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Abstract

Background: Host immune response is coordinated by a variety of different
specialized cell types that vary in time and location. While host immune response
can be studied using conventional low-dimensional approaches, advances in
transcriptomics analysis may provide a less biased view. Yet, leveraging
transcriptomics data to identify immune cell subtypes presents challenges for
extracting informative gene signatures hidden within a high dimensional
transcriptomics space characterized by low sample numbers with noisy and
missing values. To address these challenges, we explore using machine learning

methods to select gene subsets and estimate gene coefficients simultaneously.

Results: Elastic-net logistic regression, a type of machine learning, was used to
construct separate classifiers for ten different types of immune cell and for five T
helper cell subsets. The resulting classifiers were then used to develop gene
signatures that best discriminate among immune cell types and T helper cell
subsets using RNA-seq datasets. We validated the approach using single-cell
RNA-seq (scRNA-seq) datasets, which gave consistent results. In addition, we
classified cell types that were previously unannotated. Finally, we benchmarked

the proposed gene signatures against other existing gene signatures.

Conclusions: Developed classifiers can be used as priors in predicting the extent
and functional orientation of the host immune response in diseases, such as
cancer, where transcriptomic profiling of bulk tissue samples and single cells are
routinely employed. Information that can provide insight into the mechanistic
basis of disease and therapeutic response. The source code and documentation

are available through GitHub: https://github.com/KlinkeLab/ImmClass2019.

Keywords: Immune Cells; Gene Signature; Machine Learning; Elastic-Net; In

silico Cytometry

Background

Host immune response is a coordinated complex system, consisting of different spe-
cialized innate and adaptive immune cells that vary dynamically and in different
anatomical locations. As shown in Fig. 1, innate immune cells comprise myeloid
cells, which include eosinophils, neutrophils, basophils, monocytes, and mast cells.
Adaptive immune cells are mainly B lymphocytes and T lymphocytes that specif-

ically recognize different antigens [1]. Linking innate with adaptive immunity are
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Natural Killer cells and antigen presenting cells, like macrophages and dendritic
cells. Traditionally, unique cell markers have been used to characterize different im-
mune cell subsets from heterogeneous cell mixtures using flow cytometry [2, 3, 4].
However, flow cytometry measures on the order of 10 parameters simultaneously
and relies on prior knowledge for selecting relevant molecular markers, which could
provide a biased view of the immune state within a sample [5]. Recent advances
in technology, like mass cytometry or multispectral imaging, have expanded the
number of molecular markers, but the number of markers used for discriminating
among cell types within a sample remains on the order of 105,

In the recent years, quantifying tumor immune contexture using bulk transcrip-
tomics or single-cell RNA sequencing data (scRNA-seq) has piqued the interest of
the scientific community [6, 7, 8, 9, 10]. Advances in transcriptomics technology,
like RNA sequencing, provide a much higher dimensional view of which genes are
expressed in different immune cells (i.e., on the order of 10?) [11]. Conceptually, in-
ferring cell types from data using an expanded number of biologically relevant genes
becomes more tolerant to non-specific noise and non-biological differences among
samples and platforms. In practice, cell types can be identified using gene signa-
tures, which are defined as sets of genes linked to common downstream functions
or inductive networks that are co-regulated [12, 13], using approaches such as Gene
Set Enrichment Analysis (GSEA) [12]. However, as microarray data can inflate de-
tecting low abundance and noisy transcripts and scRNA-seq data can have a lower
depth of sequencing, opportunities for refining methods to quantify the immune
contexture using gene signatures still remain.

Leveraging transcriptomics data to identify immune cell types presents analytic
challenges for extracting informative gene signatures hidden within a high dimen-
sional transcriptomics space that is characterized by low sample numbers with noisy
and missing values. Typically, the number of cell samples is in the range of hun-
dreds or less, while the number of profiled genes is in the tens of thousands [14].
Yet, only a few number of genes are relevant for discriminating among immune
cell subsets. Datasets with a large number of noisy and irrelevant genes decrease
the accuracy and computing efficiency of machine learning algorithms, especially
when the number of samples are very limited. Hence, feature selection algorithms

may be used to reduce the number of redundant genes [15]. Using feature selection
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methods enable developing gene signatures in different biomedical fields of study
[16]. There are many proposed feature selection methods that can select gene sets
that enable classifying samples with high accuracy. In recent years, regularization
methods have became more popular, which efficiently select features [17] and also
control for overfitting [18]. As a machine learning tool, logistic regression is consid-
ered to be a powerful discriminative method [18]. However, logistic regression alone
is not applicable for high-dimensional cell classification problems [19]. On the other
hand, hybrid methods, like regularized logistic regression, have been successfully
applied to high-dimensional problems [20]. Regularized logistic regression selects a
small set of genes with the strongest effects on the cost function [17]. A regularized
logistic regression can be also be applied with different regularization terms. The
most popular regularized terms are LASSO, Ridge [21], and elastic-net [22], which
impose the [1 norm, [2 norm, and linear combination of /1 norm and [2 norm regu-
larization, respectively, to the cost function. It has been shown that, specifically in
very high dimensional problems, elastic-net outperforms LASSO and Ridge [17, 22].

