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Abstract

Background: Host immune response is coordinated by a variety of different

specialized cell types that vary in time and location. While host immune response

can be studied using conventional low-dimensional approaches, advances in

transcriptomics analysis may provide a less biased view. Yet, leveraging

transcriptomics data to identify immune cell subtypes presents challenges for

extracting informative gene signatures hidden within a high dimensional

transcriptomics space characterized by low sample numbers with noisy and

missing values. To address these challenges, we explore using machine learning

methods to select gene subsets and estimate gene coefficients simultaneously.

Results: Elastic-net logistic regression, a type of machine learning, was used to

construct separate classifiers for ten different types of immune cell and for five T

helper cell subsets. The resulting classifiers were then used to develop gene

signatures that best discriminate among immune cell types and T helper cell

subsets using RNA-seq datasets. We validated the approach using single-cell

RNA-seq (scRNA-seq) datasets, which gave consistent results. In addition, we

classified cell types that were previously unannotated. Finally, we benchmarked

the proposed gene signatures against other existing gene signatures.

Conclusions: Developed classifiers can be used as priors in predicting the extent

and functional orientation of the host immune response in diseases, such as

cancer, where transcriptomic profiling of bulk tissue samples and single cells are

routinely employed. Information that can provide insight into the mechanistic

basis of disease and therapeutic response. The source code and documentation

are available through GitHub: https://github.com/KlinkeLab/ImmClass2019.

Keywords: Immune Cells; Gene Signature; Machine Learning; Elastic-Net; In

silico Cytometry1

2

Background3

Host immune response is a coordinated complex system, consisting of different spe-4

cialized innate and adaptive immune cells that vary dynamically and in different5

anatomical locations. As shown in Fig. 1, innate immune cells comprise myeloid6

cells, which include eosinophils, neutrophils, basophils, monocytes, and mast cells.7

Adaptive immune cells are mainly B lymphocytes and T lymphocytes that specif-8

ically recognize different antigens [1]. Linking innate with adaptive immunity are9
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Natural Killer cells and antigen presenting cells, like macrophages and dendritic10

cells. Traditionally, unique cell markers have been used to characterize different im-11

mune cell subsets from heterogeneous cell mixtures using flow cytometry [2, 3, 4].12

However, flow cytometry measures on the order of 10 parameters simultaneously13

and relies on prior knowledge for selecting relevant molecular markers, which could14

provide a biased view of the immune state within a sample [5]. Recent advances15

in technology, like mass cytometry or multispectral imaging, have expanded the16

number of molecular markers, but the number of markers used for discriminating17

among cell types within a sample remains on the order of 101.5.18

In the recent years, quantifying tumor immune contexture using bulk transcrip-19

tomics or single-cell RNA sequencing data (scRNA-seq) has piqued the interest of20

the scientific community [6, 7, 8, 9, 10]. Advances in transcriptomics technology,21

like RNA sequencing, provide a much higher dimensional view of which genes are22

expressed in different immune cells (i.e., on the order of 103) [11]. Conceptually, in-23

ferring cell types from data using an expanded number of biologically relevant genes24

becomes more tolerant to non-specific noise and non-biological differences among25

samples and platforms. In practice, cell types can be identified using gene signa-26

tures, which are defined as sets of genes linked to common downstream functions27

or inductive networks that are co-regulated [12, 13], using approaches such as Gene28

Set Enrichment Analysis (GSEA) [12]. However, as microarray data can inflate de-29

tecting low abundance and noisy transcripts and scRNA-seq data can have a lower30

depth of sequencing, opportunities for refining methods to quantify the immune31

contexture using gene signatures still remain.32

Leveraging transcriptomics data to identify immune cell types presents analytic33

challenges for extracting informative gene signatures hidden within a high dimen-34

sional transcriptomics space that is characterized by low sample numbers with noisy35

and missing values. Typically, the number of cell samples is in the range of hun-36

dreds or less, while the number of profiled genes is in the tens of thousands [14].37

Yet, only a few number of genes are relevant for discriminating among immune38

cell subsets. Datasets with a large number of noisy and irrelevant genes decrease39

the accuracy and computing efficiency of machine learning algorithms, especially40

when the number of samples are very limited. Hence, feature selection algorithms41

may be used to reduce the number of redundant genes [15]. Using feature selection42
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methods enable developing gene signatures in different biomedical fields of study43

[16]. There are many proposed feature selection methods that can select gene sets44

that enable classifying samples with high accuracy. In recent years, regularization45

methods have became more popular, which efficiently select features [17] and also46

control for overfitting [18]. As a machine learning tool, logistic regression is consid-47

ered to be a powerful discriminative method [18]. However, logistic regression alone48

is not applicable for high-dimensional cell classification problems [19]. On the other49

hand, hybrid methods, like regularized logistic regression, have been successfully50

applied to high-dimensional problems [20]. Regularized logistic regression selects a51

small set of genes with the strongest effects on the cost function [17]. A regularized52

logistic regression can be also be applied with different regularization terms. The53

most popular regularized terms are LASSO, Ridge [21], and elastic-net [22], which54

impose the l1 norm, l2 norm, and linear combination of l1 norm and l2 norm regu-55

larization, respectively, to the cost function. It has been shown that, specifically in56

very high dimensional problems, elastic-net outperforms LASSO and Ridge [17, 22].57

