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Trait-based ecology claims to offer a mechanistic approach for explaining the drivers that structure biological diversity and
predicting the responses of species, trophic interactions and ecosystems to environmental change. However, support for this
claim is lacking across broad taxonomic groups. A framework for defining ecosystem processes in terms of the functional traits
of their constituent taxa across large spatial scales is needed. Here, we provide a comprehensive assessment of the linkages
between climate, plant traits and soil microbial traits at many sites spanning a broad latitudinal temperature gradient from
tropical to subalpine forests. Our results show that temperature drives coordinated shifts in most plant and soil bacterial traits
but these relationships are not observed for most fungal traits. Shifts in plant traits are mechanistically associated with soil
bacterial functional traits related to carbon (C), nitrogen (N) and phosphorus (P) cycling, indicating that microbial processes
are tightly linked to variation in plant traits that influence rates of ecosystem decomposition and nutrient cycling. Our results
are consistent with hypotheses that diversity gradients reflect shifts in phenotypic optima signifying local temperature adapta-
tion mediated by soil nutrient availability and metabolism. They underscore the importance of temperature in structuring the
functional diversity of plants and soil microbes in forest ecosystems and how this is coupled to biogeochemical processes via

functional traits.

ecosystem functioning is that we lack a mechanistic under-

standing of the relationships between climate, plant traits,
microbial traits and ecosystem processes'”. While analyses of com-
munity trait compositions are increasingly used to understand the
processes shaping biodiversity and biogeography, the links between
above-ground traits and below-ground microbial processes remain
largely unknown®. Nonetheless, an implicit assumption in trait-
based ecology is that generalizable relationships between traits
and the environment are linked across trophic levels to influence
ecosystem processes™. Although recent studies have developed
conceptual frameworks for understanding the distribution of traits
in diverse trophic groups’"!, most empirical research has focused
on plant traits>'>~"* (but see refs. '*'") and few studies have directly
examined relationships between traits across many trophic groups
using locally collected data’'*-*'.

Here, we provide a conceptual framework for understanding how
traits vary along a temperature gradient if both plants and microbes
are independently driven by the same thermodynamics (Fig. 1).
Building on past studies, Fig. 1 uses the life history/resource acquis-
itive-conservation continuum? to graphically organize predictions
from several trait-based hypotheses along a temperature gradient.

Q key challenge in developing a predictive framework for

A finding of macroecology and biogeography is that temperature is
a central driver that shapes and shifts variation in biological diver-
sity”® (Fig. 1). Furthermore, trait-based ecology has shown that tem-
perature is a central driver of plant diversity via selection on traits
linked to plant hydraulics, leaf energy balance, carbon and water
gas exchange and nutrient use’>*. Trait-based ecology states that
such environmentally driven variation and shifts in traits will in
turn influence ecosystem functioning (Fig. 1) Indeed, shifts in the
distribution and diversity of plant functional traits have been linked
to variation in rates of nutrient uptake®, litter decomposition®**
and ecosystem productivity”’. Also, it has been shown that plant
traits related to the resource acquisition-conservation continuum
may scale up to influence ecosystem-level nutrient cycling®*-*.
Since microbes play a critical role in the regulation of ecosystem
functioning via decomposition and nutrient cycling, an emer-
gent prediction of trait-based ecology is that shifts in temperature
should be associated with corresponding shifts in plant traits and
microbial function, resulting in ecological feedbacks between plants
and microbes® .

In Fig. 1, we can use the resource acquisition-conservation
continuum and the above findings to make predictions for shifts
in plant traits across temperature gradients and assess how these
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Fig. 1| Coordinated trade-offs in plant functional traits and their relation to microbial and ecosystem processes. Temperature is a primary environmental
driver that varies across latitude, with cooler temperatures represented in maroon on the left and warmer temperatures in yellow on the right.

shifts may drive or be driven by shifts in microbial functioning. For
example, plant communities dominated by acquisitive traits (such
as high specific leaf area (SLA) and nitrogen-rich leaves) corre-
spond with bacterial metabolic pathways that yield faster rates of
decomposition and nutrient cycling, slower rates of C sequestra-
tion™**** and promote arbuscular mycorrhizal fungal associations
or reduced dependence on mycorrhizal associations®*. In contrast,
communities dominated by more conservative traits (for example,
low-SLA and nitrogen-poor leaves) tend to be associated with less
fertile soils that limit microbial metabolism, resulting in slower
rates of decomposition and nutrient cycling™****” and promoting
ectomycorrhizal fungal associations'>*>***, Colder and/or shorter
growing seasons are expected to select for more conservative leaf
traits that buffer leaf temperatures relative to air temperatures and
promote increased rates of net photosynthesis and plant growth?**.
Thus, across a broad temperature gradient, variation in plant
functional trait composition may inform understanding of plant-
microbe interactions and their influence on soil nutrient cycling
and decomposition.

