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A key challenge in developing a predictive framework for 
ecosystem functioning is that we lack a mechanistic under-
standing of the relationships between climate, plant traits, 

microbial traits and ecosystem processes1,2. While analyses of com-
munity trait compositions are increasingly used to understand the 
processes shaping biodiversity and biogeography, the links between 
above-ground traits and below-ground microbial processes remain 
largely unknown3,4. Nonetheless, an implicit assumption in trait-
based ecology is that generalizable relationships between traits 
and the environment are linked across trophic levels to influence 
ecosystem processes5,6. Although recent studies have developed 
conceptual frameworks for understanding the distribution of traits 
in diverse trophic groups7–11, most empirical research has focused 
on plant traits5,12–15 (but see refs. 16,17) and few studies have directly 
examined relationships between traits across many trophic groups 
using locally collected data1,18–21.

Here, we provide a conceptual framework for understanding how 
traits vary along a temperature gradient if both plants and microbes 
are independently driven by the same thermodynamics (Fig. 1). 
Building on past studies, Fig. 1 uses the life history/resource acquis-
itive-conservation continuum22 to graphically organize predictions 
from several trait-based hypotheses along a temperature gradient. 

A finding of macroecology and biogeography is that temperature is 
a central driver that shapes and shifts variation in biological diver-
sity23 (Fig. 1). Furthermore, trait-based ecology has shown that tem-
perature is a central driver of plant diversity via selection on traits 
linked to plant hydraulics, leaf energy balance, carbon and water 
gas exchange and nutrient use22,24. Trait-based ecology states that 
such environmentally driven variation and shifts in traits will in 
turn influence ecosystem functioning (Fig. 1)2. Indeed, shifts in the 
distribution and diversity of plant functional traits have been linked 
to variation in rates of nutrient uptake25, litter decomposition25,26 
and ecosystem productivity27. Also, it has been shown that plant 
traits related to the resource acquisition-conservation continuum 
may scale up to influence ecosystem-level nutrient cycling6,28–30. 
Since microbes play a critical role in the regulation of ecosystem 
functioning via decomposition and nutrient cycling, an emer-
gent prediction of trait-based ecology is that shifts in temperature 
should be associated with corresponding shifts in plant traits and  
microbial function, resulting in ecological feedbacks between plants 
and microbes31–33.

In Fig. 1, we can use the resource acquisition-conservation 
continuum and the above findings to make predictions for shifts 
in plant traits across temperature gradients and assess how these 
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shifts may drive or be driven by shifts in microbial functioning. For 
example, plant communities dominated by acquisitive traits (such 
as high specific leaf area (SLA) and nitrogen-rich leaves) corre-
spond with bacterial metabolic pathways that yield faster rates of 
decomposition and nutrient cycling, slower rates of C sequestra-
tion30,33,34 and promote arbuscular mycorrhizal fungal associations 
or reduced dependence on mycorrhizal associations35,36. In contrast, 
communities dominated by more conservative traits (for example, 
low-SLA and nitrogen-poor leaves) tend to be associated with less 
fertile soils that limit microbial metabolism, resulting in slower 
rates of decomposition and nutrient cycling3,30,34,37 and promoting 
ectomycorrhizal fungal associations19,35,36,38. Colder and/or shorter 
growing seasons are expected to select for more conservative leaf 
traits that buffer leaf temperatures relative to air temperatures and 
promote increased rates of net photosynthesis and plant growth24,39. 
Thus, across a broad temperature gradient, variation in plant 
functional trait composition may inform understanding of plant–
microbe interactions and their influence on soil nutrient cycling 
and decomposition.

Building on this framework (Fig. 1), we take an integrative 
approach to assess three prominent hypotheses: (1) the soil-
substrate age hypothesis (SSH)28,40,41, (2) the growth rate hypoth-
esis (GRH)39,42–44, and (3) the adaptive trait continuum hypothesis 
(ATH)45,46. The SSH posits that tropical soils are P-limited as a result 
of increased leaching due to high rainfall and old soil age, whereas 
higher latitude soils are N-limited28,47.The GRH links the elemen-
tal composition of organisms to their metabolic rates where species 
with rapid growth have decreased N:P ratios due to increased tissue 
P-content as the result of increased allocation to P-rich ribosomes 
for protein synthesis39,42–44. The GRH has important implications for 
understanding variation in trait composition and nutrient cycling 
across broad temperature gradients39. For example, GRH states that 
in increasingly colder climates, selection to counteract the kinetic 
effects of temperature on growth selects for more leaf P relative to 
leaf N (refs. 43,45). Both hypotheses predict an increase in plant tissue 
N:P ratio with increases in decreased latitude and higher tempera-
tures. This shift in plant leaf N:P ratio influences the functioning of 
soil microbes by altering the relative inputs of either N or P into the 
system, leading to reduced microbial biomass in N-limited regions 
and reduced microbial metabolism in P-limited regions48. Building 

on the GRH, the ATH states that shifts in trait composition and 
diversity reflect selection for optimal matching of phenotypes with 
local climate45,46. Therefore, it is not only important to understand 
how individual traits vary across environmental gradients but to 
assess the combination of traits in a community. These hypotheses 
provide a predictive framework for describing plant-trait distribu-
tions that can be applied to understanding and predicting micro-
bial-trait distributions related to nutrient cycling.

In this study, we quantify variation in the dominance of both 
plant and microbial functional traits to assess proposed mecha-
nisms underlying shifts in species assemblages across temperature. 
We examined 19 bacterial traits and 13 fungal traits (represented 
by functional genes; Supplementary Table 1) from 30 soil microbial 
communities from 1,134 soil cores (Supplementary Table 1) and four 
plant leaf traits (SLA, N:C ratio, N:P ratio and δ15N; Supplementary 
Table 1) from 30 vegetative plots at six sites spanning a large lati-
tudinal temperature gradient as characterized by mean annual soil 
temperature (MAST; Supplementary Fig. 1).

