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An interplay between local adaptation and niche conserva-
tism shapes species’ distributions and responses to climate. 
On the one hand, an increasing body of literature spanning 

diverse taxa and biomes demonstrates marked intraspecific varia-
tion in responses to climate, with differences observed between 
populations of different genetic affinities (reviewed in ref. 1). On the 
other hand, many studies show strongly synchronous responses of 
conspecific populations separated by hundreds of metres to thou-
sands of kilometres2–5. Concurrently, although extreme climate 
events are occurring more frequently6, the magnitude and spatial 
extent of synchrony in climate conditions has increased over the last 
half-century7. Synchronous responses of conspecific populations 
have been hypothesized2 and demonstrated5 to increase extirpation 
risk in spatially structured populations.

Within a species, heterogeneity in responses to the environment 
is presumably mediated by the level of genetic adaptation to local 
environments and thus should be strongly predicted by dividing  
a species’ range into lineages1,8–10. Indeed, a growing number of  

climate-vulnerability assessments demonstrate that subdividing 
species by genetic lineage yields vastly different outcomes compared 
with the usual practice of assuming homogeneity across popula-
tions8–13. Nonetheless, several considerations suggest that variation 
in climate responses may not be captured exclusively by genetic sub-
division. For example, different genetic groups can be parapatric14 
or even sympatric13,15 in distribution and thus share common envi-
ronments. Conversely, an individual lineage can occupy broad por-
tions of environmental gradients that lead to local adaptation within 
the lineage. Finally, the potential for dynamic interplay between 
genetics (niche conservatism and local adaptation) and ecological 
context (physiography, geology, hydrology, vegetation and other 
aspects) suggests that responses to climate might be mediated  
by more than genetic affinity alone16. Further complicating this situ-
ation, the current distribution of species can be shaped by factors 
that vary across a range of temporal scales, from millennial-scale 
range shifts, contractions and expansions to generation-scale and 
population- and metapopulation-level dynamics14,17,18.
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Accounting for within-species variability in the relationship between occurrence and climate is essential to forecasting 
species’ responses to climate change. Few climate-vulnerability assessments explicitly consider intraspecific variation, and 
those that do typically assume that variability is best explained by genetic affinity. Here, we evaluate how well heterogeneity 
in responses to climate by a cold-adapted mammal, the American pika (Ochotona princeps), aligns with subdivisions of the 
geographic range by phylogenetic lineage, physiography, elevation or ecoregion. We find that variability in climate responses 
is most consistently explained by an ecoregional subdivision paired with background sites selected from a broad spatial 
extent indicative of long-term (millennial-scale) responses to climate. Our work challenges the common assumption that 
intraspecific variation in climate responses aligns with genetic affinity. Accounting for the appropriate context and scale of 
heterogeneity in species’ responses to climate will be critical for informing climate-adaptation management strategies at the 
local (spatial) extents at which such actions are typically implemented.
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Identifying the spatiotemporal scale of responses to climate
Here, we test eight hypotheses about the spatial configuration 
and temporal dimension of responses to climate of the American 
pika, Ochotona princeps, a lagomorph endemic to western North 
America that is typically found at higher elevations and has been 
long studied for its climate sensitivity18–23. The pika’s vulnerability 
to climate change broadly reflects the species’ poor ability to dis-
sipate heat and a narrow (3 °C) difference between high basal body 
temperature and upper lethal temperature, among other factors19. 
Since the nineteenth century, researchers have characterized the 
pika’s distribution as a product of climatic patterns24, rather than 
species interactions, and the species’ distribution has since been 
shown to correspond to aspects of climate at multiple spatial18,25,26 
and temporal17 scales (decadal to millennial). More broadly, vari-
ation in response to climate may be due to behavioural or adap-
tive evolution to local conditions9, a state that is presumably best 
reflected by subdividing species into genetic lineages (for example, 
Fig. 1a and Supplementary Fig. 1). Nonetheless, the parapatric dis-
tributions and introgression of some pika lineages15 and the rela-
tively short divergence time between them (a few hundred thousand 
years, beginning ~1.3 million years ago (Ma)22) suggest that evolu-
tionary adaptation to local conditions might play a lesser role in 
explaining heterogeneous responses to climate. Our hypotheses test 
whether spatial heterogeneity in species responses most strongly 
aligns with one of four range-subdivision schemes (that is, divided 
by genetic lineage, ecoregion, elevation or physiography: Fig. 1a–d 
and Supplementary Fig. 1; the rationale for each scheme appears 
in Supplementary Methods and Results), each investigated at two 
scales. Such a test of division schemes that compares genetic and 
non-genetic contexts has not previously been attempted, nor has the 
full array of techniques that we employed to improve model realism.