Building on this framework (Fig. 1), we take an integrative
approach to assess three prominent hypotheses: (1) the soil-
substrate age hypothesis (SSH)*****, (2) the growth rate hypoth-
esis (GRH)***, and (3) the adaptive trait continuum hypothesis
(ATH)**. The SSH posits that tropical soils are P-limited as a result
of increased leaching due to high rainfall and old soil age, whereas
higher latitude soils are N-limited**".The GRH links the elemen-
tal composition of organisms to their metabolic rates where species
with rapid growth have decreased N:P ratios due to increased tissue
P-content as the result of increased allocation to P-rich ribosomes
for protein synthesis**~**. The GRH has important implications for
understanding variation in trait composition and nutrient cycling
across broad temperature gradients®. For example, GRH states that
in increasingly colder climates, selection to counteract the kinetic
effects of temperature on growth selects for more leaf P relative to
leaf N (refs. *>*°). Both hypotheses predict an increase in plant tissue
N:P ratio with increases in decreased latitude and higher tempera-
tures. This shift in plant leaf N:P ratio influences the functioning of
soil microbes by altering the relative inputs of either N or P into the
system, leading to reduced microbial biomass in N-limited regions
and reduced microbial metabolism in P-limited regions*. Building
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on the GRH, the ATH states that shifts in trait composition and
diversity reflect selection for optimal matching of phenotypes with
local climate**. Therefore, it is not only important to understand
how individual traits vary across environmental gradients but to
assess the combination of traits in a community. These hypotheses
provide a predictive framework for describing plant-trait distribu-
tions that can be applied to understanding and predicting micro-
bial-trait distributions related to nutrient cycling.

In this study, we quantify variation in the dominance of both
plant and microbial functional traits to assess proposed mecha-
nisms underlying shifts in species assemblages across temperature.
We examined 19 bacterial traits and 13 fungal traits (represented
by functional genes; Supplementary Table 1) from 30 soil microbial
communities from 1,134 soil cores (Supplementary Table 1) and four
plant leaf traits (SLA, N:C ratio, N:P ratio and 6*°N; Supplementary
Table 1) from 30 vegetative plots at six sites spanning a large lati-
tudinal temperature gradient as characterized by mean annual soil
temperature (MAST; Supplementary Fig. 1).

Results

Soil-substrate age hypothesis and growth rate hypothesis. First,
we evaluated the SSH and GRH for how key traits related to C-,
N- and P-cycling in plants, bacteria and fungi vary across tem-
perature and latitude. For plants, we observed an overall shift in
the community-weighted mean (CWM) trait value from more
conservative traits (thick, dense leaves) in more variable cold cli-
mates to more acquisitive traits (thin, less dense leaves) in more
stable climates (SLA r*=0.636, P<0.0001 and N:C ratio *=0.693,
P<0.0001; Fig. 2a,d). As soil C increases in colder climates
(see Supplementary Table 2), bacterial and fungal CWM traits
for C degradation of pectin (rhamnogalacturonan lyase, RGL)
showed opposite relationships, significantly decreasing for bacteria
(RGL *=0.611, P<0.0001; Fig. 2b) and increasing for fungi (RGL
r?=0.326, P=0.001; Fig. 2c) with increased MAST. Leaf CWM
6"N increased significantly with MAST (*=0.713, P<0.0001;
Fig. 2g). Four of the six bacterial functional traits related to N cycling
decreased significantly with increased MAST (Supplementary
Table 3 and Fig. 2h). Furthermore, fungal functional traits associ-
ated with denitrification (nirK) and P degradation (ppx) were sig-
nificantly greater in the tropics (Supplementary Table 3 and Fig. 21).

1299



ARTICLES NATURE ECOLOGY & EVOLUTION

a Plant b Bacteria c Fungi
A 0.15
~ 0.3
o 20 A 0.10
2 AA
£ ® 02 A 3 0.05
Z 10 S « T
3 0.1 A . 0 mmmm W
0
d 6 € 100 f
o 2 A A % o
© S 0.75 | A AA g .
I\
24 e S 050 AA S o2 Site
z % S A S ., /= ]
5, 00 8 025 A T 01| mim '.. a @ AND
5 [} n
0 0 BCI
. ® CWT
g L h g ! 0 ® HFR
> 0 A A ’ LuQ
F o 10 A o 02
s -25 & E o
g 0,° L) 05 01/ mm
4 50 A 1 m } ",
n
75 0 0 [
! k I 012
230
5 e 0.08
o x
z20 g0 ‘0 & g 0.04
310 ‘f 0 {mmmm——
03 06 09 12 03 06 09 12 03 06 09 12
log[MAST (°C)]

Fig. 2 | Shifts in community-weighted leaf and microbial traits that influence soil nutrient availability across 30 forest plots at six sites spanning a

broad latitudinal temperature gradient. a, SLA as a function of the natural log of MAST (INMAST, °C). b, Rhamnogalacturonan lyase (RGL, a carbon
degradation gene) of bacteria as a function of INMAST. ¢, RGL of fungi as a function of INMAST. d, Leaf N:C ratio as a function of IhnMAST. e, Endoglucanase
(endoglucanase, a carbon degradation gene) of bacteria as a function of MAST. f, endoglucanase of fungi as a function of INMAST. g, Leaf nitrogen isotope
(8™N) as a function of INMAST. h, Urease alpha subunit (ureC, a nitrogen gene associated with ammonification) of bacteria as a function of INMAST.

i, ureC of fungi as a function of INMAST. j, Leaf N:P ratio as a function of IlMAST. k, Exopolyphosphatase (ppx, a phosphorus degradation gene) of bacteria
as a function of INMAST. I, ppx of fungi as a function of INMAST. Circles, plant traits; triangles, bacterial traits; squares, fungal traits. Solid blue line, linear
regression for significant relationships (P < 0.05). Grey area, standard error of the linear regression. Site abbreviations: AND, HJ Andrews Experimental
forest; BCI, Barro Colorado Island; CWT, Coweeta LTER; HFR, Harvard Forest; LUQ, Luquillo LTER; NWT, Niwot Ridge LTER.

