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Abstract—This paper studies the MIMO relay with non-
identical link coherence times, a condition that is denoted
coherence diversity. This can occur, e.g., when the nodes do not
all have the same mobility, or the scatterers around some nodes
have different mobility than others. Obviously this condition
occurs in practice therefore the model is well motivated, but
the performance of a relay under such conditions has not been
studied to date. This paper calculates achievable degrees of
freedom under this condition. Since different coherence times
have a prominent impact on channel training, channel state
is not made available to the decoder for free, and all channel
training resources are accounted for in the calculations. A
product superposition technique is employed at the source that
allows a more efficient usage of degrees of freedom when the
relay and the destination have different training requirements.
Following the analysis of a representative example, a general
analysis is provided and varying configurations of coherence
times are studied. Numerical results demonstrate the gains of
the proposed approach under coherence disparity.

I. INTRODUCTION

In wireless networks, mobility of nodes as well as scattering
environments often produce unequal link coherence times. In
the two-user broadcast channel with unequal coherence times,
[1], [2] demonstrated gains over TDMA transmission. This
result was extended to K users and staggered coherent time
blocks in [3], [4]. Inner and outer bounds for multiple access
channel with unequal coherence times was calculated in [3].

This paper studies the effect of unequal link coherence
times on the degrees of freedom (DoF) of the MIMO relay
channel. The closest results in the literature involve the block
fading relay channel under identical link coherence times,
among them: the diversity-multiplexing trade-off of 3-node
relay without direct link [5], outage performance of the two-
way relay channel [6], achievable rate of buffer-aided relay
without direct link [7] and with direct link [8], achievable
rate of buffer-aided diamond relay network with inter-relay
interference [9] and achievable rate region of bidirectional
buffer-aided relay [10].

For the MIMO relay with coherence diversity, we assume
there is no free channel state information (CSI) at the receivers,
since unequal coherence times impact channel training and
assuming free CSI will distort and obscure important features
of the problem. In addition, no channel state information is
assumed at transmitters. We propose a product superposition
transmission strategy at the source, which was first introduced

This work was made possible in part by the grants 1527598 and 1718551
from the National Science Foundation.

in [1] for two-user broadcast channel. Product superposition is
a technique that allows efficient utilization of channel degrees
of freedom under coherence disparity, and we use it when the
links from the source to the relay and the destination have
unequal coherence times.

We begin by proving that under identical coherence times,
the relay cannot provide any DoF gains over the direct link
alone. This result is used as a reference. When coherence
times are unequal, we start with a representative example to
show that disparity in coherence time enables DoF gains over
conventional transmission. Then the result is extended to more
general coherence time configurations. Numerical examples
shed further light on the results.

II. SYSTEM MODEL

Consider a MIMO Gaussian relay in full-duplex mode.
The source and destination are equipped with NS and ND
antennas, respectively. The relay has NR antennas and uses
nr ≤ NR antennas for transmitting. The received signal at the
relay and destination are:

yR = HSRxS + wR (1)
yD = HSDxS + HRDxR + wD, (2)

where xS and xR are signals transmitted from the source and
relay. wR and wD are i.i.d. white Gaussian noise and HSR,
HRD and HSD are channel gain matrices whose entries are
i.i.d. Gaussian. Channel gain entries and noise components
are zero-mean and have unit variance. Channel gains experi-
ence block fading, remaining constant during the coherence
intervals which are, respectively, of TSR,TRD and TSD, sat-
isfying TSR ≥ 2 max(NS , NR), TRD ≥ 2 max(NR, ND) and
TSD ≥ 2 max(NS , ND), but changing independently across
blocks [11]. The source and relay obey power constraints
E[tr(xSx′S)] ≤ ρ and E[tr(xRx′R)] ≤ ρ. We assume there
is no free channel state information at the destination and no
CSIT at the source or relay.

The source sends messages to the destination with rate
R(ρ) at ρ signal-to-noise ratio. The degrees of freedom at
the destination achieving rate R(ρ) is defined as

d = lim
ρ→∞

R(ρ)

log(ρ)
. (3)
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III. RELAY CHANNEL WITH COHERENCE DIVERSITY

We first show when the coherence times of all links are
identical, the relay cannot provide any DoF gains. Then we
analyze the scenarios where the coherence times are unequal.

