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Temperature is a dominant control on the rate of carbon cycle 
processes1. Warmer temperatures accelerate the rate at which 
carbon fixed by primary producers is broken down and 

respired by microorganisms into products such as CO2. This tem-
perature dependence of microbial decomposition is a key parameter 
in biogeochemical models, including those embedded in the Earth 
system models used to project feedbacks between the carbon cycle 
and climate system2. However, the ability of these models to pre-
dict the magnitude of these feedbacks is constrained by uncertainty 
in the extent to which climate warming will accelerate losses from 
soil carbon to atmospheric CO2

3–5. The uncertainty arises, at least in 
part, because the form of the temperature–decomposition relation-
ship is under intense debate as new data and ideas emerge regard-
ing the physical, chemical and biological processes that collectively 
regulate the vulnerability of soil carbon to respiratory loss6–8.

One approach to building confidence in the projected range of 
soil carbon–climate feedbacks is to compare models that represent 
both established and emerging conceptions of how the temperature-
decomposition response is regulated2,9,10. This approach acknowl-
edges process-level uncertainties in soil carbon dynamics. Many of 
these uncertainties are reflected in the recent proliferation of soil 
biogeochemical models that variously represent microbial physiology, 
population dynamics and community composition as controls on 
the size of soil carbon stocks11–14. Comparisons among these models 
suggest that the magnitude of soil carbon stock responses to warm-
ing depends strongly on the specific representations of microbial 

processes, such as growth, respiration and community turnover9,10,15. 
A key challenge now is to collect data that facilitate evaluation and 
refinement of the contrasting microbial-process representations2,9,10.

Here, we test two alternate hypotheses about how soil microbial 
processes will respond to climate warming. Both hypotheses are 
based on the knowledge that temperature is a strong selective force 
that acts on the structure and function of cells and populations, 
resulting in both individual and community responses. At the cel-
lular level, temperature directly selects for enzyme and membrane 
structures that help to maintain physiological process rates as tem-
peratures cool, and constrain them as temperatures warm16. This 
selection operates via evolutionary trade-offs in the structure and 
function of enzymes and membranes that, for example, counteract 
the positive effects of temperature on reaction rates16. As such, the 
expectation is that these trade-offs will serve to mute soil microbial 
respiration responses to warming, at least on a per-biomass level 
(the ‘compensation’ hypothesis; Fig. 1). Alternatively, the ‘enhance-
ment’ hypothesis posits that warming will enhance soil respiration 
responses as microbial communities shift in terms of their domi-
nant functional traits17 (Fig. 1). For example, higher respiratory 
costs might be associated with indirect temperature selection for 
taxa that specialize on more recalcitrant soil carbon compounds17–19. 
The indirect mechanisms proposed include depletion of labile sub-
strates, and the fact that warming should help overcome the acti-
vation energies required to grow on carbon substrates that are less 
energetically efficient20,21.
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Climate warming may stimulate microbial metabolism of soil carbon, causing a carbon-cycle–climate feedback whereby car-
bon is redistributed from the soil to atmospheric CO2. The magnitude of this feedback is uncertain, in part because warming-
induced shifts in microbial physiology and/or community composition could retard or accelerate soil carbon losses. Here, we 
measure microbial respiration rates for soils collected from 22 sites in each of 3 years, at locations spanning boreal to tropical 
climates. Respiration was measured in the laboratory with standard temperatures, moisture and excess carbon substrate, to 
allow physiological and community effects to be detected independent of the influence of these abiotic controls. Patterns in 
respiration for soils collected across the climate gradient are consistent with evolutionary theory on physiological responses 
that compensate for positive effects of temperature on metabolism. Respiration rates per unit microbial biomass were as 
much as 2.6 times higher for soils sampled from sites with a mean annual temperature of −2.0 versus 21.7 °C. Subsequent 
100-d incubations suggested differences in the plasticity of the thermal response among microbial communities, with commu-
nities sampled from sites with higher mean annual temperature having a more plastic response. Our findings are consistent 
with adaptive metabolic responses to contrasting thermal regimes that are also observed in plants and animals. These results 
may help build confidence in soil-carbon–climate feedback projections by improving understanding of microbial processes 
represented in biogeochemical models.
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We tested the competing expectations of the compensation and 
enhancement hypotheses (Fig. 1) on heterotrophic soil respiration 
rates using two approaches. For the first approach, differences in 
thermal regime were generated by sampling soils from across a gra-
dient in mean annual temperature (MAT) spanning artic to tropical 
biomes (see Methods and Supplementary Table 1). Soils from this 
MAT gradient were then assayed at three temperatures (12, 20 and 
28 °C), with favourable moisture and excess carbon substrate. We 
also measured other variables (for example, texture, pH and soil car-
bon) that affect soil respiration rates, and then built multiple-regres-
sion models to estimate respiration rates at the mean microbial 
biomass across samples (see Methods). This approach permitted us 
to test for patterns in soil respiration that were consistent with one 
of the competing hypotheses: either decreasing respiration per unit 
biomass with increasing MAT (per the compensation hypothesis) or 
increasing respiration per unit biomass with increasing MAT (per 
the enhancement hypothesis) (Fig. 1). For the second approach, we 
then incubated the same soils for 100 d at one of 3 thermal regimes, 
ranging from cool (12 °C) to warm (28 °C), before again assaying 
them and building regression models to estimate respiration rates 
per unit biomass (see Methods). This incubation-gradient approach 
included weekly additions of carbon substrate, permitting us to test 
for effects of thermal regime independent of changes in other poten-
tially causal variables—such as substrate availability—that co-vary 
with MAT across spatial gradients22. Overall, we then addressed the 
hypotheses using two different approaches: an observational MAT 
gradient and a 100-d experimental incubation, in line with recent 
calls to use multiple approaches to test a single question23.