We found an increase in ectomycorrhizal associations in temper-
ate regions (Supplementary Table 4). Furthermore, the leaf CWM
N:P ratio increased with MAST (Fig. 2j; r*=0.463, P> 0.0001) and
decreased with latitude (r2=0.596, P> 0.0001) where 20 of the 30
plots had values of leaf N:P ratios greater than 15.

Adaptive trait continuum hypothesis. To evaluate the ATH, we
assessed shifts in multivariate trait space for plant, bacterial and
fungal functional traits across MAST. We conducted principal com-
ponents analyses for traits related to C-, N- and P-cycling using
CWNMs for plant, bacteria and fungi. Principal component 1 (PC1)
accounted for 76.4% of the variation in plant functional traits, 56%
of the variation in bacterial functional traits and 55.8% of the varia-
tion in fungal functional traits (Fig. 3; biplots are in Supplementary
Figs. 2-4). Consistent with the ATH, plants and bacteria (but not
fungi) showed pronounced, directional shifts in multivariate func-
tional trait space across this broad soil temperature gradient (Fig. 3).
The natural log of MAST explained a large proportion of the varia-
tion in plant (Fig. 3a; r*=0.825, P>0.0001) and bacterial (Fig. 3b;
r*=0.754, P>0.0001) functional traits. These shifts in microbial
and plant functional diversity were more strongly correlated with
soil temperature than with soil moisture (Supplementary Table 5).
Next, we used simple linear regression, multiple linear regres-
sion and piecewise structural equation modelling to explore rela-
tionships between soil environment, microbial functional traits and
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plant functional traits (Table 1). In these models, all dependent and
independent variables are PC1 scores that characterize variation in
soil environment variables (S), bacterial functional traits (B), fungal
functional traits (F) and plant functional traits (P).

First, we build on the ATH to evaluate how the local soil envi-
ronment as measured through key variables (PC1 of MAST, mean
annual soil moisture (MASM) and pH; Supplementary Fig. 5) drive
variation in microbial and plant functional traits. This was sup-
ported by simple regression models 1-3 (Table 1), which showed
that functional traits of plants, bacteria and fungi varied signifi-
cantly with the soil environment (all P<0.05). The soil environ-
ment explained 74% of the observed variation in plant functional
traits, 64% of the observed variation in bacterial functional traits
and 13% of the observed variation in fungal functional traits, sug-
gesting that plant functional traits followed by bacterial functional
traits are more strongly associated with soil environment variables
than are fungal functional traits.

Next, building from models 1-3 (Table 1), we constructed mul-
tiple regression models that use soil environment and functional
traits as covariates for predicting variation in plant, bacterial and
fungal functional traits (models 4-7, Table 1). For models pre-
dicting functional variation for each clade, inclusion of functional
covariates gave similar results to those of models 1-3 (Table 1) with-
out a significant preference for the multiple regression models over
their simple regression counterparts.
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Fig. 3 | Adaptive trait continuum for plants and microbes spanning a broad latitudinal temperature gradient. a, PC1 from principal component analysis
of plant traits related to growth, nutrient availability and decomposition as a function of the natural log of MAST (InMAST, °C). b, PC1 for bacterial
traits related to nutrient cycling as a function of INMAST. ¢, PC1 for fungal traits related to nutrient cycling as a function of INMAST. Symbols and site
abbreviations as in Fig. 2. Solid blue line, linear regression for significant relationships (P < 0.05).

Onthebasisof multiple regression results (models4-7, Table 1), we
used piecewise structural equation models (piecewise SEM, refs. ")
with second-order Akaike information criterion (AICc) model
selection®' to explore directional causal relationships between vari-
ables. The multiple regression models 4-7 were written as SEMs
with soil PC1 as the exogenous variable (models 8-11, Table 1).
Most SEMs were preferred (all AICc <32, except models 10 and 15)
over their simple and multiple regression counterparts. For models
comprising bacterial traits and plant traits (models 8-9), d-separa-
tion®' identified missing paths between soil environment and plant
traits (model 8) or soil environment and bacterial traits (model 9).
For both models, inclusion of missing paths and removal of non-
significant paths yielded model 12 (12, =0.74, r}_, = 0.64;
Fig. 4a and Table 1), which is the preferred model combining plant
traits and bacterial traits (AICc=22). This model indicates that
variation in the soil environment independently drives both plant
functional traits and bacterial traits. For models considering fun-
gal traits and plant traits (models 10-11, Table 1), there were no
significant paths between fungal and plant traits and d-separation®’
identified missing paths between soil environment and plant traits
(model 10) or fungal traits (model 11). For both models, inclusion
of missing paths and removal of non-significant paths gave model
13 (r2_p, = 0.74; Table 1), which is the preferred model on the basis
of fungal and plant traits (AICc=7). This model indicates that there
are no causal pathways between fungal traits and plant traits or soil
environment. The resulting model excludes fungi, emphasizing
the relationship between the soil environment and plant traits and
suggesting that variation in plant traits is independently driven by
variation in the soil environment (Fig. 4b,e).

We constructed two more (14 and15, Table 1) that examine poten-
tial relationships between soil, bacteria and fungi only (these mod-
els do not consider plant functional trait variation). Consistent with
simple linear regression models 2 and 3 (Table 1), models 14 and 15
showed that variation in soil environment was a significant predic-
tor of variation in bacterial and fungal functional traits, respectively.
However, these models also indicated that there were no significant
paths between bacterial and fungal traits and d-separation®' identi-
fied additional missing paths between soil environment and fungal
traits (model 14) or bacterial traits (model 15). For both models 14
and 15, inclusion of missing paths and removal of non-significant
paths gave models 16 and 17, respectively. Of these models, AICc
model selection identified model 17 (ri_p = 0.73, ri_, = 0.25;
Fig. 4c and Table 1) as the preferred model combining bacterial and
fungal functional traits (AICc=10). Model 17 indicates that when
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plant functional traits are not considered, variation in bacterial
functional traits is independently driven by variation in soil envi-
ronment and fungal functional traits and there are no significant
pathways between soil environment and fungal traits (Fig. 4c,f).

