
962 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Hierarchical Capacity Provisioning
for Fog Computing

Abbas Kiani , Student Member, IEEE, Nirwan Ansari , Fellow, IEEE,
and Abdallah Khreishah , Senior Member, IEEE

Abstract— The concept of fog computing is centered around
providing computation resources at the edge of the network,
thereby reducing the latency and improving the quality of
service. However, it is still desirable to investigate how and
where at the edge of the network the computation capacity
should be provisioned. To this end, we propose a hierarchical
capacity provisioning scheme. In particular, we consider a two-
tier network architecture consisting of shallow and deep cloudlets
and explore the benefits of hierarchical capacity provisioning
based on queuing analysis. Moreover, we explore two different
network scenarios in which the network delay between the
two tiers is negligible and the case that the deep cloudlet is
located somewhere deeper in the network and thus the delay
is significant. More importantly, we model the first network
delay scenario with bufferless shallow cloudlets and the second
scenario with finite-size buffer shallow cloudlets, and formulate
an optimization problem for each model. We also use stochastic
ordering to solve the optimization problem formulated for the
first model and an upper bound-based technique is proposed for
the second model. The performance of the proposed scheme is
evaluated via simulations in which we show the accuracy of the
proposed upper bound technique and the queue length estimation
approach for both randomly generated input and real trace data.

Index Terms— Edge computing, network design, queuing.

I. INTRODUCTION

THE paradigm of edge computing has been recently
introduced to push the computing resources away from

the centralized nodes to the edge of the network. The edge
computing concept aims at optimizing the cloud computing
networks by reducing the communication bandwidth require-
ment between the sources of data and the data centers. In fact,
edge computing pushes the processing power and intelligence
directly to the devices and each device in the network can play
its own role in processing the data. While the edge computing
architectures are developed in different ways and are designed
with different names, the main idea is to reduce the latency
and improve the Quality of Service (QoS). For example, the
idea of cloudlet as a trusted, resource-rich computer which is
available for use by nearby mobile devices was first introduced
in [1], and further developed by a research team at Carnegie

Manuscript received June 6, 2017; revised December 11, 2017 and
August 21, 2018; accepted March 10, 2019; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor Y. Chen. This work was supported in part
by the NSF under Grant CNS-1647170. Date of publication April 11, 2019;
date of current version June 14, 2019. (Corresponding author: Abbas Kiani.)

The authors are with the Advanced Networking Laboratory, Depart-
ment of Electrical and Computer Engineering, New Jersey Institute
of Technology, Newark, NJ 07102 USA (e-mail: abbas.kiani@njit.edu;
nirwan.ansari@njit.edu; abdallah@njit.edu).

Digital Object Identifier 10.1109/TNET.2019.2906638

Mellon University [2]–[4]. A cloudlet can be considered as
a small-scale cloud data center (known as a data center in a
box or mobile micro-cloud) which supports resource-intensive
mobile applications by providing computing resources at the
edge of the network [1]. Three years after the introduction of
the cloudlet concept, the paradigm of fog computing [5] was
introduced by Cisco as a multi-tiered architecture consisting
of the device, fog platform and a data center to support the
requirements of Internet of Things (IoTs) [6]. Fog computing
(also known as fogging) is basically a decentralized computing
infrastructure that extends cloud computing network by distrib-
uting the computing as well as storage resources in efficient
places (fog nodes) between where the data is created and the
cloud [5].

In parallel with the development of both fog computing and
the cloudlet concepts, the idea of Mobile Edge Computing
(MEC) has been standardized by an Industry Specification
Group (ISG) lunched by the European Telecommunications
Standards Institute (ETSI) [7]. MEC is recognized as one
of the key emerging technologies for 5G networks and aims
at providing computing capabilities within the Radio Access
Network (RAN) and in proximity of mobile users [7], [8].
Smart mobility, smart cities, and location-based services are
named as the potential IoT applications of MEC [9], [10].

As mentioned earlier, by definition, fog computing is a
decentralized computing infrastructure in which the computing
resources are distributed in fog nodes located between the
users and the cloud. Nevertheless, when there is a limited
amount of computing capacity, how to distribute this capacity
among all the fog nodes becomes a key issue. Therefore, this
study proposes a new capacity provisioning scheme which
optimally distributes the given capacity budget among the
fog nodes based on queuing analysis. Considering the poten-
tial locations of the fog nodes in a fog network, capacity
can be provisioned either hierarchically or based on a flat
approach. In order to investigate the potential benefits of the
hierarchical design over the flat design, we consider a network
model consisting of the so called shallow and deep cloudlets,
and study the network scenarios to demonstrate the benefits
of the hierarchical capacity provisioning over the flat design.