Results and discussion
MAT gradient. Soil respiration rates respond strongly to the 
availability of labile carbon substrates and contemporary tem-
perature24,25. Not surprisingly, we therefore saw strong positive 
responses of respiration to substrate addition (mean rates ~4.4 
times greater; mean ±​ s.d. μ​g C-CO2 g dry-weight soil−1 h−1: water 
only =​ 0.62 ±​ 1.45 (n =​ 198) versus with substrate =​ 2.73 ±​ 10.86 
(n =​ 594)) and assay temperature, with potential respiration rates as 
much as tripling as the assay temperature was increased from 12 

to 28 °C (Fig. 2). Also in line with expectations26,27, we found that 
soils with higher microbial biomass respired more, with the effect of 
microbial biomass measured as almost twice that of assay tempera-
ture for a one s.d. increase in these controls (compare the standard-
ized coefficients in Table 1).

Previous work has shown that seasonal temperature variation 
affects soil microbial respiration rates per unit biomass28. However, 
temperature data collected at each of the 11 field locations in the 
1, 2 and 3 months before the soil samplings in 2010, 2011 and 
2012 correlated strongly with MAT, which most strongly affected 
the respiration patterns. As such, MAT was used in the final sta-
tistical models to represent location-level temperature conditions. 
There was a clear decrease in potential respiration rates (at the mean 
microbial biomass across samples and with the substrate in excess) 
as MAT increased (Fig. 2a and Table 1). This negative relationship 
was robust to model specification (Supplementary Table 3) and is 
consistent with the compensation hypothesis (Fig. 1). Specifically, 
in warmer environments, the lower conformational flexibility of 
enzymes and decreasing cell-membrane permeability translate to 
lower respiration rates per unit biomass than for similar individuals 
conditioned to cooler environments, when assayed under common 
conditions and intermediate temperatures16.

Admittedly, we assessed respiration rates at the community level 
and not the individual level, making it hard to pinpoint the specific 
mechanisms that might underlie a compensation response. Yet, the 
patterns we observed did not appear to arise through differences in 
the physiology of the community related to such phenomena as its 
carbon use efficiency. For example, the amount of substrate assimi-
lated that is allocated to respiration is expected to increase with tem-
perature and to vary markedly with different substrates15,29. However, 
the MAT–respiration relationship was consistently negative regard-
less of assay temperature and whether glucose, glycine or oxalic acid 
was used as the assay substrate (Table 1, Fig. 2 and Supplementary 
Fig. 1). These findings support model expectations that compen-
satory responses arising through shifts in enzyme and membrane 
properties have effects on respiration rates that are independent 
of changes in carbon use efficiency15. Furthermore, the lack of a 
strong interaction between MAT and assay temperature suggested  
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Fig. 1 | Competing assumptions for adaptive responses of soil microbial respiration to changes in thermal climate. a, The compensation hypothesis (solid 
blue line in both panels) holds that metabolic activity per unit biomass—when measured at a common temperature with substrate availability in excess—
decreases with adaptation to warmer conditions. b, When metabolic activity is then measured at the temperature regime to which organisms adapted, the 
expectation is that respiration rates—also at a common microbial biomass and with substrate in excess—respond positively to temperature but to a lesser 
extent than would be observed if there was no thermal adaptation (grey dotted lines). In contrast with this compensating response, the enhancement 
hypothesis (orange dashed lines) suggests that there will be an enhancing response caused by a shift in the functional traits of organisms in communities. 
Note that the curvilinear plots in b represent—regardless of whether adaptive responses are assumed or not—a short-term, positive respiration response 
to temperature, as is commonly observed for soil respiration, although the exact form of the respiration–temperature relationship varies, and at higher 
temperatures can peak and then decline.

Nature EcoloGy & Evolution | VOL 3 | FEBRUARY 2019 | 223–231 | www.nature.com/natecolevol224



ArticlesNature Ecology & Evolution

that there was little evidence of different temperature optima 
for microbial activity across the soils (Supplementary Table 3). 
Measurement of microbial growth rates, and how they are related to 
respiration rates, would be necessary to evaluate these possibilities30. 
Nevertheless, the negative response of respiration rates at a common 
biomass to warmer environments is consistent with a compensatory 
response, and has also recently been observed in global drylands31.

Notably, respiration responses are rarely perfectly compensa-
tory16. That is, at higher in situ temperatures, organisms should have 
lower respiration rates per unit biomass than would be expected in 
the absence of adaptation, but there should still be a positive, albeit 
muted, response of respiration to increasing temperature16. We 
tested for this possibility by estimating the potential respiration 
rates of our soils for the MAT value of the location from which they 
were sampled. We did this using the negative coefficient for MAT 
(Table 1) and—to generate a second scenario with no compensa-
tion—by setting this coefficient value to zero (see Methods). In both 
instances, there was a positive response of respiration to increasing 
temperature, as is expected for reaction rates measured within the 
lower-to-middle temperature range typical for biological activity32,33. 
However, the adaptation scenario had a more muted temperature 
response (Fig. 2b), supporting the idea of a partial compensatory 
response, as is typically observed in animals and plants16,34.

Incubator gradient. Given the inherent challenges in identifying 
causation with observational data, we further evaluated our hypoth-
eses using an experimental design where we could manipulate  
the thermal regime independent of other factors. Specifically, soils 

collected in 2012 were maintained at optimal moisture conditions, 
with continual or no substrate supply (glucose versus water addi-
tion), at 3 temperature regimes for 100 d, before again being assayed 
to assess the potential respiration rates at a common biomass (see 
Methods). The cool and warm regimes (12 versus 28 °C) involved 
maintenance at a constant temperature, whereas a third regime var-
ied between 12 and 28 °C every 3.5 d to give a mean temperature 
condition of 20 °C (analogous, then, to MAT). This constant ver-
sus varying thermal regime had little influence on the respiration 
response to the thermal incubation regime (Supplementary Table 4),  
so we used the mean temperatures (12, 20 and 28 °C) in the full 
statistical models. We note that thermal regimes for in situ soils 
are rarely constant but vary diurnally and seasonally; we did not 
intend to simulate realistic regimes, but rather created experimental 
regimes to test whether the thermal regime (that is, MAT) was plau-
sibly the cause of the observational patterns (that is, Fig 2).