In this study, we focused on two-step regularized logistic regression techniques to
develop immune cell signatures and immune cell and T helper cell classifiers using
RNA-seq data for the cells highlighted in bold in Fig. 1. The first step of the process
included a pre-filtering phase to select the optimal number of genes and implemented
an elastic-net model as a regularization method for gene selection in generating the
classifiers. The pre-filtering step reduced computational cost and increased final
accuracy by selecting the most discriminative and relevant set of genes. Finally, we
illustrate the value of the approach in annotating gene expression profiles obtained
from single-cell RNA sequencing. The second step generated gene signatures for
individual cell types using selected genes from first step and implemented a binary

regularized logistic regression for each cell type against all other samples.

Results

We developed classifiers for subsets of immune cells and T helper cells separately
with two main goals. First, we aimed to annotate RNA-seq data obtained from an
enriched cell population with information as to the immune cell identity. Second, we
developed gene signatures for different immune cells that could be used to quantify

the prevalence from RNA-seq data obtained from a heterogeneous cell population.
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Prior to developing the classifiers, the data was pre-processed to remove genes that
have low level of expression for most of samples (details can be found in Meth-
ods section) and normalized to increase the homogeneity in samples from different
studies and to decrease dependency of expression estimates to transcript length
and GC-content. Genes retained that had missing values for some of the samples
were assigned a value of -1. Next, regularized logistic regression (elastic-net) was

performed and the optimal number of genes and their coefficients were determined.

Generating and validating an immune cell classifier

In developing the immune cell classifier, we determined the optimal number of genes
in the classifier by varying the lambda value used in the regularized logistic regres-
sion of the training samples and assessing performance. To quantify the performance
using different lambdas, a dataset was generated by combining True-Negative sam-
ples, which were created using a bootstrapping approach that randomly resampled
associated genes and their corresponding value from the testing datasets to create
a synthetic dataset of similar size and complexity, with the original testing data,
which were untouched during training and provided True-Positive samples. The
accuracy of predicting the True-Positive samples were used to generate Receiver
Operating Characteristic (ROC) curves (Fig. 2a). Performance using each lambda
was quantified as the Area Under the ROC Curve (AUC).

The optimal lambda for immune cell classifier was the smallest value (i.e., high-
est number of genes) that maximized the AUC. Functionally, this lambda value
represents the trade-off between retaining the highest number of informative genes
(i.e., classifier signal) for developing the gene signature in the second step, while
not adding non-informative genes (i.e., classifier noise). Consequently, we selected
a lambda value of le-4 (452 genes) for the immune cell classifier, where the selected
genes and their coefficients are shown in Table S1.

To explore correlations between the weights of selected genes with their expression
level, we generated heatmaps shown in Fig. 2, panels b and c. A high level of gene
expression is reflected as a larger positive coefficient in a classifier model, while
low or absent expression results in a negative coefficient. This is interpreted as, for
example, if gene A is not in cell type 1, the presence of this gene in a sample decreases

the probability for that sample to be cell type 1. For instance, E-cadherin (CDH1)
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was not detected in almost all monocyte samples and thus has a negative coefficient.
Conversely, other genes are only expressed in certain cell types, which results in a
high positive coefficient. For instance, CYP27B1, INHBA, IDO1, NUPR1, and UBD
are only expressed by M1 macrophages and thus have high positive coefficients.
The differential expression among cell types suggests that the set of genes in-
cluded in the classifier model may also be a good starting point for developing gene
signatures, which is highlighted in Fig. 2d. Here, we focused on the expression of
the 452 genes included in the classifier model and the correlations between samples
clustered based on cell types. The off-diagonal entries in the correlation matrix are
colored by euclidean distance with the color indicating similarity or dissimilarity
using pink and blue, respectively. Color bars along the axes also highlight the cell
types for the corresponding RNA-seq samples. As expected, RNA-seq samples from
the same cell type were highly similar. More interestingly, correlation between dif-
ferent cell types can also be seen, like high similarity between CD4+ and CD8+
T cell samples, CD8+ T cell and NK cell samples, and monocyte and dendritic
cell samples. Collectively, these heatmaps illustrate that the selected genes are a
highly condensed but are still a representative set of genes that include the main
characteristics of the immune cell types. It is also notable to compare the clustering
result of cell types based on their coefficients in the classifier shown in Fig. 2b with
similarity matrix in Fig. 2d. Since in the classifier coefficients are forcing the model
to separate biologically close cell types (like CD4+ T cell and CD8+ T cell), the
clustering results suggest that the coefficient vectors are equally dissimilar (Fig.
2b). However, in the case of their expression values, their similarity remains (Fig.

