sun et al. 2006, 2005]. Tensors

provide a natural way to capture coherencies across all dimensions.

Such dependencies are often lost in flattened matrix formulations,

especially when some form of vectorization is deployed. Our tensor

approach is similarly motivated, and we show how to design tensor

representations and algorithms to recover low-rank tensors for map

synchronization. Our approach is mostly relevant to [Sharan and

Valiant 2017], which proposes an alternating optimization scheme

for tensor decomposition that preserves orthogonality among fac-

tors. In this paper, we extend the approach to low-CP-rank tensor

recovery with only partial observations.

Data-driven Shape Segmentation. Jointly segmenting a collection

of similar shapes has been studied extensively in the literature [Hu

et al. 2012; Huang et al. 2011, 2014; Sidi et al. 2011; van Kaick et al.

2013; Wang et al. 2012; Yumer and Kara 2012]. Most of these tech-

niques enforce consistency of segmentations across similar shapes

to boost the performance of segmenting individual shapes. However,

these techniques are mostly suitable for shape collections that show

small geometrical and topological variablities (e.g. organic shapes),

and are not designed for large-scale man-made shape collections (e.g.

ShapeNetCore) that show large structural variabilities. In contrast,

our approach is based on analyzing geometrical and topological

variabilities of 3D shapes in order to derive meaningful shape parts

(e.g. the main difference between chairs and stools indicate that

chair back is a meaningful part). [Huang et al. 2014] presents a first

attempt in this direction, we introduce a novel approach based on

analyzing null spaces of functional maps [Ovsjanikov et al. 2012].

Shape Clustering. Existing works on shape clustering fall into

two major categories, namely descriptor based and graph-clustering

based. Descriptor based approaches compute a descriptor for each

shape so that similar shapes have similar descriptors. Shape clus-

tering is then formulated as clustering data points in the descriptor

space via single-linkage clustering [Gan et al. 2007], k-means [Ohbuchi

et al. 2008], and sub-space clustering [Hu et al. 2012]. These tech-

niques work well for classifying shapes into general categories but

they perform poorly for fine-grained classification tasks where the

shape differences are subtle. Graph-clustering builds a similarity

graph that links similar shapes. Our approach falls into this cat-

egory. However, we use the difference between each input map

and corresponding recovered map to establish the similarity graph.

Our approach does not require an external shape similarity metric

and the underlying clusters are derived solely from input maps.

Recently, [Bajaj et al. 2018] introduced an approach that performs

simultaneous clustering and mapping using a matrix-based map

representation. Our approach shares the similar idea of using maps

to extract shape clusters. However, our approach explicitly utilizes

the fact that intra-cluster maps are more accurate than inter-cluster

maps, leading to additional performance gains.

3 PROBLEM STATEMENT AND APPROACH OVERVIEW
In this section, we present an overview of our tensor map synchro-

nization approach (Section 3.1) as well as its applications in shape

segmentation and shape clustering (Section 3.2).

3.1 Overview of Tensor Map Synchronization
We first formally describe our tensor map synchronization problem.

We then present an overview of our approach.

Problem Statement. We study map synchronization under par-

tial similarity. Specifically, consider a collection of shapes S =

{S1, · · · , Sn } that are partially similar to each other. Following the

convention in [Huang et al. 2014], we assume that there exists an

universal shape S , and each shape Si is a partial observation of S .
Without losing generality, we assume the input shapes and the uni-

versal shape are given by sets. In the following, we denote the sizes

of Si and S as |Si | = mi and |S | = m, respectively (note thatm is

reserved for the dimension of functional spaces, which will be used

later). With Q⋆
i we denote the underlying embedding map from Si

to S . Note that these Q⋆
i are unknowns and to be determined. The

input to map synchronization is given by maps computed along

an observation graph G = (S, E), where every edge (i, j) ∈ E is

ACM Trans. Graph., Vol. 38, No. 4, Article 106. Publication date: July 2019.



106:4 • Qixing Huang, Zhenxiao Liang, Haoyun Wang, Simiao Zuo, and Chandrajit Bajaj

Fig. 2. Approach overview. (a) Input heterogeneous shape collection. (b) Initial pairwise (possibly noisy) shape correspondence maps computed using any
off-the-shelf shape matching algorithm. Note that not all pairwise correspondences are required, furthermore these initial maps may be inaccurate and
possibly link sub-regions that should not be matched (e.g. a tubular back frame support of one chair is linked to the tubular leg of another). (c) Our tensor
map synchronization approach combines a pre-filtering operation by enforcing consistency along 3-cycles and a low-CP-rank tensor recovery procedure to
generate all consistent correspondences. (d) Our resulting optimized and consistent maps can be directly used to perform accurate shape segmentation. (e) We
use the difference between initial maps and recovered maps to perform weighted and consistent shape clustering (i.e. by exploiting that intra-cluster initial
maps possess greater accuracy than inter-cluster initial maps, suitable weights are assigned).

associated with a partial map P ini j that links a subset of elements of

Si and a subset of elements of Sj . Each P ini j is pre-computed using

an off-the-shelf algorithm and may contain incorrect correspon-

dences. Following the convention, we represent the partial map

P ini j ∈ {0, 1}m j×mi
as a binary matrix of dimensionmj ×mi

1
. Like-

wise, we represent the embedding mapQ⋆
i ∈ {0, 1}m×mi

as a matrix

of dimensionm ×mi . Our goal is to recover the universal shape S
and the embedding maps Q⋆

i , 1 ≤ i ≤ n from P ini j ,∀(i, j) ∈ E. The

final output consists of recovered maps Pi j = QT
j Qi between all

pairs of shapes that are induced from the embedding maps.

As we will discuss shortly, we employ the functional map repre-

sentation [Ovsjanikov et al. 2012] for efficient coding and inference

of shape maps across the input shape collection. Let F (Si ) and F (S)

be the functional spaces associatedwith Si and S , respectively. In this

setting, our goal is to compute Yi : F (Si ) → F (S), 1 ≤ i ≤ n, each
of which is a functional representation of the point-based embed-

ding map Qi , 1 ≤ i ≤ n. Note that similar to the point-based setting

described above, we seek to recover the latent functional space F (S)
and the functional embedding maps Yi together. In contrast, F (Si )
are pre-computed.

Approach Overview. As illustrated in Figure 2, the central idea of

our approach is to consider triplets of shapes. Specifically, we enforce

the consistency of maps along each cycle of length 3. The resulting

correspondences are regarded as partial and noisy observations of an

underlying 3D tensor that admits a low-CP-rank decomposition. We

show how to recover the underlying low-CP-rank tensor through

continuous optimization under the L2-norm, which is followed by

a rounding procedure. In particular, we leverage alternating mini-

mization to recover the underlying low-CP-rank tensor effectively.

Compared with matrix-based map synchronization techniques [Ba-

jaj et al. 2018; Chen et al. 2014; Huang and Guibas 2013; Shen et al.

2016], our tensor-based map synchronization approach exhibits two

1
This notation is consistent with the fact that if ep ∈ 0, 1mi is the indicator vector of

p-th element on Si , then P in
i j ep gives the indicator vector of its corresponding element

on Sj

advantages. First, the 3-cycle consistency filtering step can greatly

reduce the noise among the input maps. Second, each slice of the

low-CP-rank tensor corresponds to a data matrix for matrix-based

map synchronization techniques. Our tensor-based synchronization

has the advantage that it enforces consistency among these matrix-

based map synchronizations. The technical details are explained in

Section 4.1.

In Section 4.2, we show how to adapt our approach under the func-

tional map representation [Huang et al. 2014; Ovsjanikov et al. 2012;

Wang et al. 2013], which effectively addresses issues of generating

consistent samples and scaling to large-scale datasets.