In this study, we focused on two-step regularized logistic regression techniques to58

develop immune cell signatures and immune cell and T helper cell classifiers using59

RNA-seq data for the cells highlighted in bold in Fig. 1. The first step of the process60

included a pre-filtering phase to select the optimal number of genes and implemented61

an elastic-net model as a regularization method for gene selection in generating the62

classifiers. The pre-filtering step reduced computational cost and increased final63

accuracy by selecting the most discriminative and relevant set of genes. Finally, we64

illustrate the value of the approach in annotating gene expression profiles obtained65

from single-cell RNA sequencing. The second step generated gene signatures for66

individual cell types using selected genes from first step and implemented a binary67

regularized logistic regression for each cell type against all other samples.68

Results69

We developed classifiers for subsets of immune cells and T helper cells separately70

with two main goals. First, we aimed to annotate RNA-seq data obtained from an71

enriched cell population with information as to the immune cell identity. Second, we72

developed gene signatures for different immune cells that could be used to quantify73

the prevalence from RNA-seq data obtained from a heterogeneous cell population.74
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Prior to developing the classifiers, the data was pre-processed to remove genes that75

have low level of expression for most of samples (details can be found in Meth-76

ods section) and normalized to increase the homogeneity in samples from different77

studies and to decrease dependency of expression estimates to transcript length78

and GC-content. Genes retained that had missing values for some of the samples79

were assigned a value of -1. Next, regularized logistic regression (elastic-net) was80

performed and the optimal number of genes and their coefficients were determined.81

Generating and validating an immune cell classifier82

In developing the immune cell classifier, we determined the optimal number of genes83

in the classifier by varying the lambda value used in the regularized logistic regres-84

sion of the training samples and assessing performance. To quantify the performance85

using different lambdas, a dataset was generated by combining True-Negative sam-86

ples, which were created using a bootstrapping approach that randomly resampled87

associated genes and their corresponding value from the testing datasets to create88

a synthetic dataset of similar size and complexity, with the original testing data,89

which were untouched during training and provided True-Positive samples. The90

accuracy of predicting the True-Positive samples were used to generate Receiver91

Operating Characteristic (ROC) curves (Fig. 2a). Performance using each lambda92

was quantified as the Area Under the ROC Curve (AUC).93

The optimal lambda for immune cell classifier was the smallest value (i.e., high-94

est number of genes) that maximized the AUC. Functionally, this lambda value95

represents the trade-off between retaining the highest number of informative genes96

(i.e., classifier signal) for developing the gene signature in the second step, while97

not adding non-informative genes (i.e., classifier noise). Consequently, we selected98

a lambda value of 1e-4 (452 genes) for the immune cell classifier, where the selected99

genes and their coefficients are shown in Table S1.100

To explore correlations between the weights of selected genes with their expression101

level, we generated heatmaps shown in Fig. 2, panels b and c. A high level of gene102

expression is reflected as a larger positive coefficient in a classifier model, while103

low or absent expression results in a negative coefficient. This is interpreted as, for104

example, if gene A is not in cell type 1, the presence of this gene in a sample decreases105

the probability for that sample to be cell type 1. For instance, E-cadherin (CDH1)106
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was not detected in almost all monocyte samples and thus has a negative coefficient.107

Conversely, other genes are only expressed in certain cell types, which results in a108

high positive coefficient. For instance, CYP27B1, INHBA, IDO1, NUPR1, and UBD109

are only expressed by M1 macrophages and thus have high positive coefficients.110

The differential expression among cell types suggests that the set of genes in-111

cluded in the classifier model may also be a good starting point for developing gene112

signatures, which is highlighted in Fig. 2d. Here, we focused on the expression of113

the 452 genes included in the classifier model and the correlations between samples114

clustered based on cell types. The off-diagonal entries in the correlation matrix are115

colored by euclidean distance with the color indicating similarity or dissimilarity116

using pink and blue, respectively. Color bars along the axes also highlight the cell117

types for the corresponding RNA-seq samples. As expected, RNA-seq samples from118

the same cell type were highly similar. More interestingly, correlation between dif-119

ferent cell types can also be seen, like high similarity between CD4+ and CD8+120

T cell samples, CD8+ T cell and NK cell samples, and monocyte and dendritic121

cell samples. Collectively, these heatmaps illustrate that the selected genes are a122

highly condensed but are still a representative set of genes that include the main123

characteristics of the immune cell types. It is also notable to compare the clustering124

result of cell types based on their coefficients in the classifier shown in Fig. 2b with125

similarity matrix in Fig. 2d. Since in the classifier coefficients are forcing the model126

to separate biologically close cell types (like CD4+ T cell and CD8+ T cell), the127

clustering results suggest that the coefficient vectors are equally dissimilar (Fig.128

2b). However, in the case of their expression values, their similarity remains (Fig.129

2d).130

Evaluating the Immune Cell classifier using scRNA-seq datasets131

To evaluate the proposed classifier in immune cell classification, two publicly accessi-132

ble datasets generated by scRNA-seq technology were used [23, 24]. The first dataset133

included malignant, immune, stromal and endothelial cells from 15 melanoma tissue134

samples [23]. We focused on the immune cell samples, which included 2761 anno-135

tated samples of T cells, B cells, Mphi and NK cells, and 294 unresolved samples.136