2d).

Evaluating the Immune Cell classifier using scRNA-seq datasets

To evaluate the proposed classifier in immune cell classification, two publicly accessi-
ble datasets generated by scRNA-seq technology were used [23, 24]. The first dataset
included malignant, immune, stromal and endothelial cells from 15 melanoma tissue
samples [23]. We focused on the immune cell samples, which included 2761 anno-
tated samples of T cells, B cells, Mphi and NK cells, and 294 unresolved samples.
The immune cells in this study were recovered by flow cytometry by gating on

CD45 positive cells. Annotations were on the basis of expressed marker genes while
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unresolved samples were from the CD45-gate and classified as non-malignant based
on inferred copy number variation (CNV) patterns (i.e., CNV score < 0.04).

Following pre-processing to filter and normalize the samples similar to the training
step, the trained elastic-net logistic regression model was used to classify cells into
one of the different immune subsets based on the reported scRNA-seq data with
the results summarized in Fig. 3a. The inner pie chart shows the prior cell annota-
tions reported by [23] and the outer chart shows the corresponding cell annotation
predictions by our proposed classifier. Considering T cells as either CD4+ T cell or
CD8+ T cell, the overall similarity between annotations provided by [23] and our
classifier prediction is 96.2%. The distribution in cells types contained within the
unresolved samples seemed to be slightly different than the annotated samples as
we predicted the unresolved samples to be mainly CD8+ T cells and B cells.

The only cell type with low similarity between our classifier predictions and prior
annotations was NK cells, where we classified almost half of samples annotated
previously as NK cells as CD8+ T cell. Discriminating between these two cell types
is challenging as they share many of the genes related to cytotoxic effector function
and can also be subclassified into subsets, like CD56bright and CD56dim NK subsets
[25]. To explore this discrepancy, we compared all annotated samples based on their
CDS8 score and NK score provided by the classifier, as shown in Fig. 3b. Although
the number of NK cell samples are relatively low, it seems that the NK samples
consist of two groups of samples: one with a higher likelihood of being a NK cell
and a second with almost equal likelihood for being either CD8+ T cell or NK cell.
We applied principal component analysis (PCA) to identify genes associated with
this difference and used Enrichr for gene set enrichment [26, 27]. Using gene sets
associated with the Human Gene Atlas, the queried gene set was enriched for genes
associated with CD56 NK cells, CD4+ T cell and CD8+ T cell. Collectively, the
results suggests that the group of cells with similar score for NK and CDS8 in the
classifier model are Natural Killer T cells.

We also analyzed a second dataset that included 317 epithelial breast cancer
cells, 175 immune cells and 23 non-carcinoma stromal cells, from 11 patients di-
agnosed with breast cancer [24]. We only considered samples annotated previously
as immune cells, which were annotated as T cells, B cells, and myeloid samples

by clustering the gene expression signatures using non-negative factorization. The
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scRNA-seq samples were similarly pre-processed and analyzed using the proposed
classifier, with the results shown in Fig. 4. The inner pie chart shows the prior cell
annotations reported by [24] and the outer chart shows the corresponding predicted
cell annotation by our proposed classifier. Considering T cells as either CD4+ T
cell or CD8+ T cell, 94.4% of reported T cells are predicted as the same cell type
and other 5.6% is predicted to be DC or NK cells. However, for reported B cells
and myeloid cells, we predicted relatively high portion of samples to be T cells (
15.7% of B cells and 40% of myeloid cells). The rest of the myeloid samples were
predicted to be macrophages or dendritic cells. Collectively, our proposed classifier
agreed with many of the prior cell annotations and annotated many of the samples

that were previously unresolved.

Developing a classifier for T Helper cell subsets
To further apply this methodology to transcriptomic data, a separate classifier for
distinguishing among T helper cells was developed using a similar approach to
the immune cell classifier. We explored different values of the regression parameter
lambda to find the optimal number of genes for this new dataset and visualized
the performance of different lambdas by generating True-Negative samples using
a bootstrapping approach whereby synthetic datasets were created by randomly
resampling testing datasets. Original testing data that were completely untouched
during training were used as True-Positive samples. The resulting True-Negative
and True-Positive samples were used to generate ROC curves (Fig. 5a) and the
AUC was used to score each lambda value. Generally, the lambda values for T
helper cell classifier represents the trade-off between retaining genes and keeping
the AUC high. However, there appeared to be an inflection point at a lambda value
of 0.05 whereby adding additional genes, by increasing lambda, reduced the AUC.
Consequently, we selected a lambda value equal to 0.05 (72 genes) for the T helper
classifier. The selected genes and their coefficients are listed in Table S1. The gene
list was refined subsequently by developing a gene signature.