Results
Soil-substrate age hypothesis and growth rate hypothesis. First, 
we evaluated the SSH and GRH for how key traits related to C-, 
N- and P-cycling in plants, bacteria and fungi vary across tem-
perature and latitude. For plants, we observed an overall shift in 
the community-weighted mean (CWM) trait value from more 
conservative traits (thick, dense leaves) in more variable cold cli-
mates to more acquisitive traits (thin, less dense leaves) in more 
stable climates (SLA r2 = 0.636, P < 0.0001 and N:C ratio r2 = 0.693, 
P < 0.0001; Fig. 2a,d). As soil C increases in colder climates  
(see Supplementary Table 2), bacterial and fungal CWM traits 
for C degradation of pectin (rhamnogalacturonan lyase, RGL) 
showed opposite relationships, significantly decreasing for bacteria 
(RGL r2 = 0.611, P < 0.0001; Fig. 2b) and increasing for fungi (RGL 
r2 = 0.326, P = 0.001; Fig. 2c) with increased MAST. Leaf CWM 
δ15N increased significantly with MAST (r2 = 0.713, P < 0.0001;  
Fig. 2g). Four of the six bacterial functional traits related to N cycling 
decreased significantly with increased MAST (Supplementary  
Table 3 and Fig. 2h). Furthermore, fungal functional traits associ-
ated with denitrification (nirK) and P degradation (ppx) were sig-
nificantly greater in the tropics (Supplementary Table 3 and Fig. 2l). 

Adaptive trait continuum
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Fig. 1 | Coordinated trade-offs in plant functional traits and their relation to microbial and ecosystem processes. Temperature is a primary environmental 
driver that varies across latitude, with cooler temperatures represented in maroon on the left and warmer temperatures in yellow on the right.
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We found an increase in ectomycorrhizal associations in temper-
ate regions (Supplementary Table 4). Furthermore, the leaf CWM 
N:P ratio increased with MAST (Fig. 2j; r2 = 0.463, P > 0.0001) and 
decreased with latitude (r2 = 0.596, P > 0.0001) where 20 of the 30 
plots had values of leaf N:P ratios greater than 15.

Adaptive trait continuum hypothesis. To evaluate the ATH, we 
assessed shifts in multivariate trait space for plant, bacterial and 
fungal functional traits across MAST. We conducted principal com-
ponents analyses for traits related to C-, N- and P-cycling using 
CWMs for plant, bacteria and fungi. Principal component 1 (PC1) 
accounted for 76.4% of the variation in plant functional traits, 56% 
of the variation in bacterial functional traits and 55.8% of the varia-
tion in fungal functional traits (Fig. 3; biplots are in Supplementary 
Figs. 2–4). Consistent with the ATH, plants and bacteria (but not 
fungi) showed pronounced, directional shifts in multivariate func-
tional trait space across this broad soil temperature gradient (Fig. 3).  
The natural log of MAST explained a large proportion of the varia-
tion in plant (Fig. 3a; r2 = 0.825, P > 0.0001) and bacterial (Fig. 3b; 
r2 = 0.754, P > 0.0001) functional traits. These shifts in microbial 
and plant functional diversity were more strongly correlated with 
soil temperature than with soil moisture (Supplementary Table 5).

Next, we used simple linear regression, multiple linear regres-
sion and piecewise structural equation modelling to explore rela-
tionships between soil environment, microbial functional traits and 

plant functional traits (Table 1). In these models, all dependent and 
independent variables are PC1 scores that characterize variation in 
soil environment variables (S), bacterial functional traits (B), fungal 
functional traits (F) and plant functional traits (P).

First, we build on the ATH to evaluate how the local soil envi-
ronment as measured through key variables (PC1 of MAST, mean 
annual soil moisture (MASM) and pH; Supplementary Fig. 5) drive 
variation in microbial and plant functional traits. This was sup-
ported by simple regression models 1–3 (Table 1), which showed 
that functional traits of plants, bacteria and fungi varied signifi-
cantly with the soil environment (all P ≤ 0.05). The soil environ-
ment explained 74% of the observed variation in plant functional 
traits, 64% of the observed variation in bacterial functional traits 
and 13% of the observed variation in fungal functional traits, sug-
gesting that plant functional traits followed by bacterial functional 
traits are more strongly associated with soil environment variables 
than are fungal functional traits.

Next, building from models 1–3 (Table 1), we constructed mul-
tiple regression models that use soil environment and functional 
traits as covariates for predicting variation in plant, bacterial and 
fungal functional traits (models 4–7, Table 1). For models pre-
dicting functional variation for each clade, inclusion of functional 
covariates gave similar results to those of models 1–3 (Table 1) with-
out a significant preference for the multiple regression models over 
their simple regression counterparts.
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Fig. 2 | Shifts in community-weighted leaf and microbial traits that influence soil nutrient availability across 30 forest plots at six sites spanning a 
broad latitudinal temperature gradient. a, SLA as a function of the natural log of MAST (lnMAST, °C). b, Rhamnogalacturonan lyase (RGL, a carbon 
degradation gene) of bacteria as a function of lnMAST. c, RGL of fungi as a function of lnMAST. d, Leaf N:C ratio as a function of lnMAST. e, Endoglucanase 
(endoglucanase, a carbon degradation gene) of bacteria as a function of MAST. f, endoglucanase of fungi as a function of lnMAST. g, Leaf nitrogen isotope 
(δ15N) as a function of lnMAST. h, Urease alpha subunit (ureC, a nitrogen gene associated with ammonification) of bacteria as a function of lnMAST.  
i, ureC of fungi as a function of lnMAST. j, Leaf N:P ratio as a function of lnMAST. k, Exopolyphosphatase (ppx, a phosphorus degradation gene) of bacteria 
as a function of lnMAST. l, ppx of fungi as a function of lnMAST. Circles, plant traits; triangles, bacterial traits; squares, fungal traits. Solid blue line, linear 
regression for significant relationships (P < 0.05). Grey area, standard error of the linear regression. Site abbreviations: AND, HJ Andrews Experimental 
forest; BCI, Barro Colorado Island; CWT, Coweeta LTER; HFR, Harvard Forest; LUQ, Luquillo LTER; NWT, Niwot Ridge LTER.
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On the basis of multiple regression results (models 4–7, Table 1), we 
used piecewise structural equation models (piecewise SEM, refs. 49,50)  
with second-order Akaike information criterion (AICc) model 
selection51 to explore directional causal relationships between vari-
ables. The multiple regression models 4–7 were written as SEMs 
with soil PC1 as the exogenous variable (models 8–11, Table 1). 
Most SEMs were preferred (all AICc ≤ 32, except models 10 and 15) 
over their simple and multiple regression counterparts. For models 
comprising bacterial traits and plant traits (models 8–9), d-separa-
tion51 identified missing paths between soil environment and plant 
traits (model 8) or soil environment and bacterial traits (model 9). 
For both models, inclusion of missing paths and removal of non-
significant paths yielded model 12 (r2S!P ¼ 0:74; r2S!B ¼ 0:64