We compiled >14,500 high-quality presence records from muse-
ums, state and provincial natural heritage programmes, state and 
provincial wildlife agencies, and nearly all researchers who have 
published on the species or were known to have relevant data 
(Supplementary Table 1). Because distributional changes in pikas 
are occurring rapidly in some regions (see, for example, ref. 18), we 
associated each pika detection with climatic conditions during the 
10 years preceding that record (compare Supplementary Table 3), 
rather than the standard practice of using an invariant (30-year) cli-
mate normal for all records. Our approach directly tests whether 
antecedent climatic conditions influenced occurrence at a given 
location27. To capture variation in patterns of occurrence as a func-
tion of climate at different spatiotemporal scales, we contrasted cli-
mate at presence locations with climate at background sites selected 
either from broad extents indicative of long-term processes (for 
example, range shifts) or narrow extents indicative of short-term 
habitat selection and metapopulation dynamics. Broad backgrounds 

covered the entire unit in each division (that is, entire polygons in 
Fig. 1a–d, representing each of the genetic lineages, ecoregions, ele-
vational bands or physiographic regions), including areas far outside 
the current species distribution. These broad backgrounds represent 
potential pika habitat available since the last glaciation28, especially 
considering the distribution of fossil pika remains geographically 
and climatically distant from currently occupied sites17. Narrow 
backgrounds were represented by the portion of each subdivision’s 
unit lying above a locally defined minimum elevation inhabited by 
pikas (Fig. 1e and Supplementary Fig. 1), and encompassed climatic 
conditions potentially inhabited over shorter time periods (that is, 
tens of generations). Minimum inhabited elevation was determined 
in a multistep procedure (Supplementary Methods and Results) 
accounting for regional orographic and continental effects and the 
species-wide latitudinal and longitudinal range. We used spatio-
temporal stratification of background sites to correct for spatial, 
temporal and spatiotemporal sampling bias (Supplementary Fig. 3).  
Throughout this effort, we employed predictors (Supplementary 
Table 2) directly relevant to demonstrated or hypothesized (see, 
for example, refs. 18,23,26) mechanisms governing occurrence of the 
species and its particular life-history characteristics, rather than a 
generic suite of predictor variables.

Identifying the appropriate spatial and temporal scale of climate 
response is challenging because different methods of subdividing 
a species’ range can yield highly variable results29, even when sub-
units do not have a biological basis (for example political units or 
protected areas30). Thus, demonstrating variation in responses to 
climate across ‘populations’ is a necessary but insufficient condition 
for justifying a particular subdivision. Rather, the method of subdi-
vision that best reflects the underlying heterogeneity in climate rela-
tionships should display maximum climate ‘coherency’, achieved 
when heterogeneity is lowest within units and highest among units 
(Fig. 2 and Supplementary Figs. 4 and 5). We evaluated coherency 
in response to individual climate variables while controlling for the 
effects of other variables. We also examined coherency in response 
to all climate variables simultaneously. Both tests compared within-
unit and among-unit heterogeneity across each combination of spa-
tial subdivision (see the four schemes in Fig. 1a–d) and temporal 
dimension (reflected by background extent). A third test evaluated 
the importance of accounting for a subdivision’s units when model-
ling responses to all climate variables together. Where applicable, 
each analysis controlled for correlations and interactions among 
variables, non-shared climate space, sample size and geographic 
distance between training and test regions.

Although we expected genetic lineages to best explain variation 
in climate relationships across the species’ range, we found that sub-
division of the range by ecoregions most dependably captured het-
erogeneity in the pika’s responses to climate. For 12 of 20 proximate  
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Fig. 1 | Pika minimum elevation (PME) and geographic subdivisions used to explore spatial heterogeneity in responses of the American pika to climate. 
a, Genetic lineages51 (plus a 47.7 km buffer). b, Ecoregions based on US Environmental Protection Agency Level III Ecoregions31. Some regions with small 
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climate variables, the greatest mean coherency in response to indi-
vidual variables occurred among ecoregions matched with back-
ground sites drawn from a broad extent indicative of long-term 
range dynamics (Fig. 3 and Supplementary Table 5). Responses 
to an additional four variables were most coherent for ecoregions 
paired with a narrow background indicative of short-term habitat 
selection and metapopulation dynamics. For each of the other com-
binations of subdivision and background, coherency was highest for 
only one or none of the 20 climate variables considered. Ecoregions 
matched with background sites drawn from a narrow background 
indicative of short-term range dynamics had the second-highest 
coherency for 11 of the 20 variables. Considering all variables simul-
taneously, ecoregions (matched with broad or narrow backgrounds) 
were again always among the most coherent subdivisions (Fig. 4  
and Supplementary Table 6). This conclusion was further supported 
by the third analysis, which explicitly accounted for variation in 
response to multiple climate variables within each subdivision’s 
units. In this case, heterogeneity in responses to climate was best 
reflected by ecoregions and elevational bands, both with narrow 
backgrounds (Fig. 5). However, responses varied widely for eleva-
tional bands with a narrow background, meaning that even though 
some bands were more effective at capturing underlying heteroge-
neity others were far worse. In sum, the underlying heterogeneity in 
the relationship of pika occurrence to climate was best captured by 
ecoregional differentiation. Pikas in different ecoregions varied in 
how they responded to individual climate variables and all variables 
simultaneously, and responses carried signatures of dynamics trans-
piring across long and short timescales.