As for the MAT-gradient dataset, biomass had a strong positive 
effect on respiration rates, as did the addition of assay substrate (that 
is, glucose versus water; Table 1). Furthermore, the soils maintained 
at a higher temperature across the incubation had lower potential 
respiration rates under the 20 °C assay conditions, when estimated 
at the mean biomass across samples, compared with soils main-
tained at lower temperatures (Fig. 3). That is, potential respiration 
rates at a common biomass were higher (when assayed with the sub-
strate in excess and at a common intermediate temperature) for soils 
previously maintained at cooler thermal regimes. These patterns 
were not the result of substrate limitation, which has been invoked 
as an explanation in other studies35, because the pattern was evident 
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Fig. 2 | Estimated effects of spatial variation in thermal climate (observational gradient) on soil microbial respiration rates. Soils were collected across a 
MAT gradient to generate differences in the thermal regime to which the soil microbial communities had been exposed. Respiration rates were measured 
with carbon substrate in excess and are shown for the mean microbial biomass value across all samples. a, Effect of differences in assay temperature. 
Symbols are point estimates and lines are only shown as guides to help discern the patterns for each assay condition. Point estimates were made using 
the unstandardized coefficients (see Methods) from the MAT-gradient statistical model presented in Table 1 (which also shows the s.d. for the slope 
coefficients), with MAT values in the regression equation systematically increased from the lowest to highest value for the 11 locations where soils were 
sampled in 2010, 2011 and 2012 (Supplementary Table 1). The rates shown are for glucose assays, but the qualitative patterns are identical to those for 
glycine and oxalic acid assays (Supplementary Fig. 1). The negative slope for each line in a is consistent with the compensation hypothesis. b, Estimates of 
potential respiration rates for each soil at an assay temperature that matched its source location MAT value, where thermal adaptation dampens (depicted 
by the downward arrow) the positive response of soil respiration to increasing assay temperature compared with a no-compensatory-adaptation scenario. 
To generate the point estimates in b, we used the unstandardized negative coefficient for the MAT term from the MAT-gradient statistical model presented 
in Table 1 for the adaptation scenario, then set this coefficient to zero for the no-adaptation scenario.
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for the subset of soils that received an excess supply of labile organic 
carbon (glucose) across the 100-d incubations. As such, potential 
soil respiration rates (at the mean microbial biomass) responded to 
the different experimental thermal regimes in a manner consistent 
with the negative response to MAT in the observational part of our 
study. These patterns are consistent with compensatory responses 
observed when individual microbes, animals and plants physiologi-
cally acclimatize to the thermal regime16,34,36,37.

In contrast with the MAT-gradient data, the 100-d incubations 
altered the effect of MAT (of the source location) on respiration 
rates. Specifically, there was a significant and strong interaction 
between MAT and incubation temperature (Table 1), and model 
sensitivity analysis highlighted the importance of retaining this 
interaction to generate robust coefficients (Supplementary Tables 
4 and 5). The interaction arose because MAT was now positively 
related to potential respiration rates for soils incubated at the cool-
est thermal regime, albeit still negatively related for those incubated 
at the warmest regime (Fig. 3). We cannot ascertain the precise 
mechanisms underlying this difference in the direction of the MAT 
effect, but it appears evident that soils sampled from a higher MAT 
location showed a more plastic response to the incubation thermal 
regime than those from cooler locations. For example, for soils 
from the location with a MAT of 21.8 °C, the estimated respiration 
potentials (at a common intermediate temperature) for soils from 

the 12 °C thermal regime were more than double those of the soils 
exposed to 28 °C for 100 d. In contrast, for soils from the location 
with a MAT of −​2.0 °C, there was essentially no difference (Fig. 3).

The apparently greater plasticity of the respiration response for 
soils from warmer locations is consistent with empirical data and 
the expectation that microbes in more benign or favourable abi-
otic environments have more plastic phenotypes38–41. In contrast, in 
harsher (for example, dry, cold and/or substrate-limited) environ-
ments, genome size is expected to be smaller, and traits more con-
stitutively expressed. This apparent difference in plasticity was also 
evident with the MAT-gradient data, where the magnitude of com-
pensation was greater for soils sampled from locations with higher 
MAT values (Fig. 2b). However, further research is required to tease 
out how and why the in situ thermal environment might shape 
the plasticity of respiration rates. For example, our soils differed 
markedly in soil properties such as total soil carbon and texture 
(Supplementary Table 1), and would also be expected to differ in 
other respects such as mineral surface reactivity, which could con-
trol the availability of carbon substrates to the microbial commu-
nity6. Furthermore, the weekly glucose additions across the 100-d 
experimental incubations probably shifted the microbial commu-
nity composition towards faster-growing taxa42, meaning that our 
results might only apply to those environments within soils where 
low-molecular-weight substrates are in high supply (for example, 

Table 1 | Coefficients (mean ± s.d.), significance and r2 values for the linear mixed models used to evaluate the influence of thermal 
regime on soil microbial respiration rates

Model

MAT(unstandardized) MAT(standardized) Incubator(unstandardized) Incubator(standardized)

Intercept −​2.18 ±​ 0.157 −​0.27 ±​ 0.062 −​2.75 ±​ 0.316 −​1.01 ±​ 0.086

Assay temperature 0.062 ±​ 0.0024a 0.81 ±​ 0.031a NA NA

Glucose 0.075 ±​ 0.0381b 0.075 ±​ 0.0381b NA NA

Oxalic acid −​0.283 ±​ 0.0381a −​0.283 ±​ 0.0381a NA NA

MAT −​0.036 ±​ 0.0117a −​0.45 ±​ 0.146a 0.041 ±​ 0.0234b −​0.048 ±​ 0.215

Microbial biomass 0.0055 ±​ 0.00098a 1.49 ±​ 0.264a 0.0021 ±​ 0.00074a 0.38 ±​ 0.137a