Similar to the immune cell classifier, the coefficients of the selected genes for the T
helper cell classifier correlated with their expression levels, as seen by comparing the
heatmaps shown in Fig. 5, panels b and c. For instance, FUT7 has been expressed in

almost all T helper cell samples except for iTreg that result in a negative coefficient
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for this cell type. In addition, there are sets of genes for each cell type that have large
coefficients only for certain T helper cell subsets, like ALPK1, TBX21, IL12RB2,
IFNG, RNF157 for Thl that have low expression in other cells. As illustrated in
Fig. bd, the genes included in the classifier don’t all uniquely associate with a
single subset but collectively enable discriminating among T helper cell subsets.
Interestingly, the T helper subsets stratified into two subgroups where naive T
helper cells (Th0) and inducible T regulatory (iTreg) cells were more similar than
effector type 1 (Thl), type 2 (Th2), and type 17 (Th17) T helper cells. Similar
to the immune cell classifier, we also noted that the clustering of the classifier
coefficients is different from what similarity matrix shows in Fig. 5d because the
classifier coefficients aim to create a “classifying distance” among closely related
cell types.

Finally by comparing the results of immune cell classifier with that of the T helper
classifier, the intensity of differences among cell types can be seen in Fig. 2c¢ and
Fig. 5¢. In the first figure you can find completely distinct set of genes in each cell
type. Meanwhile, the gene sets in the second figure are not as distinct which could
be due to the low number of samples or high biological similarity between T helper

cell types.

Application of the Classifiers

Clinical success of immune checkpoint inhibitors (ICI) for treating cancer coupled
with technological advances in assaying the transcriptional signatures in individual
cells, like scRNA-seq, has invigorated interest in characterizing the immune contex-
ture within complex tissue microenvironments, like cancer. However as illustrated
by the cell annotations reported by [24], identifying immune cell types from noisy
scRNA-seq signatures using less biased methods remains an unsolved problem. To
address this problem, we applied our newly developed classifiers to characterize
the immune contexture in melanoma and explored differences in immune contex-
ture that associate with immune checkpoint response. Of note, some patients with
melanoma respond to ICIs durably but many others show resistance [28]. Specifi-
cally, we annotated immune cells in the melanoma scRNA-seq datasets [23, 29] using
our classifiers separately for each patient sample and ordered samples based on the

treatment response, with the results shown in Fig. 6a, b. We used the percentage
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of cell type in each tumor sample as it was more informative and meaningful than
using absolute cell numbers. It is notable that untreated and Nolnfo samples likely
include both ICI-resistant and ICl-sensitive tumors.

In comparing samples from resistant tumors to untreated tumors, we found in-
terestingly that there are samples with high prevalence of NK in untreated tumors
(Mel53, Mel81, and Mel82) while no samples in resistant tumors have a high preva-
lence of NK cells. The mentioned untreated tumors also have no or very low number
of Th2 cells in their populations. In addition, untreated tumors have a more uni-
form distribution of immune cell types in contrast to ICI-resistant ones, which could
reflect a therapeutic bias in immune cell prevalence in the tumor microenvironment
due to ICI treatment.

Next, we combined the annotation data from both classifiers and applied PCA
and clustering analysis, as shown in Fig. 6, panels ¢ and d. Using scrambled data
to determine principal components and their associated eigenvalues that are not
generated by random chance (i.e., a negative control), we kept the first and second
principal components that capture 68% and 21% of the total variance, respectively,
and neglected other components that fell below the negative control of 8.4%. As it
shown in 6c, resistant samples mainly located in lowest value of second principal
component (PC2). Upon closer inspection of the cell loadings within the eigenvec-
tors, the low values of PC2 correspond to a low prevalence of M¢ or high percentage
of B cells. In addition, based on the first principal component (PC1), resistant sam-
ples have either the lowest values of PC1 (Mel74, Mel75, Mel58, Mel 78), which
correspond to higher than average prevalence of CD8+ T cells, or the highest val-
ues of PC1 (Mel60, Mel72, Mel94), which show a higher than average prevalence of
B cells.

In hierarchical clustering, the optimal number of clusters was selected based on cal-
culation of different cluster indices using the NbClust R package [30] which mainly
identified two or three clusters as the optimal number. In considering three group-
ings of the hierarchical clustering results shown in 6d, seven out of eight ICI-resistant
samples clustered in first two clusters while the third cluster mainly contained un-
treated samples. The comparison of results from PCA and clustering analyses shows
that the first cluster contained samples with extreme low value of PC1 which itself

divided into two groups; one with extreme low value of PC2 and the other with
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higher amount of PC2. The second cluster located in highest amount of PC1 and
lowest amount of PC2. All remained samples were clustered as third group, which
were predominantly untreated samples. The difference in clustering suggests dissim-
ilarities between ICI-resistant and untreated samples and the possibility of having

IClI-sensitive tumors in untreated samples.

