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Climate warming may stimulate microbial metabolism of soil carbon, causing a carbon-cycle-climate feedback whereby car-
bon is redistributed from the soil to atmospheric CO,. The magnitude of this feedback is uncertain, in part because warming-
induced shifts in microbial physiology and/or community composition could retard or accelerate soil carbon losses. Here, we
measure microbial respiration rates for soils collected from 22 sites in each of 3 years, at locations spanning boreal to tropical
climates. Respiration was measured in the laboratory with standard temperatures, moisture and excess carbon substrate, to
allow physiological and community effects to be detected independent of the influence of these abiotic controls. Patterns in
respiration for soils collected across the climate gradient are consistent with evolutionary theory on physiological responses
that compensate for positive effects of temperature on metabolism. Respiration rates per unit microbial biomass were as
much as 2.6 times higher for soils sampled from sites with a mean annual temperature of —2.0 versus 21.7 °C. Subsequent
100-d incubations suggested differences in the plasticity of the thermal response among microbial communities, with commu-
nities sampled from sites with higher mean annual temperature having a more plastic response. Our findings are consistent
with adaptive metabolic responses to contrasting thermal regimes that are also observed in plants and animals. These results
may help build confidence in soil-carbon-climate feedback projections by improving understanding of microbial processes

represented in biogeochemical models.

processes'. Warmer temperatures accelerate the rate at which

carbon fixed by primary producers is broken down and
respired by microorganisms into products such as CO,. This tem-
perature dependence of microbial decomposition is a key parameter
in biogeochemical models, including those embedded in the Earth
system models used to project feedbacks between the carbon cycle
and climate system’. However, the ability of these models to pre-
dict the magnitude of these feedbacks is constrained by uncertainty
in the extent to which climate warming will accelerate losses from
soil carbon to atmospheric CO,’~. The uncertainty arises, at least in
part, because the form of the temperature-decomposition relation-
ship is under intense debate as new data and ideas emerge regard-
ing the physical, chemical and biological processes that collectively
regulate the vulnerability of soil carbon to respiratory loss**.

One approach to building confidence in the projected range of
soil carbon-climate feedbacks is to compare models that represent
both established and emerging conceptions of how the temperature-
decomposition response is regulated>>'°. This approach acknowl-
edges process-level uncertainties in soil carbon dynamics. Many of
these uncertainties are reflected in the recent proliferation of soil
biogeochemical models that variously represent microbial physiology,
population dynamics and community composition as controls on
the size of soil carbon stocks'"'*. Comparisons among these models
suggest that the magnitude of soil carbon stock responses to warm-
ing depends strongly on the specific representations of microbial

| emperature is a dominant control on the rate of carbon cycle

processes, such as growth, respiration and community turnover®'®".
A key challenge now is to collect data that facilitate evaluation and
refinement of the contrasting microbial-process representations*'°.

Here, we test two alternate hypotheses about how soil microbial
processes will respond to climate warming. Both hypotheses are
based on the knowledge that temperature is a strong selective force
that acts on the structure and function of cells and populations,
resulting in both individual and community responses. At the cel-
lular level, temperature directly selects for enzyme and membrane
structures that help to maintain physiological process rates as tem-
peratures cool, and constrain them as temperatures warm'®. This
selection operates via evolutionary trade-offs in the structure and
function of enzymes and membranes that, for example, counteract
the positive effects of temperature on reaction rates'®. As such, the
expectation is that these trade-offs will serve to mute soil microbial
respiration responses to warming, at least on a per-biomass level
(the ‘compensation’ hypothesis; Fig. 1). Alternatively, the ‘enhance-
ment’ hypothesis posits that warming will enhance soil respiration
responses as microbial communities shift in terms of their domi-
nant functional traits'” (Fig. 1). For example, higher respiratory
costs might be associated with indirect temperature selection for
taxa that specialize on more recalcitrant soil carbon compounds'’-".
The indirect mechanisms proposed include depletion of labile sub-
strates, and the fact that warming should help overcome the acti-
vation energies required to grow on carbon substrates that are less
energetically efficient™*!.
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Fig. 1| Competing assumptions for adaptive responses of soil microbial respiration to changes in thermal climate. a, The compensation hypothesis (solid
blue line in both panels) holds that metabolic activity per unit biomass—when measured at a common temperature with substrate availability in excess—
decreases with adaptation to warmer conditions. b, When metabolic activity is then measured at the temperature regime to which organisms adapted, the
expectation is that respiration rates—also at a common microbial biomass and with substrate in excess—respond positively to temperature but to a lesser
extent than would be observed if there was no thermal adaptation (grey dotted lines). In contrast with this compensating response, the enhancement
hypothesis (orange dashed lines) suggests that there will be an enhancing response caused by a shift in the functional traits of organisms in communities.
Note that the curvilinear plots in b represent—regardless of whether adaptive responses are assumed or not—a short-term, positive respiration response
to temperature, as is commonly observed for soil respiration, although the exact form of the respiration-temperature relationship varies, and at higher

temperatures can peak and then decline.

We tested the competing expectations of the compensation and
enhancement hypotheses (Fig. 1) on heterotrophic soil respiration
rates using two approaches. For the first approach, differences in
thermal regime were generated by sampling soils from across a gra-
dient in mean annual temperature (MAT) spanning artic to tropical
biomes (see Methods and Supplementary Table 1). Soils from this
MAT gradient were then assayed at three temperatures (12, 20 and
28°C), with favourable moisture and excess carbon substrate. We
also measured other variables (for example, texture, pH and soil car-
bon) that affect soil respiration rates, and then built multiple-regres-
sion models to estimate respiration rates at the mean microbial
biomass across samples (see Methods). This approach permitted us
to test for patterns in soil respiration that were consistent with one
of the competing hypotheses: either decreasing respiration per unit
biomass with increasing MAT (per the compensation hypothesis) or
increasing respiration per unit biomass with increasing MAT (per
the enhancement hypothesis) (Fig. 1). For the second approach, we
then incubated the same soils for 100d at one of 3 thermal regimes,
ranging from cool (12°C) to warm (28°C), before again assaying
them and building regression models to estimate respiration rates
per unit biomass (see Methods). This incubation-gradient approach
included weekly additions of carbon substrate, permitting us to test
for effects of thermal regime independent of changes in other poten-
tially causal variables—such as substrate availability—that co-vary
with MAT across spatial gradients?. Overall, we then addressed the
hypotheses using two different approaches: an observational MAT
gradient and a 100-d experimental incubation, in line with recent
calls to use multiple approaches to test a single question®.