The immune cells in this study were recovered by flow cytometry by gating on137

CD45 positive cells. Annotations were on the basis of expressed marker genes while138
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unresolved samples were from the CD45-gate and classified as non-malignant based139

on inferred copy number variation (CNV) patterns (i.e., CNV score < 0.04).140

Following pre-processing to filter and normalize the samples similar to the training141

step, the trained elastic-net logistic regression model was used to classify cells into142

one of the different immune subsets based on the reported scRNA-seq data with143

the results summarized in Fig. 3a. The inner pie chart shows the prior cell annota-144

tions reported by [23] and the outer chart shows the corresponding cell annotation145

predictions by our proposed classifier. Considering T cells as either CD4+ T cell or146

CD8+ T cell, the overall similarity between annotations provided by [23] and our147

classifier prediction is 96.2%. The distribution in cells types contained within the148

unresolved samples seemed to be slightly different than the annotated samples as149

we predicted the unresolved samples to be mainly CD8+ T cells and B cells.150

The only cell type with low similarity between our classifier predictions and prior151

annotations was NK cells, where we classified almost half of samples annotated152

previously as NK cells as CD8+ T cell. Discriminating between these two cell types153

is challenging as they share many of the genes related to cytotoxic effector function154

and can also be subclassified into subsets, like CD56bright and CD56dim NK subsets155

[25]. To explore this discrepancy, we compared all annotated samples based on their156

CD8 score and NK score provided by the classifier, as shown in Fig. 3b. Although157

the number of NK cell samples are relatively low, it seems that the NK samples158

consist of two groups of samples: one with a higher likelihood of being a NK cell159

and a second with almost equal likelihood for being either CD8+ T cell or NK cell.160

We applied principal component analysis (PCA) to identify genes associated with161

this difference and used Enrichr for gene set enrichment [26, 27]. Using gene sets162

associated with the Human Gene Atlas, the queried gene set was enriched for genes163

associated with CD56 NK cells, CD4+ T cell and CD8+ T cell. Collectively, the164

results suggests that the group of cells with similar score for NK and CD8 in the165

classifier model are Natural Killer T cells.166

We also analyzed a second dataset that included 317 epithelial breast cancer167

cells, 175 immune cells and 23 non-carcinoma stromal cells, from 11 patients di-168

agnosed with breast cancer [24]. We only considered samples annotated previously169

as immune cells, which were annotated as T cells, B cells, and myeloid samples170

by clustering the gene expression signatures using non-negative factorization. The171
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scRNA-seq samples were similarly pre-processed and analyzed using the proposed172

classifier, with the results shown in Fig. 4. The inner pie chart shows the prior cell173

annotations reported by [24] and the outer chart shows the corresponding predicted174

cell annotation by our proposed classifier. Considering T cells as either CD4+ T175

cell or CD8+ T cell, 94.4% of reported T cells are predicted as the same cell type176

and other 5.6% is predicted to be DC or NK cells. However, for reported B cells177

and myeloid cells, we predicted relatively high portion of samples to be T cells (178

15.7% of B cells and 40% of myeloid cells). The rest of the myeloid samples were179

predicted to be macrophages or dendritic cells. Collectively, our proposed classifier180

agreed with many of the prior cell annotations and annotated many of the samples181

that were previously unresolved.182

Developing a classifier for T Helper cell subsets183

To further apply this methodology to transcriptomic data, a separate classifier for184

distinguishing among T helper cells was developed using a similar approach to185

the immune cell classifier. We explored different values of the regression parameter186

lambda to find the optimal number of genes for this new dataset and visualized187

the performance of different lambdas by generating True-Negative samples using188

a bootstrapping approach whereby synthetic datasets were created by randomly189

resampling testing datasets. Original testing data that were completely untouched190

during training were used as True-Positive samples. The resulting True-Negative191

and True-Positive samples were used to generate ROC curves (Fig. 5a) and the192

AUC was used to score each lambda value. Generally, the lambda values for T193

helper cell classifier represents the trade-off between retaining genes and keeping194

the AUC high. However, there appeared to be an inflection point at a lambda value195

of 0.05 whereby adding additional genes, by increasing lambda, reduced the AUC.196

Consequently, we selected a lambda value equal to 0.05 (72 genes) for the T helper197

classifier. The selected genes and their coefficients are listed in Table S1. The gene198

list was refined subsequently by developing a gene signature.199

Similar to the immune cell classifier, the coefficients of the selected genes for the T200

helper cell classifier correlated with their expression levels, as seen by comparing the201

heatmaps shown in Fig. 5, panels b and c. For instance, FUT7 has been expressed in202

almost all T helper cell samples except for iTreg that result in a negative coefficient203
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for this cell type. In addition, there are sets of genes for each cell type that have large204

coefficients only for certain T helper cell subsets, like ALPK1, TBX21, IL12RB2,205

IFNG, RNF157 for Th1 that have low expression in other cells. As illustrated in206

Fig. 5d, the genes included in the classifier don’t all uniquely associate with a207

single subset but collectively enable discriminating among T helper cell subsets.208