Developing Gene Signatures

While classifiers are helpful for annotating scRNA-seq data as the transcriptomic
signature corresponds to a single cell, gene signatures are commonly used to deter-
mine the prevalence of immune cell subsets within transcriptomic profiles of bulk
tissue samples using deconvolution methods, called in silico cytometry [31]. Lever-
aging the classifier results, we generated corresponding gene signatures using binary
elastic-net logistic regression. Specifically, classifier genes with non-zero coefficients
were used as initial features of the models, which were then regressed to the same
training and testing datasets as used for developing the classifiers. Lambda values
were selected for each immune and T helper cell subset based on similar method of
lambda selection for classifiers and their values and corresponding AUC are shown
in Table S2. Finally, all generated signatures are summarized in Table S3.

We visualized the expression levels of the remaining set of genes, which at least
occur in one gene signature, in Fig. 7. The expression of genes retained in immune
cell signatures (Fig. 7a) and T helper cell signatures (Fig. 7b) were clustered by
similarity in expression (rows) and by similarity in sample (columns). For both im-
mune and T helper cell subsets, samples of same cell type were mainly clustered
together. The only exception is for macrophages (M¢ and M2) which can be at-
tributed to high biological similarity and a low number of technical replicates for
these cell types.

In general, the gene sets generated from the logistic regression model performed
well with far fewer requisite genes in the testing set, a desirable result for a gene
set intended to be used for immunophenotyping. In Fig. 8, the results of the bench-
marking are shown separated by comparative gene set. Both the CIBERSORT and
Single-Cell derived gene sets contain an average of 64 and 135 genes, respectively,
while the logistic regression gene set contains an average of just 19. The new logistic

regression gene set performed comparably to the existing contemporary gene sets
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and far exceeded the performance of the manually curated gene set used previously
[6]. The benchmarking results indicate that the logistic regression gene sets are an
improvement in efficacy over compact gene sets, such as those that are manually
annotated or hand-picked. Meanwhile, the logistic regression gene sets also demon-
strate an optimization of broader gene sets that contain too many genes for deep
specificity when used in further analysis. The inclusion of too many genes in a set
can dilute the real data across a constant level of noise, while including too few lacks
the power to draw conclusions with high confidence. The logistic regression gene
sets demonstrate a balance of these two issues through its highly refined selection

of genes that can be fine-tuned using its lambda parameter.

Discussion

Recent developments in RNA sequencing enable a high fidelity view of the tran-
scriptomic landscape associated with host immune response. Despite considerable
progress in parsing this landscape using gene signatures, gaps remain in developing
unbiased signatures for individual immune cell types from healthy donors using high
dimensional RN A-seq data. Here, we developed two classifiers - one for immune cell
subsets and one for T helper cell subsets - using elastic-net logistic regression with
cross validation. The features of these classifiers were used as a starting point for
generating gene signatures that captured with fifteen binary elastic-net logistic re-
gression models the most relevant gene sets to distinguish among different immune
cell types without including too much noise.

Gene signatures in previous studies have been developed and used mainly as a base
for deconvoluting the tumor microenvironment to find the presence of immune cells
from bulk RNA measures. Therefore, as the first step, determining cell-specific gene
signatures critically influences the results of deconvolution methods [32]. Newman
et al. defined gene signatures for immune cells using two-sided unequal variances
t-test as base matrix for CIBERSORT [8]. In another study, Li et al. in devel-
oping TIMER, generated gene signatures for six immune cell types with selecting
genes with expression levels that have a negative correlation with tumor purity [9].
More recently, Racle et al. developed a deconvolution tool based on RNA-seq data
(EPIC) by pre-selecting genes based on ranking by fold change and then selected

genes by manually curating and comparing the expression levels in blood and tu-
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mor microenvironment [10]. Finally, quanTIseq (the most recently developed tool
for deconvolution) was developed for RNA-seq data based on the gene signatures
generated by quantizing the expression levels into different bins and selecting high
quantized genes for each cell type that have low or medium expression in other cell
types [7]. Although all methods obtained high accuracy based on their developed
signatures, a more rigorous and unbiased gene signature developed by RNA-seq
data and precise feature selection methods can further improve the accuracy and
validate the process for downstream analyses.

In addition, to identify cell types based on their transcriptome, clustering tech-
niques have been used in many studies [33, 34]. However, there are high variability
levels of gene expression even in samples from the same cell type. Moreover, tran-
scriptomics data has high dimensions (tens of thousands) and this is too complicated
for clustering techniques as only few number of genes are discriminative. To over-
come these problems some studies used supervised machine learning methods like
Support Vector Machine (SVM) [35, 36]. However, to the best of our knowledge, this
paper is the first to apply two-step regularized logistic regression on RNA-seq tran-
scriptomic of immune cells. This method increases the chance to capture the most
discriminative set of genes for each cell type based on the power of an elastic-net
[22]. In addition, using a two-step elastic net logistic regression enabled eliminating
the most irrelevant genes while keeping the highest number of possible significant
genes in the first step and more deeply selecting among them in the second step to
generate robust gene signatures for immune cells.