Discussion
Our results demonstrate that landscape context may have as much 
if not more bearing on intraspecific heterogeneity in responses to 

climate than phylogenetic affinity; specifically, genetic lineage may 
not be the most appropriate scheme to capture within-species spa-
tial variation in climate response. Moreover, spatial heterogeneity 
in environmental responses may reflect temporal differences in 
range-shaping processes such as habitat selection and metapopu-
lation dynamics and millennial-scale shifts in available habitat  
arising from climate change. Together, differences in the spatial and 
temporal scale of response suggest that a spatiotemporal ‘mosaic’ 
of context-mediated responses to climate gives rise to the contem-
porary shape of ranges, such that different portions of the range  
are determined by diverse processes and factors acting over decades 
to millennia.

For the American pika, ecoregions best captured intraspecific 
variation in climate response. As used here, ecoregions are areas 
with relatively homogeneous geology, landforms, soils, vegetation, 
hydrology and land use31,32. Within and across ecoregions, pika 
distributions depend heavily on local habitat characteristics that 
affect microrefugia, physical characteristics of the broken-rock fea-
tures on which pikas depend, and vegetation (that is, forage) qual-
ity or quantity23,25,26. For example, cool and moist microrefugial 
conditions can be associated with labyrinthine lava flows23, thick 
moss or dense vegetation canopy25, gorges and slot canyons25, sub-
surface ice20,23,33 or other conditions that mediate macroclimatic 
extremes. The suitability of these microclimates also depends on the  
nature, topographic position and physical characteristics of talus 
(broken-rock) patches (that is, size and connectivity of interstitial 
space, presence of subterranean water and cool-air drainage, plus 
rock colour, porosity, volume and thickness). These characteris-
tics vary across broad landscapes, as do erosional processes that  
form or infill talus-slope habitat34. Together, these characteristics  
create different opportunities for behavioural thermoregulation, 
which pikas achieve by moving between surface and subsurface 
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microclimates19. Additionally, ecoregional differences in vegeta-
tion may mediate habitat quality not only by shading33, but also 
through diet and winter caching behaviours, which vary region-
ally35,36. Variation in forage species and associated heterogeneity in 
water content, micronutrients and plant toxin type and concentra-
tion could also magnify ecoregional differences in mechanisms of 
climatic influence on pika populations. Indeed, cover of individual 
plant species and measures of plant-community characteristics 
are key predictors of pika occurrence and abundance in multiple 
regions23. Finally, an amalgamation of these factors probably influ-
ences pika dispersal distances (for example, via conditions in non-
talus matrix habitats), and thus the ability to recolonize talus patches 
where populations have been extirpated, which differs strongly 
across ecoregions26,37. These factors are likely to have varied in effect 
across the millennial timescales over which pikas have shifted their 
ranges in response to glacial cycling17,21,22. Such shifts are evidenced 
by fossil remains of pikas in regions that are now environmentally 
and geographically remote from contemporary distributions17.

A spatiotemporal mosaic model of range determination may 
apply widely and thus be the norm rather than the exception. The 
‘fingerprint’ of cross-temporal processes and their role in determin-
ing current distributional boundaries should be evidenced by spatial 
heterogeneity in responses to environmental drivers. For example, 
over the past century, ranges of both birds and small mammals in 
the Sierra Nevada have shifted upslope and downslope heteroge-
neously within species and across regions38–40. Although some of 
these responses are concordant with predictions based on changes 
in temperature and precipitation38–40, others are explained by shifts 
in habitat41. Different aspects of context (subdivision scheme) might 
become more relevant as climate change accelerates; for example, 
forage nutrient content may shape responses now, but refugial 

opportunities may become more important in the future. Thus, cli-
mate change may alter the appropriate spatiotemporal mosaic with 
which responses are best predicted.

Accounting for the mosaic of spatiotemporal factors shaping 
ranges is critical for understanding responses to past climate change 
and anticipating responses of species to future change. For example, 
if ecoregional effects mediate species’ responses to climate, how 
can land managers manage for landscapes that enhance features 
that favour climate-sensitive species? Depending on the situation, 
effective management might entail encouraging irrigation to offset 
drought stress42, managing for greater forest cover to buffer under-
story environments from rising temperatures43 or restricting recre-
ation around climate-buffering landscape features25. Similarly, niche 
theory suggests that species’ responses to environmental gradients 
approximate a bell-shaped curve (akin to a ‘Goldilocks effect’44). 
Our results suggest that the position of the optimum value along a 
climatic gradient can change across ecoregions to such a degree that 
moving along the gradient can increase the likelihood of occurrence 
in one region but decrease it in another. In these cases, responses 
to climate change might be reversed, and appropriate manage-
ment actions in one area could be contraindicated in another. For 
example, heavy-snowfall years in high-elevation and high-latitude 
regions may limit food resources and population connectivity for 
poorly dispersing resident herbivores, but greater snowfall at lower-
elevation areas may reduce drought stress45. In this scenario, deter-
mining whether the distribution of suitable habitat for individual 
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populations shifts predictably across years and regions as climate 
changes poses a pressing challenge, since climate-adaptation man-
agement actions should be appropriately tailored to match the 
spatial extent across which populations respond homogeneously. 
Finally, although species’ responses to contemporary climate change 
will probably play out over generational timescales, we must also 
consider how factors that have operated across millennial scales 
inform appropriate conservation action. For example, over long 
periods of time, glacial expansion and retreat, shifts in inhabitable 
climate space, and dynamic hydrogeological features alter habitat 
connectivity and the probability of founder events that enable colo-
nization of entire regions46. In contrast, ecological changes arising 
from anthropogenic climate change within management-relevant 
time horizons (that is, within the next 30–100 years) are projected to 
rival and likely surpass those experienced over the past ~20 millen-
nia47. As a result, although management actions operate over ‘fast’ 
time cycles compared with glacial–interglacial dynamics, appropri-
ate management action might be just as informed by millennial-
scale responses to past climate change.