To further enhance the scalability of our approach to large-scale

datasets, we introduce a transductive approach that first performs

tensor map synchronization on a coreset of shapes sampled from

the input shape collection, and then establishes maps between the

remaining shapes and this coreset. This approach enables us to com-

pute high-quality maps among many thousands of shapes. Technical

details are explained in Section 4.3.

3.2 Overview of Applications
The output of our map synchronization algorithm enables many

downstream applications, and we focus on two of them in this paper,

namely, shape segmentation and shape clustering. In this section,

we present an overview of these two applications. Section 7 and

Section 6 elaborate some technical details.

Application in Shape Segmentation. We present a novel approach

for shape segmentation that utilizes shape maps to explore shape

differences. The key idea is that if there is structural variability

between two shapes, then their difference naturally corresponds

to a shape part or a collection of shape parts (e.g. the difference

between a chair and a stool indicates that the chair back is a part).

Under functional map representation, such shape differences can be

easily encoded as null spaces of linear maps. We present a simple

approach that aggregates null spaces between a source shape to

other shapes into a part decomposition of the source shape.
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Application in Shape Clustering. Our shape clustering approach is

based on the observation that when input shape collection falls into

multiple clusters, intra-cluster maps tend to be more accurate than

inter-cluster maps. In other words, if we define the affinity score

between two shapes based on the difference between each input

map and the recovered map (i.e. a small difference between maps

leads to a large score), then when recovered maps are accurate, such

affinity scores provide informative cues for identifying underlying

clusters, i.e. intra-cluster pairs usually have large affinity scores and

inter-cluster pairs usually have small affinity scores. Specifically,

we show that spectral clustering on affinity scores recovers the

underlying clusters.

4 TENSOR MAP SYNCHRONIZATION
In this section, we introduce our tensor-based map synchronization

approach in details. We begin with describing our approach under

the point-based setting in Section 4.1. We then show how to modify

the approach under the functional representation for scalable map

synchronization in Section 4.2. Finally, we show how to modify

our approach to perform map synchronization on very large shape

collections in Section 4.3.

4.1 Tensor Point-Based Map Synchronization
The key idea of our approach is to formulate map synchroniza-

tion as recovering a low-CP-rank tensor, and the measurements

for recovery come from analyzing the consistency of maps along

3-cycles.

3-Cycle Consistency Filtering. We evaluate the consistency of ini-

tial maps along triplets of shapes. Specifically, for each triplet of

shapes (Si , Sj , Sk ), where (i, j), (j,k), (i,k) ∈ E, we introduce a bi-

nary diagonal matrix

C in
i jk := diag(ci jk ) ∈ {0, 1}mi×mi

where ci jk ∈ {0, 1}mi
is a vector derived from P ini j , P

in
jk and P inki .

Specifically, for the partial self-map P inkiP
in
jkP

in
i j on Si that is induced

from the 3-cycle i → k → j → i , we set cini jk (p) = 1 if and only if

p is mapped to p itself in P inkiP
in
jkP

in
i j . Otherwise, we set c

in
i jk (p) = 0.

The resulting vector cini jk essentially indicates which elements of Si
possess consistent correspondences along this 3-cycle.

Note that such consistency check can effectively remove incor-

rect correspondences, particularly on shape collections that exhibit

large geometric variabilities. As shown in Figure 3, the fraction of

incorrect correspondences in the filtered maps P ini jC
in
i jk is usually

significantly reduced from that in P ini j , while the majority of the

input correspondences are preserved in the filtered maps.

Moreover, compared with the methodology of computing fully

consistent maps along 3-cycles[Nguyen et al. 2011], our approach

enforces 3-cycle consistency at the correspondence level. This shows

a clear advantage because our approach is still effective even when

every input map contains some incorrect correspondences. On the

other hand, we will later show how to aggregate such partially

consistent correspondences along 3-cycles (some of which are still
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Fig. 3. Cumulative distribution functions of the initial maps {P in
i j } and

the filtered correspondences {R in
i jk }. As empirical comparisons, we also

show results of our tensor map synchronization approach and matrix-based
technique described in[Huang et al. 2014]. Note that the low-CP-rank ten-
sor recovery formulation further enhances map quality. (Left) SHREC07-
Human[Giorgi et al. 2007] 85.2% input correspondences are preserved in
the filtered maps. (Right) ShapeNetCore-Chair[Chang et al. 2015] 82.3%
input correspondences are preserved in the filtered maps.

incorrect as shown in Figure 3) into consistent full maps across the

entire shape collection.

Low-CP-rank Tensor for Map Synchronization. We recover the

underlying maps Pi j , 1 ≤ i, j ≤ n by solving a low-CP-rank tensor

recovery problem, where P ini jC
in
i jk , 1 ≤ i, j,k ≤ n are treated as noisy

and incomplete measurements of this tensor. Consider a n × n × n
block tensor R ∈ RN×N×n

, where N =
∑
imi . The (j, i,k)-th block

Rjik ∈ Rm j×mi×1
of R, which we treat it as a matrix of dimension

mj ×mi , is given by

Rjik :=

{
P ini jC

in
i jk (i, j), (j,k), (i,k) ∈ E

0 otherwise

(1)

To motivate our low-CP-rank recovery approach, let us gain some

insights about the structure of R in the case where we have pairwise

maps between all pairs of shapes, and where all the input pairwise

maps P ini j are correct. Let matrix Q ∈ RmmN
collect all the under-

lying maps Qi , 1 ≤ i ≤ n, i.e. Q = (Q1, · · · ,Qn ) = (q1, · · · , qm )T ,

where qi ∈ {0, 1}N , 1 ≤ i ≤ m indicates which shapes contain

the i-th element of the universal shape as well as the correspond-

ing indices. As each column of Q only contains one non-zero ele-

ment, it is easy to see that qi are orthogonal with each other. Let

Q = (Q11, · · · ,Qn1) ∈ Rm×n
. We again write down the rows of

Q = (q
1
, · · · , qm )T . The following proposition characterizes the

structure of R when the measurements are complete and correct:

Proposition 4.1. Suppose we have input maps between all pairs of
shapes and these input maps are correct. Then the tensor R introduced
in (1) admits the following CP decomposition[Kolda and Bader 2009]:

R =
m∑
l=1

ql ⊗ ql ⊗ ql , (2)

where ⊗ denotes the tensor operator.

Proof:The proof is straight-forward because an elementRjik (p
′,p) =

1 if and only if (1) the p-th element of Si and the p
′
-th element of Sj
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correspond to the same element of the universal shape, and (2) Sk
also contains this element. □

Map Synchronization via Alternating Minimization. Generally
speaking, when a tensor R admits a CP decomposition of the form

R =
m∑
l=1

al ⊗bl ⊗ cl for some underlying vectors al , bl , cl , 1 ≤ l ≤ m,

a common approach for recovering al , bl and cl from R is to solve

a L2-minimization problem [Sharan and Valiant 2017; Zhang et al.

2018], i.e.,

min

{al ,bl ,cl }
∥R −

m∑
l=1

al ⊗ bl ⊗ cl ∥
2

F
(3)

where ∥ · ∥F is the tensor Frobenius norm [Golub and Van Loan

1996]. Our setting differs from this standard setting in three ways.

First, we have additional constraints among al , bl , cl , 1 ≤ l ≤ m, e.g.

al = bl , and al are orthogonal with each other. Second, the elements

in R are noisy. Third, we only have partial measurements of R.
To adapt (3) in our setting, we consider the following modifica-

tions. First, since the number of non-zero elements of R is generally

significantly larger than the number of variables in al , bl , cl , we
simply relax the dependencies among al , bl , cl . We will enforce

these constraints after recovering these latent factors. Such a relax-

ation aligns with the lifting methodology in compressed sensing

and low-rank matrix recovery [Candes et al. 2011, 2012]. Moreover,

to address noisy measurements, we propose to still use the L2-norm.