Results and discussion

MAT gradient. Soil respiration rates respond strongly to the
availability of labile carbon substrates and contemporary tem-
perature*>”. Not surprisingly, we therefore saw strong positive
responses of respiration to substrate addition (mean rates ~4.4
times greater; mean+s.d. pg C-CO,g dry-weight soil™'h™": water
only=0.62+1.45 (n=198) versus with substrate=2.73+10.86
(n=594)) and assay temperature, with potential respiration rates as
much as tripling as the assay temperature was increased from 12
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to 28°C (Fig. 2). Also in line with expectations®*’, we found that
soils with higher microbial biomass respired more, with the effect of
microbial biomass measured as almost twice that of assay tempera-
ture for a one s.d. increase in these controls (compare the standard-
ized coefficients in Table 1).

Previous work has shown that seasonal temperature variation
affects soil microbial respiration rates per unit biomass®. However,
temperature data collected at each of the 11 field locations in the
1, 2 and 3 months before the soil samplings in 2010, 2011 and
2012 correlated strongly with MAT, which most strongly affected
the respiration patterns. As such, MAT was used in the final sta-
tistical models to represent location-level temperature conditions.
There was a clear decrease in potential respiration rates (at the mean
microbial biomass across samples and with the substrate in excess)
as MAT increased (Fig. 2a and Table 1). This negative relationship
was robust to model specification (Supplementary Table 3) and is
consistent with the compensation hypothesis (Fig. 1). Specifically,
in warmer environments, the lower conformational flexibility of
enzymes and decreasing cell-membrane permeability translate to
lower respiration rates per unit biomass than for similar individuals
conditioned to cooler environments, when assayed under common
conditions and intermediate temperatures'®.

Admittedly, we assessed respiration rates at the community level
and not the individual level, making it hard to pinpoint the specific
mechanisms that might underlie a compensation response. Yet, the
patterns we observed did not appear to arise through differences in
the physiology of the community related to such phenomena as its
carbon use efficiency. For example, the amount of substrate assimi-
lated that is allocated to respiration is expected to increase with tem-
perature and to vary markedly with different substrates'>*. However,
the MAT-respiration relationship was consistently negative regard-
less of assay temperature and whether glucose, glycine or oxalic acid
was used as the assay substrate (Table 1, Fig. 2 and Supplementary
Fig. 1). These findings support model expectations that compen-
satory responses arising through shifts in enzyme and membrane
properties have effects on respiration rates that are independent
of changes in carbon use efficiency”. Furthermore, the lack of a
strong interaction between MAT and assay temperature suggested
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Fig. 2 | Estimated effects of spatial variation in thermal climate (observational gradient) on soil microbial respiration rates. Soils were collected across a
MAT gradient to generate differences in the thermal regime to which the soil microbial communities had been exposed. Respiration rates were measured
with carbon substrate in excess and are shown for the mean microbial biomass value across all samples. a, Effect of differences in assay temperature.
Symbols are point estimates and lines are only shown as guides to help discern the patterns for each assay condition. Point estimates were made using
the unstandardized coefficients (see Methods) from the MAT-gradient statistical model presented in Table 1 (which also shows the s.d. for the slope
coefficients), with MAT values in the regression equation systematically increased from the lowest to highest value for the 11 locations where soils were
sampled in 2010, 2011 and 2012 (Supplementary Table 1). The rates shown are for glucose assays, but the qualitative patterns are identical to those for
glycine and oxalic acid assays (Supplementary Fig. 1). The negative slope for each line in a is consistent with the compensation hypothesis. b, Estimates of
potential respiration rates for each soil at an assay temperature that matched its source location MAT value, where thermal adaptation dampens (depicted
by the downward arrow) the positive response of soil respiration to increasing assay temperature compared with a no-compensatory-adaptation scenario.
To generate the point estimates in b, we used the unstandardized negative coefficient for the MAT term from the MAT-gradient statistical model presented

in Table 1 for the adaptation scenario, then set this coefficient to zero for the no-adaptation scenario.

that there was little evidence of different temperature optima
for microbial activity across the soils (Supplementary Table 3).
Measurement of microbial growth rates, and how they are related to
respiration rates, would be necessary to evaluate these possibilities™.
Nevertheless, the negative response of respiration rates at a common
biomass to warmer environments is consistent with a compensatory
response, and has also recently been observed in global drylands®'.
Notably, respiration responses are rarely perfectly compensa-
tory'®. That is, at higher in situ temperatures, organisms should have
lower respiration rates per unit biomass than would be expected in
the absence of adaptation, but there should still be a positive, albeit
muted, response of respiration to increasing temperature'®. We
tested for this possibility by estimating the potential respiration
rates of our soils for the MAT value of the location from which they
were sampled. We did this using the negative coefficient for MAT
(Table 1) and—to generate a second scenario with no compensa-
tion—by setting this coefficient value to zero (see Methods). In both
instances, there was a positive response of respiration to increasing
temperature, as is expected for reaction rates measured within the
lower-to-middle temperature range typical for biological activity*>*.
However, the adaptation scenario had a more muted temperature
response (Fig. 2b), supporting the idea of a partial compensatory
response, as is typically observed in animals and plants'®*.

Incubator gradient. Given the inherent challenges in identifying
causation with observational data, we further evaluated our hypoth-
eses using an experimental design where we could manipulate
the thermal regime independent of other factors. Specifically, soils
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collected in 2012 were maintained at optimal moisture conditions,
with continual or no substrate supply (glucose versus water addi-
tion), at 3 temperature regimes for 100 d, before again being assayed
to assess the potential respiration rates at a common biomass (see
Methods). The cool and warm regimes (12 versus 28°C) involved
maintenance at a constant temperature, whereas a third regime var-
ied between 12 and 28°C every 3.5d to give a mean temperature
condition of 20°C (analogous, then, to MAT). This constant ver-
sus varying thermal regime had little influence on the respiration
response to the thermal incubation regime (Supplementary Table 4),
so we used the mean temperatures (12, 20 and 28°C) in the full
statistical models. We note that thermal regimes for in situ soils
are rarely constant but vary diurnally and seasonally; we did not
intend to simulate realistic regimes, but rather created experimental
regimes to test whether the thermal regime (that is, MAT) was plau-
sibly the cause of the observational patterns (that is, Fig 2).