Similarly to most climate-response studies, ours was conducted 
in a situation in which the true response of the species to climate 
is unknown. Behavioural assays19 and microclimatic data18 can 
help us understand the locale-specific responses; however, scaling 
these results up to regional contexts remains a challenge. Similarly, 
other aspects of climate for which fine-scale data were not avail-
able may differ meaningfully across ecoregions and differentially 
influence patterns of pika occurrence. Likewise, it is possible that 
the genetic subdivisions used here may be too coarse to reflect local 
adaptation21. Alternatively, nuclear introgression may occur among 
units15,22, ‘blurring’ lines of local adaptation. Indeed, for all of the 
subdivisions considered here, common resources, connectivity via 
dispersal, and gradation of habitat types within and across subdivi-
sions might yield smoother transitions48 than can be captured by 
discrete regions (compare Supplementary Table 4). Finally, the tem-
poral and spatial scale of responses to climate are roughly indicated 
by background extent sampled28,49, but methodological improve-
ments offer the promise of being able to finely tune estimates of the 
spatiotemporal scales across the mosaic of processes shaping bio-
geographic history. Although climate-based factors have accounted 
for about 75% of the variability in pika occurrence and abundance 
at some regional and ecoregional scales18, other species may not dis-
play such high degrees of climatic signal. We expect further research 
to shed light on these issues and our understanding of heteroge-
neous responses to climate.

Writ large, our results support an increasing effort to account for 
intraspecific variation in responses to climate1,8–11,13,29. At the same 
time, they challenge the default premise that this variation is best 
captured by genetic affinity and is thus straightforwardly explained 
by the balance between local adaptation and niche conservatism 
across subspecific lineages. Indeed, both niche conservatism and 
local adaptation can—counter-intuitively—engender patterns of 
response to climate normally assumed to be indicative of the oppos-
ing process50. In particular, niche conservatism can interact with 
changing climatic conditions to split initially homogeneous popula-
tions as different subpopulations track aspects of the environment 
that most closely match the ancestral (and presumably most favour-
able) aspect of the niche50, leading to genetic isolation and eventual 
differentiation. In contrast, plasticity in microhabitat selection and 
forage requirements can mediate environmental variation across 
broad regions33, thus relaxing habitat-level requirements and allow-
ing macroclimatic constraints to remain the same across spatial 
units. These possibilities draw into question the increasingly com-
mon practice of splitting species into subunits on the basis of genetic 
affinity8,9,11,13,29, even when they are based on non-neutral mark-
ers indicative of selective differences between populations10. Our 
results suggest that geography (that is, ecoregional variation) may 

be a more relevant template for understanding species’ relationships 
to climate, and that we must consider the interplay between adap-
tive evolution and landscape variation when predicting responses to 
climate change.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41558-019-0584-8.
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Methods
Our goal was to determine which combination of subdivision and background 
extent (broad, indicative of long-term range shifts, and narrow, indicative of 
short-term range dynamics) best captures heterogeneity in pikas’ responses to 
climate. The best subdivision and background set should display the highest 
coherency, defined here as the difference between heterogeneity (in response to 
climate) within versus among spatial units (Fig. 2), or equivalently the difference 
in niche model performance when tested against withheld data in the same unit 
and model performance when tested against other units. As an example, consider 
a range subdivided into spatially distinct units. Within a particular unit (for 
example, the fenisex lineage in the northwesternmost part of the range, Fig. 1a 
and Supplementary Fig. 2), models might show an increasing trend in response 
to a particular climate variable. In other units, responses might be unimodal in 
nature, and across others the response might be relatively unchanging (Fig. 2). In 
this example, there is a relatively high degree of heterogeneity in responses to the 
same climate gradient across units. If responses of models trained on subsets of the 
data within each unit are fairly similar (for example, generally always increasing, 
decreasing or unchanging), then the particular subdivision scheme has a high 
level of climate coherency and thus serves as a reliable proxy for differences in 
how the species responds to climate. (Importantly, in each case the response is 
measured across the range of the climate variable shared across all units—that is, 
responses are compared only within comparable climate space.) Coherency can 
also be measured using metrics of niche model performance, which serve as an 
index of similarity in responses to multivariate aspects of climate. In this case, high 
coherency is indicated by high performance against withheld test data in the same 
unit in which the model was trained, coupled with low performance of the same 
model tested against data from other units (while controlling for confounding 
effects such as differences in sample size and geographic distance between 
calibration and evaluation sites).