Discussion

This study assessed a central hypothesis of trait-based ecology—
namely that temperature drives shifts in functional traits associated
with decomposition and nutrient availability to ultimately influence
ecosystem processes’***>*>*>% The latitudinal diversity gradient
provides a platform for empirically testing trait-based hypotheses
for nutrient availability (SSH)***, nutrient cycling via the kinetic
effects of temperature on growth (GRH)* and finally how tempera-
ture shapes the optimal phenotype (ATH)". These hypotheses pro-
vide a predictive framework for describing plant traits across a broad
temperature gradient and applying them to characterize shifts in key
microbial traits provides a more thorough understanding of nutri-
ent availability and cycling (Fig. 1). Also, this integrative approach
provides insight to how abiotic factors drive variation in the multi-
variate trait composition of plants and microbes, which may result
in direct and/or indirect ecological feedbacks. These biotic inter-
actions may be characterized as shifts in microbial functional trait
composition driven by shifts in plant functional trait composition,
or as shifts in plant functional traits driven by shifts in microbial
traits. While these interactions may not be mutually exclusive, both
influence soil properties and chemistry, further shaping feedbacks
between organisms and their environment.

Soil-substrate age hypothesis. The SSH comes from the observa-
tion that soil nutrient content changes with soil age from weath-
ering and leaching, and posits that tropical soils are P-limited due
to increased leaching and old age, whereas higher latitude soils are
N-limited”. We found associated changes in plant resource acqui-
sition strategies with changes in nutrient availabilities. Specifically,
in support of the SSH, we observed that leaf N:P ratios generally
decreased with latitude and increased with temperature. However,
20 of the 30 plots had values of N:P ratio greater than 15, sug-
gesting that plots in Colorado and North Carolina may also be
P-limited*>****. Furthermore, we examined CWM leaf 6N as an
integrative measure of total N-cycling (where more negative leaf
0N corresponds to lower N availability and more N-fixing micro-
bial associations®>*°) and found it increased with MAST. Overall,
the low levels of leaf 5'°N observed for temperate regions further
supports the proposed N-limitation at higher latitudes and colder
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Table 1| Models exploring drivers of variation in microbial and plant functional traits that are relevant for ecosystem nutrient cycling

Model Path diagram P r? or adjusted R>2  AlCc

Simple linear regression models
1

9.08x107" 0.74 50
2

1.04 %107 0.64 60
3

0.05 0.13 87
Multiple linear regression models
4

2.40x10-° 0.75 50
5

218 %107 0.66 60
6

3.22x10° 0.75 50
7

0.05 0.14 87
8

0 (NS) NA 32
9

3.7x1072 (NS) NA 22
10

0 (NS) NA 57
1

0.02 (NS) NA 23
12

0.09 NA 21
13

1.0 NA 7

14 0.80, 0.64 0.01, 0.00
1x10-3(NS) NA 30
15 0.36, 0.13 0.01, 0.00

0 (NS) NA 55

(Continued)
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Table 1| Models exploring drivers of variation in microbial and plant functional traits that are relevant for ecosystem nutrient cycling

(continued)

Model Path diagram P r? or adjusted R?  AlCc
16

]

o

g 1.0 NA 19

<
17

1.0 NA 10

The models use PC1 scores that characterize variation in soil environment variables (S), bacterial functional traits (B), fungal functional traits (F), and plant functional traits (P). Bolded numbers in

the Model and AlCc columns indicate the preferred model obtained via d-separation and/or AlCc model selection. In the path diagrams, boxes represent measured variables and arrows represent
unidirectional relationships between variables. Black arrows represent positive relationships, red arrows represent negative relationships, and grey arrows represent non-significant paths at a=0.05. Non-
bolded numbers are standardized effect sizes, and bolded numbers are coefficients of determination (r% partial r? reported for multiple linear regressions). Arrow thickness has been scaled according to

standardized effect sizes. NS, not non-significant relationship at @=0.05; NA, not applicable.

climates, suggesting ectomycorrhizal associations may be favoured
in these regions. Indeed, we found an increase in ectomycorrhi-
zal associations in temperate regions (Supplementary Table 4).
Increased ectomycorrhizal associations facilitate decomposition of
the more recalcitrant leaf litter associated with slow-conservative
leaf traits®°. In addition to shifts in mycorrhizal associations, a fun-
gal functional trait associated with denitrification (nirK) was found
to be significantly greater in the tropics (Supplementary Table 3),
supporting the SSH which predicts an increase in N availability in
lower latitudes that may further correspond with fewer ectomycor-
rhizal associations in these regions. Most bacterial functional traits
related to N-cycling significantly decreased with increased MAST,
which may reflect fewer enzymatic active sites in tropical systems
as the result of increased availability of more labile substrates for
extraction and use by bacteria.