As for the MAT-gradient dataset, biomass had a strong positive
effect on respiration rates, as did the addition of assay substrate (that
is, glucose versus water; Table 1). Furthermore, the soils maintained
at a higher temperature across the incubation had lower potential
respiration rates under the 20°C assay conditions, when estimated
at the mean biomass across samples, compared with soils main-
tained at lower temperatures (Fig. 3). That is, potential respiration
rates at a common biomass were higher (when assayed with the sub-
strate in excess and at a common intermediate temperature) for soils
previously maintained at cooler thermal regimes. These patterns
were not the result of substrate limitation, which has been invoked
as an explanation in other studies™, because the pattern was evident
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Table 1| Coefficients (mean + s.d.), significance and r? values for the linear mixed models used to evaluate the influence of thermal
regime on soil microbial respiration rates

Model

MAT (unstandardized) MAT (standardized) Incubator(unstandardized) Incubator(standardized)
Intercept —2.18+0.157 —0.27 +0.062 —2.75+0.316 —1.01+0.086
Assay temperature 0.062 +0.0024° 0.81+0.031* NA NA
Glucose 0.075+0.0381° 0.075+0.0381° NA NA
Oxalic acid —0.283 +0.0387° —0.283+0.03871° NA NA
MAT —0.036 +0.0117° —0.45+0.146° 0.041+0.0234° —0.048+0.215
Microbial biomass 0.0055+0.00098 1.49+0.264* 0.0021+0.00074° 0.38 +0.137°
Clay 0.0072+0.00544 0.18+0.138 0.0011+0.00755 0.029+0.1973
Carbon 0.020+0.0249 0.21+0.260 0.057 + 0.0247° 0.48+0.203*
pH —0.00028 +0.0027 —0.015+0.1459 —0.0023+0.0039 —0.11+0.188
Incubation temperature NA NA 0.016 +£0.0118 —0.23 +0.066°
Incubation substrate NA NA 1.20+0.2182 0.79+0.0773?
Assay substrate NA NA 0.84 +0.066° 0.84 +0.0655*
Incubation temperature x NA NA —0.021+0.0101% —0.27 +0.132°
incubation substrate
Incubation temperature x MAT NA NA —0.0022 +0.0008 —0.38+0.1432
d.f. 540, 477 or 54 540, 477 or 54 222,196 to 10 222,196 to 10
Fixed r? 66.6 66.6 62.0 62.0
Full r? 86.9 86.9 749 74.9

Shown are the statistical models for the MAT- and incubator-gradient thermal regimes. Unstandardized coefficients were used to plot Figs. 2, 3 and 4, where predicted rates were back-transformed from
natural-log values before plotting. Standardized coefficients are also presented, to facilitate comparisons of the effect size of predictor variables on different unit scales, and to facilitate interpretation

of the main effects involved in the two-way interactions (see Methods). Note that the coefficient for the incubation temperature is negative when standardized in the incubator model, consistent with
expectations of thermal adaptation. Also consistent with theory on thermal adaptation, the MAT term is negative in the MAT models. Mean coefficients and their s.d. were estimated using a Markov

chain Monte Carlo sampling approach. Significance was calculated with the Satterthwaite approximation for restricted maximum likelihood models. Model r? values were calculated using a method that
retains the random effects structure (see Methods). Random effects for the MAT models assumed a common slope, and for the intercept, year (2010-2012) was nested in cover (forest or grass), nested in
location (Supplementary Table 1). Only 2012 soils were used in the incubator model, in which a common slope was also assumed, and for the intercept, cover (forest or grass) was nested within location.
Sensitivities of the coefficient estimates to model structure and the observations evaluated are reported in Supplementary Tables 2 and 4. Predictor variables for the MAT model were: assay temperature;
the carbon substrate used in the assays (that is, glucose or oxalic acid; when both binary variables were set to O, glycine was used); microbial biomass; MAT at the site from which the soil was sourced; the
soil physicochemical properties from those sourced soils (namely, soil texture as a percentage of the clay content (clay), and as a percentage of the soil carbon concentration (carbon)); and pH. Predictor
variables for the incubator model included the majority of these variables, in addition to the incubation temperature regime, incubation substrate (glucose or water) and assay substrate (glucose or water).
The incubator model did not use glycine or oxalic acid, and only used a single assay temperature (20 °C; see Methods and Supplementary Tables 2-5). Model r? values are given for the fixed and full (that
is, fixed + random) effects. Degrees of freedom (d.f.) are first given for the number of observations on which each model was based, and then for the range in d.f. on which significance was based (see
Supplementary Tables 2 and 4). There was low correlation among the main predictor variables (see Supplementary Tables 3 and 5). *Significant (P < 0.05) coefficients (also shown in bold). ®Marginally

significant (P< 0.1) coefficients. NA, not applicable.

for the subset of soils that received an excess supply of labile organic
carbon (glucose) across the 100-d incubations. As such, potential
soil respiration rates (at the mean microbial biomass) responded to
the different experimental thermal regimes in a manner consistent
with the negative response to MAT in the observational part of our
study. These patterns are consistent with compensatory responses
observed when individual microbes, animals and plants physiologi-
cally acclimatize to the thermal regime'®***%.

In contrast with the MAT-gradient data, the 100-d incubations
altered the effect of MAT (of the source location) on respiration
rates. Specifically, there was a significant and strong interaction
between MAT and incubation temperature (Table 1), and model
sensitivity analysis highlighted the importance of retaining this
interaction to generate robust coefficients (Supplementary Tables
4 and 5). The interaction arose because MAT was now positively
related to potential respiration rates for soils incubated at the cool-
est thermal regime, albeit still negatively related for those incubated
at the warmest regime (Fig. 3). We cannot ascertain the precise
mechanisms underlying this difference in the direction of the MAT
effect, but it appears evident that soils sampled from a higher MAT
location showed a more plastic response to the incubation thermal
regime than those from cooler locations. For example, for soils
from the location with a MAT of 21.8°C, the estimated respiration
potentials (at a common intermediate temperature) for soils from
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the 12°C thermal regime were more than double those of the soils
exposed to 28°C for 100d. In contrast, for soils from the location
with a MAT of —2.0°C, there was essentially no difference (Fig. 3).
The apparently greater plasticity of the respiration response for
soils from warmer locations is consistent with empirical data and
the expectation that microbes in more benign or favourable abi-
otic environments have more plastic phenotypes®-*. In contrast, in
harsher (for example, dry, cold and/or substrate-limited) environ-
ments, genome size is expected to be smaller, and traits more con-
stitutively expressed. This apparent difference in plasticity was also
evident with the MAT-gradient data, where the magnitude of com-
pensation was greater for soils sampled from locations with higher
MAT values (Fig. 2b). However, further research is required to tease
out how and why the in situ thermal environment might shape
the plasticity of respiration rates. For example, our soils differed
markedly in soil properties such as total soil carbon and texture
(Supplementary Table 1), and would also be expected to differ in
other respects such as mineral surface reactivity, which could con-
trol the availability of carbon substrates to the microbial commu-
nity°. Furthermore, the weekly glucose additions across the 100-d
experimental incubations probably shifted the microbial commu-
nity composition towards faster-growing taxa*, meaning that our
results might only apply to those environments within soils where
low-molecular-weight substrates are in high supply (for example,
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Fig. 3 | Estimated effects of experimental variation in thermal climate
(incubator gradient)—with substrate supply—on soil microbial
respiration rates. Soils were collected across a MAT gradient (x axis), then
incubated for 100 d, with carbon substrate supplied, under 1 of 3 different
mean thermal regimes (12, 20 and 28 °C). Respiration rates were measured
at the end of the 100-d incubations at 20 °C with glucose in excess, and
are shown for the mean microbial biomass value across all soils receiving
glucose across the 100-d incubations. Symbols are point estimates and
lines are only shown as guides to help discern the patterns for each