Interestingly, the T helper subsets stratified into two subgroups where naive T209

helper cells (Th0) and inducible T regulatory (iTreg) cells were more similar than210

effector type 1 (Th1), type 2 (Th2), and type 17 (Th17) T helper cells. Similar211

to the immune cell classifier, we also noted that the clustering of the classifier212

coefficients is different from what similarity matrix shows in Fig. 5d because the213

classifier coefficients aim to create a “classifying distance” among closely related214

cell types.215

Finally by comparing the results of immune cell classifier with that of the T helper216

classifier, the intensity of differences among cell types can be seen in Fig. 2c and217

Fig. 5c. In the first figure you can find completely distinct set of genes in each cell218

type. Meanwhile, the gene sets in the second figure are not as distinct which could219

be due to the low number of samples or high biological similarity between T helper220

cell types.221

Application of the Classifiers222

Clinical success of immune checkpoint inhibitors (ICI) for treating cancer coupled223

with technological advances in assaying the transcriptional signatures in individual224

cells, like scRNA-seq, has invigorated interest in characterizing the immune contex-225

ture within complex tissue microenvironments, like cancer. However as illustrated226

by the cell annotations reported by [24], identifying immune cell types from noisy227

scRNA-seq signatures using less biased methods remains an unsolved problem. To228

address this problem, we applied our newly developed classifiers to characterize229

the immune contexture in melanoma and explored differences in immune contex-230

ture that associate with immune checkpoint response. Of note, some patients with231

melanoma respond to ICIs durably but many others show resistance [28]. Specifi-232

cally, we annotated immune cells in the melanoma scRNA-seq datasets [23, 29] using233

our classifiers separately for each patient sample and ordered samples based on the234

treatment response, with the results shown in Fig. 6a, b. We used the percentage235
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of cell type in each tumor sample as it was more informative and meaningful than236

using absolute cell numbers. It is notable that untreated and NoInfo samples likely237

include both ICI-resistant and ICI-sensitive tumors.238

In comparing samples from resistant tumors to untreated tumors, we found in-239

terestingly that there are samples with high prevalence of NK in untreated tumors240

(Mel53, Mel81, and Mel82) while no samples in resistant tumors have a high preva-241

lence of NK cells. The mentioned untreated tumors also have no or very low number242

of Th2 cells in their populations. In addition, untreated tumors have a more uni-243

form distribution of immune cell types in contrast to ICI-resistant ones, which could244

reflect a therapeutic bias in immune cell prevalence in the tumor microenvironment245

due to ICI treatment.246

Next, we combined the annotation data from both classifiers and applied PCA247

and clustering analysis, as shown in Fig. 6, panels c and d. Using scrambled data248

to determine principal components and their associated eigenvalues that are not249

generated by random chance (i.e., a negative control), we kept the first and second250

principal components that capture 68% and 21% of the total variance, respectively,251

and neglected other components that fell below the negative control of 8.4%. As it252

shown in 6c, resistant samples mainly located in lowest value of second principal253

component (PC2). Upon closer inspection of the cell loadings within the eigenvec-254

tors, the low values of PC2 correspond to a low prevalence of Mφ or high percentage255

of B cells. In addition, based on the first principal component (PC1), resistant sam-256

ples have either the lowest values of PC1 (Mel74, Mel75, Mel58, Mel 78), which257

correspond to higher than average prevalence of CD8+ T cells, or the highest val-258

ues of PC1 (Mel60, Mel72, Mel94), which show a higher than average prevalence of259

B cells.260

In hierarchical clustering, the optimal number of clusters was selected based on cal-261

culation of different cluster indices using the NbClust R package [30] which mainly262

identified two or three clusters as the optimal number. In considering three group-263

ings of the hierarchical clustering results shown in 6d, seven out of eight ICI-resistant264

samples clustered in first two clusters while the third cluster mainly contained un-265

treated samples. The comparison of results from PCA and clustering analyses shows266

that the first cluster contained samples with extreme low value of PC1 which itself267

divided into two groups; one with extreme low value of PC2 and the other with268
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higher amount of PC2. The second cluster located in highest amount of PC1 and269

lowest amount of PC2. All remained samples were clustered as third group, which270

were predominantly untreated samples. The difference in clustering suggests dissim-271

ilarities between ICI-resistant and untreated samples and the possibility of having272

ICI-sensitive tumors in untreated samples.273

Developing Gene Signatures274

While classifiers are helpful for annotating scRNA-seq data as the transcriptomic275

signature corresponds to a single cell, gene signatures are commonly used to deter-276

mine the prevalence of immune cell subsets within transcriptomic profiles of bulk277

tissue samples using deconvolution methods, called in silico cytometry [31]. Lever-278

aging the classifier results, we generated corresponding gene signatures using binary279

elastic-net logistic regression. Specifically, classifier genes with non-zero coefficients280

were used as initial features of the models, which were then regressed to the same281

training and testing datasets as used for developing the classifiers. Lambda values282

were selected for each immune and T helper cell subset based on similar method of283

lambda selection for classifiers and their values and corresponding AUC are shown284

in Table S2. Finally, all generated signatures are summarized in Table S3.285

We visualized the expression levels of the remaining set of genes, which at least286

occur in one gene signature, in Fig. 7. The expression of genes retained in immune287

cell signatures (Fig. 7a) and T helper cell signatures (Fig. 7b) were clustered by288