A. Relay with Identical Coherence Times

Theorem 1. In a relay described in section (II), if TSD =
TSR = TRD = T , the relay does not provide DoF gains over
direct link, which achieves the following DoF:

d = min(NS , ND)(1− min(NS , ND)

T
). (4)

Proof. From the cut-set bound, we know

R ≤ min {I(xS ;yR,yS |xR), I(xS ,xR;yD)} (5)

If NS ≤ ND, consider the inequality in the cut-set bound,
R ≤ I(xS ;yR,yS |xR). Because TSD = TSR = T and there is
no CSIT, the right hand side in the inequality is upper bounded
by the capacity of a point-to-point channel having NS transmit
antennas and (ND+NR) receive antennas with coherence time
T , which is NS(1− NS

T ) log ρ+ o(log ρ). Then we have

d ≤ NS(1− NS
T

), (6)

which can be achieved by the direct link.
If NS ≥ ND, consider the inequality, R ≤ I(xS ,xR;yD).

Since TSD = TSR = T , the right hand side in the inequality
is upper bounded by the capacity of a point-to-point channel
with (ND +NR) transmit antennas and ND receive antennas
with coherence time T , whose capacity is ND(1−ND

T ) log ρ+
o(log ρ). Then we have

d ≤ ND(1− ND
T

), (7)

and this DoF can be achieved by the direct link. This completes
the proof.

B. Example for Unequal Coherence Times

When links have unequal coherence times, Theorem 1
shows if we design the signal as if they had the same coherence
time(the shortest), the relay cannot provide DoF gains. In this
section, we first consider an example. The source and relay
are equipped with 2 antennas and the destination is equipped
with 3 antennas. The coherence times of the three links are
as follows: TSR = ∞, i.e., the source-relay channel is static,
therefore the cost of training over this link is amortized over a
large number of samples and we can assume the relay knows
HSR. Furthermore we asssume TSD = TRD = 8.

The source uses product superposition, sending

XS = Xu[I2 02×1 Xd], (8)

where Xu ∈ C2×2 and Xd ∈ C2×5.
At the relay, the received signal is

YR = HSRXS + WR (9)
= HSRXu[I2 02×1 Xd] + WR. (10)

The received signal at the first two time slots is

Y′R = HSRXu + W′
R. (11)

The relay knows HSR and decodes Xu. Assume the signal
decoded by the relay in the previous block is X′u and the two
rows of X′u are x′1,x

′
2 ∈ C1×2.

The relay uses one antenna for transmission and sends

XR = [01×2 1 x′1 x′2 0] ∈ C1×8. (12)

Now the received signal at the destination is

YD = HSDXS + HRDXR + WD (13)

= [HSD HRD]

[
XS

XR

]
+ WD (14)

= [HSD HRD]

[
Xu[I2 02×1 Xd]
01×2 1 x′1 x′2 0

]
+ WD (15)

= [HSDXu HRD][I3 XD] + WD, (16)

where

XD =

[
Xd

x′1 x′2 0

]
. (17)

The destination estimates the equivalent channel HD =
[HSDXu HRD] in the first three time slots and decodes Xd,x

′
1

and x′2. In this proposed scheme, the destination can achieve
the DoF d = (2× 5 + 2× 1× 2)/8 = 1.75. If we assume all
links have coherence time T = 8, the DoF we can achieve is
d′ = 2× (8− 2)/8 = 1.5.

This representative example shows when the three links
have non-identical coherence times, DoF gains can be achieved
via the proposed scheme.

C. TSR =∞,TSD = TRD

In this section, the result above is extended to a more general
scenario.

Theorem 2. In a relay described in section (II), if TSR =∞,
TSD = TSR = T and NS = NR < ND, the following degree
of freedom is achievable:

d =
1

T
max
nr

min {d1 + d2, d1 + d3} , (18)

where

d1 = NS(T − nr −NS), (19)
d2 = nr(T − nr −NS), (20)

d3 = N2
S , (21)

which is greater than the direct link can achieve.