Species records. We collected records of pika presence from all readily available 
sources by querying peer-reviewed and grey literature archives, individual 
researchers, state wildlife agencies (United States; including the Washington 
Department of Fish and Wildlife’s Wildlife Survey Data Management Database 
version Oct. 15, 2015), natural heritage programs, museums, online databases 
(BISON, VertNet, iDigBio, GBIF) and citizen-science programs across the species’ 
geographic range (iNaturalist, Adventure Scientists, Bow Valley Naturalists, 
Front Range Pika Project and Cascades Pika Watch). Contributors reported pikas 
detected by sight or sound, and the detection of signs uniquely characteristic of 
pikas including fresh ‘haypiles’ (food caches that clearly contained chlorophyll 
to indicate freshness) and faecal pellets (when freshness was unequivocal). Of 
38,095 records collected, we retained 14,513 after applying our criteria for data 
quality and filtering procedures (Supplementary Methods and Results). Of these, 
13,338 occurred in the United States and were used in the niche modelling. The 
remainder occurred in Canada and were included in calculation of PME and for 
spatiotemporal bias correction.

Environmental data. We calculated 20 variables reflecting demonstrated or 
hypothesized mechanisms of climate limitation on the distribution of pikas 
(Supplementary Table 2) that relate directly to exposure to chronic or acute 
heat, chronic or acute cold, resource availability, and water availability and 
demand. Some of the variables used thresholds to reflect physiologically limiting 
conditions conducive to (or inhibitive of) pika presence. For each surveyed 
presence and background site, environmental variables were summarized for the 
10-year window before and including the survey date. We used daily estimates of 
precipitation and minimum and maximum temperature from the AN81d version 
of the Parameter Regression of Independent Slopes Model (PRISM53), and monthly 
values of dewpoint temperature and minimum and maximum vapour pressure 
deficit from the AN81m version of PRISM supplemented with data from other 
sources for variables not represented by PRISM (Supplementary Table 2).  
Our primary assumption was that climate is the dominant factor shaping the 
species’ range.

PME. To help delineate background extents and select background sites, we 
estimated PME, the lowest average elevation expected to be inhabited by pikas 
in areas across the United States and Canada54. PME was estimated from the 
minimum elevation predicted across an ensemble of models using longitude and 
latitude as predictors. The response was the mean elevation of the lowest fifth 
percentile of elevations at occupied sites in a set of 70-km-diameter circular regions 
selected such that each had an adequate number of occurrences. Areas covered by 
permanent snow and ice were removed.

Subdivisions. We assessed the ability of four different subdivision schemes 
(phylogenetic, ecoregional, elevational and physiographic) to capture region-
specific responses to climate (Fig. 1a–d). Phylogenetic regions were defined 
following Galbreath et al.21,22 and Hafner and Smith55, who delineated five 
geographically allopatric subspecies (Fig. 1a) on the basis of nuclear DNA, 
mitochondrial DNA, allozymes and skull measurements. We added a 47.7 km 
buffer to the five polygons defined in the shapefile to also include 95% of the 466 

presence records in our dataset (3.2% of the total) that fell outside the original 
polygons. Ecoregions were adopted from the EPA Level III ecoregionalizations32,56,57 
with a modification by Sarr et al.58 (Fig. 1b). Elevational divisions were defined 
relative to PME (Fig. 1c). After subtracting PME from the observed elevation at 
each presence site, we classified the differences into five quintiles (for example, 
the highest band encompassed the ~20% of records that were highest relative to 
their locally defined PME). Physiographic regions (Fig. 1d) were adapted from 
the ‘provinces’ and ‘divisions’ of Fenneman and Johnson59. Fenneman delineated 
physiographic regions by geological origin of the base material and the type and 
stage along primary erosional processes.

Background sites. We used narrow and broad definitions of the background 
environment available to pikas to explore the effects of spatial extent and, 
indirectly, the temporal time frame of habitat selection. The narrow background 
encompassed areas that could be colonized by dispersing pikas over ~1–2 
generations and thus indicates habitat selection occurring across short time frames. 
To define the narrow background for a given focal unit (for example, a specific 
lineage within the genetic subdivision), we intersected areas above PME with each 
unit (for example, the intersection of any given polygon in any of Fig. 1a–d with 
the area above PME shown in Fig. 1e) then added a 3 km buffer to expand the 
region to areas that could be at least ‘sampled’ through dispersal. Areas covered 
by permanent snow and ice were removed after applying the buffer. For all units 
combined, the narrow background mask was defined by intersecting the areas 
above PME (plus the 3 km buffer with areas of ice and snow removed) with the 
entire set of polygons with recorded presences of pikas for the given division 
scheme (that is, the intersection of all polygons in any of Fig. 1a–d with the area 
above PME in Fig. 1e). The broad background was defined by using the entire unit 
polygon (or all unit polygons combined if the entire range was being considered). 
Narrowly defined and broadly defined background sites were drawn from the area 
delineated by the respective masks.