similarity in expression (rows) and by similarity in sample (columns). For both im-289

mune and T helper cell subsets, samples of same cell type were mainly clustered290

together. The only exception is for macrophages (Mφ and M2) which can be at-291

tributed to high biological similarity and a low number of technical replicates for292

these cell types.293

In general, the gene sets generated from the logistic regression model performed294

well with far fewer requisite genes in the testing set, a desirable result for a gene295

set intended to be used for immunophenotyping. In Fig. 8, the results of the bench-296

marking are shown separated by comparative gene set. Both the CIBERSORT and297

Single-Cell derived gene sets contain an average of 64 and 135 genes, respectively,298

while the logistic regression gene set contains an average of just 19. The new logistic299

regression gene set performed comparably to the existing contemporary gene sets300
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and far exceeded the performance of the manually curated gene set used previously301

[6]. The benchmarking results indicate that the logistic regression gene sets are an302

improvement in efficacy over compact gene sets, such as those that are manually303

annotated or hand-picked. Meanwhile, the logistic regression gene sets also demon-304

strate an optimization of broader gene sets that contain too many genes for deep305

specificity when used in further analysis. The inclusion of too many genes in a set306

can dilute the real data across a constant level of noise, while including too few lacks307

the power to draw conclusions with high confidence. The logistic regression gene308

sets demonstrate a balance of these two issues through its highly refined selection309

of genes that can be fine-tuned using its lambda parameter.310

Discussion311

Recent developments in RNA sequencing enable a high fidelity view of the tran-312

scriptomic landscape associated with host immune response. Despite considerable313

progress in parsing this landscape using gene signatures, gaps remain in developing314

unbiased signatures for individual immune cell types from healthy donors using high315

dimensional RNA-seq data. Here, we developed two classifiers - one for immune cell316

subsets and one for T helper cell subsets - using elastic-net logistic regression with317

cross validation. The features of these classifiers were used as a starting point for318

generating gene signatures that captured with fifteen binary elastic-net logistic re-319

gression models the most relevant gene sets to distinguish among different immune320

cell types without including too much noise.321

Gene signatures in previous studies have been developed and used mainly as a base322

for deconvoluting the tumor microenvironment to find the presence of immune cells323

from bulk RNA measures. Therefore, as the first step, determining cell-specific gene324

signatures critically influences the results of deconvolution methods [32]. Newman325

et al. defined gene signatures for immune cells using two-sided unequal variances326

t-test as base matrix for CIBERSORT [8]. In another study, Li et al. in devel-327

oping TIMER, generated gene signatures for six immune cell types with selecting328

genes with expression levels that have a negative correlation with tumor purity [9].329

More recently, Racle et al. developed a deconvolution tool based on RNA-seq data330

(EPIC) by pre-selecting genes based on ranking by fold change and then selected331

genes by manually curating and comparing the expression levels in blood and tu-332
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mor microenvironment [10]. Finally, quanTIseq (the most recently developed tool333

for deconvolution) was developed for RNA-seq data based on the gene signatures334

generated by quantizing the expression levels into different bins and selecting high335

quantized genes for each cell type that have low or medium expression in other cell336

types [7]. Although all methods obtained high accuracy based on their developed337

signatures, a more rigorous and unbiased gene signature developed by RNA-seq338

data and precise feature selection methods can further improve the accuracy and339

validate the process for downstream analyses.340

In addition, to identify cell types based on their transcriptome, clustering tech-341

niques have been used in many studies [33, 34]. However, there are high variability342

levels of gene expression even in samples from the same cell type. Moreover, tran-343

scriptomics data has high dimensions (tens of thousands) and this is too complicated344

for clustering techniques as only few number of genes are discriminative. To over-345

come these problems some studies used supervised machine learning methods like346

Support Vector Machine (SVM) [35, 36]. However, to the best of our knowledge, this347

paper is the first to apply two-step regularized logistic regression on RNA-seq tran-348

scriptomic of immune cells. This method increases the chance to capture the most349

discriminative set of genes for each cell type based on the power of an elastic-net350

[22]. In addition, using a two-step elastic net logistic regression enabled eliminating351

the most irrelevant genes while keeping the highest number of possible significant352

genes in the first step and more deeply selecting among them in the second step to353

generate robust gene signatures for immune cells.354

Moreover, contemporary methods have only considered a limited number of im-355

mune cell types, and specifically T helper subsets as individual cell types have been356

neglected [23, 29, 24] in comprehensive studies. Therefore, the other novel aspect357

of this study is the separation of models for immune cells and T helper cells and358

development of gene signatures for a large number of immune cell types (fifteen359

different immune cell types) including different T helper cell subsets. The ability to360

identify a greater number of immune cell types enables studying immune system in361

different diseases in more depth. As we used publicly available RNA-seq datasets for362

immune cells and T helper cells, we acknowledge that our developed classifiers and363

gene signatures may be still constrained by the limited number of samples specifi-364

cally for T helper cells. As more data describing the transcriptome of immune cells365
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will become accessible, one can update the classifiers and gene signatures. Despite366

the limited number of samples used in the approach, the developed classifiers can367

even be applied to completely untouched and large datasets [23, 24] that have been368

generated using scRNA-Seq technology which creates noisier data.369

Conclusions370

Here, we developed an immune cell classifier and classifier for T helper cell subsets371

along with gene signatures to distinguish among fifteen different immune cell types.372