assay condition. Point estimates were made using the unstandardized
coefficients (see Methods) from the incubator regime statistical model
presented in Table T (which also shows the s.d. for the slope coefficients),
with MAT values in the regression equation systematically increased from
the lowest to highest value for the 11 locations where soils were sampled in
2012 (Supplementary Table 1). The lower rates for the soils incubated for
100 d at warmer thermal regimes are consistent with the compensation
hypothesis (depicted by the downward arrows). The magnitude of
response to the incubation-gradient thermal regimes was greater for soils
sampled from locations with higher MAT values.

the rhizosphere). However, our results might still be representa-
tive, given that soil community composition acts as a control on the
temperature sensitivity of soil respiration across latitudinal gradi-
ents”, and because low-molecular-weight substrates are thought
to contribute to as much as half of the heterotrophic respiration
observed in soils*’. Yet, even if our experimental manipulations fail
to replicate in situ conditions, such experimental data can be used
to evaluate competing structural assumptions in microbial-explicit
soil biogeochemical models, and hence help identify how microbial
processes might be most appropriately represented®.

Regardless of the underlying mechanisms, the MAT-dependent
plasticity in the potential respiration rates that we observed (Figs.
2b and 3) fits with mechanisms proposed to explain the enhance-
ment hypothesis'”'® (that is, the hypothesis that warming selects for
communities with higher respiration rates, when biomass is equal).
If warmer temperatures select for communities with higher biomass-
specific respiration rates, the negative MAT-respiration relationship
we observed with the MAT-gradient data (Fig. 1) reflects a net com-
pensation effect. As such, the negative slope will be smaller than if
only compensatory mechanisms were operating, because the slope
will have been offset by responses expected under enhancing mecha-
nisms. The balance between the mechanisms operating under these
apparently conflicting hypotheses may help to explain the contrasting
results observed in previous studies. That is, some soils experience
a net enhancing thermal response for respiration, whereas others
experience net compensating responses under warming'”'® (Fig. 1).
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Fig. 4 | Estimated effects of experimental variation in thermal climate
(incubator gradient)—without substrate supply—on soil microbial
respiration rates. Soils were collected across a MAT gradient (x axis),
then incubated for 100 d, without carbon substrate supplied, under 1 of 3
different mean thermal regimes (12, 20 and 28 °C). Respiration rates were
measured at the end of the 100-d incubations at 20 °C with water only (no
glucose), and are shown for the mean microbial biomass value across all
soils receiving only water across the 100-d incubations. These conditions
(no substrate supply and assayed without substrate addition) approximate
those where previous work has detected enhancing thermal responses
(Fig. 1). Point estimates were made using the unstandardized coefficients
(see Methods) from the incubator regime statistical model presented in
Table 1 (which also shows the s.d. for the slope coefficients), with MAT
values in the regression equation systematically increased from the

lowest to highest value for the 11 locations where soils were sampled in
2012 (Supplementary Table 1). Upward and downward arrows represent
enhancing and compensating thermal responses, respectively, as observed
in previous studies among soils sampled across climate gradients where
incubations and assays were conducted without a substrate supply.

Resolving compensatory versus enhancing responses. A further
reason why both compensating and enhancing responses may be
observed among studies is that researchers generally focus on under-
standing respiration patterns by resolving different mechanisms. For
example, to test for compensatory responses caused by enzyme or
membrane structure-function trade-offs, controlled conditions are
required to discern the effects independent of multiple other con-
trols on respiration rates'”. Hence, and as we do here, such inves-
tigations standardize temperature, provide substrate in excess and
express respiration rates for a common biomass*. However, where
enhancing (or null) responses have been found, substrate has not
been provided in excess for assays, nor provided across the course of
long-term incubations of soils held at different thermal regimes'”*’.
Such differences in protocols, as well as the inappropriate analysis of
respiration-to-biomass ratios (see Methods), may affect conclusions
about the temperature sensitivity of soil respiration™***,

We therefore also established soils that were maintained with
water only in our 100-d incubations, and that were assayed at the
end of the 100d with water, to discern whether protocol differ-
ences in substrate availability might explain alternative conclusions.
Respiration rates under conditions of substrate limitation were lower
than when we added substrate (compare the yaxes in Figs. 3 and 4).
Under these conditions of substrate limitation, we saw patterns that
fit with some soils exhibiting an enhancing response, some exhibiting
no response and some exhibiting a compensatory response (Fig. 4).
These results therefore help to resolve apparently contradictory
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findings among past studies'”****, revealing that conclusions about
whether warming elicits net compensatory or enhancing responses
are method dependent. Carbon substrate availability also varies
across space and time>*, and so might help explain why there is
limited evidence of acclimatization to experimental warming when
soil respiration rates are measured in the field**>**¢, Perhaps most
importantly, however, we show that when compensatory responses
underlain by expected biochemical trade-offs are tested for fol-
lowing protocols established in the physiological evolution litera-
ture, there is consistent evidence for compensation (Figs. 2 and 3).
Notably, using the same approaches and our incubation data, we
also find evidence that enhancing mechanisms may offset the mag-
nitude of these compensatory responses'”*.