I
;  

Fig. 4a and Table 1), which is the preferred model combining plant 
traits and bacterial traits (AICc = 22). This model indicates that 
variation in the soil environment independently drives both plant 
functional traits and bacterial traits. For models considering fun-
gal traits and plant traits (models 10–11, Table 1), there were no 
significant paths between fungal and plant traits and d-separation51 
identified missing paths between soil environment and plant traits 
(model 10) or fungal traits (model 11). For both models, inclusion 
of missing paths and removal of non-significant paths gave model 
13 (r2S!P ¼ 0:74

I
; Table 1), which is the preferred model on the basis 

of fungal and plant traits (AICc = 7). This model indicates that there 
are no causal pathways between fungal traits and plant traits or soil 
environment. The resulting model excludes fungi, emphasizing 
the relationship between the soil environment and plant traits and 
suggesting that variation in plant traits is independently driven by 
variation in the soil environment (Fig. 4b,e).

We constructed two more (14 and15, Table 1) that examine poten-
tial relationships between soil, bacteria and fungi only (these mod-
els do not consider plant functional trait variation). Consistent with 
simple linear regression models 2 and 3 (Table 1), models 14 and 15 
showed that variation in soil environment was a significant predic-
tor of variation in bacterial and fungal functional traits, respectively. 
However, these models also indicated that there were no significant 
paths between bacterial and fungal traits and d-separation51 identi-
fied additional missing paths between soil environment and fungal 
traits (model 14) or bacterial traits (model 15). For both models 14 
and 15, inclusion of missing paths and removal of non-significant 
paths gave models 16 and 17, respectively. Of these models, AICc 
model selection identified model 17 (r2S!B ¼ 0:73; r2F!B ¼ 0:25

I
; 

Fig. 4c and Table 1) as the preferred model combining bacterial and 
fungal functional traits (AICc = 10). Model 17 indicates that when 

plant functional traits are not considered, variation in bacterial 
functional traits is independently driven by variation in soil envi-
ronment and fungal functional traits and there are no significant 
pathways between soil environment and fungal traits (Fig. 4c,f).

Discussion
This study assessed a central hypothesis of trait-based ecology—
namely that temperature drives shifts in functional traits associated 
with decomposition and nutrient availability to ultimately influence 
ecosystem processes23,28,39,45,52,53. The latitudinal diversity gradient 
provides a platform for empirically testing trait-based hypotheses 
for nutrient availability (SSH)28,47, nutrient cycling via the kinetic 
effects of temperature on growth (GRH)39 and finally how tempera-
ture shapes the optimal phenotype (ATH)45. These hypotheses pro-
vide a predictive framework for describing plant traits across a broad 
temperature gradient and applying them to characterize shifts in key 
microbial traits provides a more thorough understanding of nutri-
ent availability and cycling (Fig. 1). Also, this integrative approach 
provides insight to how abiotic factors drive variation in the multi-
variate trait composition of plants and microbes, which may result 
in direct and/or indirect ecological feedbacks. These biotic inter-
actions may be characterized as shifts in microbial functional trait 
composition driven by shifts in plant functional trait composition, 
or as shifts in plant functional traits driven by shifts in microbial 
traits. While these interactions may not be mutually exclusive, both 
influence soil properties and chemistry, further shaping feedbacks 
between organisms and their environment.

Soil-substrate age hypothesis. The SSH comes from the observa-
tion that soil nutrient content changes with soil age from weath-
ering and leaching, and posits that tropical soils are P-limited due 
to increased leaching and old age, whereas higher latitude soils are 
N-limited28. We found associated changes in plant resource acqui-
sition strategies with changes in nutrient availabilities. Specifically, 
in support of the SSH, we observed that leaf N:P ratios generally 
decreased with latitude and increased with temperature. However, 
20 of the 30 plots had values of N:P ratio greater than 15, sug-
gesting that plots in Colorado and North Carolina may also be 
P-limited28,30,54. Furthermore, we examined CWM leaf δ15N as an 
integrative measure of total N-cycling (where more negative leaf 
δ15N corresponds to lower N availability and more N-fixing micro-
bial associations53,55) and found it increased with MAST. Overall, 
the low levels of leaf δ15N observed for temperate regions further 
supports the proposed N-limitation at higher latitudes and colder 
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Table 1 | Models exploring drivers of variation in microbial and plant functional traits that are relevant for ecosystem nutrient cycling