Elastic-net logistic regression was used to generate classifiers with 10-fold cross-373

validation after normalizing and filtering two separate RNA-seq datasets that were374

generated using defined homogeneous cell populations. Subsequently, we generated375

gene signatures using a second step of binary regularized logistic regression applied376

to the RNA-seq data using previously selected classifier genes. As an external val-377

idation, the resulting classifiers accurately identified the type of immune cells in378

scRNA-seq datasets. Our classifiers and gene signatures can be considered for dif-379

ferent downstream applications. First, the classifiers may be used to detect the type380

of immune cells in under explored bulk tissue samples profiled using RNA-seq and381

to verify the identity of immune cells annotated with low confidence. Second, the382

gene signatures could be used to study tumor micro-environments and the inter-383

dependence of immune response with cancer cell phenotypes, which is emerging to384

be an important clinical question.385

Methods386

Data Acquisition387

RNA-seq datasets for 15 different immune cell types including T helper cells, were388

obtained from ten different studies [37, 38, 39, 40, 41, 42, 43, 44, 45, 46], which were389

publicly accessible via the Gene Expression Omnibus [47]. The list of samples is390

provided as Supplementary Table S1. The cell types were divided into two groups:391

immune cells that include B cells, CD4+ and CD8+ T cells, monocytes (Mono),392

neutrophils (Neu), natural killer (NK) cells, dendritic cells (DC), macrophage (Mφ),393

classically (M1) and alternatively (M2) activated macrophages, and the T helper394

cells that include Th1, Th2, Th17, Th0, and Regulatory T cells (Treg). The goal was395

to train the gene selection model on immune cell types, and CD4+ T cell subsets396

(T helper cells), separately. If these two groups of cells are analyzed together, many397
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of the genes that potentially could be used to discriminate among T helper cell398

subsets might be eliminated as they overlap with genes associated with CD4+ T399

cells.400

In short, a total of 233 samples were downloaded and divided into two sets of401

185 and 48 samples, for immune cells and T helper cells, respectively. Moreover,402

immune cell samples were further divided into 108 training and 77 testing samples.403

Training and testing numbers for T helper samples were 31 and 17, respectively.404

Training and testing data include samples from all studies. For a verification dataset,405

scRNA-seq data derived from CD45+ cell samples obtained from breast cancer406

[24] and melanoma [23] were used with GEO accession numbers of GSE75688 and407

GSE72056, respectively.408

Data Normalization409

The expression estimates provided by the individual studies were used, regardless410

of the underlying experimental and data processing methods (Table S1). For devel-411

oping individual gene signatures and cell classification models, we did not use raw412

data due to sample heterogeneity such as different experimental methods and data413

processing techniques used by different studies as well as differences across biolog-414

ical sources. Rather, we applied a multistep normalization process before training415

models. To eliminate obvious insignificant genes from our data, for immune cell sam-416

ples, genes with expression values higher than or equal to five counts, in at least417

five samples were kept, otherwise, they were eliminated from the study. However,418

for T helper samples, due to fewer number of samples, four samples with values419

higher than or equal to five counts were enough to be considered in the study. After420

first step of filtering, the main normalization step was used to decrease dependency421

of expression estimates to transcript length and GC-content[48, 49]. For all four422

sets of samples, including training and testing samples for immune cells and for T423

helper cells, expression estimates were normalized separately by applying withinLa-424

neNormalization and betweenLaneNormalization functions from EDASeq package425

[50] in the R programming language (R 3.5.3), to remove GC-content biases and426

between-lane differences in count distributions [50]. After normalization, the second427

step of filtration, which was similar to the first step, was applied to eliminate genes428

with insignificant expression.429



Torang et al. Page 16 of 29

Missing Values430

In contrast to previous studies that only considered intersection genes [51] and to431

avoid deleting discriminative genes, we kept genes with high expression as much as432

possible. However, for most of genes, values for some samples were not reported.433

Hence, to deal with these missing values, we used an imputation method [52] and434

instead of mean imputation we set a dummy constant since mean imputation in this435

case is not meaningful and can increase error. Specifically, we generated a training436

set for each group of cell types, by duplicating the original training set 100 times437

and randomly eliminating ten percent of expression values. We next set -1 for all438

these missing values (both original missing values and those we eliminated) as a439

dummy constant because all values are positive and it is easier for the system to440

identify these values as noise. This approach makes the system learn to neglect a441

specific value (-1) and treat it like noise, instead of learning it as a feature of the442

samples.443

Classifier Training and Testing444

Considering the few number of training samples in comparison with the high di-445

mensions (15453 genes in immune cell samples and 9146 genes in the T helper446

samples) and to avoid both over fitting the model and adding noise to the pre-447

diction model, we used regularization with logistic regression to decrease the total448

number of genes and select the most discriminative set of genes. To perform gene449

selection, we trained a lasso-ridge logistic regression (elastic-net) model, which au-450

tomatically sets the coefficients of a large number of genes to zero and prunes451

the number of genes as features of the classifier. We cross-validated the model by452

implementing cv.glmnet function with nfold=10 from glmnet package [21] in R pro-453

gramming language, using training sets for both groups of cell types. We normalized454

the gene expression values using a log2 transform over training sets to decrease the455

range of values that can affect the performance of the model (log2(counts+1)). In456

order to find the optimal number of genes, we tried seven different lambdas and457

tested the results over the testing samples (cv.glmnet(family=”multinomial”, al-458

pha=0.93, thresh=1e-07, lambda=c(0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001),459

type.multinomial=”grouped”, nfolds=10)). To select the optimal value for lambda,460