Conclusions

Our MAT and incubation thermal regimes yield data on respiration
rates at a common biomass that are consistent with evolutionary
theory on structure-function trade-offs in enzymes and mem-
branes in response to thermal regime. The respiration responses we
observe may occur through individual acclimatization, population-
and/or community-level shifts”. Regardless of the level of organiza-
tion at which they operate, the underlying biochemical mechanisms
are expected to act via common trade-offs between the structural
stability of an enzyme or membrane versus the rate at which it facil-
itates metabolic activity'®. Notably, similar to animals and plants,
we find evidence for partial, as opposed to ‘full, compensation.
These insights can inform the structural assumptions in the grow-
ing number of soil biogeochemical models that explicitly represent
microbial physiological, population and community dynamics as
controls on soil carbon turnover'**. However, our data are not suit-
able for model parameterization because they are conducted with
idealized conditions (for example, excess substrate) that permit us
to test between the competing hypotheses (Fig. 1) but not estimate
in situ respiration rates. Nevertheless, there is an important need
to test among structural assumptions because model comparisons
show that soil carbon dynamics depend strongly on how microbial
processes are represented”'*'***® As such, empirical tests of model
structural assumptions, and consequent model refinements, are
required to build confidence in the projected magnitude of soil-
carbon-climate feedbacks®. In particular, our findings suggest the
need to represent microbial physiological and community shifts, to
understand how warming will influence soil carbon turnover.

Methods

Study design and respiration measures. Soil collection and subsampling. Soils
were collected from 11 locations ranging from Hawaii to Northern Alaska, using

a sampling design intended to generate marked variation in abiotic conditions,
including temperature and precipitation (Supplementary Table 1)°'. The locations
included 10 US Long Term Ecological Research (LTER) stations—Andrews
Experimental Forest, Oregon (44.21°N, —122.26°E), the Boreal Ecology
Cooperative Research Unit, Alaska (64.85°N, —147.84°E), Cedar Creek Ecosystem
Science Reserve, Minnesota (45.40° N, —93.20° E), Coweeta LTER, North Carolina
(35°N, —83.5°E), Hubbard Brook Experimental Forest, New Hampshire (43.94°N,
—71.75°E), Harvard Forest, Massachusetts (42.53°N, —72.19°E), Kellogg Biological
Station, Michigan (42.4°N, —85.4°E), Konza Prairie Biological Station, Kansas
(39.09°N, —96.57°E), Luquillo LTER, Puerto Rico (18.3°N, —65.8°E) and Niwot
Ridge LTER, Colorado (39.99°N, —105.37° E)—and the Hawaii Experimental
Tropical Forest, Institute of Pacific Islands Forestry, Hawaii (19.81°N, —155.26°E).
Each location included paired sites that had natural forest versus grassland cover,
where the grasslands were either natural or maintained by low-intensity (annual
mowing) management (Supplementary Table 1).

To capture temporal variation in microbial community attributes, three
replicate samples were collected from each sampling site over three years (2010,
2011 and 2012), with the sampling date varying between seasons (spring, summer
and autumn, respectively). We used surface soils (top 10 cm) because this is where
microbial activity, and hence contributions to heterotrophic soil respiration, are
generally highest. On receipt at Yale, soils were sieved to 2mm, screened to remove
the remaining root and litter fragments, and then homogenized to provide a total
of 66 soil samples (11 locations X 2 cover types X 3 sampling years). In each year,
soils were then subsampled for respiration measurements, soil properties and
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microbial biomass (see below). In 2012, additional soil subsamples were taken for
the 100-d experimental incubations (see ‘Incubation-gradient approach’).

MAT-gradient approach and respiration measures. The MAT gradient provided

by sampling from the 11 field locations in 2010, 2011 and 2012 permitted a
regression-based experimental design with 66 soils (6 from each location with 2
per sampling year: 1 from forest and 1 from grassland). To compare the respiration
potentials of the microbial communities in each of the 66 soils, we used a catabolic
profiling assay following the methodology described by Crowther et al.” Briefly,
three organic carbon substrates that are readily assimilated without exoenzyme
breakdown by soil microbes—namely, glucose, glycine and oxalic acid—were
added in 8 ml of deionized water solution to 4 g (dry-weight equivalent) of each
soil. Soils were shaken for 1h, capped and flushed with CO,-free air to obtain
headspace concentrations to ~0 ppm. They were then capped and the net CO,
accumulation was measured on an infrared gas analyser after an incubation period
at 20 °C of ~4 h, from which respiration rates were calculated knowing the soil
mass, time of incubation, CO, concentration change and headspace volume*. The
substrates were chosen to represent labile substrates commonly available to soil
microorganisms (that is, sugars, amino acids and organic acids, respectively)*'.
Substrate concentrations and incubation times were modified from Crowther et al.”!,
following preliminary dose-response assays with 2010 soils to determine
concentrations (from as low as 0.075mM to as high as 750 mM) and times (from

2 to 24h) that were non-limiting (that is, gave a maximum respiratory response)
across the assays. Specifically, 4-h incubation times maximized rates across soils,
as did substrate concentrations of 75 (glucose), 100 (oxalic acid) and 300 mM
(glycine). Assays were conducted in duplicate at 12, 20 and 28°C, yielding 1,584
assays in total (66 soils X 3 substrates plus a water-only control X 3 incubation
temperatures X 2 analytical repeats per substrate per soil). In general, analytical
repeats varied minimally from one another (for example, in 2012 with glucose

at 20°C, the mean +s.d. among duplicate samples for the 22 field soils was
3+5%). Hence, the mean of the two analytical repeats was used in the statistical
analyses, giving 792 observations. We chose assay temperatures ranging from 12
to 28°C because they represent a wide temperature variation but also are within
the favourable range for biotic activity for microbes sampled from cold to warm
seasonal environments™.

To estimate the thermal regime at each location, climate data were collected
from the US National Climatic Data Center (www.ncdc.noaa.gov/cdo-web/
datasets) for weather stations local to or maintained at each location. The MAT
for each location was determined from the 1981-2010 climate norms using this
30-year temperature period. When data were available for multiple stations, the
mean value across stations was used. Monthly averages were also obtained for
2010, 2011 and 2012 to calculate the mean monthly temperature in the 3-, 2- and
1-month period before soil sampling at each location, to test for seasonal responses
of respiration potentials to temperature. However, given strong correlations
between MAT and the monthly data (r values of 0.62-0.74; n=33 per 1-, 2- and
3-month period), it was not possible to discern any seasonal patterns independent
of the MAT effects.