Model Path diagram P r2 or adjusted R2 AICc

Simple linear regression models

1
S P

0.86

9.08 × 10−10 0.74 50

2
S B

0.80

1.04 × 10−7 0.64 60

3 S F
0.36

0.05 0.13 87

Multiple linear regression models
4 S

P

0.64, 0.39

0.27, 0.1
0

B

2.40 × 10−9 0.75 50

5 0.47, 0.15

0.38, 0.1
0

S

B

P

2.18 × 10−7 0.66 60

6 0.92, 0.76

–0.16, 0.0
8

S

P

F

3.22 × 10−9 0.75 50

7 0.82, 0.18

–0.53, 0.0
8

S

F

P

0.05 0.14 87

8
S B

0.80, 0.64

P

0.79, 0.62

0 (NS) NA 32

9
S P

0.86, 0.74

B

0.79, 0.62

3.7 × 10−2 (NS) NA 22

10
S F

0.36, 0.13
P

0.17, 0.03

0 (NS) NA 57

11
S P

0.86, 0.74

F

0.17, 0.03

0.02 (NS) NA 23

12
0.86, 0.7

4

0.80, 0.64

P

S

B

0.09 NA 21

13
S P

0.86, 0.74

F 1.0 NA 7

14
S B

0.80, 0.64
F

0.01, 0.00
1 × 10−3(NS) NA 30

15
S F

0.36, 0.13
B

0.01, 0.00
0 (NS) NA 55

(Continued)
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climates, suggesting ectomycorrhizal associations may be favoured 
in these regions. Indeed, we found an increase in ectomycorrhi-
zal associations in temperate regions (Supplementary Table 4). 
Increased ectomycorrhizal associations facilitate decomposition of 
the more recalcitrant leaf litter associated with slow-conservative 
leaf traits35,56. In addition to shifts in mycorrhizal associations, a fun-
gal functional trait associated with denitrification (nirK) was found 
to be significantly greater in the tropics (Supplementary Table 3), 
supporting the SSH which predicts an increase in N availability in 
lower latitudes that may further correspond with fewer ectomycor-
rhizal associations in these regions. Most bacterial functional traits 
related to N-cycling significantly decreased with increased MAST, 
which may reflect fewer enzymatic active sites in tropical systems 
as the result of increased availability of more labile substrates for 
extraction and use by bacteria.

Growth rate hypothesis. The GRH predicts that species with rapid 
growth have decreased N:P ratios due to increased P-content of tis-
sues as the result of greater allocation towards P-rich ribosomes for 
protein synthesis39,42–44. In ecosystems with cold, short growing sea-
sons, selection for more rapid growth rates result in more species 
with higher P irrespective of P limitations. However, if the system 
is both P-limited and there is less selective pressure for fast growth 
rates then plants should have increased N:P ratios39,42–44. Compared 
to colder forests, warmer forests have trees with canopies with low 
foliar C and P but higher N content, as supported by the observed 
increase in N:P ratios with increased temperature. Additionally, the 
observed shift in soil nutrient availability (N:C ratio; Supplementary 
Table 2) is supported by an increase in CWM leaf δ15N with tem-
perature, indicating that tropical ecosystems are more N-rich with 
higher rates of litter decomposition (increase in leaf N:C ratios) that 
are matched with more acquisitive plant traits (increase in SLA)55. 
This functional shift is matched by soil bacteria with overall higher 
capacities for C, N and P use in cooler climates, possibly driven by 
a combination of substrate availability and complexity. For example, 
temperate soils are large C reserves, where the high complexity of C 
substrates result in lower rates of decomposition that may require 
increased affinity of bacterial functional traits associated with 
C-cycling. Similarly, N limitation in temperate climates may result in 
higher capabilities of N degradation to effectively use the low biolog-
ically available nutrient (Fig. 2b,e,h,k and Supplementary Table 1). 
However, we observed an opposite pattern for fungi, suggesting they 
have a greater (albeit more variable) capacity for C (RGL increased 
with MAST), N (nirK increased with MAST) and P (ppx increased 

with MAST) use in warmer climates despite nutrient limitations 
(Fig. 2c,l and Supplementary Table 3, nirK). This suggests that bac-
teria and fungi differentially contribute to nutrient cycling across the 
gradient and may respond differently to changes in climate.

Adaptive trait continuum hypothesis. Building on the ATH45, if 
the latitudinal diversity gradient represents a change in species rich-
ness57–59, then we expect a change in the phenotypic optimum that 
necessitates a change in community trait distribution45. We can fur-
ther make predictions for how traits should shift from more con-
servative in lower temperatures of high latitudes to more acquisitive 
in higher temperatures of lower latitudes. Although we assessed 
traits individually and observed clear shifts in the conservative-
acquisitive continuum with temperature, consistent with the leaf 
economic spectrum hypothesis52,60,61, changes in multivariate trait 
space provide an integrative understanding of how the phenotypic 
optima change with temperature. We documented shifts in multi-
variate functional trait space across the temperature gradient for 
plants and bacteria that ultimately reflect changes in life history, 
genetic variation and community variation46. In contrast to recent 
findings21, we found a stronger relationship between traits of plants 
and bacteria than those of plants and fungi. Although we did not 
observe a significant shift in the multivariate trait space for fungi, 
this may suggest that soil temperature is not a key driver in fungal 
traits across the latitudinal gradient, and that other abiotic or biotic 
properties may be more important for shaping fungal trait distribu-
tions35,53. It is also possible that this lack of relationship for fungi is 
the result of the functional traits measured in this study, suggesting 
that other plant or fungal trait combinations may be better predic-
tors. For example, given the importance of mycorrhizal fungi in the 
rhizosphere, and relationships between the rhizosphere and climate, 
it is possible that plant root traits and/or fungal morphological traits 
are more closely associated with temperature gradients62.

Conclusion
Variation in leaf traits directly affects soil-substrate quality, which 
in turn influences microbial activity and biogeochemical pro-
cesses31. Although our understanding of how plant traits influence 
these processes is still developing, few studies have assessed cou-
plings of plant and microbial functional traits across broad envi-
ronmental gradients63. For example, shifts in microbial functional 
composition could be driven by shifts in plant functional trait 
composition63. Alternatively, shifts in plant functional traits could 
be influenced by shifts in microbial traits that in turn influence  

Model Path diagram P r2 or adjusted R2 AICc
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The models use PC1 scores that characterize variation in soil environment variables (S), bacterial functional traits (B), fungal functional traits (F), and plant functional traits (P). Bolded numbers in 
the Model and AICc columns indicate the preferred model obtained via d-separation and/or AICc model selection. In the path diagrams, boxes represent measured variables and arrows represent 
unidirectional relationships between variables. Black arrows represent positive relationships, red arrows represent negative relationships, and grey arrows represent non-significant paths at α = 0.05. Non-
bolded numbers are standardized effect sizes, and bolded numbers are coefficients of determination (r2; partial r2 reported for multiple linear regressions). Arrow thickness has been scaled according to 
standardized effect sizes. NS, not non-significant relationship at α = 0.05; NA, not applicable.