We selected background sites in such a manner as to negate non-random 
sampling effort and create an unbiased estimate of environmental suitability60. 
Specifically, increasing the ratio of background-to-presence sites within a region 
of environmental space that has been overly sampled can reduce or eliminate 
bias due to overrepresentation of that environmental space61. This ratio can be 
altered by either (a) thinning presence records to have some minimum pairwise 
distance62, or (b) increasing the number of background sites with environmental 
values similar to the presence records60. We chose the second option, because 
thinning can markedly reduce sample size and requires decisions about minimum 
allowable pairwise distance62,63. To correct for spatiotemporal sampling bias within 
a given focal unit and background extent (broad or narrow), we trained an annual 
kernel density estimator on all presences collected in each year. The kernel density 
estimator model was then projected back to the given broad or narrow background 
mask for the focal unit within a given subdivision (Supplementary Fig. 3). For 
each presence record in a given year, we selected background sites with the per-
cell probability of placement proportional to the estimate of the kernel density 
estimator. For the purposes of calculating associated climate variables, background 
sites were assigned the same date as the presence sites to which they were matched. 
The total number of background sites selected within a year was proportional 
to the number of presence sites in that year, scaled so that the total number of 
background sites sampled across all years for a given subdivision and background 
extent was ~10,000.

Overview of modelling and statistical analysis. We employed correlative 
ecological niche models (sometimes also called species distribution models) 
to compare patterns of occurrence within shared and unshared environmental 
space. For each combination of subdivision and background extent, we modelled 
the species’ niche across the entire range and across units and subunits in a 
spatially nested design (Supplementary Fig. 4). Specifically, for a given unit 
within subdivision s and background b, we split the presence records into eight 
geographically distinct subunits to increase the independence between training 
and test data sets to ensure a more robust estimate of model performance62 and 
predictor importance52,64. Background sites were assigned to the subunit of the 
geographically closest presence record. ‘Subunit’ models were trained on data 
from seven subunits, then tested on the withheld data, then repeated for a total of 
eight models trained per subunit. We also trained ‘unit’ models on all presences 
within a unit. Finally, we trained a ‘composite’ model on all data from across the 
entire range. Our modelling design creates a nested hierarchy of models for each 
subdivision scheme: subunit models are trained on a subset of the data used in 
unit models, which in turn are trained on a subset of the data used in a range-wide 
composite model. We used the contrast between the subunit models of a unit and 
the unit model as a measure of within-unit heterogeneity or model performance. 
We used the contrast between the unit models and the composite models as our 
measure of among-unit heterogeneity or model performance.

Coherency in responses to individual climate variables. To explore responses 
to individual climate variables (Supplementary Table 2), we employed least-angle 
generalized linear regression65 with the degree of regularization (L1 ‘lasso’ versus 
L2 ‘ridge’) penalty tuned using an elastic net66. Least-angle generalized linear 
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regression has several key advantages over traditional, non-regularized techniques, 
including robustness to collinearity between variables and the tendency to result in 
‘sparse’ models in which only key variables have coefficients that are different from 
0 (ref. 65). Separate models were trained on occurrences from (1) each of the eight 
subunits in each unit, (2) the entire unit and (3) across the entire US range.

We compared within- versus among-unit heterogeneity in the species’ response 
to each of 20 climate variables while controlling for the effects of the other variables 
(Supplementary Fig. 5). For a given variable, unit, subdivision and background, 
the observed within-unit heterogeneity was calculated as the average difference 
between the response curve predicted by the unit model and each of the k subunit 
models. We used the marginal prediction for each variable to capture the response 
to the focal variable independent of other variables, except in cases where there 
were interactions with the focal variable, in which case the appropriate interaction 
terms were included. We limited the comparison to the environmental gradient 
encompassed by 2.5th and 97.5th quantiles taken across all presence sites for the 
focal unit or subunit. Along this range we selected N = 100 values, indexed by n, 
of the focal variable at which we predicted the suitability of the k subunit models 
(pukn), the unit model (pun) and the composite models (pn). We calculated within-
unit heterogeneity for a given unit u as

wu ¼ 1
8N

RðuÞ
X8

k

XN

n

pun � puknð Þ2 ð1Þ

R(u) is a scaling factor to reflect the fact that pikas did not respond equally to all 
climate variables, and is defined as the difference between the maximum and 
minimum predicted values across all selected presence sites by the unit model (R(u) 
thus has a range of [0, 1]; Supplementary Fig. 5). Including a scaling factor allows 
comparison of the values of w across units, subdivisions and climate variables, 
because the overall level of within- versus among-unit heterogeneity in response 
to a variable is scaled by the absolute difference in suitability to the focal variable. 
Consequently, wu represents the scaled mean squared deviation of the difference 
between the response curves predicted for the entire unit and subsets of the 
unit (Supplementary Fig. 5), so higher values correspond to greater within-unit 
heterogeneity.

We calculated among-unit heterogeneity au for a given unit in a similar manner:

au ¼ 1
N
RðCÞ

XN

n

pun � pnð Þ2 ð2Þ

where R(C) is the difference between the maximum and minimum predicted values 
across the selected presence sites from the composite model (R(C) thus has a range 
of [0, 1]). Consequently, au represents the scaled mean squared deviation of the 
difference between responses of a unit and the entire species (Supplementary Fig. 5),  
so higher values correspond to greater among-unit heterogeneity. Since pn, pun, 
pukn, R(u) and R(C) all have the range [0, 1], the ranges of wu and au are also [0, 1]. 
Our measure of climate coherency for a given unit in a subdivision scheme was 
the difference between among- and within-unit heterogeneity in response for that 
unit (au − wu). We used Monte Carlo permutation tests to assess whether the mean 
coherency within a combination of subdivision and background was >0 (Fig. 3 and 
Supplementary Table 6).