Proof. The source sends the product superposition signal:

XS = Xu[INS
0NS×nr

Xd], (22)

where nr ≤ min {NS , ND −NS},Xu ∈ CNS×NS and Xd ∈
CNS×(T−nr−NS).

At the relay, the received signal is

YR = HSRXS + WR (23)
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= HSRXu[INS
0NS×nr

Xd] + WR. (24)

The received signal at the first NS time slots is

Y′R = HSRXu + W′
R. (25)

The relay knows HSR and decodes Xu. Assume the message
decoded by the relay in the previous block is X′u. The relay
uses nr antennas for transmission, sending

XR = [0nr×NS
Inr

Xr,d] ∈ Cnr×T , (26)

where Xr,d ∈ Cnr×(T−nr−NS).
The received signal at the destination is

YD = HSDXS + HRDXR + WD (27)

= [HSD HRD]

[
XS

XR

]
+ WD (28)

= [HSD HRD]

[
Xu[INS

0NS×nr Xd]
0nr×NS

Inr Xr,d

]
+ WD (29)

= [HSDXu HRD][I(NS+nr) XD] + WD, (30)

where

XD =

[
Xd

Xr,d

]
. (31)

The destination estimates the equivalent channel HD =
[HSDXu HRD] during the first (NS + nr) time slots and
then decodes XD. At the destination, the messages decoded
have two parts: Xd from the source and Xr,d from the
relay, which provide DoF d1 = NS(T − nr − NS) and
d2 = nr(T − nr − NS). The message in Xr,d is from X′u.
The DoF of X′u is d3 = N2

S . The message sent by the relay is
less than it decodes. Thus the DoF the destination can achieve
is 1

T min {d1 + d2, d1 + d3} in (18).
The direct link can achieve the following DoF: d′ = NS

T ×
(T − NS). Now we prove d is always greater than d′. Set
nr = 1. If d3 ≤ d2, the DoF achieved by the proposed scheme
is

d(1) =
1

T
(NS(T − 1−NS) +N2

S) =
NS
T

(T − 1). (32)

Obviously, d ≥ d(1) ≥ d′; if d2 ≤ d3, the DoF achieved is

d(1) =
1

T
(NS(T − 1−NS) + (T − 1−NS)) (33)

=
NS + 1

T
(T − 1−NS). (34)

Because T ≥ 2ND ≥ 2NS + 2,

d ≥ d(1) =
NS + 1

T
(T − 1−NS) >

NS
T

(T −NS) = d′.

(35)

This completes the proof.

D. TSR = KTSD = KTRD

In this section, we assume the relay does not know HSR.

Theorem 3. In a relay described in section (II), if TSR =
KTSD = KTRD = KT,K ∈ Z . and NS = NR < ND, the
following degree of freedom is achievable:

d =
1

KT
(NS(T −NS)

+ (K − 1) max
nr

min {d1 + d2, d1 + d3}). (36)

where

d1 = NS(T − nr −NS), (37)
d2 = nr(T − nr −NS), (38)

d3 = N2
S , (39)

which is greater than the direct link can achieve.

Proof. We set the length of the transmit block to KT and
divide the transmit block into K sub-blocks with length T .
During the first sub-block, the source sends the signal

X1
S = [INS

X1
d]. (40)

where X1
d ∈ CNS×(T−NS). The relay estimates HSR during

the first NS time slots and sends nothing. The destination can
decode X1

d without the interference form the relay.
In the next (K − 1) sub-blocks, the source sends

Xk
S = Xk

u[INS
0NS×nr Xk

d], k = 2, . . . ,K, (41)

where nr ≤ min {NS , ND −NS},Xk
u ∈ CNS×NS and Xk

d ∈
CNS×(T−nr−NS).