In contrast to the popular choice of using the L1-norm for recov-

ery [Candes et al. 2011], we found that using the L2-norm works

quite well in our setting. This can be understood from the facts

that (1) noisy pairwise maps, no matter correctness, have bounded

norms, i.e. the elements of R are either 1 or 0; 2) the optimal solution

to L2-norm minimization is highly relevant to leading eigenvector

computation, which has proven to be effective for matrix-based

map synchronization techniques (c.f. [Pachauri et al. 2013; Shen

et al. 2016]); and 3) one can still perform rounding for recovery.

Finally, instead of using tensor Frobenius norm directly, we enforce

the partial observations specified by C in
i jk , 1 ≤ i, j,k ≤ n, which

encode results of the 3-cycle consistency filtering step. Combining

these modifications together, we arrive at the following optimization

problem for tensor-based map synchronization:

minimize

A,B,C

∑
1≤i, j,k≤n

∥Bjik (R −

m∑
l=1

al ⊗ bl ⊗ cl ) ·C
in
i jk ∥

2

F
(4)

subject to A = (a1, · · · , am ),

B = (b1, · · · , bm ),

C = (c1, · · · , cm ). (5)

where for every tensor R′ ∈ RN×N×n
that admits the same block

structure as R, Bjik (R
′) ∈ Rm j×mi

extracts the (j, i,k)-th block of

R′
as a matrix of dimensionmj ×mi . Note that the value ofm is

automatically inferred from the input and will be discussed shortly.

Motivated from the success of using alternating minimization for

low-CP-rank tensor factorization [Kolda and Bader 2009; Sharan

and Valiant 2017], we solve (5) via alternating minimization.

The initial values of A and B are given by spectral decomposition

of a n × n block data matrix P ∈ RN×N
that encodes P ini j , (i, j) ∈ E

in blocks:

Pji :=

{
P ini j (i, j) ∈ E

0 otherwise

(6)

Let (λl (P), ul (P)), 1 ≤ l ≤ N be the eigenvalues and corresponding

eigenvectors of P sorted in increasing order. Following [Chen et al.

2014; Keshavan et al. 2010], we setm so that it has the largest gap in

λm (P) −λm+1(P). Accordingly, we letA = B = (u1(P), · · · , um (P)) ·

diag(λ
1

2

1
(P), · · · , λ

1

2

m (P)), or in other words, ABT gives the low-rank

approximation of P with respect to the L2-norm. In addition, we set

cl = 1, 1 ≤ l ≤ m, which are optimal when the input shapes are

fully similar with each other.

Given the initial values of A, B and C , we alternate between

optimizing one of them to minimize (4) while fixing the remaining

two. In this case, (4) becomes quadratic in the active variables whose

optimal values can be obtained by solving a linear system. We apply

the same procedure for B and C as well. The details are left to

Appendix A.

Since we have relaxed the constraints among A and B when per-

forming low-CP-rank tensor recovery (See (2)), we have to enforce

these constraints when computing Q . After obtaining the optimal

solutions of A and B, we compute Q by optimizing

min

Q
∥ABT −QTQ ∥2

F
(7)

Same as spectral map synchronization [Pachauri et al. 2013; Shen

et al. 2016], the optimal Q is given by the top m eigenvectors of

ABT +BAT
2

. We then apply the procedure described in [Chen et al.

2014] to obtain an approximate binary solution to (7).

The computational cost of this alternating minimization proce-

dure is O(N 3mnal ), where nal is the total number of alternating

minimizations (We set nal = 100 in this paper). Please refer to

Appendix A for a detailed analysis.

Comparison to Matrix-Based Synchronization Techniques. The cen-
tral idea of matrix-based synchronization approaches is to recover a

low-rank matrix from noisy measurements of its elements that are

given by the input maps, e.g. matrix P in (6) (c.f. [Bajaj et al. 2018;

Chen et al. 2014; Huang and Guibas 2013; Shen et al. 2016]). The

advantage of our approach is two-fold. First, our 3-cycle consistency

filtering scheme can effectively improve the signal-to-noise ratio

among the remaining correspondences. Suppose we divide the input

maps into the cluster of correct maps and the cluster of incorrect

maps. For simplicity, we assume maps across different clusters are

inconsistent. Let pcorn and pincorn be the average numbers of input

maps that are associated with each shape in the correct cluster and

the incorrect cluster, respectively. Then before 3-cycle consistency

filtering, the signal-to-noise ratio is
pcor
pincor . After 3-cycle consistency

filtering, the signal-to-noise ratio becomes at least
p2cor
p2incor

(the actual

ratio depends on how consistent the maps in the incorrect cluster

are). In addition, although 3-cycle consistency filtering reduces the

total number of input correspondences, the number of remaining

correspondences is still significantly higher than what is required

for recovery (which is linear in the total number of sample points).
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Fig. 4. Our tensor map approach recovers high-quality consistent maps
across a heterogeneous shape collection with large structural variability.
(Top-row) Noisy initial maps estimated between pairs of shapes in isola-
tion. We show two pairs from the Table category in ShapeNetCore [Chang
et al. 2015]. Corresponding sub-regions are colored same. The multi-color
structural sub-regions show mismatch correspondence (i.e. leg and base of
the tables). (Bottom) Jointly optimized shape maps between the same pairs,
showing more accurate correspondence maps (i.e. table tops are matched
and even leg supports are matched consistently). Note that our joint tensor
map computation utilizes all the shapes in the collection to achieve this
greater accuracy.

Hence the improved signal-to-noise ratio provides a foundation for

low-rank based techniques to recover the underlying ground-truth

maps (c.f. [Chen et al. 2014; Huang and Guibas 2013; Huang et al.

2017; Shen et al. 2016]).

We can understand the additional advantage of our tensor formu-

lation by rewriting the objective function in (5) as

f (A,B,C) =
n∑

k=1

дk (A,B, c
row
k ),

дk (A,B, c
row
k ) :=

n∑
i=1

n∑
j=1

∥Bjik (R) −
m∑
l=1

ckl alb
T
l ∥

2

F

where crowk = (ck1, · · · , ckm ) denotes the k-th row of C . Intuitively,

each дk (A,B, crowk ) seeks to perform matrix-based map synchroniza-

tion from each slice of R. The advantage of (5) comes from the fact

that instead of performing matrix-based map synchronizations in-

dependently, it enforces the consistency among all slices (i.e. A and

B are shared among different slices) and is more resilient to noisy

measurements in R. In other words, while matrix-based recovery

techniques can leverage the uncorrelated random noise within each

slice of R (c.f. [Chen et al. 2014; Huang and Guibas 2013; Huang

et al. 2017; Shen et al. 2016]), our approach utilizes the uncorrelated

random noise across the entire R for robust recovery.

4.2 Tensor Functional Map Synchronization
A major limitation of the approach described in the preceding sec-

tion is that typically one can only place dozens of sample points

per shape, leading to a scalability issue on large-scale datasets. To

address this issue, we propose to use a functional map representa-

tion [Ovsjanikov et al. 2012], which has proven to be quite effective

for map synchronization [Huang et al. 2014; Wang et al. 2013]. In the

following paragraph, we give a brief introduction to the functional

map representation. Please refer to [Huang et al. 2014; Ovsjanikov

et al. 2012; Wang et al. 2013] and the references therein for more

details.