Table 1 | Models exploring drivers of variation in microbial and plant functional traits that are relevant for ecosystem nutrient cycling 
(continued)
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soil properties and chemistry. Our results demonstrate the path-
ways of causality linking soil climate, microbial traits and plant 
traits (Table 1) and highlight coordinated shifts in both plant 
and microbial functional trait diversity across a broad latitudinal 
temperature gradient (Fig. 4). Together, these results support a 
key premise of trait-based ecology, where correlated variation in 
plant and bacterial functional traits linked to ecosystem processes 
are driven by temperature63. Changes in soil properties across the 
temperature gradient drive variation in plant functional traits and 
bacterial functional traits (Fig. 4a) reflecting nutrient limitation 
across broad ecological gradients28 and highlighting the regional 
effects of biogeochemical processes, microclimates and energy 
fluxes on microbial diversity10,32,33,64. However, fungal taxonomic 
and functional diversity are considerably less understood than 
both plants and bacteria, which may result in unobserved rela-
tionships and inexplicit biases.

Our findings underscore the importance of temperature in 
structuring the coupling of plant and microbial functional diver-
sity in and across forest ecosystems, as well as for biogeochemi-
cal cycling. As a result, they have implications for understanding 
and predicting ecological consequences of climate change. First, if 
temperature drives the observed shift in plant and bacterial func-
tioning from tropical to subalpine forests, ecosystems subjected 
to climate warming should also experience directional shifts in 
functional diversity and biogeochemistry. Our results provide 
comparisons of functional traits in and across bacterial, fungal 
and plant communities spanning a latitudinal temperature gradi-
ent. They also point to the importance of a trait-based approach 
for providing powerful tools and measures for projecting the 
effects of current and future climate warming6,7,10,65,66.

Although several challenges remain in fully comparing patterns 
of functional traits across taxonomic groups, our findings highlight 
the mechanisms that help shape biodiversity across temperature and 

further increase our understanding of the main drivers that structure 
and maintain diversity gradients. Limits on our ability to identify 
and quantify activity of microbes remain an outstanding challenge. 
Due to the complex and heterogeneous nature of soil, biases may 
be present during many steps of processing for sequencing, such 
as DNA extraction, PCR amplifications and primers67–70 leading to 
over/under-representation of certain taxa. Another challenge is that 
the presence of a gene in an organism does not necessarily mean that 
the gene is expressed. With the major advances in molecular tools, 
continued collections of in situ samples across broad environmental 
gradients will provide more insights to the mechanisms driving pat-
terns of functional diversity across trophic levels.

Methods
Study system. We collected data from six forest sites along a broad latitudinal 
temperature gradient from 9 to 44° N (Supplementary Fig. 1a). Five sites are part 
of the National Science Foundation (NSF) Long-Term Ecological Research (LTER) 
network: Niwot Ridge, Colorado (NWT); Harvard Forest, Massachusetts (HFR); H. 
J. Andrews Experimental Forest, Oregon (AND); Coweeta, North Carolina (CWT); 
Luquillo, Puerto Rico (LUQ). The sixth site, Barro Colorado Island, Panama (BCI) 
is administered by the Smithsonian Tropical Research Institute. The selected sites 
characterize variation from subalpine to temperate to tropical forest ecosystems, 
and span broad climate gradients, with mean annual temperatures ranging 
from 2.5 to 25.7 °C and mean annual precipitation ranging from roughly 500 to 
3,100 mm (Supplementary Fig. 1b). At each of these locations, a permanent 25-ha 
plot was established from which all sampling for woody plants and soil microbes 
occurred. Each 500 × 500 m2 (25 ha) plot was oriented north (Supplementary Fig. 6a).  
In each plot, we established five 0.1 ha ‘Gentry’ style vegetation plots that consisted 
of five 100 × 2 m2 transects and 21 individual square-metre soil plots. Each 100 m 
transect of the vegetation plots was divided into two 50 m segments and was 
separated by 8 m from the next 100 m transect, so that each ‘Gentry’ plot was 
located in a 42 × 100 m2 area (Supplementary Fig. 6b). The 21 square-metre soil 
plots were laid out on perpendicular transects (Supplementary Fig. 6c) with plots 
adjacent to 1, 10, 50, 100 and 200 m in each cardinal direction from a central 
square-metre plot. During the autumn of 2011 and spring on 2012, all woody 
vegetation greater than 1 cm at ground height was measured, identified and tagged. 
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Fig. 4 | Relationships between microbial and plant functional traits that are relevant for ecosystem nutrient cycling. a–c, Best-fit structural equation 
models (SEMs) exploring drivers of variation in microbial and plant functional traits. a, Best-fit SEM (model 12, Table 1) of the soil environment (S) on 
bacterial traits (B) and plant traits (P). b, Best-fit SEM (model 13, Table 1) of S on fungal traits (F) and P. c, Best-fit SEM (model 17, Table 1) of S on F and B. 
d, Principal component 1 (PC1) from the principal component analysis of plant functional traits as a function of PC1 from the principal component analysis 
of B (r2 = 0.621). e, PC1 from the principal component analysis of P as a function of PC1 from the principal component analysis of F. f, PC1 from the principal 
component analysis of B as a function of PC1 from the principal component analysis of F. In a–c, boxes represent measured variables and arrows represent 
unidirectional relationships between variables. Black arrows represent positive relationships, and red arrows represent negative relationships. Non-bold 
numbers are standardized effect sizes and bold numbers are coefficients of determination (r2; partial r2 reported for multiple linear regressions). Arrow 
thickness has been scaled according to standardized effect sizes. In d–f, PC1 from the principal component analysis of B as a function of PC1 from the 
principal component analysis of F. Blue line, linear regression for significant relationships (P < 0.05). Site abbreviations as in Fig. 2.

Nature Ecology & Evolution | VOL 3 | SEPTEMBER 2019 | 1298–1308 | www.nature.com/natecolevol1304



ArticlesNATure ECOlOgy & EvOluTiOn

At each site, we also collected and homogenized nine surface-soil cores (~10 cm 
depth, Oakfield Apparatus Company model HA) from 21 square-metre plots in the 
summer of 2012 (1,134 soil cores in total).