True-Negative samples were generated using a bootstrapping approach that ran-461
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domly samples testing datasets to create a synthetic dataset with similar size and462

complexity but without underlying biological correlation, then we generated ROC463

curves and considered original testing datasets as True-Positive samples.464

Developing Gene Signatures465

Genes selected by the classifier models were used as initial sets to build gene signa-466

tures. In this case, we trained a new binary elastic-net model for each cell type by467

considering a certain cell type as one class and all other cell types as another class.468

The training and testing samples used to build gene signatures were the training469

and testing samples used in developing the classifiers with the difference being that470

they only contained the selected genes. Similar steps including dealing with missing471

values, applying log2 and visualization by ROC to select optimal number of genes472

were applied for each cell type. This two-step gene selection approach has the ad-473

vantage that it eliminates a large number of undiscriminating genes at the first and474

finally select few number of genes for each cell type.475

Benchmarking476

Fisher exact testing was used for each gene set to characterize true and systemat-477

ically scrambled data as a measure of performance of the gene set as a means of478

distinguishing between cell subtypes. In order to establish negative control values479

for determining specificity, a bootstrapping approach was used [53], where data was480

scrambled by randomly resampling with replacement expression values by gene as481

well as by patient to create a synthetic dataset with a similar size and complexity482

of the original dataset. The threshold for expression binarization for Fisher exact483

testing was selected based on gene expression histograms of the data to separate484

the measured expression from background noise levels, with 2.48 being used as485

the threshold (after log2 normalization). One-thousand iterations (Nboot) were pro-486

cessed and compiled in order to produce ROC curves with 95% confidence intervals487

shaded about the averaged ROC curve for each gene set’s performance. A boot-488

strapping approach for generating a negative control sample is appropriate when489

a sufficiently large bootstrap sample (i.e., Nboot ≥ 1000) and the original dataset490

is sufficiently diverse (i.e., Ndata ≥ 30) [54]. The tested gene sets were the logistic491

regression gene set, the CIBERSORT gene set [8], the single cell gene set [29], and492

the manually curated gene set that had been used previously [6].493
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List of abbreviations494

ROC: receiver-operator curves495

scRNA-seq: single-cell RNA-seq496

AUC: area under the ROC curve497

CNV: copy number variation498

PCA: principal component analysis499

ICI: immune checkpoint inhibitor500

SVM: support vector machine501
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Figures661

Figure 1 Lineage tree representation of cells of the immune system. Immune cells are derived

from hematopoietic stem cells (HSCs). HSCs differentiate into lymphoid and myeloid progenitors

that further branch out to the more specific cell types associated with adaptive and innate

immunity. This Figure indicates the main immune cell subsets and arrows are to show lineage

relationships. Gene signatures were developed in this study for immune cells highlighted in bold.
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Figure 2 Development of immune cell classifier and similarity heatmap. a) ROC curve for the

immune cell classifier was calculated using the indicated lambda values (shown in different colors

and line styles) and 10-fold cross validation. The lambda value that maximized the AUC value was

used for subsequent calculations. Elastic-net logistic regression was used to discriminate among

ten immune cell types, where the value of the non-zero coefficients (panel b), expression levels

(panel c), and similarity map (panel d) for the 452 genes included in the classifier are indicated by

color bars for each panel . In panel b, blue to red color scheme indicates coefficients ranging from

negative to positive values. Ordering of the genes is the same in panels b and c. In panel c, light

blue indicates missing values and the intensity of red color (white/red color scale on the top-left)

shows the log base 2 expression level. A color bar on top of this panel was used to separate

samples of each cell type. Panel d illustrates the similarity between samples calculated using

distance matrix based on same 452 genes. Color bars on the left and bottom sides are to separate

samples of each cell type and the top color bar (light blue/pink color scale) shows the intensity of

similarity or dissimilarity of samples.
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Figure 3 Immune cell annotation prediction based on scRNA-seq data against prior

annotations reported in melanoma dataset. a) The inner pie chart summarizes the cell

annotations reported by Tirosh et al [23] and includes 298 unannotated CD45-positive

non-malignant cells (labeled as Unresolved) isolated from melanoma tissue samples. Unannotated

samples were acquired following gating for CD45+ single cells and classified as non-malignant

based on inferred copy number variation patterns. Using gene expression values reported for each

scRNA-seq sample, a new cell annotation was determined based on the closest match with the

alternative cell signatures determined using elastic-net logistic regression, which are summarized in

outer pie chart. b) The contour plot for the likelihood of a sample to be either an NK cell or

CD8+ T cell based on gene expression stratified by cells previously annotated by [23] to be T

cells, macrophages, B cells, or NK cells.
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Figure 4 Immune cell annotation prediction against prior annotations reported in breast cancer

scRNA-seq dataset. The inner pie chart summarizes the cell annotations reported by Chung et al