Incubation-gradient approach. Soils sampled in 2012 were maintained under three
thermal regimes, with or without substrate addition. Specifically, 30 g (dry-weight
equivalent) of each soil was placed in plastic containers with perforated lids to
permit gas exchange (that is, CO, efflux and O, influx). Soils were adjusted to 65%
water-holding capacity, which is optimal for microbial activity™, and placed in the
dark within incubators maintained at 12 or 28°C. A total of 6 containers for each
soil were established, with 2 of each container maintained for 100d at 12°C, 2
containers at 28°C, and 2 containers switched from 12-28°C and back every 3.5d
(giving an average temperature across the 100d of 20 °C, which conceptually we
consider analogous to MAT for the field). As for the assays of the field soils, the
temperatures of 12-28 °C fall within the favourable range for the metabolic activity
of both cold- and warm-adapted microbes™. One of each container under each

of the thermal regimes received a weekly addition of 0.8 mg carbon (glucose) g
soil™ (dry-weight equivalent)—an addition rate that maintains (but does not
exceed) substrate supply to soil microbes*’. The second container received only
the deionized water that the glucose solution was made up in. Weekly solution
volumes were adjusted to maintain the water-holding capacity at 65% across the
100d, and the water or glucose solution was slowly pipetted across the full surface
of the receiving soils for each application. The design should have provided 132
containers (22 soils X 3 thermal regimes X 2 substrates (glucose or water)), but
because of limited soil for some locations, there were 120. Specifically, there was
not enough Harvard Forest soil from the forest site to establish any containers, nor
enough Andrews, Hubbard Brook or Niwot Ridge forest soils to establish water-
only containers. As such, soils from all 11 locations were represented, but for the
glucose incubations there were 21 soils represented (that is, no Harvard Forest soil
from the forest site) and for the water additions there were 18 soils represented
(that is 4 locations had grassland soils only).

At the end of 100 d, the container soils were subsampled for the respiration
potential assays as described for the observational gradient part of the study.
However, we only assayed the soils at 20 °C and with glucose, given that the
patterns in the MAT-gradient part of the study were essentially independent of
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the assay temperature and substrate. In total, this gave 234 observations (39 soils
receiving water or glucose over 100d x 3 thermal regimes X 2 assay substrates
(water or glucose)).

Additional measurements. Phospholipid fatty acid (PLFA) analysis. Microbial
biomass was estimated as the total PLFA. As with other common methods to
measure microbial biomass in soils, PLFA measures provide an estimate of the
standing biomass. All of the common methods are correlated with one another,
at least to a certain extent™*. As such, following previous work**’, we verified
the robustness of our inferences using a second biomass method. Specifically, we
checked the robustness of the MAT coefficient in the model MAT, (Supplementary
Table 2) when biomass was instead estimated using a modified version of the
substrate-induced respiration approach?**. The MAT coefficient remained
significantly negative. However, we used total PLFA in our main analyses
because the substrate-induced respiration approach is—like our assays—based
on respiration measures, which led to a previous critique that its use might then
confound interpretation™.

On subsampling the field soils received at Yale, or at the end of the 100-d
experimental incubations, soils were placed in Whirl-Pak bags at —80°C until
PLFA analysis at the University of Kentucky. The methodology followed that of
Findlay and Dobbs”. Specifically, samples were homogenized, and 5g moist soil
was extracted in a single-phase, phosphate-buffered dichloromethane solution to
remove PLFAs. These lipids were further separated by silicic acid chromatography,
and phospholipids were derivatized in an alkaline solution to form fatty acid
methyl esters (FAMEs). FAME purification was performed with C18 reverse
plasma chromatography. These were then separated and quantified by capillary gas
chromatography with a flame ionization detector (a Shimadzu GC-2014) equipped
with a Restek Rtx-1 column. FAME peaks were identified and concentrations
calculated based on a Supelco 37 Component FAME Mix (Sigma-Aldrich) run as
a standard every third sample. The bacterial biomass was calculated as the sum
of the following fatty acids: i14:0, i15:0, a15:0, i16:0, i17:0, a17:0, 16:1n9, 16:1n7,
cyl7:0, 18:1n7, 18:1n5, cy19:0, 14:0, 15:0, 17:0, 18:0, 10Mel6, 10Mel7, 10Mel8
and i17:1n7 (nmol g™" soil). The fungal biomass was the sum of 18:2n6 and 18:1n9
(nmol g~ soil). The total microbial biomass was calculated as the sum of bacterial
and fungal PLFAs.

Soil physical and chemical properties. On subsampling the field soils received at Yale,
soils were placed at 4°C in sealed plastic bags until pH and moisture analyses, or
air-dried before elemental and texture determinations. Soils were analysed for pH
by mixing water to soil in a 1:1 volumetric ratio, and the gravimetric moisture was
determined by oven drying to a constant mass at 105 °C. These measurements were
also performed for each soil at the end of the 100-d experimental incubations. As
with texture, total soil carbon and nitrogen contents were determined for 2012 soils
only because these variables change little year to year and soils were sampled from
the same spot in 2010, 2011 and 2012. For carbon and nitrogen, air-dried soils were
milled to a fine powder, then run on an elemental analyser (Flash 2000; Thermo
Fisher Scientific). The texture (that is, sand, silt and clay contents) was measured
using a simplified version of the hydrometer method following Grandy et al.*’.

Data and inferential analysis. Overview of approach. We built linear regression
models structured to represent, and test between, assumptions of the compensation
versus enhancement hypotheses of soil respiration potentials (Fig. 1). Multivariate
linear regression permitted us to compare estimated effect sizes on the respiration
of location MAT or incubation temperature regimes when all other predictor
variables were held constant at their mean value. Our approach follows that
of Bradford et al.*! and permits the influence of a single controlling variable to
be examined when the response variable of interest is controlled by multiple
causative variables. Specifically, we estimated the relative effect size for both
MAT and incubation temperature to assess how the MAT or incubation gradient
influenced patterns in respiration rates. The regression approach enabled us to hold
microbial biomass constant (at the mean value for all observations within each
dataset), which is important given the expectation that it has a strong effect on
respiration rates and so should be controlled for when assessing patterns of thermal
adaptation™*'. Note that instead of calculating mass-specific respiration rates (that
is, respiration/biomass), we include biomass as a predictor variable to avoid the
many pitfalls of analysing ratios®. The relative effect size of the thermal regime
was then estimated using the slope coefficient for the MAT and/or incubation
temperature variables, the slope coefficient for any interactions they were involved
in, and the range of observed MAT or experimental incubation temperature values.
All other predictor variables (for example, assay substrate or assay temperature)
were fixed at a common value for these estimations (for example, the mean for
microbial biomass). We generated the coefficients for the predictor variables by
fitting linear mixed-effect models (LMMs; see ‘Statistical model specifics’).