ALGORITHM 1: High level algorithm flow for tensor-based map syn-

chronization.

input: Pre-computed functional space F(Si ) for each shape Si . Initial
maps P in

i j associated with an observation graph G = (S, E).

output: A latent function space F(S ) and embedding maps

Yi : F(Si ) → F(S ), 1 ≤ i ≤ n
1: Convert P in

i j into its corresponding functional map X in
i j .

2: Perform 3-cycle consistency filtering to obtain a mask M in
i jk for

each 3-cycle.

3: Perform low-CP-rank tensor recovery from X in
i jM

in
i jk to obtain

latent variables A,B and C via (9).

4: Recover Yi from latent variables A and B via (10).

Functional maps provide effective low-dimensional encodings

of maps between pairs of shapes. This is done by associating each

shape Si with a low-dimensional linear functional space F (Si ) of
dimension m (m = 30 in this paper). The basis of F (Si ) is usu-
ally given by the leading k eigenvectors of the Laplacian matrices

on Si [Ovsjanikov et al. 2012; Wang et al. 2013]. F (Si ) provides a
platform to effectively approximate indicators of primal elements

such as points, feature points and segments (c.f. [Ovsjanikov et al.

2012; Wang et al. 2013]). This representation allows us to repre-

sent the relation between shape Si and shape Sj by a linear map

Xi j ∈ R
m×m

: F (Si ) → F (Sj ) between these two functional spaces.

We can convert the initial map P ini j into a functional map X in
i j by

solving a linear system (c.f. [Ovsjanikov et al. 2012]). In the other di-

rection, we can convert a linear map into a point-based map through

nearest neighbor search in the embedding space [Ovsjanikov et al.

2012]. Another key advantage of the functional map representation

is to address inconsistent sampling, which is an issue under the

point-based setting described in the preceding section.

A similarity between point-based maps and functional maps is

that both of them can be represented as matrices. In fact, point-

based maps can be considered special functional maps, under delta

functional basis (c.f. [Ovsjanikov et al. 2012]). It turns out we can

extend our tensor-based map synchronization approach under the

point-based setting for functional maps by following three simple

modifications (see Algorithm 1 for the overall flow). First, we modify

the 3-cycle consistency filtering step to accommodate approximate

cycle-consistency. Specifically, for each correspondence (p,q) in-
duced from partial self-map P inkiP

in
jkP

in
i j , we set c

in
i jk (p) = 1 if and

only if

dSi (p,q) ≤ ϵ · diam(Si ),

where dSi (·, ·) is the distance metric on Si (i.e. geodesic distance
for organic shapes and Euclidean distance for man-made shapes).

diam(Si ) is the diameter of Si with respect to dSi . We use ϵ = 0.05

for all of our experiments. As there are many vertices on a given 3D

model and the initial maps are usually inaccurate, allowing approxi-

mate cycle-consistency brings more signals for map computation.

On the other hand, the continuity of basis functions can indeed fuse

approximately consistent correspondences.
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In the second modification, we convert each initial map P ini j and

the mask C in
i jk into their functional forms as

X in
i j = FTj P

in
i j Fi , M in

i jk = FTi C
in
i jkFi ,

where Fi ∈ Rmi×m
is the matrix that stores the functional basis

of F (Si ) in its columns. Consider a n × n × n block tensor Z ∈

R(nm)×(nm)×n
whose (j, i,k)-th block, which we treat it as a matrix

of dimensionm ×m, is given by

Z jik :=

{
X in
i jM

in
i jk (i, j), (j,k), (i,k) ∈ E

0 otherwise

(8)

We apply the same procedure to recover the functional represen-

tations Yi ∈ R
m×m , 1 ≤ i ≤ n of the latent maps Qi , 1 ≤ i ≤ n. We

first solve

min

A,B,C

∑
1≤i, j,k≤n

∥Bjik
(
Z −

m∑
l=1

al ⊗ bl ⊗ cl
)
·M in

i jk ∥
2

F
(9)

We then solve the following optimization problem to obtain the

latent functional maps Y = (Y1, · · · ,Yn ):

min

Y
∥ABT − YTY ∥2

F
(10)

In the same spirit as the projection operator under the point-based

setting, we convert the induced functional map X r
i j := Y

T
j Yi from

Si to Sj into a point-based map P⋆i j following [Rodolà et al. 2017].

This operation can be considered as a counterpart of the projection

operation in the point-based setting (c.f. [Chen et al. 2014]). Finally,

we convert P⋆i j into the final functional map X⋆
i j using [Rodolà et al.

2017]. As shown in Figure 4, our approach can identify accurate

correspondences under large structural variability. In addition, our

approach can also remove extraneous correspondences in the initial

maps.

4.3 Transductive Map Synchronization
In this section, we present an efficient map synchronization ap-

proach for very large-shape collections. Instead of applying our

tensor-based map synchronization approach on the entire input

shape collection S, we decompose S = Sc ∪ Sr into a coreset Sc
and a remaining set Sr . In our experiments, we compute Sc by

applying farthest-point-sampling ([Eldar et al. 1997]) on S with

respect to a shape descriptor (i.e., GPS[Rustamov 2007] for organic

shapes and D2[Osada et al. 2002] for man-made shapes). We then

apply our tensor map synchronization approach on Sc , obtaining a

latent shape space S and for each shape Si ∈ Sc an embedding map

Yi : F (Si ) → F (S). We then fix Yi , i ∈ Sc and compute for each

shape Si ∈ Sr its embedding map Yi : F (Si ) → F (S).
Specifically, for each shape Si ∈ Sr , let Ni ⊂ Sc be a random set

of core shapes to which we will link Si . When Sc is small, we simply

treatNi = Sc . WhenSc is large, we computeNi as a random subset

of Sc . Let X
in
i j be the initial functional map from Si to Sj , where

Sj ∈ Ni . We solve the following optimization problem to obtain the

embedding map Yi ,∀Si ∈ Sr :

min

Yi

∑
Sj ∈Ni

∥YTj Yi − X in
i j ∥

2

F
(11)

The optimal solution to (11) is given by a closed-form expression

Yi =
( ∑
Sj ∈Ni

YjY
T
j
)† ( ∑

Sj ∈Ni

YjX
in
i j
)
.

We apply the same procedure as Section 4.2 to round the induced

functional maps X⋆
i j = YTj Yi into point-based maps and then ap-

ply (11) to solve the embedding map again, which gives the final

embedding map Yi for shape Si .

5 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of our tensor

map synchronization approach.

5.1 Experimental Setup
Dataset. We consider two benchmark datasets that are widely

used for evaluating shape maps. The first benchmark dataset is

SHREC07 [Giorgi et al. 2007]. SHREC07 consists of 20 categories,

where each category has 20 shapes. Same as [Kim et al. 2011], we pick

11 categories (Human, Glasses, Airplane, Ant, Teddy, Hand, Plier,

Fish, Bird, Armadillo and Fourleg) that are suitable for inter-shape

matching. For each category, we compute the initial maps between

all pairs of shapes using blended intrinsic map (or BIM), which is

a state-of-the-art method for inter-shape matching. These maps

are converted into functional maps using the technique described

in [Ovsjanikov et al. 2012].

The second benchmark dataset is ShapeNetCore [Chang et al.

2015], which contains 50K man-made shapes in 55 categories. We

pick 9 popular categories (Aeroplane, Bicycle, Boat, Bus, Car, Chair,

Motorbike, Sofa, Train). These categories exhibit larger variabili-

ties in geometry and topology than categories in SHREC07. For

categories with more than 400 shapes, we perform farthest point

sampling using the D2 descriptor [Osada et al. 2002] to sample

400 shapes (which form the coreset) for experimental evaluation.