Clay 0.0072 ±​ 0.00544 0.18 ±​ 0.138 0.0011 ±​ 0.00755 0.029 ±​ 0.1973

Carbon 0.020 ±​ 0.0249 0.21 ±​ 0.260 0.057 ±​ 0.0241a 0.48 ±​ 0.203a

pH −​0.00028 ±​ 0.0027 −​0.015 ±​ 0.1459 −​0.0023 ±​ 0.0039 −​0.11 ±​ 0.188

Incubation temperature NA NA 0.016 ±​ 0.0118 −​0.23 ±​ 0.066a

Incubation substrate NA NA 1.20 ±​ 0.218a 0.79 ±​ 0.0773a

Assay substrate NA NA 0.84 ±​ 0.066a 0.84 ±​ 0.0655a

Incubation temperature ×​  
incubation substrate

NA NA −​0.021 ±​ 0.0101a −​0.27 ±​ 0.132a

Incubation temperature ×​ MAT NA NA −​0.0022 ±​ 0.0008a −​0.38 ±​ 0.143a

d.f. 540, 477 or 54 540, 477 or 54 222, 196 to 10 222, 196 to 10

Fixed r2 66.6 66.6 62.0 62.0

Full r2 86.9 86.9 74.9 74.9

Shown are the statistical models for the MAT- and incubator-gradient thermal regimes. Unstandardized coefficients were used to plot Figs. 2, 3 and 4, where predicted rates were back-transformed from 
natural-log values before plotting. Standardized coefficients are also presented, to facilitate comparisons of the effect size of predictor variables on different unit scales, and to facilitate interpretation 
of the main effects involved in the two-way interactions (see Methods). Note that the coefficient for the incubation temperature is negative when standardized in the incubator model, consistent with 
expectations of thermal adaptation. Also consistent with theory on thermal adaptation, the MAT term is negative in the MAT models. Mean coefficients and their s.d. were estimated using a Markov 
chain Monte Carlo sampling approach. Significance was calculated with the Satterthwaite approximation for restricted maximum likelihood models. Model r2 values were calculated using a method that 
retains the random effects structure (see Methods). Random effects for the MAT models assumed a common slope, and for the intercept, year (2010–2012) was nested in cover (forest or grass), nested in 
location (Supplementary Table 1). Only 2012 soils were used in the incubator model, in which a common slope was also assumed, and for the intercept, cover (forest or grass) was nested within location. 
Sensitivities of the coefficient estimates to model structure and the observations evaluated are reported in Supplementary Tables 2 and 4. Predictor variables for the MAT model were: assay temperature; 
the carbon substrate used in the assays (that is, glucose or oxalic acid; when both binary variables were set to 0, glycine was used); microbial biomass; MAT at the site from which the soil was sourced; the 
soil physicochemical properties from those sourced soils (namely, soil texture as a percentage of the clay content (clay), and as a percentage of the soil carbon concentration (carbon)); and pH. Predictor 
variables for the incubator model included the majority of these variables, in addition to the incubation temperature regime, incubation substrate (glucose or water) and assay substrate (glucose or water). 
The incubator model did not use glycine or oxalic acid, and only used a single assay temperature (20 °C; see Methods and Supplementary Tables 2–5). Model r2 values are given for the fixed and full (that 
is, fixed +​ random) effects. Degrees of freedom (d.f.) are first given for the number of observations on which each model was based, and then for the range in d.f. on which significance was based (see 
Supplementary Tables 2 and 4). There was low correlation among the main predictor variables (see Supplementary Tables 3 and 5). aSignificant (P  < 0.05) coefficients (also shown in bold). bMarginally 
significant (P <​ 0.1) coefficients. NA, not applicable.
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the rhizosphere). However, our results might still be representa-
tive, given that soil community composition acts as a control on the 
temperature sensitivity of soil respiration across latitudinal gradi-
ents43, and because low-molecular-weight substrates are thought 
to contribute to as much as half of the heterotrophic respiration 
observed in soils44. Yet, even if our experimental manipulations fail 
to replicate in situ conditions, such experimental data can be used 
to evaluate competing structural assumptions in microbial-explicit 
soil biogeochemical models, and hence help identify how microbial 
processes might be most appropriately represented10.

Regardless of the underlying mechanisms, the MAT-dependent 
plasticity in the potential respiration rates that we observed (Figs. 
2b and 3) fits with mechanisms proposed to explain the enhance-
ment hypothesis17,18 (that is, the hypothesis that warming selects for 
communities with higher respiration rates, when biomass is equal). 
If warmer temperatures select for communities with higher biomass-
specific respiration rates, the negative MAT–respiration relationship 
we observed with the MAT-gradient data (Fig. 1) reflects a net com-
pensation effect. As such, the negative slope will be smaller than if 
only compensatory mechanisms were operating, because the slope 
will have been offset by responses expected under enhancing mecha-
nisms. The balance between the mechanisms operating under these 
apparently conflicting hypotheses may help to explain the contrasting 
results observed in previous studies. That is, some soils experience 
a net enhancing thermal response for respiration, whereas others 
experience net compensating responses under warming17,18 (Fig. 1).

Resolving compensatory versus enhancing responses. A further 
reason why both compensating and enhancing responses may be 
observed among studies is that researchers generally focus on under-
standing respiration patterns by resolving different mechanisms. For 
example, to test for compensatory responses caused by enzyme or 
membrane structure–function trade-offs, controlled conditions are 
required to discern the effects independent of multiple other con-
trols on respiration rates16,35. Hence, and as we do here, such inves-
tigations standardize temperature, provide substrate in excess and 
express respiration rates for a common biomass28. However, where 
enhancing (or null) responses have been found, substrate has not 
been provided in excess for assays, nor provided across the course of 
long-term incubations of soils held at different thermal regimes17,27. 
Such differences in protocols, as well as the inappropriate analysis of 
respiration-to-biomass ratios (see Methods), may affect conclusions 
about the temperature sensitivity of soil respiration33,40,45.