The choice of variables to measure and then include in our statistical models
(described next) was based on the approach of Hobbs et al.”’, which rejects
model selection on philosophical and operational grounds. Philosophically, we
investigated only variables for which the biological mechanism of their influence
on soil respiration is firmly established. Operationally, there is subjectivity and a
lack of agreement in statistical model selection approaches, with different decisions

leading to markedly different conclusions about effect sizes. Instead, coefficients,
and hence effect sizes, are generally most robust when all terms are retained,
assuming that each is included with a well-established biological foundation and
in the absence of strong collinearity among predictors. Nevertheless, there was
some collinearity among predictors (Supplementary Tables 3 and 4), and we also
fit relevant two-way interactions and detected some outliers in our data. To ensure
that our inferences were robust to the precise model specification, we checked

the sensitivity of our coefficient estimates to exclusion of observations, exclusion
of predictors and exclusion of interactions, as well as a reduced dataset (see
Supplementary Tables 2 and 4).

Testing among the competing hypotheses. When biomass and assay temperature
are held constant, and substrate is provided in excess of respiratory demand,
biochemical theory on thermal adaptation predicts that there should be a negative
relationship between respiration rates (at a common biomass) and the temperature
of the thermal regime from which organisms are sampled (Fig. 1). As such, a
negative coefficient for the MAT variable in the observational gradient dataset, and
for the incubation temperature variable in the incubator-gradient dataset, would
be consistent with the biochemical adaptation hypothesis. In contrast, a positive
coefficient for these predictor variables would be consistent with the idea of an
enhancing thermal response, whereas a coefficient of approximately zero would
suggest no adaptive response was apparent at the level of the microbial community.
In both the MAT- and incubation-gradient models, we included continuous
variables known to exert a strong influence on soil respiration rates: percentage
soil carbon, texture, pH and microbial biomass. Soil moisture was standardized
given the assay design and so was not included in the models. We did not include
cover (that is forest or grassland) as a predictor variable because its effects on
respiration are probably mediated by its influence on other predictors, such as
pH, microbial biomass and soil carbon. Hence, cover was included in the study
design primarily to generate variation in these other predictors. However, we
verified that our inferences were robust to its inclusion in the full MAT-gradient
model (see Supplementary Table 2). In addition, we used cover in the random
effects to account for the hierarchical spatial and temporal design of our study (see
below). Furthermore, in addition to the thermal regime variables (that is MAT or
incubation gradient), we included the predictor variables that we imposed, and
that would be expected to strongly affect respiration rates. For the MAT gradient,
these variables were the assay temperature and substrate identity (glucose, oxalic
acid or glycine). The assay temperature was represented as a continuous variable
and the substrate by binary variables (glucose: 1 or 0; oxalic acid: 1 or 0; where
both predictors had a value of 0, glycine was added). For the incubation-gradient
dataset, these variables were the incubation substrate (glucose or water added:
1 or 0) and assay substrate (glucose or water added: 1 or 0). In the incubation-
gradient model, we also included two-way interactions between the incubation
temperature and incubation substrate, and the incubation temperature and MAT.
The two-way interactions were included to account for the possibility that adaptive
responses to the thermal regime would be greater when there was more substrate
available to facilitate microbial growth and hence turnover (that is, when there
was glucose versus water addition during the incubations), and if the MAT of the
thermal regime from where the soils were collected influenced the plasticity of the
microbial taxa (see section ‘Incubator gradient’ in the main text).

Statistical model specifics. The LMMs were fit in the Ime4’ package for the

‘R statistical programme (version 3.1.3) using the ‘lmer’ function. Potential
respiration rates were expressed as pg C-CO, g dry-weightsoil~ h™'. For the MAT-
gradient models, location, cover type and year were fit as random variables to the
LMDMs, with the finer-scale variables nested within the broader-scale variables to
account for potential spatial and temporal autocorrelation®***. That is, the random
error structure accounted for the hierarchical design (year nested within cover
type, with cover type nested within location), assuming a common slope but
spatially dependent intercept. In the incubator-gradient dataset, given that only
2012 soils were used, the random error structure comprised cover type nested
within location.

Before we tested the model structures described above, we tested the data
distributions. Soil respiration data are commonly highly skewed to the right, and
our data were no exception. Natural-log transformation produced a distribution
that fit with model assumptions of normality. There were three influential
observations (based on Cook’s D) in the MAT-gradient dataset, but they were
retained because the coefficient estimates, significance, model r* values and model
assumptions were essentially insensitive to their inclusion (Supplementary Table 2).
In the incubation-gradient dataset, a single observation was influential but its
inclusion only slightly affected the coefficients (Supplementary Table 4). For both
datasets, second-order terms were fit for both MAT and assay temperature, but
were uninformative: coefficients and model fits were unchanged. Soil pH (back-
transformed to H* ion concentration), percentage soil carbon and texture (as
percentage clay) were all included in the models for both datasets. Despite the
fact that the square-root variance inflation factors in the final models were <2.0
for the main effects (when interactions were dropped), suggesting acceptably low
collinearity, soil carbon and texture were, to a certain extent, correlated with MAT
and microbial biomass (Supplementary Tables 3 and 5). However, our inferences
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as to the effects of thermal regimes were essentially insensitive to their inclusion in
the models (Supplementary Tables 2 and 4).

Standardized coefficients were calculated by running the same statistical
models but with the observed values of each predictor variable transformed by
subtracting the mean for the variable determined from all observations, then
dividing by two s.d. for the same distribution®. This method of standardizing
coefficients permits coefficients to be directly compared for variables measured on
different unit scales and when both continuous and binary predictor variables are
included in a model (as is the case for our analysis). Furthermore, standardization
facilitates the interpretation of main effects in the presence of interactions®.

Models were fit using restricted maximum likelihood and Pvalues derived
using the Satterthwaite approximation for degrees of freedom, given that this
approach minimizes the type I error rate and so is considered conservative®’.