To shed some light on the idea of this paper, let’s consider
distributed CCTV video cameras as a potential application of
edge computing. For example, more than 400 CCTV video
cameras are distributed over the state of New Jersey and
they are generating a huge amount of video data each day.
These data have to be processed and stored for different

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6231-8936
https://orcid.org/0000-0001-8541-3565
https://orcid.org/0000-0003-1583-713X


KIANI et al.: HIERARCHICAL CAPACITY PROVISIONING FOR FOG COMPUTING 963

applications such as traffic congestion mitigation strategies.
However, sending all of these data to a backend system such as
Traffic Management Centers (TMC), which is equipped with
computational and storage capabilities, is not practical due to
two main reasons: 1) The opportunity to process video data
and act on the processed data might be gone after the time it
takes to send data all the way to TMC over the backhaul net-
work. 2) Continuously capturing video on the cameras poses
a permanent stress on the network paths to the centralized
controller. One simple solution to mitigate the congestion
on the backhaul network may offer buffering data at the
intermediate network nodes for later transmission. However,
this solution is not useful because cameras are capturing videos
24/7 and there will never be a future time when the backhaul
network is not overwhelmed. Another solution towards this
problem can be a distributed edge computing network archi-
tecture by leveraging the concept of the cloudlets. In such a
distributed network architecture, each camera itself as well as
the aggregation nodes in the network such as the network hubs
and routers are all the potential sites to install the cloudlets.
Therefore, two important questions must be answered about
such a distributed edge computing architecture: 1) Should we
consider a flat or hierarchical design? 2) What is the size of
each cloudlet, i.e., how much capacity should be provisioned
at each cloudlet location? To this end, the current study aims to
address the aforementioned issue by proposing a hierarchical
capacity provisioning scheme. It is worth mentioning that this
study is focused on the capacity provisioning as a network
planning problem, and we do not take into consideration of
the workload allocation problem which is a well-studied issue
in state of the art papers [11]–[13]. In fact, the idea here is
to efficiently provision a total capacity budget at the edge
while the distribution of the computation workload at different
locations is given.

Contributions: We have made two major contributions.
1) We propose a hierarchical capacity provisioning scheme
by considering a 2-tier edge computing network architecture
consisting of shallow and deep cloudlets. 2) We investigate
two different network scenarios based on accurate queuing
analysis. In particular, we study the case that the network
delay between the shallow cloudlets and the deep cloudlet
is negligible as well as the case in which the deep cloudlet
is located somewhere deeper in the network, and thus the
network delay between the shallow cloudlets and the deep
cloudlet matters. We also formulate optimization problems for
each case and investigate the solution to each problem by using
stochastic ordering and optimization algorithms.

Related Work: In the past few years, a large and cohesive
body of work investigated the major limitations of Mobile
Cloud Computing (MCC), e.g., the radio access associated
energy consumption of mobile devices [14] and the latency
experienced over Wide Area Network (WAN). Based on
that, the researchers came up with a variety of policies and
algorithms. Recently, the opportunities and challenges of edge
computing in the networking context of IoT is summarized
in [15]. The authors in [16] investigate adaptive edge com-
puting solutions for IoT networking which aim at optimizing
traffic flows and network resources. The state of the art of edge

computing and its applications in IoT is also explored in [17].
A hybrid architecture that harnesses the synergies between
edge caching and C-RAN is proposed in [18]. Moreover,
a three levels cloudlet architecture is designed in [19] in which
the authors proposed a two time scale approach for allocating
the computing and communication resources to satisfy the
users’ QoS.

In terms of the edge computing network design, a cloudlet
network planning approach for mobile access networks is
introduced in [20] which optimally places the cloudlet facili-
ties among a given set of available sites and then assigns a set
of access points to the cloudlets by taking into consideration
of the user mobility. A new algorithm for deploying the
cloudlets in a given Wireless Metropolitan Area Network
(WMAN) is also designed in [21], in which the users in dense
regions are assigned to the placed cloudlets based on workload
balancing. The optimal placement of cloudlets to minimize the
average access delay based on Software-Defined Networking
(SDN) is investigated in [22]. The vision and roadmap for
cloud/edge/fog computing capacity provisioning is presented
in [23] and the authors discussed the requirements for the next
generation of distributed cloud architectures.