Moreover, contemporary methods have only considered a limited number of im-
mune cell types, and specifically T helper subsets as individual cell types have been
neglected [23, 29, 24] in comprehensive studies. Therefore, the other novel aspect
of this study is the separation of models for immune cells and T helper cells and
development of gene signatures for a large number of immune cell types (fifteen
different immune cell types) including different T helper cell subsets. The ability to
identify a greater number of immune cell types enables studying immune system in
different diseases in more depth. As we used publicly available RNA-seq datasets for
immune cells and T helper cells, we acknowledge that our developed classifiers and
gene signatures may be still constrained by the limited number of samples specifi-

cally for T helper cells. As more data describing the transcriptome of immune cells
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will become accessible, one can update the classifiers and gene signatures. Despite
the limited number of samples used in the approach, the developed classifiers can
even be applied to completely untouched and large datasets [23, 24] that have been

generated using scRNA-Seq technology which creates noisier data.

Conclusions

Here, we developed an immune cell classifier and classifier for T helper cell subsets
along with gene signatures to distinguish among fifteen different immune cell types.
Elastic-net logistic regression was used to generate classifiers with 10-fold cross-
validation after normalizing and filtering two separate RNA-seq datasets that were
generated using defined homogeneous cell populations. Subsequently, we generated
gene signatures using a second step of binary regularized logistic regression applied
to the RNA-seq data using previously selected classifier genes. As an external val-
idation, the resulting classifiers accurately identified the type of immune cells in
scRNA-seq datasets. Our classifiers and gene signatures can be considered for dif-
ferent downstream applications. First, the classifiers may be used to detect the type
of immune cells in under explored bulk tissue samples profiled using RNA-seq and
to verify the identity of immune cells annotated with low confidence. Second, the
gene signatures could be used to study tumor micro-environments and the inter-
dependence of immune response with cancer cell phenotypes, which is emerging to

be an important clinical question.

Methods

Data Acquisition

RNA-seq datasets for 15 different immune cell types including T helper cells, were
obtained from ten different studies [37, 38, 39, 40, 41, 42, 43, 44, 45, 46], which were
publicly accessible via the Gene Expression Omnibus [47]. The list of samples is
provided as Supplementary Table S1. The cell types were divided into two groups:
immune cells that include B cells, CD44 and CD8+ T cells, monocytes (Mono),
neutrophils (Neu), natural killer (NK) cells, dendritic cells (DC), macrophage (M¢),
classically (M1) and alternatively (M2) activated macrophages, and the T helper
cells that include Th1, Th2, Th17, ThO, and Regulatory T cells (Treg). The goal was
to train the gene selection model on immune cell types, and CD4+ T cell subsets

(T helper cells), separately. If these two groups of cells are analyzed together, many
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of the genes that potentially could be used to discriminate among T helper cell
subsets might be eliminated as they overlap with genes associated with CD4+ T
cells.

In short, a total of 233 samples were downloaded and divided into two sets of
185 and 48 samples, for immune cells and T helper cells, respectively. Moreover,
immune cell samples were further divided into 108 training and 77 testing samples.
Training and testing numbers for T helper samples were 31 and 17, respectively.
Training and testing data include samples from all studies. For a verification dataset,
scRNA-seq data derived from CD45+ cell samples obtained from breast cancer
[24] and melanoma [23] were used with GEO accession numbers of GSE75688 and

GSET72056, respectively.

Data Normalization

The expression estimates provided by the individual studies were used, regardless
of the underlying experimental and data processing methods (Table S1). For devel-
oping individual gene signatures and cell classification models, we did not use raw
data due to sample heterogeneity such as different experimental methods and data
processing techniques used by different studies as well as differences across biolog-
ical sources. Rather, we applied a multistep normalization process before training
models. To eliminate obvious insignificant genes from our data, for immune cell sam-
ples, genes with expression values higher than or equal to five counts, in at least
five samples were kept, otherwise, they were eliminated from the study. However,
for T helper samples, due to fewer number of samples, four samples with values
higher than or equal to five counts were enough to be considered in the study. After
first step of filtering, the main normalization step was used to decrease dependency
of expression estimates to transcript length and GC-content[48, 49]. For all four
sets of samples, including training and testing samples for immune cells and for T
helper cells, expression estimates were normalized separately by applying withinLa-
neNormalization and betweenLaneNormalization functions from EDASeq package
[50] in the R programming language (R 3.5.3), to remove GC-content biases and
between-lane differences in count distributions [50]. After normalization, the second
step of filtration, which was similar to the first step, was applied to eliminate genes

with insignificant expression.
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Missing Values