We therefore also established soils that were maintained with 
water only in our 100-d incubations, and that were assayed at the 
end of the 100 d with water, to discern whether protocol differ-
ences in substrate availability might explain alternative conclusions. 
Respiration rates under conditions of substrate limitation were lower 
than when we added substrate (compare the y axes in Figs. 3 and 4). 
Under these conditions of substrate limitation, we saw patterns that 
fit with some soils exhibiting an enhancing response, some exhibiting 
no response and some exhibiting a compensatory response (Fig. 4).  
These results therefore help to resolve apparently contradictory 
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lines are only shown as guides to help discern the patterns for each 
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coefficients (see Methods) from the incubator regime statistical model 
presented in Table 1 (which also shows the s.d. for the slope coefficients), 
with MAT values in the regression equation systematically increased from 
the lowest to highest value for the 11 locations where soils were sampled in 
2012 (Supplementary Table 1). The lower rates for the soils incubated for 
100 d at warmer thermal regimes are consistent with the compensation 
hypothesis (depicted by the downward arrows). The magnitude of 
response to the incubation-gradient thermal regimes was greater for soils 
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values in the regression equation systematically increased from the 
lowest to highest value for the 11 locations where soils were sampled in 
2012 (Supplementary Table 1). Upward and downward arrows represent 
enhancing and compensating thermal responses, respectively, as observed 
in previous studies among soils sampled across climate gradients where 
incubations and assays were conducted without a substrate supply.
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findings among past studies17,27,28,46, revealing that conclusions about 
whether warming elicits net compensatory or enhancing responses 
are method dependent. Carbon substrate availability also varies 
across space and time22,24, and so might help explain why there is 
limited evidence of acclimatization to experimental warming when 
soil respiration rates are measured in the field27,32,47,48. Perhaps most 
importantly, however, we show that when compensatory responses 
underlain by expected biochemical trade-offs are tested for fol-
lowing protocols established in the physiological evolution litera-
ture, there is consistent evidence for compensation (Figs. 2 and 3). 
Notably, using the same approaches and our incubation data, we 
also find evidence that enhancing mechanisms may offset the mag-
nitude of these compensatory responses17,40.

Conclusions
Our MAT and incubation thermal regimes yield data on respiration 
rates at a common biomass that are consistent with evolutionary 
theory on structure–function trade-offs in enzymes and mem-
branes in response to thermal regime. The respiration responses we 
observe may occur through individual acclimatization, population- 
and/or community-level shifts35. Regardless of the level of organiza-
tion at which they operate, the underlying biochemical mechanisms 
are expected to act via common trade-offs between the structural 
stability of an enzyme or membrane versus the rate at which it facil-
itates metabolic activity16. Notably, similar to animals and plants, 
we find evidence for partial, as opposed to ‘full’, compensation. 
These insights can inform the structural assumptions in the grow-
ing number of soil biogeochemical models that explicitly represent 
microbial physiological, population and community dynamics as 
controls on soil carbon turnover10–14. However, our data are not suit-
able for model parameterization because they are conducted with 
idealized conditions (for example, excess substrate) that permit us 
to test between the competing hypotheses (Fig. 1) but not estimate 
in situ respiration rates. Nevertheless, there is an important need 
to test among structural assumptions because model comparisons 
show that soil carbon dynamics depend strongly on how microbial 
processes are represented9,10,14,49,50. As such, empirical tests of model 
structural assumptions, and consequent model refinements, are 
required to build confidence in the projected magnitude of soil-
carbon–climate feedbacks2. In particular, our findings suggest the 
need to represent microbial physiological and community shifts, to 
understand how warming will influence soil carbon turnover.

Methods
Study design and respiration measures. Soil collection and subsampling. Soils 
were collected from 11 locations ranging from Hawaii to Northern Alaska, using 
a sampling design intended to generate marked variation in abiotic conditions, 
including temperature and precipitation (Supplementary Table 1)51. The locations 
included 10 US Long Term Ecological Research (LTER) stations—Andrews 
Experimental Forest, Oregon (44.21° N, −​122.26° E), the Boreal Ecology 
Cooperative Research Unit, Alaska (64.85° N, −​147.84° E), Cedar Creek Ecosystem 
Science Reserve, Minnesota (45.40° N, −​93.20° E), Coweeta LTER, North Carolina 
(35° N, −​83.5° E), Hubbard Brook Experimental Forest, New Hampshire (43.94° N, 
−​71.75° E), Harvard Forest, Massachusetts (42.53° N, −​72.19° E), Kellogg Biological 
Station, Michigan (42.4° N, −​85.4° E), Konza Prairie Biological Station, Kansas 
(39.09° N, −​96.57° E), Luquillo LTER, Puerto Rico (18.3° N, −​65.8° E) and Niwot 
Ridge LTER, Colorado (39.99° N, −​105.37° E)—and the Hawaii Experimental 
Tropical Forest, Institute of Pacific Islands Forestry, Hawaii (19.81° N, −​155.26° E). 
Each location included paired sites that had natural forest versus grassland cover, 
where the grasslands were either natural or maintained by low-intensity (annual 
mowing) management (Supplementary Table 1).

To capture temporal variation in microbial community attributes, three 
replicate samples were collected from each sampling site over three years (2010, 
2011 and 2012), with the sampling date varying between seasons (spring, summer 
and autumn, respectively). We used surface soils (top 10 cm) because this is where 
microbial activity, and hence contributions to heterotrophic soil respiration, are 
generally highest. On receipt at Yale, soils were sieved to 2 mm, screened to remove 
the remaining root and litter fragments, and then homogenized to provide a total 
of 66 soil samples (11 locations ×​ 2 cover types ×​ 3 sampling years). In each year, 
soils were then subsampled for respiration measurements, soil properties and 

microbial biomass (see below). In 2012, additional soil subsamples were taken for 
the 100-d experimental incubations (see ‘Incubation-gradient approach’).