Growth rate hypothesis. The GRH predicts that species with rapid
growth have decreased N:P ratios due to increased P-content of tis-
sues as the result of greater allocation towards P-rich ribosomes for
protein synthesis***~**. In ecosystems with cold, short growing sea-
sons, selection for more rapid growth rates result in more species
with higher P irrespective of P limitations. However, if the system
is both P-limited and there is less selective pressure for fast growth
rates then plants should have increased N:P ratios****-*. Compared
to colder forests, warmer forests have trees with canopies with low
foliar C and P but higher N content, as supported by the observed
increase in N:P ratios with increased temperature. Additionally, the
observed shift in soil nutrient availability (N:C ratio; Supplementary
Table 2) is supported by an increase in CWM leaf 6"°N with tem-
perature, indicating that tropical ecosystems are more N-rich with
higher rates of litter decomposition (increase in leaf N:C ratios) that
are matched with more acquisitive plant traits (increase in SLA)>.
This functional shift is matched by soil bacteria with overall higher
capacities for C, N and P use in cooler climates, possibly driven by
a combination of substrate availability and complexity. For example,
temperate soils are large C reserves, where the high complexity of C
substrates result in lower rates of decomposition that may require
increased affinity of bacterial functional traits associated with
C-cycling. Similarly, N limitation in temperate climates may result in
higher capabilities of N degradation to effectively use the low biolog-
ically available nutrient (Fig. 2b,e,h,k and Supplementary Table 1).
However, we observed an opposite pattern for fungi, suggesting they
have a greater (albeit more variable) capacity for C (RGL increased
with MAST), N (nirK increased with MAST) and P (ppx increased
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with MAST) use in warmer climates despite nutrient limitations
(Fig. 2¢,] and Supplementary Table 3, nirK). This suggests that bac-
teria and fungi differentially contribute to nutrient cycling across the
gradient and may respond differently to changes in climate.

Adaptive trait continuum hypothesis. Building on the ATH*, if
the latitudinal diversity gradient represents a change in species rich-
ness”~*’, then we expect a change in the phenotypic optimum that
necessitates a change in community trait distribution®. We can fur-
ther make predictions for how traits should shift from more con-
servative in lower temperatures of high latitudes to more acquisitive
in higher temperatures of lower latitudes. Although we assessed
traits individually and observed clear shifts in the conservative-
acquisitive continuum with temperature, consistent with the leaf
economic spectrum hypothesis®>®!, changes in multivariate trait
space provide an integrative understanding of how the phenotypic
optima change with temperature. We documented shifts in multi-
variate functional trait space across the temperature gradient for
plants and bacteria that ultimately reflect changes in life history,
genetic variation and community variation®. In contrast to recent
findings”', we found a stronger relationship between traits of plants
and bacteria than those of plants and fungi. Although we did not
observe a significant shift in the multivariate trait space for fungi,
this may suggest that soil temperature is not a key driver in fungal
traits across the latitudinal gradient, and that other abiotic or biotic
properties may be more important for shaping fungal trait distribu-
tions*>*. It is also possible that this lack of relationship for fungi is
the result of the functional traits measured in this study, suggesting
that other plant or fungal trait combinations may be better predic-
tors. For example, given the importance of mycorrhizal fungi in the
rhizosphere, and relationships between the rhizosphere and climate,
it is possible that plant root traits and/or fungal morphological traits
are more closely associated with temperature gradients®.

Conclusion

Variation in leaf traits directly affects soil-substrate quality, which
in turn influences microbial activity and biogeochemical pro-
cesses’. Although our understanding of how plant traits influence
these processes is still developing, few studies have assessed cou-
plings of plant and microbial functional traits across broad envi-
ronmental gradients®. For example, shifts in microbial functional
composition could be driven by shifts in plant functional trait
composition®. Alternatively, shifts in plant functional traits could
be influenced by shifts in microbial traits that in turn influence
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Fig. 4 | Relationships between microbial and plant functional traits that are relevant for ecosystem nutrient cycling. a-c, Best-fit structural equation
models (SEMs) exploring drivers of variation in microbial and plant functional traits. a, Best-fit SEM (model 12, Table 1) of the soil environment (S) on
bacterial traits (B) and plant traits (P). b, Best-fit SEM (model 13, Table 1) of S on fungal traits (F) and P. ¢, Best-fit SEM (model 17, Table 1) of Son F and B.
d, Principal component 1 (PC1) from the principal component analysis of plant functional traits as a function of PC1 from the principal component analysis
of B (r*=0.621). e, PC1 from the principal component analysis of P as a function of PC1 from the principal component analysis of F. f, PC1 from the principal
component analysis of B as a function of PC1 from the principal component analysis of F. In a-¢, boxes represent measured variables and arrows represent

unidirectional relationships between variables. Black arrows represent positive relationships, and red arrows represent negative relationships. Non-bold
numbers are standardized effect sizes and bold numbers are coefficients of determination (r? partial r? reported for multiple linear regressions). Arrow
thickness has been scaled according to standardized effect sizes. In d-f, PC1 from the principal component analysis of B as a function of PC1 from the
principal component analysis of F. Blue line, linear regression for significant relationships (P<0.05). Site abbreviations as in Fig. 2.

soil properties and chemistry. Our results demonstrate the path-
ways of causality linking soil climate, microbial traits and plant
traits (Table 1) and highlight coordinated shifts in both plant
and microbial functional trait diversity across a broad latitudinal
temperature gradient (Fig. 4). Together, these results support a
key premise of trait-based ecology, where correlated variation in
plant and bacterial functional traits linked to ecosystem processes
are driven by temperature®. Changes in soil properties across the
temperature gradient drive variation in plant functional traits and
bacterial functional traits (Fig. 4a) reflecting nutrient limitation
across broad ecological gradients® and highlighting the regional
effects of biogeochemical processes, microclimates and energy
fluxes on microbial diversity'®*>**¢*. However, fungal taxonomic
and functional diversity are considerably less understood than
both plants and bacteria, which may result in unobserved rela-
tionships and inexplicit biases.