Plant functional traits. We collected five leaves from at least two individuals of 
the five most abundant species on the basis of their basal area in each plot at each 
site and averaged trait values at the genus level in each plot to match microbial 
level measurements (76 unique genus across sites; Supplementary Table 6). We 
measured four leaf traits related to resource acquisition, nutrient availability and 
biogeochemical cycling to characterize plant functional diversity: SLA, δ15N, leaf 
N:P ratio and leaf N:C ratio6,27,28,32. For each leaf, the fresh leaf area was measured 
using a flatbed scanner and the area was calculated using image analysis software 
ImageJ. Leaves were dried in a drying oven for a minimum of 72 h at 60 °C before 
the final dry mass was weighed. Leaves were then transported dry to the University 
of Arizona where they were placed again into a drying oven and ground into 
a fine homogenous powder for leaf stoichiometry and isotope assays. Total P 
concentration was determined using persulfate oxidation followed by the acid 
molybdate technique (APHA 1992) and P concentration was then measured 
colorimetrically with a spectrophotometer (ThermoScientific Genesys20). 
Concentrations of δ15N, C and N were measured by the Department of Geosciences 
Environmental Isotope Laboratory at the University of Arizona on a continuous-
flow gas-ratio mass spectrometer (Finnigan Delta PlusXL) coupled to an elemental 
analyser (Costech). Samples of 1.0 ± 0.2 mg were combusted in the elemental 
analyser. Standardization is on the basis of acetanilide for elemental concentration, 
NBS-22 and USGS-24 for δ13C and IAEA-N-1 and IAEA-N-2 for δ15N. Precision 
is at least ±0.2 for δ15N (‰), on the basis of repeated internal standards. We used 
four traits related to resource acquisition, nutrient availability and biogeochemical 
cycling to characterize plant functional diversity: SLA, δ15N, leaf N:P ratio and leaf 
N:C ratio71. SLA is defined as the light-capturing surface area per unit of dry mass 
(m2 kg–1)72,73. SLA has been shown to correlate with net photosynthetic capacity, 
leaf longevity, relative growth rate, litter decomposition and nutrient cycling6,27,72,74. 
Stable nitrogen isotope (δ15N, ‰) describes the ratio of 15N to 14N in foliar tissue75. 
Leaf δ15N has been used as an integrative measure of N cycling55. Variation in the 
ratio of 15N and 14N provides information on the differences in N acquisition and 
origin N. Furthermore, it has been shown to be positively correlated with N-fixing 
microbial associations76. Leaf N:P ratio reflects shifts in the allocation of N towards 
rubisco for photosynthesis and P towards ribosomal RNA for protein synthesis and 
has been shown to decrease with latitude28,77. Leaf N:C ratio reflects shifts between 
carbohydrates and proteins in leaf tissue and is a good predictor of decomposition 
rates78–80. To be consistent with methods used for microbial analyses, observations 
for many species within each genus were averaged to create a genus-level mean 
trait value for each plot. This only occurred when many measurements per species 
per genus were available in a plot.

DNA extraction. Community DNA was extracted using a grinding SDS lysis 
extraction methods followed by gel purification as described previously81 from 5 g 
of mixed soils from nine sampling cores pooled from each square-metre plot. DNA 
quality was assessed using NanoDrop ND-1000 Spectrophotometer (NanoDrop 
Technologies). DNA concentration was measured by PicoGreen using a FLUOstar 
OPTIMA fluorescence plate reader (BMG LABTECH).

Sequencing methods. Specific PCR was performed to amplify soil community 
DNA using primers of the V4 region of 16S rRNA genes for bacteria and internal 
transcribed spacer (ITS) between 5.8S and 28S rRNA genes for fungi as described 
previously58. PCR amplicons were sequenced by an Illumina MiSeq sequencer. 
The raw reads of 16S and ITS were processed as previously reported58. Pair-end 
sequences were joined with FLASH (ref. 82). Unqualified sequences were filtered 
by Btrim program83. U-CHIME (ref. 84) was used to remove chimeras before 
operational taxanomic unit (OTU)s were obtained by UCLUST at the 97% 
sequence identity85. Representative sequences of OTUs were aligned PyNAST 
(refs. 86,87) for 16S and MUSCLE (ref. 88) for ITS. The alignments were then used 
to construct an approximately maximum-likelihood phylogenetic tree using 
FastTree2 program89. Taxonomic identity of each representative sequence was 
determined using the RDP Classifier90 and chloroplast, mitochondria and archaeal 
sequences were removed from 16S dataset. In addition, singletons detected 
solely in one of the subsamples were discarded before the statistical analyses to 
remove noise from the dataset. After the OTU table was generated, we rarefied 
each sample to the sequencing depth of 25,901 per sample for 16S and 13,688 per 
sample for ITS. To address concerns that arise with the use of rarefied data, we 
did a simulation to compare the accuracy of CWM calculated after normalization 
by different methods. DESeq or edgeR was recommended to replace rarefying91. 
Isometric log-ratio, additive log-ratio and centred log-ratio are recommended 
considering compositional data issues92. Since isometric and additive log-ratios are 
not applicable to CWM calculation (data cannot match taxa trait after transform), 
we compared rarefying with centred log-ratio, DESeq, edgeR and proportion 
without rarefying. To simulate a local community, we randomly draw 10,000 OTUs 
from the phylogenetic tree observed in our study. Then, the trait of each OTU, 
defined as the optimum environmental condition for each OTU, is simulated as a 
Brownian motion model of evolution. The individual number (total abundance) 

is 1 × 108, which is close to the total number of bacterial cells in 1 g of soil. The 
abundance of each OTU depends on the fitness (that is, difference of the trait and 
environmental condition) and is calculated using a Gaussian function. The CWM 
value calculated from the 1 × 108 individuals is the expected ‘true’ CWM. We 
simulated sequencing results with different library sizes (sequencing depth, from 
1 × 102 to 5 × 105) as random draw from the 1 × 108 individuals. Then, the simulated 
sequencing results are normalized by different methods and CWM is calculated 
after normalization. The R code and tree file are available as Supplementary Data 
4. The results (Supplementary Fig. 7) demonstrated: (1) rarefying led to accurate 
estimation of CWM across all tested library sizes; (2) rarefying to 100 reads showed 
higher standard deviation of CWM than other methods but rarefying to 10,000 
reads obtained high precision without obvious standard deviation; (3) DESeq and 
edgeR resulted in obviously incorrect CWM unless the library size is large enough; 
(4) centred log-ratio totally transformed the data, thus always miscalculating 
CWM. The results indicate the ‘rarefying and compositional issue’ is not a notable 
problem for CWM calculation and current recommended solutions to the issue 
are not applicable or necessary for CWM calculation. The OTU tables are available 
at http://www.ou.edu/ieg/publications/datasets and the raw sequencing data 
have been deposited in the NCBI Sequence Read Archive under accession code 
PRJNA308872. On the basis of the rarefied OTU table, we calculated relative 
abundance of each OTU in each sample (ɸil) and average relative abundance of 
each OTU in each site (ɸik).