MAT-gradient approach and respiration measures. The MAT gradient provided 
by sampling from the 11 field locations in 2010, 2011 and 2012 permitted a 
regression-based experimental design with 66 soils (6 from each location with 2 
per sampling year: 1 from forest and 1 from grassland). To compare the respiration 
potentials of the microbial communities in each of the 66 soils, we used a catabolic 
profiling assay following the methodology described by Crowther et al.51 Briefly, 
three organic carbon substrates that are readily assimilated without exoenzyme 
breakdown by soil microbes—namely, glucose, glycine and oxalic acid—were 
added in 8 ml of deionized water solution to 4 g (dry-weight equivalent) of each 
soil. Soils were shaken for 1 h, capped and flushed with CO2-free air to obtain 
headspace concentrations to ~0 ppm. They were then capped and the net CO2 
accumulation was measured on an infrared gas analyser after an incubation period 
at 20 °C of ~4 h, from which respiration rates were calculated knowing the soil 
mass, time of incubation, CO2 concentration change and headspace volume28. The 
substrates were chosen to represent labile substrates commonly available to soil 
microorganisms (that is, sugars, amino acids and organic acids, respectively)44. 
Substrate concentrations and incubation times were modified from Crowther et al.51,  
following preliminary dose–response assays with 2010 soils to determine 
concentrations (from as low as 0.075 mM to as high as 750 mM) and times (from 
2 to 24 h) that were non-limiting (that is, gave a maximum respiratory response) 
across the assays. Specifically, 4-h incubation times maximized rates across soils, 
as did substrate concentrations of 75 (glucose), 100 (oxalic acid) and 300 mM 
(glycine). Assays were conducted in duplicate at 12, 20 and 28 °C, yielding 1,584 
assays in total (66 soils ×​ 3 substrates plus a water-only control ×​ 3 incubation 
temperatures ×​ 2 analytical repeats per substrate per soil). In general, analytical 
repeats varied minimally from one another (for example, in 2012 with glucose 
at 20 °C, the mean ±​ s.d. among duplicate samples for the 22 field soils was 
3 ±​ 5%). Hence, the mean of the two analytical repeats was used in the statistical 
analyses, giving 792 observations. We chose assay temperatures ranging from 12 
to 28 °C because they represent a wide temperature variation but also are within 
the favourable range for biotic activity for microbes sampled from cold to warm 
seasonal environments52.

To estimate the thermal regime at each location, climate data were collected 
from the US National Climatic Data Center (www.ncdc.noaa.gov/cdo-web/
datasets) for weather stations local to or maintained at each location. The MAT 
for each location was determined from the 1981–2010 climate norms using this 
30-year temperature period. When data were available for multiple stations, the 
mean value across stations was used. Monthly averages were also obtained for 
2010, 2011 and 2012 to calculate the mean monthly temperature in the 3-, 2- and 
1-month period before soil sampling at each location, to test for seasonal responses 
of respiration potentials to temperature. However, given strong correlations 
between MAT and the monthly data (r values of 0.62–0.74; n =​ 33 per 1-, 2- and 
3-month period), it was not possible to discern any seasonal patterns independent 
of the MAT effects.

Incubation-gradient approach. Soils sampled in 2012 were maintained under three 
thermal regimes, with or without substrate addition. Specifically, 30 g (dry-weight 
equivalent) of each soil was placed in plastic containers with perforated lids to 
permit gas exchange (that is, CO2 efflux and O2 influx). Soils were adjusted to 65% 
water-holding capacity, which is optimal for microbial activity53, and placed in the 
dark within incubators maintained at 12 or 28 °C. A total of 6 containers for each 
soil were established, with 2 of each container maintained for 100 d at 12 °C, 2 
containers at 28 °C, and 2 containers switched from 12–28 °C and back every 3.5 d 
(giving an average temperature across the 100 d of 20 °C, which conceptually we 
consider analogous to MAT for the field). As for the assays of the field soils, the 
temperatures of 12–28 °C fall within the favourable range for the metabolic activity 
of both cold- and warm-adapted microbes52. One of each container under each 
of the thermal regimes received a weekly addition of 0.8 mg carbon (glucose) g 
soil−1 (dry-weight equivalent)—an addition rate that maintains (but does not 
exceed) substrate supply to soil microbes54. The second container received only 
the deionized water that the glucose solution was made up in. Weekly solution 
volumes were adjusted to maintain the water-holding capacity at 65% across the 
100 d, and the water or glucose solution was slowly pipetted across the full surface 
of the receiving soils for each application. The design should have provided 132 
containers (22 soils ×​ 3 thermal regimes ×​ 2 substrates (glucose or water)), but 
because of limited soil for some locations, there were 120. Specifically, there was 
not enough Harvard Forest soil from the forest site to establish any containers, nor 
enough Andrews, Hubbard Brook or Niwot Ridge forest soils to establish water-
only containers. As such, soils from all 11 locations were represented, but for the 
glucose incubations there were 21 soils represented (that is, no Harvard Forest soil 
from the forest site) and for the water additions there were 18 soils represented 
(that is 4 locations had grassland soils only).

At the end of 100 d, the container soils were subsampled for the respiration 
potential assays as described for the observational gradient part of the study. 
However, we only assayed the soils at 20 °C and with glucose, given that the 
patterns in the MAT-gradient part of the study were essentially independent of 

Nature EcoloGy & Evolution | VOL 3 | FEBRUARY 2019 | 223–231 | www.nature.com/natecolevol228



ArticlesNature Ecology & Evolution

the assay temperature and substrate. In total, this gave 234 observations (39 soils 
receiving water or glucose over 100 d ×​ 3 thermal regimes ×​ 2 assay substrates 
(water or glucose)).

Additional measurements. Phospholipid fatty acid (PLFA) analysis. Microbial 
biomass was estimated as the total PLFA. As with other common methods to 
measure microbial biomass in soils, PLFA measures provide an estimate of the 
standing biomass. All of the common methods are correlated with one another, 
at least to a certain extent55,56. As such, following previous work28,57, we verified 
the robustness of our inferences using a second biomass method. Specifically, we 
checked the robustness of the MAT coefficient in the model MAT1 (Supplementary 
Table 2) when biomass was instead estimated using a modified version of the 
substrate-induced respiration approach28,58. The MAT coefficient remained 
significantly negative. However, we used total PLFA in our main analyses 
because the substrate-induced respiration approach is—like our assays—based 
on respiration measures, which led to a previous critique that its use might then 
confound interpretation57.