We first use our tensor map synchronization approach to compute

consistent maps within each coreset. Since it is still too costly to

compute consistent maps within the coresets, we randomly connect

each shape with 64 other shapes for map computation. Note that we

do not connect each shape with adjacent shapes (e.g. with similar

shape descriptors), as we would like to establish maps between di-

verse shapes to explore shape variability. We will utilize such shape

variability to derive shape parts. Given the consistent maps com-

puted within each coreset, we then use the approach described in 4.3

to establish consistent maps for the remaining shapes. Regarding

the initial maps, we employ the FFD alignment procedure described

in [Huang et al. 2014]. We then convert these correspondences into

functional maps using [Ovsjanikov et al. 2012].

Baseline Approaches. For experimental evaluation, we compare

our approach against four state-of-the-art map synchronization

approaches. The first baseline approach is cycle-voting [Nguyen et al.

2011]. Our approach differs from cycle-voting in terms of the tensor

formulation for map recovery and the fact that we leverage partially

consistent maps. The second baseline is FuncSync [Huang et al.

2014], which is a state-of-the-art map synchronization approach

that leverages low-rank matrix recovery under the functional map

representation. The third baseline is [Cosmo et al. 2017], which is
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Fig. 5. SHREC07-Evaluation. Quantitative evaluation of our tensor map approach and prior baseline approaches on 11 categories of the SHREC07 dataset
[Giorgi et al. 2007]. We compare against four baseline approaches: Cosmo17 [Cosmo et al. 2017], Nguyen11 [Nguyen et al. 2011], Huang14 [Huang et al. 2014],
and Sun18 [Sun et al. 2018]. We show both (Left) results without factoring out the underlying symmetry and (Right) results after factoring out the underlying
symmetry. The correspondence accuracy charts are best visualized in color and digitally zoomed in.

a state-of-the-art approach under the point-based representation.

We use 128 sample points across all experiments. The last baseline

is [Sun et al. 2018], which leverages the Kronecker product operator

to synchronize maps among symmetric objects. As a by-product,

it also promotes consistent correspondence pairs across the input

shapes, which ultimately boost the quality of synchronized shape

maps.

Evaluation Protocol. For both SHREC07 and ShapeNetCore, we

evaluate the geodesic distance between each predicted correspond-

ing point and its corresponding annotated feature point. This geo-

desic distance is normalized by the diameter of the target shape (in

geodesic distance as well). The same as [Cosmo et al. 2017; Huang

et al. 2014; Kim et al. 2011], we report the percentage of corre-

spondences whose errors fall within a varying threshold, i.e. the

cumulative probability.

5.2 Analysis of Results
Map Synchronization Quality. As shown in Figure 5 and Figure 6,

our approach can significantly improve the quality of maps on

SHREC07 and ShapeNetCore. The improvements are roughly consis-

tent when varying the threshold for defining the cumulative proba-

bility. So to simplify the discussion, we evaluate the cumulative prob-

ability by setting ϵmin = 0.1. Based on the level of improvements, we

can roughly classify the categories in SHREC07 and ShapeNetCore

into three groups. The first group collects categories where our ap-

proach shows the salient improvements and the recovered maps are

mostly correct (the cumulative probability of recoveredmaps is close

to 100% for the selected range of errors). These categories includeHu-

man, Armadillo, Teddy and Fourleg from SHREC07, and Car, Chair,

Bus and Sofa from ShapeNetCore. The cumulative probability of

recovered maps/corresponding absolute improvement on these cate-

gories are 90%/23% (Human), 83%/20% (Armadillo), 82%/20% (Teddy),

82%/31% (Fourleg), 88%/28% (Car), 85%/23% (Chair),83%/20% (Bus),

and 80%/20% (Sofa), respectively. The second group collects cate-

gories where our approach yields salient improvements while there

are some incorrect maps in the recovered set (the cumulative proba-

bility of recovered maps is less than 100%). These categories include

Glasses, Ant, and Fish from SHREC07, and Aeroplane, Train, Bicy-

cle, and Motorbike from ShapeNetCore. The cumulative probability

of recovered maps/corresponding absolute improvement on these

categories are 70%/20% (Glasses), 65%/18% (Ant), 62%/21% (Fish),

75%/22% (Aeroplane), 70%/19% (Train), 65%/25% (Bicycle), 62%/20%

(Motorbike), respectively. The third group collects categories where

our approach only exhibits modest improvements. These categories

are Bird and Airplane from SHREC07, and Boat from ShapeNetCore.

The cumulative probability of recovered maps/corresponding abso-

lute improvement on these categories are 53%/15% (Bird), 42%/14%

(Airplane), 55%/17% (Boat), respectively. We can observe two pat-

terns from these categories. First, the cumulative probabilities of
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Fig. 6. ShapeNetCore-Evaluation. Quantitative evaluation of the proposed approach and baseline approaches on 9 categories of the ShapeNetCore
dataset[Chang et al. 2015]. We compare our approach against four baseline approaches: Cosmo17 [Cosmo et al. 2017], Nguyen11 [Nguyen et al. 2011],
Huang14 [Huang et al. 2014], and Sun18 [Sun et al. 2018].
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Fig. 7. Map graph visualization.We show the sub-graph of correct maps among the input maps and the recovered maps. We say a map is correct if the
mean error among annotated features is below 0.1. For categories from ShapeNetCore (e.g. Car, Aeroplane and Boat), we draw a vertex sub-graph among 20
randomly picked shapes to make the visualization uncluttered. (Top) Sub-graph of correct input maps. (Bottom) Sub-graph of correctly recovered maps.

recovered maps are correlated with the quality of initial maps. This

is expected, as our approach requires that a good portion of the input

maps are correct in order to recover the underlying ground-truth

maps. Second, the improvements are also related to whether the

shapes in a particular category is symmetric or not. On those cate-

gories (e.g. Bird, Ant, Airplane), the absolute improvements become

salient after factoring out the underlying symmetries (c.f. [Kim et al.

2011]) (See Figure 5(Right) and Figure 6(Right)). In particular, on Air-

plane and Bird, the absolute improvements become 24%(Airplane)

and 20%(Bird) after factoring out the underlying symmetry.

To further understand the performance of our approach across

these groups, we plot map quality measured using ground-truth

annotations for both the input maps and the recovered maps. To

simplify the analysis, we say a map is good if the average geodesic

error over the annotated feature points is below 0.1. In addition,

we pick one exemplar category per dataset from each group (see

Figure 7) for additional analysis. For Fourleg in the first group, its

sub-graph of correct maps already forms a strongly connected graph,

which provides a strong foundation for suppressing the noise in the

input maps. As a result, the graph of correct recovered maps be-

comes a clique. The correct initial maps of Car also forms a strongly

connected graph. Likewise, the graph of correct recovered maps is

a clique as well.
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Fig. 8. Map graph visualization.We show the sub-graph (top) of only consistent (correct) maps amongst all the pairwise input maps and also the recovered
correct maps (below). We say a map is correct if the mean error among annotated features is below 0.1. For categories from ShapeNetCore, we draw a vertex
sub-graph among 20 randomly picked shapes to make the visualization un-clutterred. Note that each row shows the results of using different methods on the
same category. (Top) Sub-graphs of correct maps when applying different approaches on ShapeNetCore-Motorbike. (Bottom) Sub-graph of correct maps when
applying different approaches on SHREC07-Ant.

For Hand in the second group, its sub-graph of correct maps

becomes less strongly connected. In fact, we can view this sub-graph

as a collection of two densely connected components while the edges

between these two connected components are significantly sparser.

In this regime, our approach can still recover most of the underlying

maps. This again shows the power of the tensor formulation, which

is able to separate the signal from the noise despite the fact that

a significant portion of the maps between these components are

incorrect. The sub-graph of Aeroplane shows a similar behavior,

and our approach can still recover most of the underlying maps.