The received signal at the relay is

Yk
R = HSRX

k
u[INS

0NS×nr
Xk
d]. (42)

The relay knows HSR and decodes Xk
u and uses nr transmit

antennas, sending

Xk
R = [0nr×NS

Inr
Xk
r,d] ∈ Cnr×T , (43)

where Xk
r,d ∈ Cnr×(T−nr−NS). The received signal at the

destination is:

Yk
D = Hk

SDX
k
S + Hk

RDX
k
R + Wk

D (44)

= [Hk
SDX

k
u Hk

RD][I(NS+nr) Xk
D] + Wk

D, (45)

where

Xk
D =

[
Xk
d

Xk
r,d

]
. (46)

The destination estimates the equivalent channel Hk
D =

[Hk
SDX

k
u Hk

RD] during the first (NS + nr) time slots , and
decodes Xk

D. Messages decoded at the destination have two
parts: Xk

d and Xk
r,d, which provides DoF d1 = NS(T −

nr − NS) and d2 = nr(T − nr − NS). The DoF of Xk,′
u

is d3 = N2
S . Thus the DoF the destination can achieve is (36).

Consider the direct link from the source to the destination,
the DoF it can achieve is d′ = NS

T × (T − NS). From the
same analysis in the proof for Theorem 2, we can prove that
maxnr

min {d1 + d2, d1 + d3}) > NS(T−NS), then we have
d > d′. This completes the proof.
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E. TSR =∞,TSD 6= TRD

Next we consider the case where the relay knows HSR

and the coherence times of the source-destination link and
the relay-destination link are unequal. Assume the source and
the relay are equipped with NS = NR antennas and the
destination is equipped with ND > NS antennas.

1) TRD = KTSD: In this section we assume TRD =
KTSD. The length of the transmit block is KT , divided into
K sub-blocks with length T .

During the first sub-block, the source sends the signal

X1
S = X1

u[INS
0NS×nr

X1
d], (47)

where nr ≤ min {NS , ND −NS},X1
u ∈ CNS×NS and X1

d ∈
CNS×(T−nr−NS).

The relay decodes X1
u and uses nr transmit antennas and

sends

X1
R = [0nr×NS

Inr
X1
r,d] ∈ Cnr×T , (48)

where X1
r,d ∈ Cnr×(T−nr−NS). The received signal at the

destination is

Y1
D = H1

SDX
1
S + HRDX

1
R + W1

D (49)

= [H1
SDX

1
u HRD][I(NS+nr) X

1
D] + W1

D, (50)

where

X1
D =

[
X1
d

X1
r,d

]
. (51)

In the first sub-block, X1
d, X1

u and X1
r,d provide d1 = NS(T−

nr −NS), d2 = nr(T − nr −NS) and d3 = N2
S DoF.

During the next (K − 1) sub-blocks, the source sends the
signal

Xk
S = Xk

u[INS
Xk
d], (52)

where Xk
d ∈ CNS×(T−nr−NS).

The relay uses nr transmit antennas and sends:

Xk
R = [0nr×NS

Xk
r,d] ∈ Cnr×T , (53)

where Xk
r,d ∈ Cnr×(T−NS). The received signal at the

destination is

Yk
D = Hk

SDX
k
S + HRDX

k
R + Wk

D (54)

= [Hk
SDX

k
u HRD][INS

Xk
D] + Wk

D, (55)

where

Xk
D =

[
Xk
d

Xk
r,d

]
. (56)

During the sub-block k, the destination can decode Xk
D. Xk

d ,
Xk
u and Xk

r,d provide d̄1 = NS(T − NS),d̄2 = nr(T − NS)

and d̄3 = N2
S DoF.

Thus the DoF the destination can achieve is

d =
1

KT
max
nr

min(d1 + d2 + (K − 1)(d̄1 + d̄2),

d1 + d3 + (K − 1)(d̄1 + d̄3)). (57)

Using reasoning similar to the proof of Theorem 2, it follows
that this DoF is greater than what the direct link can achieve.

2) TSD = KTRD: In this section we assume TSD =
KTRD = KT . The length of the transmit block is KT ,
divided into K sub-blocks with length T .

The source uses product superposition, sending:

XS = Xu[X1
v X2

v . . . XK
v ], (58)

where nr ≤ min {NS , ND −NS},Xu ∈ CNS×NS and

X1
v = [INS

0NS×nr X1
d] ∈ CNS×T , (59)

Xk
v = [0NS×nr Xk

d] ∈ CNS×T , (60)

where X1
d ∈ CT−nr−Ns and Xk

d ∈ CT−nr , k = 2, 3, . . . ,K .
At the relay, the received signal is

YR = HSRXu[X1
v X2

v . . . XK
v ] + WR. (61)

The received signal at the first NS time slots is

Y′R = HSRXu + W′
R. (62)

The relay knows HSR and decodes Xu. Assume the message
decoded by the relay in the previous block is X′u.