On subsampling the field soils received at Yale, or at the end of the 100-d 
experimental incubations, soils were placed in Whirl-Pak bags at −​80 °C until 
PLFA analysis at the University of Kentucky. The methodology followed that of 
Findlay and Dobbs59. Specifically, samples were homogenized, and 5 g moist soil 
was extracted in a single-phase, phosphate-buffered dichloromethane solution to 
remove PLFAs. These lipids were further separated by silicic acid chromatography, 
and phospholipids were derivatized in an alkaline solution to form fatty acid 
methyl esters (FAMEs). FAME purification was performed with C18 reverse 
plasma chromatography. These were then separated and quantified by capillary gas 
chromatography with a flame ionization detector (a Shimadzu GC-2014) equipped 
with a Restek Rtx-1 column. FAME peaks were identified and concentrations 
calculated based on a Supelco 37 Component FAME Mix (Sigma–Aldrich) run as 
a standard every third sample. The bacterial biomass was calculated as the sum 
of the following fatty acids: i14:0, i15:0, a15:0, i16:0, i17:0, a17:0, 16:1n9, 16:1n7, 
cy17:0, 18:1n7, 18:1n5, cy19:0, 14:0, 15:0, 17:0, 18:0, 10Me16, 10Me17, 10Me18 
and i17:1n7 (nmol g−1 soil). The fungal biomass was the sum of 18:2n6 and 18:1n9 
(nmol g−1 soil). The total microbial biomass was calculated as the sum of bacterial 
and fungal PLFAs.

Soil physical and chemical properties. On subsampling the field soils received at Yale, 
soils were placed at 4 °C in sealed plastic bags until pH and moisture analyses, or 
air-dried before elemental and texture determinations. Soils were analysed for pH 
by mixing water to soil in a 1:1 volumetric ratio, and the gravimetric moisture was 
determined by oven drying to a constant mass at 105 °C. These measurements were 
also performed for each soil at the end of the 100-d experimental incubations. As 
with texture, total soil carbon and nitrogen contents were determined for 2012 soils 
only because these variables change little year to year and soils were sampled from 
the same spot in 2010, 2011 and 2012. For carbon and nitrogen, air-dried soils were 
milled to a fine powder, then run on an elemental analyser (Flash 2000; Thermo 
Fisher Scientific). The texture (that is, sand, silt and clay contents) was measured 
using a simplified version of the hydrometer method following Grandy et al.60.

Data and inferential analysis. Overview of approach. We built linear regression 
models structured to represent, and test between, assumptions of the compensation 
versus enhancement hypotheses of soil respiration potentials (Fig. 1). Multivariate 
linear regression permitted us to compare estimated effect sizes on the respiration 
of location MAT or incubation temperature regimes when all other predictor 
variables were held constant at their mean value. Our approach follows that 
of Bradford et al.61 and permits the influence of a single controlling variable to 
be examined when the response variable of interest is controlled by multiple 
causative variables. Specifically, we estimated the relative effect size for both 
MAT and incubation temperature to assess how the MAT or incubation gradient 
influenced patterns in respiration rates. The regression approach enabled us to hold 
microbial biomass constant (at the mean value for all observations within each 
dataset), which is important given the expectation that it has a strong effect on 
respiration rates and so should be controlled for when assessing patterns of thermal 
adaptation35,54. Note that instead of calculating mass-specific respiration rates (that 
is, respiration/biomass), we include biomass as a predictor variable to avoid the 
many pitfalls of analysing ratios62. The relative effect size of the thermal regime 
was then estimated using the slope coefficient for the MAT and/or incubation 
temperature variables, the slope coefficient for any interactions they were involved 
in, and the range of observed MAT or experimental incubation temperature values. 
All other predictor variables (for example, assay substrate or assay temperature) 
were fixed at a common value for these estimations (for example, the mean for 
microbial biomass). We generated the coefficients for the predictor variables by 
fitting linear mixed-effect models (LMMs; see ‘Statistical model specifics’).

The choice of variables to measure and then include in our statistical models 
(described next) was based on the approach of Hobbs et al.63, which rejects 
model selection on philosophical and operational grounds. Philosophically, we 
investigated only variables for which the biological mechanism of their influence 
on soil respiration is firmly established. Operationally, there is subjectivity and a 
lack of agreement in statistical model selection approaches, with different decisions 

leading to markedly different conclusions about effect sizes. Instead, coefficients, 
and hence effect sizes, are generally most robust when all terms are retained, 
assuming that each is included with a well-established biological foundation and 
in the absence of strong collinearity among predictors. Nevertheless, there was 
some collinearity among predictors (Supplementary Tables 3 and 4), and we also 
fit relevant two-way interactions and detected some outliers in our data. To ensure 
that our inferences were robust to the precise model specification, we checked 
the sensitivity of our coefficient estimates to exclusion of observations, exclusion 
of predictors and exclusion of interactions, as well as a reduced dataset (see 
Supplementary Tables 2 and 4).

Testing among the competing hypotheses. When biomass and assay temperature 
are held constant, and substrate is provided in excess of respiratory demand, 
biochemical theory on thermal adaptation predicts that there should be a negative 
relationship between respiration rates (at a common biomass) and the temperature 
of the thermal regime from which organisms are sampled (Fig. 1). As such, a 
negative coefficient for the MAT variable in the observational gradient dataset, and 
for the incubation temperature variable in the incubator-gradient dataset, would 
be consistent with the biochemical adaptation hypothesis. In contrast, a positive 
coefficient for these predictor variables would be consistent with the idea of an 
enhancing thermal response, whereas a coefficient of approximately zero would 
suggest no adaptive response was apparent at the level of the microbial community.

In both the MAT- and incubation-gradient models, we included continuous 
variables known to exert a strong influence on soil respiration rates: percentage 
soil carbon, texture, pH and microbial biomass. Soil moisture was standardized 
given the assay design and so was not included in the models. We did not include 
cover (that is forest or grassland) as a predictor variable because its effects on 
respiration are probably mediated by its influence on other predictors, such as 
pH, microbial biomass and soil carbon. Hence, cover was included in the study 
design primarily to generate variation in these other predictors. However, we 
verified that our inferences were robust to its inclusion in the full MAT-gradient 
model (see Supplementary Table 2). In addition, we used cover in the random 
effects to account for the hierarchical spatial and temporal design of our study (see 
below). Furthermore, in addition to the thermal regime variables (that is MAT or 
incubation gradient), we included the predictor variables that we imposed, and 
that would be expected to strongly affect respiration rates. For the MAT gradient, 
these variables were the assay temperature and substrate identity (glucose, oxalic 
acid or glycine). The assay temperature was represented as a continuous variable 
and the substrate by binary variables (glucose: 1 or 0; oxalic acid: 1 or 0; where 
both predictors had a value of 0, glycine was added). For the incubation-gradient 
dataset, these variables were the incubation substrate (glucose or water added: 
1 or 0) and assay substrate (glucose or water added: 1 or 0). In the incubation-
gradient model, we also included two-way interactions between the incubation 
temperature and incubation substrate, and the incubation temperature and MAT. 
The two-way interactions were included to account for the possibility that adaptive 
responses to the thermal regime would be greater when there was more substrate 
available to facilitate microbial growth and hence turnover (that is, when there 
was glucose versus water addition during the incubations), and if the MAT of the 
thermal regime from where the soils were collected influenced the plasticity of the 
microbial taxa (see section ‘Incubator gradient’ in the main text).