Coherency in response to multiple climate variables. We also examined the 
relationship between pika occurrence and climate in ‘multivariate’ climatic space. 
To control for collinearity, we first constructed a common principal component 
model of the derived climate variables for 10,000 randomly selected sites. The 
first six axes collectively represented >87.5% of the total variation in the derived 
climate variables, and were used in the subsequent analyses (see factor loadings 
in Supplementary Table 2). We then applied the principal component rotations 
to each set of presence and background records used in the subsequent analyses. 
For each subunit, unit and set of all units in a subdivision we trained five types of 
correlative ecological niche model (generalized additive models, generalized linear 
models, Maxent, boosted regression trees and random forests). We then used the 
mean ensemble prediction for further analyses67.

We evaluated the model performance using the continuous Boyce index 
(CBI68,69). The CBI represents the correlation between the model predictions and 
the true probability of presence. It has a range of [−1, 1], with values >0 indicating 
more accurate models, values ~0 indicating models performing similarly to 
random expectation and values <0 indicating performance worse than random. 
Compared with other metrics of performance, CBI is a sensitive metric of model 
performance51,52. Also, unlike the area under the receiver operator curve, it does 
not have an unknown upper limit when calculated with background sites in place 
of true absences70.

We calculated coherency in response to climate as the difference between 
performance (CBI) of subunit models tested against withheld test presences from 
the same unit and against presences and background sites in each of the other units 
for a given subdivision and background. This difference should be ~0 if responses 
to multivariate climate are similar within and between units, but >0 if there is more 
heterogeneity among units than within units. We initially attempted to statistically 
control for potentially confounding factors (for example, distance between test 

and training sites, number of test and training sites), but the overall explanatory 
power of these covariates was very low (R2 < 0.05), so we did not correct for these 
factors. We assessed whether the observed coherency was >0 using Monte Carlo 
permutation tests that accounted for the non-independence between models 
for each cross-validation fold of a unit arising from overlapping presence and 
background data across subunits (Fig. 4).

Variation in responses to climate among units in subdivisions. To corroborate 
the previous analysis we conducted a second multivariate analysis. This analysis 
also assessed variation in responses to climate across units in each subdivision. We 
used the same principal component axes as in the previous analysis to establish 
a common climate space across all combinations of schemes and extents. Again, 
ecological niche models were trained using the first six axes of this principal 
component analysis as predictors, except that in this analysis the unit of the 
respective scheme was included as a seventh (categorical) covariate, which allowed 
climate responses to vary across units. As before, we used the ensemble (mean) 
prediction across five algorithms (Supplementary Methods and Results). For 
this analysis, we only trained composite k-fold models (that is, models using all 
data across the entire range except for a portion that was withheld for testing; 
the withheld portions were geographically distinct from the training data and 
comprised records from all units in the scheme).

The subdivision and background extent that best captured spatial heterogeneity 
in responses to climate should have the greatest sensitivity to unit in the model.  
To measure sensitivity, we applied a permutation test for each combination of 
subdivision and background. Specifically, we randomly swapped the value of the 
unit variable across the test data for a given subdivision and background, then 
calculated the correlation between (a) the predictions at the withheld test sites 
with data as observed and (b) predictions at the same sites using the permuted 
data71. If unit is an influential predictor, the correlation will be low because the 
predictions will be different between permuted and as-observed data. In particular, 
the correlation should be lowest for the subdivision and background extent in 
which unit best captures differences in responses to climate. We repeated the 
permutations and calculation of the correlation 1,000 times for each combination 
of subdivision, background and unit. To visualize the difference, we subtracted the 
mean of the correlation coefficients from 1, so that higher values connote greater 
unit importance (Fig. 5). We then applied permutation tests on the correlation 
coefficients to assess the statistical significance of differences between cases.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw PRISM weather variables that support the findings of this study are 
available from the PRISM Climate Group, but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not 
publicly available. These data are available from the authors on reasonable request 
and with permission of author C. Daly.

Code availability
The computer code (https://github.com/adamlilith/pika_climateCoherency) 
and some occurrence datasets analysed during the current study (https://doi.
org/10.5066/P9LV1XCF) are available online.
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Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)
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Software and code
Policy information about availability of computer code

Data collection N/A

Data analysis We performed the analysis in Microsoft R Open Version 3.3.3 2017-03-06 using packages compiled as of 2017-05-15 (obtained with the 
checkpoint library; Microsoft 2016). Analyses relied primarily on the dismo (Hijmans et al. 2017), raster (Hijmans 2016), geosphere 
(Hijmans 2016), rgeos (Bivand & Rundel 2017), and enmSdm (Smith 2017) packages. All package dependencies are listed in the code and 
either available on the CRAN repository or GitHub (https://github.com/adamlilith).
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- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The computer code and occurrence datasets analyzed during the current study are available in the Dryad repository, https://datadryad.org [to be deposited upon 
acceptance of the manuscript or upon request of the editors or reviewers]. The raw PRISM weather variables that support the findings of this study are available 
from the PRISM climate group but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. These data are available from the authors upon reasonable request and with permission of author C. Daly.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We examined within-versus-among group responses of subdivisions of the American pika (Ochotona princeps) to mechanistic 
weather variables using three tests. The first examines responses to each of 20 variables while controlling for the effects of others 
using least-angle regression (LARS) regularized using an elastic net. Within/among differences were assessed using a null-model 
randomization procedure comparing the difference between each subgroup's response across the shared range of the focal variable 
to the group response by swapping the labels on response curves (subgroup or group). The second test compared within/among 
group differences in response to all climate variables simultaneously  (after rotation using principal component analysis). The 
difference in the performance of an ensemble niche model of subgroups and groups was assessed using null model analysis that 
swapped measured values among groups being compared. The third test estimated the relative importance of using the "group" 
label as a factor in an ensemble of niche models. We used a permutation test to swap the subgroup labels and compared the 
predictions from this scrambled set with predictions of the models using all data as observed.  We then applied a null model test 
which swapped the panel of interest (background extent or group labels).