GeoChip hybridization and data processing. The purified DNA was analysed 
by GeoChip 5.0. DNA labelling, hybridization and imaging were performed as 
previously described93,94. The raw GeoChip data were preprocessed using a data 
analysis pipeline (http://ieg.ou.edu/microarray/). Outliers and unreliable signals 
were identified by the microarray imaging software (Agilent) and removed before 
further analysis. The raw data were normalized across samples by the sum of 
target spot signals and unqualified spots (for example, signal-to-noise ratio less 
than 2.0) were removed. The within-array normalization was performed on 
the basis of signals of universal standards. Across all samples, spot signals were 
normalized by the average signal intensity of control spots and then by the sum of 
all sample spot signals. Next, the spots with: (1) a signal-to-noise ratio less than 
2.0, (2) a coefficient of variation larger than 0.8, or (3) a raw signal less than 100 
were removed as unqualified readings. The qualified signals in each sample were 
logarithmic transformed and divided by the mean of qualified signals in the sample 
to get final signals of target spots. Each target spot represents a probe, that is a 
functional gene in a certain type of microorganisms, usually a gene in a certain 
species, subspecies or strain. In this study, we focused on the probes of functional 
genes involved in the cycling of C, N and P (Supplementary Table 1). For each 
functional trait represented by a certain gene (trait j), we identified all probes of 
gene j belonging to a certain taxon (taxon i) and calculated the average signal of 
detected probes in a certain plot (plot l) to measure the functional trait j of taxon i 
in plot l (λijl). We also calculated a probe signal in each site as the sum of the probe 
signal across all samples from the site. Then, for gene j, the average signal of all 
probes belonging to taxon i in a site (site k) was used to measure the functional 
trait j of taxon i in site k (λijk). The microarray data presented are available at http://
www.ou.edu/ieg/publications/datasets.

Mycorrhizal associations. Mycorrhizal associations were categorized using 
Nguyen et al. for fungi and Wang and Qiu95,96. Mycorrhizal associations included 
arbuscular mycorrhiza, ectomycorrhiza, ericoid mycorrhiza (trees only) and their 
combinations calculated as percentages. Percentage was calculated on the basis of 
taxon abundance for arbuscular mycorrhiza, ectomycorrhiza and all mycorrhiza 
(Supplementary Table 4).

Analysis. All analyses were performed using the statistical software R. To 
characterize patterns of functional traits across temperature, we calculated 
abundance weighted community level trait metrics using genus abundances in each 
site k for each trait j. CWMjk was calculated for each site k for each trait j as:

CWMjk ¼ Σϕikλijk ð1Þ

where ɸik is the relative abundance of taxa i in site k, λijk is the trait mean of taxa i in 
site k. CWMjl was calculated for each plot l for each trait j as:

CWMjl ¼ Σϕilλijl ð2Þ

where ɸil is the relative abundance of taxa i in plot l, λijl is the trait mean of taxa i in 
plot l. This metric is commonly used in trait-based community ecology in plants 
but has never been applied to microbial communities. To apply it to microbial 
communities, we make three general assumptions (Supplementary Box 1). First, 
for each soil sample, we used the output from GeoChip data for each functional 
gene as a measure of gene abundance per gene per taxa69,97,98. An assumption of 
this approach is that GeoChip output corresponds to microbial functional capacity 
(ranging from low to high capacity). If the presence of a functional gene has a low 
occurrence value obtained using GeoChip then that taxon has a low capacity for 
that function (low potential rate of corresponding reaction per unit of microbial 
biomass). Second, the taxa detected by both sequencing and GeoChip analysis 
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may represent the major taxon with the function of interest due to greater genomic 
coverage of more common taxa. Third, 16S and ITS sequencing results can be used 
to measure the relative abundances of taxa. Results of 16S and ITS sequencing are 
now widely serving as practical measures of taxa relative abundances. Although 
amplicon sequencing has reproducibility issues, current amplicon sequencing 
can still be useful and obtain acceptable (though relative) reliability if used 
appropriately. To ensure appropriate use, we set standard biological replicates, 
remove singletons and used abundance rather than binary results67,99.

To evaluate the relationships between CWMjl traits for plants, microbes and 
MAST, a linear regression was performed using the lm function in base R. To assess 
the multivariate trait space, a principal component analysis was conducted on the 
standardized CWMjl data using the prcomp function in base R. Linear regression 
was used to assess the relationship between PC1 and MAST for plants, bacteria and 
fungi. PC1 for both bacteria and fungi were then compared to PC1 for plant traits 
using linear regression. We used simple linear regression, multiple linear regression 
and piecewise structural equation modelling to explore relationships between 
soil environment, microbial functional traits and plant functional traits (Table 1). 
In these models, all dependent and independent variables are standardized PC1 
scores that characterize variation in soil environment variables, bacterial functional 
traits, fungal functional traits and plant functional traits. We evaluated the 
hypothesis that soil environment variables (MAST, MASM and pH) are primary 
drivers of variation in microbial and plant functional traits by using the PC1 for 
the soil environment. AICc was used to indicate the preferred model obtained via 
d-separation and/or AICc model selection. Path diagrams were created to represent 
the relationship between measured variables (for example, PC1 for soil, plants, 
bacteria and fungi) with arrows that represent the unidirectional relationships 
between those variables, with significance set to α = 0.05. Standardized effect 
sizes and coefficients of determination (r2; partial r2 reported for multiple linear 
regressions) were calculated and used to scale the arrows.