Statistical model specifics. The LMMs were fit in the ‘lme4’ package for the 
‘R’ statistical programme (version 3.1.3) using the ‘lmer’ function. Potential 
respiration rates were expressed as μ​g C-CO2 g dry-weight soil−1 h−1. For the MAT-
gradient models, location, cover type and year were fit as random variables to the 
LMMs, with the finer-scale variables nested within the broader-scale variables to 
account for potential spatial and temporal autocorrelation64,65. That is, the random 
error structure accounted for the hierarchical design (year nested within cover 
type, with cover type nested within location), assuming a common slope but 
spatially dependent intercept. In the incubator-gradient dataset, given that only 
2012 soils were used, the random error structure comprised cover type nested 
within location.

Before we tested the model structures described above, we tested the data 
distributions. Soil respiration data are commonly highly skewed to the right, and 
our data were no exception. Natural-log transformation produced a distribution 
that fit with model assumptions of normality. There were three influential 
observations (based on Cook’s D) in the MAT-gradient dataset, but they were 
retained because the coefficient estimates, significance, model r2 values and model 
assumptions were essentially insensitive to their inclusion (Supplementary Table 2).  
In the incubation-gradient dataset, a single observation was influential but its 
inclusion only slightly affected the coefficients (Supplementary Table 4). For both 
datasets, second-order terms were fit for both MAT and assay temperature, but 
were uninformative: coefficients and model fits were unchanged. Soil pH (back-
transformed to H+ ion concentration), percentage soil carbon and texture (as 
percentage clay) were all included in the models for both datasets. Despite the 
fact that the square-root variance inflation factors in the final models were <​2.0 
for the main effects (when interactions were dropped), suggesting acceptably low 
collinearity, soil carbon and texture were, to a certain extent, correlated with MAT 
and microbial biomass (Supplementary Tables 3 and 5). However, our inferences 
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as to the effects of thermal regimes were essentially insensitive to their inclusion in 
the models (Supplementary Tables 2 and 4).

Standardized coefficients were calculated by running the same statistical 
models but with the observed values of each predictor variable transformed by 
subtracting the mean for the variable determined from all observations, then 
dividing by two s.d. for the same distribution66. This method of standardizing 
coefficients permits coefficients to be directly compared for variables measured on 
different unit scales and when both continuous and binary predictor variables are 
included in a model (as is the case for our analysis). Furthermore, standardization 
facilitates the interpretation of main effects in the presence of interactions66.

Models were fit using restricted maximum likelihood and P values derived 
using the Satterthwaite approximation for degrees of freedom, given that this 
approach minimizes the type I error rate and so is considered conservative67. 
We considered coefficients with P <​ 0.05 to be significant and coefficients with 
P <​ 0.10 to be marginally significant68. We calculated the r2 values for each model 
following Nakagawa and Schielzeth69. Calculation of r2 values is common practice 
when modelling ecosystem processes, and a high value associated with a specific 
explanatory variable is often associated with that variable having a strong effect 
size. This reasoning makes no sense within the context of our study61 because 
some variables were experimentally controlled (for example, assay substrate 
and temperature) and hence accurately measured for all soils, whereas the other 
variables relied on observed variation and measurements that represented—but 
probably did not fully characterize—the conditions that acted on respiratory 
activity (for example, the impact of MAT and microbial biomass). The imprecision 
introduced by such measurements make data more ‘noisy’, lowering r2 values, but 
in the absence of systematic bias will not change the coefficient estimates and 
hence effect sizes61,70. We therefore only report the r2 value for the overall models, 
to verify that they had the potential to explain a substantive degree of the variance 
in respiration rates and to show that the coefficient estimates were robust.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data in the support of these findings and the R code for the statistical models are 
available via the Dryad Digital Repository (https://doi.org/10.5061/dryad.s87008d).
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separating the investigators from potential bias toward a specific directional effect. In addition, a key variable for assessment of the 
hypotheses (i.e. PLFA microbial biomass) was measured at a different institution where the investigators had only a sample number 
and hence no knowledge of where the sample came from. As such, some of the essential variables were measured "blind", ensuring 
that the eventual dataset contained some variables where the measurements were performed entirely blind.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions To capture temporal variation in microbial community attributes, three replicate samples were collected from each sampling 

location (see next) over three years (2010, 2011 and 2012), with sampling date varying between seasons (spring, summer and 
fall, respectively). For high latitude and elevation locations, snow and ice precluded safe sampling of soils in winter, so soils were 
collected for return to the lab at Yale only when sites were accessible by 4-WD (as opposed to snow mobile). 
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N, -65.8°E (LUQ), Niwot Ridge LTER, Colorado 39.99°N, -105.37°E (NWT)), and the Hawaii Experimental Tropical Forest, Institute 
of Pacific Islands Forestry, Hawaii 19.81°N, -155.26°E (HAW). Each location included paired sites that had natural forest versus 
grassland cover, where the grasslands were either natural or maintained by low-intensity (annual mowing) management

Access and import/export Permission and/or permits were sought from site managers, or broader regulatory bodies where relevant (e.g. the US Forest 
Service in Hawaii) before soil samples were taken. Then, for all locations (e.g. Alaska, Puerto Rico, Hawaii) that required soil 
import licenses, a US Department of Agriculture soil import permit was obtained and maintained by M.A. Bradford, including all 
relevant stipulations for the safe handling and disposal of foreign soils.  

Disturbance Three 0.16 m2 quadrats of soil down to 10 cm depth were taken at each site, in each sampling year. Hence, there was minimal 
disturbance to the locations where the work was conducted.  
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