The relay uses nr transmit antennas and sends

XR = [X1
R,X

2
R, . . . ,X

K
R ] ∈ Cnr×KT , (63)

where

X1
R = [0nr×NS

Inr
X1
r,d] ∈ Cnr×T , (64)

and

Xk
R = [Inr

Xk
r,d] ∈ Cnr×T , (65)

where X1
r,d ∈ Cnr×(T−nr−NS) and Xk

r,d ∈ Cnr×(T−nr).
In the first sub-block, the received signal at the destination

is

Y1
D = HSDX

1
S + H1

RDX
1
R + W1

D (66)

= [HSD H1
RD]

[
X1
S

X1
R

]
+ W1

D (67)

= [HSD H1
RD]

[
Xu[INS

0NS×nr
X1
d]

0nr×NS
Inr

X1
r,d

]
+ W1

D (68)

= [HSDXu H1
RD][I(NS+nr) X

1
D] + W1

D, (69)

where

X1
D =

[
X1
d

X1
r,d

]
. (70)

The destination estimates the equivalent channel H1
D =

[HSDXu H1
RD] during the first (NS + nr) time slots and

decodes X1
D during the remaining ones.

During the sub-block k, the received signal at the destination
is

Yk
D = HSDX

k
S + Hk

RDX
k
R + Wk

D (71)

= [HSD Hk
RD]

[
Xu[0NS×nr Xk

d]
Inr Xk

r,d

]
+ Wk

D (72)

= [Hk
RD [HSDXu Hk

RD]Xk
D] + Wk

D, (73)
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Fig. 1. Degrees of freedom for TSR = ∞,TRD = TSD = T

where

Xk
D =

[
Xk
d

Xk
r,d

]
. (74)

The destination estimates Hk
RD during the first nr time slots.

Because the destination already estimated HSDXu, it knows
the equivalent channel Hk

D = [HSDXu Hk
RD]. During the

remaining time slots, the destination decodes Xk
D. X1

d provides
d1 = NS(T −nr −Ns) DoF, and Xk

d provides d̄1 = NS(T −
nr) DoF. X1

r,d provides d2 = nr(T − nr − Ns) DoF and
Xk
r,d provides d̄2 = nr(T − nr) DoF. Thus the destination

can achieve the following DoF:

d =
1

KT
max
nr

min(d1 + (K − 1)d̄1 + d3,

d1 + (K − 1)d̄1 + d2 + (K − 1)d̄2). (75)

However, in this case, there is no guarantee that the proposed
scheme can obtain DoF gains over the direct link. Whether the
DoF gain exists depends on the coherence time configurations.
One example is when NS = NR = 3, ND = 5, T = 6,K = 2,
d = 7

3 , d
′ = 9

4 , the proposed scheme has DoF gains; when
NS = NR = 3, ND = 5, T = 4,K = 3, d = 2, d′ = 9

4 , the
proposed scheme provides no DoF gains.

IV. NUMERICAL RESULTS

In this section, we compare the performance of the pro-
posed scheme with conventional transmission demonstrating
the gains in degrees of freedom. We set the number of antennas
NS = NR = 3 and ND = 5. In Fig 1, we consider the
case where TSR = ∞,TRD = TSD = T . We can see
the proposed scheme has a significant DoF gain over the
conventional transmission. In Fig 2, we consider the case
where TSR = KTRD = KTSD = KT ,T = 10 for different
K. When K = 1, i.e., all links have identical coherence time,
there is no DoF gain by the proposed scheme; when K grows,
the gain achieved by the proposed scheme increases.
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Fig. 2. Degrees of freedom for TSR = KTRD = KTSD = KT ,T = 10

V. CONCLUSION

This paper studies the MIMO relay with coherence diversity.
The main contribution of this paper to demonstrate new gains
in the relay channel under this scenario, and propose and
analyze a transmission scheme achieving these gains.
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