Finally, for Bird in the third category, the graph of correct in-

put maps consists of mostly disconnected components. In this case,

many recovered maps between these components are still incor-

rect. However, our approach can still nicely recover the underlying

ground-truth maps within each component and some maps between

the components. Note that we utilize a hard threshold to determine

a map is correct or not. It follows that some correct recovered maps

are attributed to the fact that we synchronize a few maps that are

close to be correct.

Baseline Comparison. Our approach outperforms baseline ap-

proaches across all categories. On categories in the first group, our

approach yields slightly better results than that of [Sun et al. 2018]

and [Huang et al. 2014]. This is due to the fact that the fraction

of correct initial maps is significant, and matrix based map syn-

chronization techniques are already delivering good results. Still,

our approach produces better results, particularly in the regime

when the cut-off threshold is small. We can also observe the ad-

vantage of our approach from the sub-graph of correct initial maps

and the sub-graph of correctly recovered maps on Motorbike (see

Figure 8(Top)).

On categories in the second group, our approach outperforms

baseline approaches significantly. The relative performance gains

on Glasses, Ant, Fish, Aeroplane, Train, Bicycle, Motorbike are 9%,

5%, 7%, 10%, 5%, 2%, and 3%, respectively. This shows the clear

advantage of the tensor formulation for separating signals from

noise in the regime of relatively low signal-to-noise ratio. We can

also observe the advantage of our approach in Figure 8(Bottom). Our

approach can nicely recover most of the underlying ground-truth

maps between shapes in different clusters. In contrast, all baseline

approaches fail to recover many such inter-component maps. On

the other hand, all approaches can nicely recover the underlying

ground-truth maps within each component.

On categories in the third group, our approach still outperforms

baseline approaches by a considerable margin. The relative per-

formance gains on Bird, Airplane, and Boat are 7%, 8%, and 2%,

respectively.

Runtime Analysis. Our approach is fairly efficient. The computa-

tional cost on ShapeNetCore with 400 shapes and 30 basis functions

is 3 hours 40 minutes on a machine with 8-core 3.4GHZ CPU and

128G main memory.

5.3 Ablation Study
We proceed to compare our approach with two alternative ap-

proaches. In the first alternative approach, we employ [Huang et al.

2014] but replace the input map of each block with X ∈
i j =

∑
k
Xi jk .

Note that this is a strong baseline asX ∈
i j is derived from enforcing the

cycle-consistency consistency constraint among triplets of objects.

In the second alternative approach, we use a sequential approach to

perform the low-rank tensor decomposition. Specifically, we first

reshape Z into a matrix of dimension vec(Z ) ∈ n × (nm)2 (i.e. along

the dimension of c) and perform SVD to derive the rank-1 approxi-

mation c · fT of Z (i.e. with respect to the L2-norm), where c ∈ Rn

and f ∈ Rn
2m2

. We then reshape f into a matrix mat(f) ∈ Rnm×nm
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Fig. 9. Ablation study. Comparison between our approach and two alter-
native approaches on benchmark datasets. Our approach delivers the best
performance. (Baseline-I) 3-cycle pre-filtering + matrix-based map recovery.
(Baseline-II) 3-cycle pre-filtering + sequential low-CP-rank tensor recovery.

and perform SVD to derive the decompositionA ·BT for f . We apply

the same approach in Section 4.2 to obtain the latent maps from A
and B.

As shown in Figure 9, our approach outperforms two alternative

approaches. The improvements are consistent across all three groups

of categories. This shows the advantage of using the full CP decom-

position for map synchronization. Moreover, our approach yields

the largest performance gains on the second group of categories.

This is not surprising due to low signal-to-noise ratios for cate-

gories within this group. To maximize the quality of the recovered

maps, one has to utilize the full tensor formulation. Furthermore,

both our approach and two alternative approaches are superior to

baseline approaches. In other words, it is beneficial to combine 3-

cycle consistency prefiltering and low-rank matrix/tensor recovery

techniques.

6 APPLICATION IN SHAPE SEGMENTATION
In this section, we describe how to apply our map synchronization

approach for the application of joint shape segmentation. We begin

with introducing our approach in Section 6.1. We then evaluate our

approach in Section 6.2.

6.1 Approach
A popular criterion for jointly segmenting a collection of shapes

is to enforce the consistency of segmentations across the entire

shape collection [Huang et al. 2011; Sidi et al. 2011; Wang et al.

2012; Yumer and Kara 2012]. However, this approach is not ideal for

heterogeneous shape collections that exhibit large geometric and

topological variabilities. We propose to use a different criterion that

is inspired from the variability of shapes, namely, we call a region of

a shape S1 a part if either it is replaced on another shape S2 (four-leg
basis to swivel basis) or it is removed on S2 (chair to stool).

Under the functional map setting, we can capture such variability

by analyzing the null space of a functional map X12 ∈ Rm×m
:

F (S1) → F (S2). In practice, even for the recovered maps of our

approach, their null spaces are not perfect, meaning we have to

determine their null spaces numerically. In this paper, we compute

these null spaces using the following procedure. First, we compute

the singular value decomposition of X12 as

X12 = U12Σ12V
T
12
, Σ12 = diag(σ

(1)

12
, · · · ,σ

(m)

12
).

We then determine the dimension of the null space of X12 by de-

tecting the largest gap l⋆ = max

1≤l ≤m
σ
(l )
12

− σ
(l+1)
12

, where σ
(m+1)
12

= 0.

The dimension of the null space is then given bym − l⋆. With V̂12
we denote the resulting null space. We say a null space non-trivial

if its dimension is bigger than 0.

Intuitively, each non-trivial null space shall correspond to indica-

tor functions of a missing part. Formally speaking, we can define

the distance between a point on a shape to this null space as

d(p, V̂12) = min

x1
∥fp − V̂12x1∥/∥fp ∥,

where fp is the projection of the delta function ofp on this functional
space. It is clear that when p is within the underlying missing part,

then d(p, V̂12) is small. Otherwise d(p, V̂12) is large. We cut shape S1
into two parts using the median of d(p, V̂12).
Each non-trivial null space generates a cut of the input shape.

We aggregates these segmentation cues by adapting the approach

of RandomizedCut [Golovinskiy and Funkhouser 2008]. Figure 10

illustrates segmenting a chair model based on its differences to other

chair models.

6.2 Experimental Evaluation
We have evaluated our approach on five categories of the shape seg-

mentation dataset described in [Yi et al. 2016]. For experimental eval-

uation, we employ the Rand index score[Rand 1971]. In addition, we

consider three baseline approaches for unsupervised segmentation,

namely, co-segmentation [Sidi et al. 2011], sub-space clustering [Hu

et al. 2012], and consistent latent space (or consistentLB) [Wang

et al. 2013].

As shown in Table 1, Our tensor map approach achieves state-of-

the-art results on Chair, Airplane, Table and Guitar shape collections.

A characteristic of these categories is that their geometric variations

are big, which provide sufficient signals for identifying the under-

lying segments. However, for the Car collection, where the shape

Induced null spaces

Fig. 10. We compute the segmentation of each shape based on its differ-
ence to other shapes. These differences are captured by the null spaces of
functional maps. Each induced null space is visualized by the the distance
from the indicator of each point to this null space. Red means small and
blue means large.
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Fig. 11. Joint shape segmentation. We show joint shape segmentation results when increasing the size of the input shape collection. (Left) On a relatively
small shape collection, our approach leads to inconsistent results. (Right) on a large shape collection, our approach leads to consistent segmentation results.
Note that our approach does not utilize geometric segmentation cues on each shape. The segmentations are induced from shape differences derived from
consistent shape maps.