Our findings underscore the importance of temperature in
structuring the coupling of plant and microbial functional diver-
sity in and across forest ecosystems, as well as for biogeochemi-
cal cycling. As a result, they have implications for understanding
and predicting ecological consequences of climate change. First, if
temperature drives the observed shift in plant and bacterial func-
tioning from tropical to subalpine forests, ecosystems subjected
to climate warming should also experience directional shifts in
functional diversity and biogeochemistry. Our results provide
comparisons of functional traits in and across bacterial, fungal
and plant communities spanning a latitudinal temperature gradi-
ent. They also point to the importance of a trait-based approach
for providing powerful tools and measures for projecting the
effects of current and future climate warming®”'*>,

Although several challenges remain in fully comparing patterns
of functional traits across taxonomic groups, our findings highlight
the mechanisms that help shape biodiversity across temperature and
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further increase our understanding of the main drivers that structure
and maintain diversity gradients. Limits on our ability to identify
and quantify activity of microbes remain an outstanding challenge.
Due to the complex and heterogeneous nature of soil, biases may
be present during many steps of processing for sequencing, such
as DNA extraction, PCR amplifications and primers®~"" leading to
over/under-representation of certain taxa. Another challenge is that
the presence of a gene in an organism does not necessarily mean that
the gene is expressed. With the major advances in molecular tools,
continued collections of in situ samples across broad environmental
gradients will provide more insights to the mechanisms driving pat-
terns of functional diversity across trophic levels.

Methods

Study system. We collected data from six forest sites along a broad latitudinal
temperature gradient from 9 to 44°N (Supplementary Fig. 1a). Five sites are part
of the National Science Foundation (NSF) Long-Term Ecological Research (LTER)
network: Niwot Ridge, Colorado (NWT); Harvard Forest, Massachusetts (HFR); H.
J. Andrews Experimental Forest, Oregon (AND); Coweeta, North Carolina (CWT);
Luquillo, Puerto Rico (LUQ). The sixth site, Barro Colorado Island, Panama (BCI)
is administered by the Smithsonian Tropical Research Institute. The selected sites
characterize variation from subalpine to temperate to tropical forest ecosystems,
and span broad climate gradients, with mean annual temperatures ranging

from 2.5 to 25.7°C and mean annual precipitation ranging from roughly 500 to
3,100 mm (Supplementary Fig. 1b). At each of these locations, a permanent 25-ha
plot was established from which all sampling for woody plants and soil microbes
occurred. Each 500 500 m? (25 ha) plot was oriented north (Supplementary Fig. 6a).
In each plot, we established five 0.1ha ‘Gentry’ style vegetation plots that consisted
of five 100 X 2 m? transects and 21 individual square-metre soil plots. Each 100 m
transect of the vegetation plots was divided into two 50 m segments and was
separated by 8 m from the next 100 m transect, so that each ‘Gentry’ plot was
located in a 42 X 100 m? area (Supplementary Fig. 6b). The 21 square-metre soil
plots were laid out on perpendicular transects (Supplementary Fig. 6¢) with plots
adjacent to 1, 10, 50, 100 and 200 m in each cardinal direction from a central
square-metre plot. During the autumn of 2011 and spring on 2012, all woody
vegetation greater than 1 cm at ground height was measured, identified and tagged.
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At each site, we also collected and homogenized nine surface-soil cores (~10cm
depth, Oakfield Apparatus Company model HA) from 21 square-metre plots in the
summer of 2012 (1,134 soil cores in total).

Plant functional traits. We collected five leaves from at least two individuals of
the five most abundant species on the basis of their basal area in each plot at each
site and averaged trait values at the genus level in each plot to match microbial
level measurements (76 unique genus across sites; Supplementary Table 6). We
measured four leaf traits related to resource acquisition, nutrient availability and
biogeochemical cycling to characterize plant functional diversity: SLA, 6°N, leaf
N:P ratio and leaf N:C ratio®*”****, For each leaf, the fresh leaf area was measured
using a flatbed scanner and the area was calculated using image analysis software
Image]J. Leaves were dried in a drying oven for a minimum of 72h at 60 °C before
the final dry mass was weighed. Leaves were then transported dry to the University
of Arizona where they were placed again into a drying oven and ground into

a fine homogenous powder for leaf stoichiometry and isotope assays. Total P
concentration was determined using persulfate oxidation followed by the acid
molybdate technique (APHA 1992) and P concentration was then measured
colorimetrically with a spectrophotometer (ThermoScientific Genesys20).
Concentrations of °°N, C and N were measured by the Department of Geosciences
Environmental Isotope Laboratory at the University of Arizona on a continuous-
flow gas-ratio mass spectrometer (Finnigan Delta PlusXL) coupled to an elemental
analyser (Costech). Samples of 1.0 +0.2 mg were combusted in the elemental
analyser. Standardization is on the basis of acetanilide for elemental concentration,
NBS-22 and USGS-24 for §°°C and IAEA-N-1 and JAEA-N-2 for §"°N. Precision