[24], which annotated scRNA-seq results by clustering by gene ontology terms using likelihood

ratio test. Using the gene expression profile reported for each scRNA-seq sample, a new cell

annotation was determined based on the closest match with the alternative cell signatures

determined using elastic-net logistic regression, which is summarized in the outer pie chart.
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Figure 5 Development of T helper cell classifier and similarity heatmaps a) ROC curve for the

T helper cell classifier was calculated using the indicated lambda values (shown in different colors

and line styles) and 10-fold cross validation. The lambda value that maximized the AUC value was

used for subsequent calculations. Elastic-net logistic regression to discriminate among five T

helper cell types, where the value of the non-zero coefficients (panel b), expression levels (panel

c), and similarity map (panel d) for the 72 genes included in the classifier are indicated by color

bars for each panel. In panel b, blue to red color scheme indicates coefficients ranging from

negative to positive values. Ordering of the genes is the same in panels b and c. In panel c, light

blue indicates missing values and the intensity of red color (white/red color scale on the top-left)

indicates the log base 2 expression level. A color bar on top of this panel was used to separate

samples of each cell type. Panel d illustrates the similarity between samples calculated using an

euclidean distance matrix based on the same 72 genes, where the color indicates the distance

(pink: high similarity/low distance; blue: low similarity/high distance). Color bar on the top/side

of the heatmap indicates the cell type of origin.



Torang et al. Page 27 of 29

Mel53

Mel71

Mel79

Mel80
Mel81Mel82

Mel84

Mel89

Mel58

Mel60

Mel72

Mel74

Mel75

Mel78 Mel88
Mel94

Mel59

Mel65

Mel67

Untreated

Resistant
NoInfo

BCell

CD4

CD8

Mono

NK

DC
M

M1

M2

Neu

�

_

_

_

Mel53

Mel71

Mel79

Mel80Mel81
Mel82

Mel84

Mel89

Mel58

Mel60

Mel72

Mel74
Mel75 Mel88

Mel94

Mel65

Mel67

Untreated

Resistant
NoInfo

Th1

Th2

Th17

Th0

Treg

�

�

�

−0.8 −0.6 −0.4 −0.2 0.0

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

PC1

P
C

2

Mel53

Mel71

Mel79

Mel80

Mel81

Mel82

Mel84

Mel89

Mel58

Mel6Mel72

Mel74Mel75

Mel78

Mel88

Mel94

Mel59

Mel67

Untreated

Resistant

NoInfo

0
.0

0
.2

0
.4

0
.6

0
.8

H
e
ig

h
t

M
e
l8

1
M

e
l7

8
M

e
l5

9 M
e
l7

5
M

e
l5

8
M

e
l7

4
M

e
l6

0
M

e
l7

2
M

e
l9

4
M

e
l6

7
M

e
l7

9
M

e
l8

0
M

e
l6

5
M

e
l7

1
M

e
l8

4
M

e
l8

9
M

e
l8

8
M

e
l5

3
M

e
l8

2

Mel65

a                                     b

c                                    d

1

2

3 1 2 3

Figure 6 Annotation of scRNA-seq results from melanoma dataset stratified by patient

treatment status. Treatment status of patients diagnosed with melanoma was stratified based on

their response to ICIs ([23, 29]). a) The distribution in immune cell annotations and b) T helper

cell annotations based on scRNA-seq data were separated into samples obtained from ICI-resistant

tumors, untreated tumors, and tumors reported in melanoma data without information about

treatment status. Distributions are shown based on the percentage of all immune cells measured

for each patient. Cell annotations were based on immune cell classifier and T helper cell classifier

results. c) PCA analysis was applied to the data obtained from both classifiers and the results for

the first and second principal components were plotted. Red, blue, and grey colors indicate

resistant, untreated and NoInfo (samples that have no information about their treatment status in

the reference works) tumors, respectively. d) Samples were hierarchically clustered based on the

percentages of the nine immune cells and five T helper cells and same coloring applied to show

tumor types.
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Figure 7 Heatmaps of the expression levels for the final list of genes created by gene

signatures. The expression of genes retained in immune cell signatures (panel a) and T helper cell

signatures (panel b) were clustered by similarity in expression levels (rows) and by similarity in

samples (columns). The color bar at the top indicates the samples cell type. Light blue shows

missing values and the intensity of red color (white/red color scale on the top-left color bar)

indicates the log base 2 expression level in both panels.

Figure 8 Benchmarking ROC performance curves. ROC curves to illustrate relative performance

between logistic regression gene set and the manually curated (Panel A), CIBERSORT (Panel B),

and single cell gene sets (Panel C). The logistic regression gene set’s performance is shown in red.

Shaded regions are 95% confidence intervals about the average ROC curve simulated from 1000

iterations.
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Additional Files662

Table S1. — Coefficients of immune cell classifier and T helper cell classifier663

Coefficients of immune cell classifier were located in the first sheet and coefficients of T helper cells were located in664

the second sheet.665

Table S2. — Lambda Selection by AUC Values666

Lambdas with corresponding calculated AUC. The final column shows the selected lambdas667

Table S3. — Genes in developed gene signature for immune and T helper cells668

Yellow boxes show genes with negative impact in possibility of being related cell type.669

Table S4. — Data information used in training models.670

The second sheet shows the names that were used in creating the datasets.671