In contrast to previous studies that only considered intersection genes [51] and to
avoid deleting discriminative genes, we kept genes with high expression as much as
possible. However, for most of genes, values for some samples were not reported.
Hence, to deal with these missing values, we used an imputation method [52] and
instead of mean imputation we set a dummy constant since mean imputation in this
case is not meaningful and can increase error. Specifically, we generated a training
set for each group of cell types, by duplicating the original training set 100 times
and randomly eliminating ten percent of expression values. We next set -1 for all
these missing values (both original missing values and those we eliminated) as a
dummy constant because all values are positive and it is easier for the system to
identify these values as noise. This approach makes the system learn to neglect a
specific value (-1) and treat it like noise, instead of learning it as a feature of the

samples.

Classifier Training and Testing

Considering the few number of training samples in comparison with the high di-
mensions (15453 genes in immune cell samples and 9146 genes in the T helper
samples) and to avoid both over fitting the model and adding noise to the pre-
diction model, we used regularization with logistic regression to decrease the total
number of genes and select the most discriminative set of genes. To perform gene
selection, we trained a lasso-ridge logistic regression (elastic-net) model, which au-
tomatically sets the coefficients of a large number of genes to zero and prunes
the number of genes as features of the classifier. We cross-validated the model by
implementing cv.glmnet function with nfold=10 from glmnet package [21] in R pro-
gramming language, using training sets for both groups of cell types. We normalized
the gene expression values using a log2 transform over training sets to decrease the
range of values that can affect the performance of the model (log2(counts+1)). In
order to find the optimal number of genes, we tried seven different lambdas and
tested the results over the testing samples (cv.glmnet(family="multinomial”, al-
pha=0.93, thresh=1e-07, lambda=c(0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001),
type.multinomial="grouped”, nfolds=10)). To select the optimal value for lambda,

True-Negative samples were generated using a bootstrapping approach that ran-
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domly samples testing datasets to create a synthetic dataset with similar size and
complexity but without underlying biological correlation, then we generated ROC

curves and considered original testing datasets as True-Positive samples.

Developing Gene Signatures

Genes selected by the classifier models were used as initial sets to build gene signa-
tures. In this case, we trained a new binary elastic-net model for each cell type by
considering a certain cell type as one class and all other cell types as another class.
The training and testing samples used to build gene signatures were the training
and testing samples used in developing the classifiers with the difference being that
they only contained the selected genes. Similar steps including dealing with missing
values, applying log2 and visualization by ROC to select optimal number of genes
were applied for each cell type. This two-step gene selection approach has the ad-
vantage that it eliminates a large number of undiscriminating genes at the first and

finally select few number of genes for each cell type.

Benchmarking

Fisher exact testing was used for each gene set to characterize true and systemat-
ically scrambled data as a measure of performance of the gene set as a means of
distinguishing between cell subtypes. In order to establish negative control values
for determining specificity, a bootstrapping approach was used [53], where data was
scrambled by randomly resampling with replacement expression values by gene as
well as by patient to create a synthetic dataset with a similar size and complexity
of the original dataset. The threshold for expression binarization for Fisher exact
testing was selected based on gene expression histograms of the data to separate
the measured expression from background noise levels, with 2.48 being used as
the threshold (after log2 normalization). One-thousand iterations (Npoot) Were pro-
cessed and compiled in order to produce ROC curves with 95% confidence intervals
shaded about the averaged ROC curve for each gene set’s performance. A boot-
strapping approach for generating a negative control sample is appropriate when
a sufficiently large bootstrap sample (i.e., Npoor > 1000) and the original dataset
is sufficiently diverse (i.e., Ngqta > 30) [54]. The tested gene sets were the logistic
regression gene set, the CIBERSORT gene set [8], the single cell gene set [29], and

the manually curated gene set that had been used previously [6].
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Figure 2 Development of immune cell classifier and similarity heatmap. a) ROC curve for the
immune cell classifier was calculated using the indicated lambda values (shown in different colors
and line styles) and 10-fold cross validation. The lambda value that maximized the AUC value was
used for subsequent calculations. Elastif—net logistic regression was used to discriminate among
ten immune cell types, where the value of the non-zero coefficients (panel b), expression levels
(panel c), and similarity map (panel d) for the 452 genes included in the classifier are indicated by
color bars for each panel . In panel b, blue to red color scheme indicates coefficients ranging from
negative to positive values. Ordering of the genes is the same in panels b and c. In panel ¢, light
blue indicates missing values and the intensity of red color (white/red color scale on the top-left)
shows the log base 2 expression level. A color bar on top of this panel was used to separate
samples of each cell type. Panel d illustrates the similarity between samples calculated using
distance matrix based on same 452 genes. Color bars on the left and bottom sides are to separate
samples of each cell type and the top color bar (light blue/pink color scale) shows the intensity of