is at least +0.2 for 8"°N (%o), on the basis of repeated internal standards. We used
four traits related to resource acquisition, nutrient availability and biogeochemical
cycling to characterize plant functional diversity: SLA, 8*°N, leaf N:P ratio and leaf
N:C ratio”. SLA is defined as the light-capturing surface area per unit of dry mass
(m?kg')>7. SLA has been shown to correlate with net photosynthetic capacity,
leaf longevity, relative growth rate, litter decomposition and nutrient cycling®*”">"".
Stable nitrogen isotope (8°N, %o) describes the ratio of *N to *N in foliar tissue”.
Leaf 3"°N has been used as an integrative measure of N cycling®. Variation in the
ratio of N and "N provides information on the differences in N acquisition and
origin N. Furthermore, it has been shown to be positively correlated with N-fixing
microbial associations’. Leaf N:P ratio reflects shifts in the allocation of N towards
rubisco for photosynthesis and P towards ribosomal RNA for protein synthesis and
has been shown to decrease with latitude?””. Leaf N:C ratio reflects shifts between
carbohydrates and proteins in leaf tissue and is a good predictor of decomposition
rates’"". To be consistent with methods used for microbial analyses, observations
for many species within each genus were averaged to create a genus-level mean
trait value for each plot. This only occurred when many measurements per species
per genus were available in a plot.

DNA extraction. Community DNA was extracted using a grinding SDS lysis
extraction methods followed by gel purification as described previously® from 5g
of mixed soils from nine sampling cores pooled from each square-metre plot. DNA
quality was assessed using NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies). DNA concentration was measured by PicoGreen using a FLUOstar
OPTIMA fluorescence plate reader (BMG LABTECH).

Sequencing methods. Specific PCR was performed to amplify soil community
DNA using primers of the V4 region of 16S rRNA genes for bacteria and internal
transcribed spacer (ITS) between 5.8S and 28S rRNA genes for fungi as described
previously’®. PCR amplicons were sequenced by an Illumina MiSeq sequencer.
The raw reads of 16S and ITS were processed as previously reported™. Pair-end
sequences were joined with FLASH (ref. **). Unqualified sequences were filtered
by Btrim program®. U-CHIME (ref. *) was used to remove chimeras before
operational taxanomic unit (OTU)s were obtained by UCLUST at the 97%
sequence identity®. Representative sequences of OTUs were aligned PyNAST
(refs. **7) for 16S and MUSCLE (ref. **) for ITS. The alignments were then used

to construct an approximately maximum-likelihood phylogenetic tree using
FastTree2 program®. Taxonomic identity of each representative sequence was
determined using the RDP Classifier” and chloroplast, mitochondria and archaeal
sequences were removed from 16S dataset. In addition, singletons detected

solely in one of the subsamples were discarded before the statistical analyses to
remove noise from the dataset. After the OTU table was generated, we rarefied
each sample to the sequencing depth of 25,901 per sample for 16S and 13,688 per
sample for ITS. To address concerns that arise with the use of rarefied data, we

did a simulation to compare the accuracy of CWM calculated after normalization
by different methods. DESeq or edgeR was recommended to replace rarefying’.
Isometric log-ratio, additive log-ratio and centred log-ratio are recommended
considering compositional data issues”. Since isometric and additive log-ratios are
not applicable to CWM calculation (data cannot match taxa trait after transform),
we compared rarefying with centred log-ratio, DESeq, edgeR and proportion
without rarefying. To simulate a local community, we randomly draw 10,000 OTUs
from the phylogenetic tree observed in our study. Then, the trait of each OTU,
defined as the optimum environmental condition for each OTU, is simulated as a
Brownian motion model of evolution. The individual number (total abundance)
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is 1 10%, which is close to the total number of bacterial cells in 1g of soil. The
abundance of each OTU depends on the fitness (that is, difference of the trait and
environmental condition) and is calculated using a Gaussian function. The CWM
value calculated from the 1 X 10® individuals is the expected ‘true CWM. We
simulated sequencing results with different library sizes (sequencing depth, from
1x10? to 5% 10°) as random draw from the 1 x 10® individuals. Then, the simulated
sequencing results are normalized by different methods and CWM is calculated
after normalization. The R code and tree file are available as Supplementary Data
4. The results (Supplementary Fig. 7) demonstrated: (1) rarefying led to accurate
estimation of CWM across all tested library sizes; (2) rarefying to 100 reads showed
higher standard deviation of CWM than other methods but rarefying to 10,000
reads obtained high precision without obvious standard deviation; (3) DESeq and
edgeR resulted in obviously incorrect CWM unless the library size is large enough;
(4) centred log-ratio totally transformed the data, thus always miscalculating
CWM. The results indicate the ‘rarefying and compositional issue’ is not a notable
problem for CWM calculation and current recommended solutions to the issue
are not applicable or necessary for CWM calculation. The OTU tables are available
at http://www.ou.edu/ieg/publications/datasets and the raw sequencing data

have been deposited in the NCBI Sequence Read Archive under accession code
PRJNA308872. On the basis of the rarefied OTU table, we calculated relative
abundance of each OTU in each sample (¢,) and average relative abundance of
each OTU in each site (¢;).