Relative importance of explanatory variables was conducted to explore 
the relationship between MAST and MASM. A multiple linear regression in 
the form of (trait = a + soil temperature (x) + soil moisture (x)) was used to 
determine importance of soil temperature compared with soil moisture. The R 
package relaimpo was used to calculate the relative importance of MAST and 
MASM on each CWM trait as well as each PC1 for plants, bacteria and fungi100 
(Supplementary Table 5).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing data have been deposited in the NCBI Sequence Read Archive 
under accession code PRJNA308872. The OTU tables and microarray data 
presented are available at http://www.ou.edu/ieg/publications/datasets. Additional 
data files and r-scripts are available at https://osf.io/thjxs/. Community-weighted 
mean trait data are available as Supplementary Data 1–3.

Code availability
R-script used for data formatting and statistics are available on the Open Science 
Framework website https://osf.io/thjxs/. Code for the simulation is available as 
Supplementary Data 4.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Trait data for the most abundant tree species based on basal area were collected for 30- 0.1 Ha forest plots. PCR amplicons for soil 
microbes were sequenced using Illumina MySeq. Functional genes for soil microbes were determine using a functional gene microarray, 
GeoChip 5.0. 

Data analysis All final data analyses, statistics, and figures were conducted using R (Version 3.3.1, https://www.R-project.org/). Details on GeoChip 5.0 
hybridization can be found at http://ieg.ou.edu/protocol.htm. Algorithms and software used for sequencing include the following 
software: Chimera Slayer, FLASH, UCLUST, BLAST, PyNAST, FastTree, and RDP classifier. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data Availability 
Raw sequencing data have been deposited in the NCBI Sequence Read Archive under accession code PRJNA308872. The OTU tables and microarray data presented 
are available at http://www.ou.edu/ieg/publications/datasets. Additional data files and r-scripts are available at https://osf.io/thjxs/. Community weighted mean 
trait data are available as Supplementary Data File 1-3.  
Code Availability 
R-script used for data formatting and statistics are available on the Open Science Framework website https://osf.io/thjxs/. Code for the simulation is available as 
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study includes 30 0.1 hectare forest plots and 126 1 meter-squared soil plots across six sites. All tree species above 1cm 
diameter at ground height were measured and identified. Traits were collected from the 5 most abundant species based on basal 
area for each plot. Nine soil-surface cores (10cm depth) were collected and homogenized for each soil plot and DNA was extracted 
from 5 grams of soil for which Illumina MySeq and GeoChip microarray were run. One HOBO Micro Station (Part # H21-002) was 
installed in each of the five Gentry tree plots at all six experimental sites to monitor continuous variation in soil moisture (using Soil 
Moisture Smart Sensor Part # S-SMB-M005) and temperature (12-Bit Temperature Smart Sensor Part # S-TMB-M002).

Research sample Research samples comprised all plants above 1cm at ground height that are rooted within six 500 x 2m Gentry style plots and nine 
homogenized soil core samples from 126 1 x 1m soil plots. The number of individuals and species varied widely between sites. The 
sites chosen represent a broad gradient in temperature and latitude of relatively undisturbed forests.

Sampling strategy All tree and soil plots are located within a 25 Hectare plot to capture spatial variation at each of the 6 study sites. Community 
weighted means were used to to assess trait variation of the most dominant species. 

Data collection Data were collected by authors.

Timing and spatial scale All samples were collected during peak growing season during 2012 and 2013. 

Data exclusions To be consistent with methods used for microbial analyses, observations for multiple species within each genus were averaged to 
create a genus-level mean trait value for each plot. This only occurred when multiple measurements per species per genus were 
available. Chloroplast, mitochondria and archaeal sequences were removed. In addition, singletons detected solely in one of the 
subsamples were discarded prior to the statistical analyses to 85 remove noise from the data set.

Reproducibility Species identification was conducted by local botanists at each site and species vouchers were deposited in local herbaria. Detailed 
protocols for soil DNA extraction, amplification and sequencing can be found on the IEG website (http://ieg.ou.edu/protocol.htm.). 

Randomization All sites were randomly located and plots within each site were systematically placed within the 25 Hectare area as to maintain 
consistency between sites and reduce plots selection. 

Blinding N/A

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions All fieldwork occurred during peak growing season at each site and more detailed information is available on http://

macroeco.lternet.edu/.

Location Location information is available in the extended data figures and http://macroeco.lternet.edu/. 
HJ Andrews LTER: Coniferous Forest, Longitude: -122.151041,  Latitude: 44.231094, Elevation (m): 860, Mean Annual 
Temperature (C): 8.5, Mean Annual Precipitation (mm): 2200. 
Coweeta  LTER: Deciduous Forest, Longitude: -83.431501,  Latitude: 35.048415, Elevation (m): 864, Mean Annual Temperature 
(C): 13.3, Mean Annual Precipitation (mm): 1906. 
Harvard Forest  LTER: Deciduous Forest, Longitude: -72.177094, Latitude: 42.539036, Elevation (m) 356.4, Mean Annual 
Temperature (C): 7.1, Mean Annual Precipitation (mm): 1066. 
Luquillo  LTER: Tropical Rainforest, Longitude: -65.815575,  Latitude: 18.324278, Elevation (m) 385.8, Mean Annual Temperature 
(C): 22.8, Mean Annual Precipitation (mm): 3460. 
Niwot Ridge:  LTER Alpine Tundra, Longitude:  -105.558347,  Latitude: 40.040896, Elevation (m) 3186, Mean Annual 
Temperature (C): -3.2, Mean Annual Precipitation (mm): 930. 
Barro Colorado Island: Tropical Rainforest, Longitude: -79.845988,  Latitude: 9.15872, Elevation (m) 157.1, Mean Annual 
Temperature (C): 27.5, Mean Annual Precipitation (mm): 2623.

Access and import/export Our sample processing and collection followed all applicable laws and used all necessary export and import permits.

Disturbance None.
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Methods
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