Research sample The primary data analyzed in this study comprised 14,513 presence records of the North American pika (Ochotona princeps) 
collected across its known range between 1990 and 2015. We also used daily- and monthly-scale interpolations of raw weather/
climate variables (min/max/mean temperature, precipitation, min/max relative humidity, and dew point temperature) from the 
PRISM climate data set for the coterminous United States.

Sampling strategy We collected records of pika presence from all readily available sources by querying peer-reviewed and grey literature archives, 
individual researchers, state wildlife agencies (USA; including the Washington Department of Fish and Wildlife’s Wildlife Survey Data 
Management Database version Oct. 15, 2015), natural heritage programs, museums, and several on-line databases (BISON, VertNet, 
iDigBio, GBIF). We also collected records from citizen-science programs across the species’ geographic range (iNaturalist, 
Adventurers and Scientists in Conservation, Bow Valley Naturalists, Front Range Pika Project, and Cascades Pika Watch). 

Data collection All contributors were asked to supply, at a minimum, data fields indicating detection or non-detection of pikas, longitude and 
latitude, method used for geolocation and associated error, coordinate reference system, elevation, date of observation, plus 
pertinent notes on the survey process and site-level observations. As evidence of presence, contributors reported pikas detected by 
sight or sound, and the detection of signs uniquely characteristic of pikas including fresh “haypiles” (food caches that clearly 
contained chlorophyll to indicate freshness) and fecal pellets (when freshness was unequivocal).

Timing and spatial scale Occurrence records were obtained from across the specie's range across the time period extending from 1990 to 2015. PRISM 
weather data was from 1981-2015.

Data exclusions We excluded occurrences that were recorded before 1990 because we could not match them with weather data from a 10-yr 
window prior to their recording (daily PRISM data is available only starting in 1981). For climate-related analyses we removed all 
records in Canada since they are not covered by the PRISM GIS layers, although these records were used for calculation of sample 
intensity and pika minimum elevation. We removed all occurrences that could not be confidently located to <200 m of the stated 
coordinates.

Reproducibility The computer code was written in Microsoft Open R with a checkpoint date of 2017-05-15. Using our code and data anyone should 
be able use the same packages versions to recreate the results.

Randomization We divided pika occurrences using four subdivisions each of which comprised several subunits. These subdivisions were obtained 
from the literature on pika biology, ecoregions, physiography, or generated by dividing occurrences into elevational bands. To 
increase independence between model training and test sets we further divided occurrences into eight geographically distinct, 
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mutually exclusive groups. Membership in a group was assigned based on its spatial proximity to eight centroids located using 
partitioning around mediods (PAM), a deterministic and reproducible method for clustering when the number of groups is per-
ordained. To control for potentially confounding variables we employed 1) comparisons of units only across shared environmental 
space; and 2) null model randomization within hierarchical structures to ensure comparable unit labels were swapped along with 
respective subunit labels. For the multivariate analysis in which we tested for differences in niche model performance within/among 
groups we attempted a post hoc correction using beta regression with niche model performance as a response and potentially 
confounding covariates as predictors including geographic and temporal distance between training and test sites, training and test 
sample size, and all two-way interactions of these variables. The best model explained just <5% of the variation so we elected not to 
correct for the factors in the final analysis.

Blinding The occurrence data was collected over the course of 25 yr by >80 collaborators and partners. As a result of their experience in the 
field some of the collaborators may have suspected the existence of spatially-varying controls on pika persistence, but almost no field 
studies were conducted with the intent of identifying these factors. Those that were comprise a small set of occurrences and were 
spatially stratified across geographic domains.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Collections occurred any time of the year but were primarily guided by accessibility (e.g., lack of dangerous conditions, passable 

snow cover). Pikas are active and apparent throughout the year, so the timing of collection will not bias detection.

Location Sampling occurred throughout western North America (from 35.7 to 54.1 degrees latitude and from -104.9 to -126.9 degrees 
longitude).

Access and import/export No new data was collected for the current analysis; the constituent analyses complied with all relevant state, tribal, and national 
laws.

Disturbance The original field collections mainly comprised sightings of pikas at sites accessed by trails or otherwise on foot. We 
supplemented these records from data obtained from publicly accessible online databases (GBIF, iDigBio, BISON) which may or 
may not comprise physical specimen data (typically skins, skeletons, or other physical remains). These data were originally 
collected under protocols and procedures specified by the original data providers.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