GeoChip hybridization and data processing. The purified DNA was analysed

by GeoChip 5.0. DNA labelling, hybridization and imaging were performed as
previously described”**. The raw GeoChip data were preprocessed using a data
analysis pipeline (http://ieg.ou.edu/microarray/). Outliers and unreliable signals
were identified by the microarray imaging software (Agilent) and removed before
further analysis. The raw data were normalized across samples by the sum of
target spot signals and unqualified spots (for example, signal-to-noise ratio less
than 2.0) were removed. The within-array normalization was performed on

the basis of signals of universal standards. Across all samples, spot signals were
normalized by the average signal intensity of control spots and then by the sum of
all sample spot signals. Next, the spots with: (1) a signal-to-noise ratio less than
2.0, (2) a coefficient of variation larger than 0.8, or (3) a raw signal less than 100
were removed as unqualified readings. The qualified signals in each sample were
logarithmic transformed and divided by the mean of qualified signals in the sample
to get final signals of target spots. Each target spot represents a probe, that is a
functional gene in a certain type of microorganisms, usually a gene in a certain
species, subspecies or strain. In this study, we focused on the probes of functional
genes involved in the cycling of C, N and P (Supplementary Table 1). For each
functional trait represented by a certain gene (trait j), we identified all probes of
gene j belonging to a certain taxon (taxon i) and calculated the average signal of
detected probes in a certain plot (plot [) to measure the functional trait j of taxon i
in plot I (4;;). We also calculated a probe signal in each site as the sum of the probe
signal across all samples from the site. Then, for gene j, the average signal of all
probes belonging to taxon i in a site (site k) was used to measure the functional
trait j of taxon i in site k (4;;). The microarray data presented are available at http://
www.ou.edu/ieg/publications/datasets.

Mycorrhizal associations. Mycorrhizal associations were categorized using
Nguyen et al. for fungi and Wang and Qiu’>*°. Mycorrhizal associations included
arbuscular mycorrhiza, ectomycorrhiza, ericoid mycorrhiza (trees only) and their
combinations calculated as percentages. Percentage was calculated on the basis of
taxon abundance for arbuscular mycorrhiza, ectomycorrhiza and all mycorrhiza
(Supplementary Table 4).

Analysis. All analyses were performed using the statistical software R. To
characterize patterns of functional traits across temperature, we calculated
abundance weighted community level trait metrics using genus abundances in each
site k for each trait j. CWMj, was calculated for each site k for each trait j as:

CWMjx = Z¢y ik (1)

where ¢, is the relative abundance of taxa i in site k, A, is the trait mean of taxa i in
site k. CWM;, was calculated for each plot [ for each trait j as:

CWM = Z¢y i @)

where ¢, is the relative abundance of taxa i in plot [, 4;; is the trait mean of taxa i in
plot I. This metric is commonly used in trait-based community ecology in plants
but has never been applied to microbial communities. To apply it to microbial
communities, we make three general assumptions (Supplementary Box 1). First,
for each soil sample, we used the output from GeoChip data for each functional
gene as a measure of gene abundance per gene per taxa®*’. An assumption of
this approach is that GeoChip output corresponds to microbial functional capacity
(ranging from low to high capacity). If the presence of a functional gene has a low
occurrence value obtained using GeoChip then that taxon has a low capacity for
that function (low potential rate of corresponding reaction per unit of microbial
biomass). Second, the taxa detected by both sequencing and GeoChip analysis

1305



ARTICLES

NATURE ECOLOGY & EVOLUTION

may represent the major taxon with the function of interest due to greater genomic
coverage of more common taxa. Third, 16S and ITS sequencing results can be used
to measure the relative abundances of taxa. Results of 16S and ITS sequencing are
now widely serving as practical measures of taxa relative abundances. Although
amplicon sequencing has reproducibility issues, current amplicon sequencing

can still be useful and obtain acceptable (though relative) reliability if used
appropriately. To ensure appropriate use, we set standard biological replicates,
remove singletons and used abundance rather than binary results””.

To evaluate the relationships between CWM;; traits for plants, microbes and
MAST, a linear regression was performed using the Im function in base R. To assess
the multivariate trait space, a principal component analysis was conducted on the
standardized CWM; data using the prcomp function in base R. Linear regression
was used to assess the relationship between PC1 and MAST for plants, bacteria and
fungi. PC1 for both bacteria and fungi were then compared to PC1 for plant traits
using linear regression. We used simple linear regression, multiple linear regression
and piecewise structural equation modelling to explore relationships between
soil environment, microbial functional traits and plant functional traits (Table 1).
In these models, all dependent and independent variables are standardized PC1
scores that characterize variation in soil environment variables, bacterial functional
traits, fungal functional traits and plant functional traits. We evaluated the
hypothesis that soil environment variables (MAST, MASM and pH) are primary
drivers of variation in microbial and plant functional traits by using the PC1 for
the soil environment. AICc was used to indicate the preferred model obtained via
d-separation and/or AICc model selection. Path diagrams were created to represent
the relationship between measured variables (for example, PC1 for soil, plants,
bacteria and fungi) with arrows that represent the unidirectional relationships
between those variables, with significance set to @ =0.05. Standardized effect
sizes and coefficients of determination (% partial r* reported for multiple linear
regressions) were calculated and used to scale the arrows.

Relative importance of explanatory variables was conducted to explore
the relationship between MAST and MASM. A multiple linear regression in
the form of (trait=a + soil temperature (x) + soil moisture (x)) was used to
determine importance of soil temperature compared with soil moisture. The R
package relaimpo was used to calculate the relative importance of MAST and
MASM on each CWM trait as well as each PC1 for plants, bacteria and fungi'®
(Supplementary Table 5).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Raw sequencing data have been deposited in the NCBI Sequence Read Archive
under accession code PRJNA308872. The OTU tables and microarray data
presented are available at http://www.ou.edu/ieg/publications/datasets. Additional
data files and r-scripts are available at https://osf.io/thjxs/. Community-weighted
mean trait data are available as Supplementary Data 1-3.

Code availability

R-script used for data formatting and statistics are available on the Open Science
Framework website https://osf.io/thjxs/. Code for the simulation is available as
Supplementary Data 4.
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