Table 1. Shape segmentation result. Rand index score [Rand 1971] of
three baseline approaches and our approach on five rigid classes[Yi et al.
2016].

Chair Table Airplane Guitar Car

Co-segmentation 19.12% 17.34% 16.85% 14.37% 16.27%

Sub-space 16.59% 13.21% 10.17% 12.09% 9.38%
ConsistentLB 13.21% 14.15% 12.33% 11.20% 10.53%

Ours 11.03% 9.52% 9.13% 7.96% 19.20%

variation is small, our approach is not as competitive as the base-

line approach of [Hu et al. 2012]. These experiments demonstrate

the effectiveness of exploring shape variability as a compliment of

existing approaches for joint shape segmentation.

We have also tested the performance of our approach while in-

creasing the size of the input shape collection. As shown in Figure 11,

the performance of our approach improves as the size of input shape

collection increases. For small shape collections, our approach may

yield under-segmentations and/or inconsistent segmentations. We

can understand this from the fact that a small shape collection may

not provide sufficient variability cues for segmentation, and such

cues tend to be unstable. In our experiments, we found that the

segmentation results become steady with more than 30 shapes on

the categories we have tested.

7 APPLICATION IN SHAPE CLUSTERING
In this section, we describe how to apply our map synchroniza-

tion approach for the application of shape clustering. We begin

with introducing our approach in Section 7.1. We then evaluate our

approach in Section 7.2.

7.1 Approach
Our goal is to divide a heterogeneous shape collection into clusters

of similar shapes (e.g., those that belong to the same categories).

Existing approaches for shape clustering (or object clustering in

general) fall into two categories (c.f.[Berkhin 2006; Xu and Wunsch

2005]). The first category of approaches leverages suitable object

descriptors and computes object clusters so that objects in the same

clusters have similar object descriptors (c.f.[Berkhin 2006; Xu and

Wunsch 2005]). The second category of approaches constructs a

similarity graph by connecting similar objects with respect to some

affinity scores (c.f.[Berkhin 2006; Xu and Wunsch 2005]). These

methods then perform graph clustering to obtain the shape clusters.

The key to the success of the second category of approaches is to

determine a meaningful affinity score. Our approach falls into the

second category. However, our innovation is to define the affinity

scores based on the input maps associated with pairs of objects.

As we will demonstrate immediately, such affinity scores are more

powerful and flexible than state-of-the-art approaches introduced

in the literature.

Specifically, our affinity score is based on the intuition that when

considering object maps among objects that fall into multiple clus-

ters, intra-cluster maps are likely to be more accurate than inter-

cluster maps. In fact, for optimization-based pairwise shape match-

ing techniques (e.g., preservation of geodesic distances[Kim et al.
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Fig. 12. Human Shape Clustering. (Left) Visualization of the affinity
scores among the input shapes. We draw an edge between two shapes
if their score is above 0.1. The induced edge lengths are given by the first
two eigenvectors of the Graph Laplacian of the affinity matrix. We can see
that shapes are densely connected within each cluster than across differ-
ent clusters. (Right) The resulting clusters. We visualize each cluster by
removing inter-cluster edges. For each cluster, we show the rest pose of the
person that is most represented in that cluster. Please refer to Table 2 for a
quantitative evaluation.

2011]), the optimal map is usually close to the ground-truth when

the two input shapes are close. In contrast, when the two input

shapes are less similar, the corresponding optimization problem

becomes hard to solve (e.g., leading to local minimums) and the

optimal map tends to drift away from the underlying ground-truth.

This motivates us to define the affinity score for each object pair

based on the difference between the input map and the recovered

map. As our map synchronization approach can accurately recover

the underlying ground-truth, this affinity score turns out to provide

powerful signals for separating objects from different clusters.

More precisely, we first compute for each edge (i, j) ∈ E a residual

error ri j defined as

ri j :=
(
∥Xi j − X in

i j ∥
2

F
+ ∥X ji − X in

ji ∥
2

F

) 1

2

. (12)

We then define the affinity scorewi j as

wi j := exp(−
r2i j

2σ 2
), σ := median min

j ∈N
ri j . (13)

Finally, we use the spectral graph clustering approach described

in [Belkin and Niyogi 2001], which determines the number of under-

lying clusters by detecting the spectral gap and performs k-means

clustering on the leading eigenvectors to recover the underlying

clusters. Since this is a standard graph-based clustering approach,

we refer to [Belkin and Niyogi 2001] for the technical details.

7.2 Experimental Results
We have applied our shape clustering approach to two challenging

datasets that exhibit interesting cluster structures.

Human Dataset. The first dataset is a human dataset that con-

sists of 12 different persons with 20 poses per person. The first 10

persons are taken from the testing set of the FAUST dataset [Bogo

et al. 2014]. The 11th category is given by the Male category of the

TOSCA dataset [Bronstein et al. 2008]. The last category is given by

Table 2. Rand index score. We compare our approach with three base-
line approaches with respect to the Rand-index score[Rand 1971] (in per-
centages, and the lower the better): Shape-Des[Wu et al. 2015], which is
based on comparing geodesic shape distributions; Image-Des[Su et al. 2015],
which is based on comparing concatenated multi-view shape descriptors;
SMAC[Bajaj et al. 2018], which is based on spectral clustering in map-based
embedding spaces.

Human Chair Chair-Back Chair-Leg

Shape-Des 24.13% 20.17% 25.12% 16.43%

Image-Des 9.78% 8.78% 7.51% 6.93%

Dis Distance 12.13% 14.23% 11.89% 13.21%

SMAC 8.42% 6.23% 7.86% 8.72%

Ours 2.79% 3.19% 4.39% 3.82%

randomly sampling 20 shapes from the SCAPE dataset [Anguelov

et al. 2005]. We use blended intrinsic maps to compute initial maps

between all pairs of shapes.We then apply our approaches to recover

consistent shape maps and derive the underlying clusters. Figure 12

shows the affinity scores derived from pairwise shape maps. We can

see that the affinity scores nicely indicate the underlying structures.

In addition, our approach accurately recovers different poses of the

individual persons except that we mis-clustered four shapes.

Table 2 compares our approach with four baseline approaches.

The first baseline approach performs k-means clustering with re-

spect to the GPS shape descriptor[Rustamov 2007], wherewe use [Pel-

leg andMoore 2000] to determine the number of clusters. The second

baseline performs k-means clustering with respect to the multi-view

image descriptor[Su et al. 2015] via calibrated front views. Again,

we use [Pelleg and Moore 2000] to determine the number of clusters.

The third baseline replaces the map residual error by the conformal

Wasserstein neighborhood dissimilarity distance(CWN) [Boyer et al.

2011]. Finally, the fourth baseline is based on [Bajaj et al. 2018],

which performs simultaneous mapping and clustering in the eigen-

space spanned by the leading eigen-vectors of a data matrix. It turns

out our approach significantly outperforms descriptor based shape

clustering approaches. We can understand this from the perspective

that the differences between shapes are subtle, and pure geodesic

and image-based descriptors cannot differentiate them. CWN per-

forms slightly better than descriptor based approaches, yet it still

possesses a gap to our approach. The major reason is that many

inter-shape maps are inaccurate, and thus they do not fully reflect

the actual shape variations. Finally, our approach also outperforms

[Bajaj et al. 2018], thanks to the power of our tensor formulation

for accurate recovery of the underlying ground-truth maps.