We considered coefficients with P <0.05 to be significant and coefficients with

P <0.10 to be marginally significant®®. We calculated the 7* values for each model
following Nakagawa and Schielzeth®. Calculation of 7* values is common practice
when modelling ecosystem processes, and a high value associated with a specific
explanatory variable is often associated with that variable having a strong effect
size. This reasoning makes no sense within the context of our study' because
some variables were experimentally controlled (for example, assay substrate

and temperature) and hence accurately measured for all soils, whereas the other
variables relied on observed variation and measurements that represented—but
probably did not fully characterize—the conditions that acted on respiratory
activity (for example, the impact of MAT and microbial biomass). The imprecision
introduced by such measurements make data more ‘noisy, lowering r* values, but
in the absence of systematic bias will not change the coefficient estimates and
hence effect sizes®"”". We therefore only report the r* value for the overall models,
to verify that they had the potential to explain a substantive degree of the variance
in respiration rates and to show that the coefficient estimates were robust.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Data in the support of these findings and the R code for the statistical models are

available via the Dryad Digital Repository (https://doi.org/10.5061/dryad.s87008d).
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Eleven locations were chosen given that six points or more along a continuous axis is considered to give much greater power (with
regression designs) than 5 points or less. To generate replication around these eleven points, we then sampled two cover types in
each location (22 samples) and repeated the sampling of new soils in each of three years (giving 66 samples). We accounted for the
spatial and temporal design using linear mixed effects models, and carried out assays with multiple substrates and at multiple
temperatures, giving for the spatial design (MAT-gradient) an n of 594 for a model we expected to include between 5 to 9
independent variables. Similarly, for the incubation design we used multiple temperatures and substrates giving an n of 234 for a
similarly low variable number regression model. Our intention was to generate sample sizes for the models that exceeded the
standard n value of 30 for every independent variable included (helping to ensure that we had sufficient replication to generate
robust coefficient estimates).

Soils were collected from 11 locations ranging from Hawaii to Northern Alaska, using a sampling design intended to generate marked
variation in abiotic conditions including temperature and precipitation.

Please see "Study description" section above

Data collection on soils was performed in the laboratories at Yale and the University of Kentucky. At Yale, soil processing and data
collection was performed by MAB, TWC and EEO. At University of Kentucky, the lab manager Jim Nelson ran and performed all PLFA
analyses, with RLM screening and interpreting data before submitting it to MAB for the statistical analyses.

For the temporal part of the study, soils were collected in project years 2010, 2011 and 2012, immediately shipped to Yale, and
analyzed on receipt. For PLFA analyses, soils were stored frozen and then analyzed in a single extraction and analysis, to ensure data
consistency. For the lab incubation at Yale, 2012 soils were incubated for 100 days and then analyses were performed at the end of
the incubation in 2013. The PLFAs from these soils were then also frozen and run in a single batch.

There were 3 outliers in the MAT-gradient and 1 main outlier in the incubation-gradient dataset. Using a sensitivity analysis to assess
how influenced by model structure and data inclusion the coefficients were, we ascertained that the coefficients were robust to
inclusion or exclusion of these outliers.

We used 11 locations and 22 soils (2 from each location). We sampled soils in each of three years - in different seasons - and
performed the same assays. The intent being to establish whether our spatial effects (i.e. MAT-gradient) were reproducible if
repeated in different years (they were). Further, we also tested the same hypotheses with a different approach (i.e. we applied
triangualation). That is, following the work on the soils collected in each of three years across the spatial climate gradient, we then
subjected the soils collected in the third year to laboratory incubations where incubation temperature was directly manipulated. That
is, we tested whether the correlative spatial pattern was causative by using a controlled experimental design.

We used a stratified regression design, which is more powerful than a simply random design given that we deliberately exploited
natural variation to generate a broad distribution in the values of our predictor variables. Specifically, we chose locations along a
broad climate gradient on the basis that there was a long-term research site present. As such, we systematically chose locations
along a climate gradient, but not in a manner that controlled potential influential variables other than climate. Then at each location
we asked a site manager to choose a forest and a grassland site, separating sample (i.e. soil) selection from those working in the lab
who processed those field soils on receipt. As such, our sample collection design meant that we expected high variation in controls
(e.g. soil texture and carbon content) not under direct investigation for the hypotheses, thereby improving the reliability and
generality of the climate coefficients.

Investigators were part blinded. Specifically, those processing the field soils on receipt from the field were not, but instead a
competing hypothesis framework was employed, where the directionality of effects were opposite for different hypotheses,
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separating the investigators from potential bias toward a specific directional effect. In addition, a key variable for assessment of the
hypotheses (i.e. PLFA microbial biomass) was measured at a different institution where the investigators had only a sample number
and hence no knowledge of where the sample came from. As such, some of the essential variables were measured "blind", ensuring
that the eventual dataset contained some variables where the measurements were performed entirely blind.

Did the study involve field work? ~ [X] Yes [ ]no

Field work, collection and transport

Field conditions To capture temporal variation in microbial community attributes, three replicate samples were collected from each sampling
location (see next) over three years (2010, 2011 and 2012), with sampling date varying between seasons (spring, summer and
fall, respectively). For high latitude and elevation locations, snow and ice precluded safe sampling of soils in winter, so soils were
collected for return to the lab at Yale only when sites were accessible by 4-WD (as opposed to snow mobile).

Location Locations included 10 U.S. Long Term Ecological Research stations (Andrews Experimental Forest, Oregon 44.21°N, -122.26°E
(AND), Boreal Ecology Cooperative Research Unit, Alaska 64.85°N, -147.84°E (BNZ), Cedar Creek Ecosystem Science Reserve,
Minnesota 45.40°N, -93.20°E (CDR), Coweeta LTER, North Carolina 35°N, -83.5°E (CWT), Hubbard Brook Experimental Forest,
New Hampshire 43.94°N, -71.75°E (HBR), Harvard Forest, Massachusetts 42.53°N, -72.19°E (HFR), Kellogg Biological Station,
Michigan, 42.4°N, -85.4°E (KBS), Konza Prairie Biological Station, Kansas 39.09°N, -96.57°E (KNZ), Luquillo LTER, Puerto Rico 18.3°
N, -65.8°E (LUQ), Niwot Ridge LTER, Colorado 39.99°N, -105.37°E (NWT)), and the Hawaii Experimental Tropical Forest, Institute
of Pacific Islands Forestry, Hawaii 19.81°N, -155.26°E (HAW). Each location included paired sites that had natural forest versus
grassland cover, where the grasslands were either natural or maintained by low-intensity (annual mowing) management
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Access and import/export Permission and/or permits were sought from site managers, or broader regulatory bodies where relevant (e.g. the US Forest
Service in Hawaii) before soil samples were taken. Then, for all locations (e.g. Alaska, Puerto Rico, Hawaii) that required soil
import licenses, a US Department of Agriculture soil import permit was obtained and maintained by M.A. Bradford, including all
relevant stipulations for the safe handling and disposal of foreign soils.

Disturbance Three 0.16 m2 quadrats of soil down to 10 cm depth were taken at each site, in each sampling year. Hence, there was minimal
disturbance to the locations where the work was conducted.
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