similarity or dissimilarity of samples.
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Figure 3 Immune cell annotation prediction based on scRNA-seq data against prior
annotations reported in melanoma dataset. a) The inner pie chart summarizes the cell
annotations reported by Tirosh et al [23] and includes 298 unannotated CD45-positive
non-malignant cells (labeled as Unresolved) isolated from melanoma tissue samples. Unannotated
samples were acquired following gating for CD45+ single cells and classified as non-malignant
based on inferred copy number variation patterns. Using gene expression values reported for each
scRNA-seq sample, a new cell annotation was determined based on the closest match with the
alternative cell signatures determined using elastic-net logistic regression, which are summarized in
outer pie chart. b) The contour plot for the likelihood of a sample to be either an NK cell or
CD8+ T cell based on gene expression stratified by cells previously annotated by [23] to be T

cells, macrophages, B cells, or NK cells.
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Figure 4 Immune cell annotation prediction against prior annotations reported in breast cancer
scRNA-seq dataset. The inner pie chart summarizes the cell annotations reported by Chung et al
[24], which annotated scRNA-seq results by clustering by gene ontology terms using likelihood
ratio test. Using the gene expression profile reported for each scRNA-seq sample, a new cell
annotation was determined based on the closest match with the alternative cell signatures

determined using elastic-net logistic regression, which is summarized in the outer pie chart.
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Figure 5 Development of T helper cell classifier and similarity heatmaps a) ROC curve for the
T helper cell classifier was calculated using the indicated lambda values (shown in different colors
and line styles) and 10-fold cross validation. The lambda value that maximized the AUC value was
used for subsequent calculations. Elastic-net logistic regression to discriminate among five T
helper cell types, where the value of the non-zero coefficients (panel b), expression levels (panel
c), and similarity map (panel d) for the 72 genes included in the classifier are indicated by color
bars for each panel. In panel b, blue to red color scheme indicates coefficients ranging from
negative to positive values. Ordering of the genes is the same in panels b and c. In panel ¢, light
blue indicates missing values and the intensity of red color (white/red color scale on the top-left)
indicates the log base 2 expression level. A color bar on top of this panel was used to separate
samples of each cell type. Panel d illustrates the similarity between samples calculated using an
euclidean distance matrix based on the same 72 genes, where the color indicates the distance
(pink: high similarity/low distance; blue: low similarity/high distance). Color bar on the top/side

of the heatmap indicates the cell type of origin.
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Figure 6 Annotation of scRNA-seq results from melanoma dataset stratified by patient
treatment status. Treatment status of patients diagnosed with melanoma was stratified based on
their response to ICls ([23, 29]). a) The distribution in immune cell annotations and b) T helper
cell annotations based on scRNA-seq data were separated into samples obtained from ICl-resistant
tumors, untreated tumors, and tumors reported in melanoma data without information about
treatment status. Distributions are shown based on the percentage of all immune cells measured
for each patient. Cell annotations were based on immune cell classifier and T helper cell classifier
results. ¢) PCA analysis was applied to the data obtained from both classifiers and the results for
the first and second principal components were plotted. Red, blue, and grey colors indicate
resistant, untreated and Nolnfo (samples that have no information about their treatment status in
the reference works) tumors, respectively. d) Samples were hierarchically clustered based on the
percentages of the nine immune cells and five T helper cells and same coloring applied to show

tumor types.
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Figure 7 Heatmaps of the expression levels for the final list of genes created by gene
signatures. The expression of genes retained in immune cell signatures (panel a) and T helper cell
signatures (panel b) were clustered by similarity in expression levels (rows) and by similarity in
samples (columns). The color bar at the top indicates the samples cell type. Light blue shows
missing values and the intensity of red color (white/red color scale on the top-left color bar)

indicates the log base 2 expression level in both panels.
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Figure 8 Benchmarking ROC performance curves. ROC curves to illustrate relative performance
between logistic regression gene set and the manually curated (Panel A), CIBERSORT (Panel B),
and single cell gene sets (Panel C). The logistic regression gene set’s performance is shown in red.
Shaded regions are 95% confidence intervals about the average ROC curve simulated from 1000

iterations.
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Additional Files
Table S1. — Coefficients of immune cell classifier and T helper cell classifier
Coefficients of immune cell classifier were located in the first sheet and coefficients of T helper cells were located in

the second sheet.

Table S2. — Lambda Selection by AUC Values

Lambdas with corresponding calculated AUC. The final column shows the selected lambdas

Table S3. — Genes in developed gene signature for immune and T helper cells

Yellow boxes show genes with negative impact in possibility of being related cell type.

Table S4. — Data information used in training models.

The second sheet shows the names that were used in creating the datasets.
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