Chair Dataset. The second dataset is the chair dataset, which col-

lects 5 fine-grained chair classes (swivel, cantilever, sofa, windsor,

and fourleg) from the chair category of ShapeNetCore. To keep the

dataset balanced, we uniformly sample 20 shapes from a category

if the size of that category is bigger than 20. In total, we obtained

100 shapes. We perform three clustering tasks, where the first task

is based on clustering entire objects, and where the second task is

based on clustering with respect to individual parts (i.e., chair back

and chair legs). For the task of clustering entire objects, we follow

a similar procedure for the Human dataset to compute consistent
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Fig. 13. Chair Clustering. The top block shows the clustering results with
respect to the entire chair shapes. The middle block shows the clustering
results with respect to chair legs. The bottom block shows the clustering
results with respect to chair backs. Shapes in the same cluster are visualized
with the same color. Note that our approach identifies all underlying cluster
structures in each case.

shapes maps and use map residuals to obtain the underlying clus-

ters. The only difference is that we replace the input maps by FFD

alignments [Huang et al. 2014].

We again compare our approach to a similar set of four baseline

approaches as the Human dataset. For the first baseline, we use the

pre-trained PointNet++[Qi et al. 2017] model to compute a shape

descriptor for each shape. We apply the same procedure to deter-

mine the number of clusters and perform k-means to determine

the resulting clusters. The second baseline remains the same. The

third baseline is given by the conformal Wasserstein distance (or

CWD) with respect to the Euclidean distance. The last baseline is

again given on [Bajaj et al. 2018]. As shown in Figure 13 and Ta-

ble 2, our approach leads to better results than baseline approaches.

Specifically, our approach outperforms descriptor-based approaches

considerably. Note that both descriptor-based approaches utilize

cutting-edge deep learning techniques. This shows the advantage

of using map residuals for classifying fine-grained classes. The third

baseline leads to the lowest performance, due to relatively low qual-

ity initial maps on such a heterogeneous dataset. Likewise, our

approach leads to better results than [Bajaj et al. 2018], as we can

recover the underlying maps more accurately.

We now extend the approach to perform part-based clustering.

Specifically, we mark a 3D region specified by a 3D bounding box.

when evaluating the map residual, we only consider the map residu-

als within the region of each shape that is inside each 3D bounding

box. This is done by modifying the map residual as

ri j :=
(
∥(Xi j − X in

i j ) · Pi ∥
2

F
+ ∥(X ji − X in

ji ) · Pj ∥
2

F

) 1

2

, (14)

where Pi ∈ Rm×m
and Pj := Xi jPi ∈ Rm×m

are the projection

matrices in the functional spaces associated with Si and Sj , respec-
tively.

As illustrated in Figure 13, by varying the specified 3D bounding

boxes, we can cluster the input shapes with respect to different

regions such as chair back and chair legs. For example, with re-

spect to chair backs our approach identifies three dominant modes

such as solid, open and windsor backs. Regarding chair legs, our ap-

proach clusters legs with distinctive styles such as fourlegs, swivel

legs, cantilever legs, and sofa legs. In addition, our approach also

outperforms baseline approaches (see Table 2).

8 DISCUSSION, LIMITATIONS AND FUTURE WORK
In this paper, we have introduced a new approach for map synchro-

nization. The key to our approach is a tensor-based representation

for explicitly encoding the consistency of maps among a collec-

tion of relevant objects. This leads to a simple formulation of map

synchronization as a low-rank tensor recovery. We have shown sig-

nificant advantages of this approach against existing matrix-based

approaches in terms of empirical performance on large-scale bench-

mark datasets. The effectiveness of this approach is demonstrated

on applications of clustering and co-segmentation of heterogeneous

shape collections. In each of the cases the structural matches are

vastly improved through our improved correspondence maps.

Our approach possesses a few limitations. First, our approach is

not particularly designed for symmetric objects. In particular, for ro-

tational symmetric objects, our approach only yields modest results.

To address this issue, it would be interesting to combine the lifting

approach described in [Sun et al. 2018] and the tensor formulation

described in this paper. Another limitation of our approach is that

the input graph E is favored to be a random graph or a geometric

graph. Otherwise, there may not be a sufficient number of 3-cycles

from E to perform effective tensor map synchronization.

There are also many opportunities for future research. First of

all, it is interesting to explore other low-rank tensor recovery tech-

niques based on tensor decomposition and with additional low-rank

regularization. Moreover, it would also be interesting to explore

other representations for map synchronization, e.g., a mixture of

matrix-based and tensor-based representations. Finally, one could

explore other tasks related to heterogeneous shape collections such

as hierarchical shape decomposition and shape synthesis using

multi-dimensional tensors .
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A DETAILS ABOUT ALTERNATING OPTIMIZATION
In this section, we provide details on the alternating minimization

procedure for optimizing (5), which is presented in the following

general form:

N∑
r=1

N∑
s=1

n∑
t=1

wr st (Rr st −
m∑
l=1

ar lbslct l )
2

(15)

wherewr st encode the elements of C in
jik .

The idea of alternating minimization to alternate the optimiza-

tions of A, B and C . In this case, the objective function becomes

quadratic in the variables, and the optimal solution at each iteration

can be obtained by solving a linear system.

Optimizing A.When B and C are fixed, we can see that optimiza-

tions of different rows of A are decoupled:

min

ar 1, · · · ,arm

N∑
s=1

n∑
t=1

wr st (Rr st −
m∑
l=1

ar lbslct l )
2, 1 ≤ r ≤ N (16)

Define HA,r ∈ Rm×m
and дA,r ∈ Rm , whose elements are given by

HA,r
ll ′ :=

N∑
s=1

n∑
t=1

wr stbslbsl ′ct lct l ′ , 1 ≤ l , l ′ ≤ m

дAl :=

N∑
s=1

N∑
t=1

wr stbslct lRr st , 1 ≤ l ≤ m (17)

It is easy to see that the optimal solution for

(ar1, · · · ,arm )T := (HA,r )−1дA,r . (18)

Note that the complexities of forming matrix HA
and vector дA are

O(N 2nm2) and O(N 2nm),respectively. Solving the linear system in

(18) costs O(Nm3). So the total computational cost for this step is

O(N 2nm2). It should be noted that for large-scale systems,wr st are

sparse, so the computational cost is further reduced.

Optimizing B or C is done in a similar fashion. Define matrices

HB,s ,HC,t ∈ Rm×m
and vectors дB,s ,дC,t ∈ Rm , whose elements

are given by

HB,s
ll ′ :=

N∑
r=1

n∑
t=1

wr star lar l ′ct lct l ′ , 1 ≤ l , l ′ ≤ m

дBl :=

N∑
r=1

n∑
t=1

wr star lct lRr st , 1 ≤ l ≤ m

HC,t
l l ′ :=

N∑
r=1

N∑
s=1

wr star lar l ′bslbsl ′ , 1 ≤ l , l ′ ≤ m (19)

дC,tl :=

N∑
s=1

N∑
t=1

wr star lbslRr st , 1 ≤ l ≤ m (20)

The optimal solutions are given by

(bs1, · · · ,bsm )T := HB,s−1дB,s (21)

and

(ct1, · · · , ctm )T := HC,t−1дC,t , (22)

respectively. Again, the complexity of optimizingB orC isO(N 2nm2).

Convergence rate. ([Bezdek and Hathaway 2003]) shows that un-

der the assumptions of (1) a local optimal

m∑
l=1

a⋆l ⊗ b⋆l ⊗ c⋆l to (15) is

unique, (2) and the Hessian at this local optimal is positive definite,

and (3) we start from the an initial solution that is close to this

local optimal, then alternating minimization converges to this local

optimal in a geometric rate. In our experiments, we found that our

approach always converges to a stationary point

m∑
l=1

a⋆l ⊗ b⋆l ⊗ c⋆l .

Note that although

m∑
l=1

a⋆l ⊗ b⋆l ⊗ c⋆l may be unique, the values of

A⋆
, B⋆ and C⋆

is dependent on the initial solution.
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