In order to optimize the fog computing network, it is
required not only to select the cloudlet locations among a set
of potential fog nodes, but also to optimally distribute limited
computing resources among the cloudlets. However, the exist-
ing studies on the fog computing network planning either focus
on the cloudlet placement [20]–[22] or provide a big picture
of the capacity previsioning [23] rather than proposing an
optimization framework based on accurate queuing analysis.

The rest of the paper is organized as follows. Section II
describes the system model and problem formulation. We pro-
pose our hierarchical capacity provisioning scheme and the
corresponding optimization problems in Section III. Finally,
Sections IV and V present numerical results and conclude the
paper, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a fog computing network consisting of M
shallow cloudlets as the first tier of a two-tier hierarchical fog
computing architecture. Accordingly, the second tier of fog
computing nodes called the deep cloudlet is connected to all
the shallow cloudlets. Therefore, we assume that each shallow
cloudlet can cooperatively manage its incoming workload with
the deep cloudlet. That is, the peak computing load at a
shallow cloudlet can be forwarded to the deep cloudlet. As a
practical case, we consider a distributed edge video processing
environment shown in Fig. 1. However, the proposed hierar-
chical capacity provisioning framework in this paper is not
limited to only this example and it is applicable to all similar
edge computing architectures. As depicted in this example, the
shallow cloudlets are co-located with CCTV cameras and the
deep cloudlet is installed at an aggregation switch. Moreover,
in order to leverage the resource-rich facilities, the deep
cloudlet is connected to the cloud via fibers. However, our
focus in this paper is on the capacity provisioning at the edge,
i.e., the shallow and deep cloudlets.



964 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 1. System model.

We assume that the amount of edge computing workload
at each shallow cloudlet at a given time follows a general
distribution. We also assume that C is the total capacity budget
to be provisioned at the edge where a portion α of the capacity
is provisioned at the shallow cloudlets and C −α at the deep
cloudlet. Both the workload and the capacity are measured in
CPU cycles. We use CPU cycles to measure the workload
since it has been widely used in the literature to measure
the computation requirements of the computing tasks [24].
Accordingly, to be consistent with the workload unit, we use
CPU cycles per second as the unit of the computing capacity.
Moreover, we consider a finite size queuing system at each
cloudlet location where all the queuing systems are modeled
as a discrete-time fluid system. In particular, at each time
n, the queuing system at shallow cloudlet i consists of a
server with constant rate ρiα and a fluid input λi

n which is
assumed to be ergodic and stationary. We assume that λi

n’s are
independent but have a common distribution and E(λi

n) = λi.
The normalized coefficient ρi is also defined as ρi = λi�M

i=1 λi
.

The system is assumed to be stable, i.e.,
�M

i=1 λi ≤ C.

III. CAPACITY PROVISIONING

We investigate two different network scenarios for the pro-
posed system model. In particular, we first investigate the case
that the network delay between the shallow cloudlets and the
deep cloudlet is negligible. In the second scenario, we consider
the case in which the deep cloudlet is located somewhere
deeper in the network, and thus the network delay between
the shallow cloudlets and the deep cloudlet is significant.

A. Bufferless Shallow Cloudlets

We first investigate a network model in which the network
delay between shallow cloudlets and the deep cloudlet is
negligible. As shown in Fig. 2, for such a network, we consider
a buffer of size zero at each shallow cloudlet. Note that going
from a flat architecture consisting of only shallow cloudlets

to a hierarchical architecture with both the shallow cloudlets
and the deep cloudlet, we take a portion of the capacity of the
shallow cloudlets and allocate it to the deep cloudlet. Such
a hierarchical capacity provisioning model is fair only if one
unit of the capacity at a shallow cloudlet results in the same
delay as compared to that at the deep cloudlet. Therefore,
when the network delay is negligible, this fairness requirement
is satisfied with bufferless shallow cloudlets since the deep
cloudlet is assumed to be bufferless too. In other words,
considering buffers at the shallow cloudlets while the deep
cloudlet is bufferless is not a fair assumption from the per-
spective of the proposed capacity provisioning model. At each
time n, the amount of the computing workload forwarded
to the deep cloudlet is equal to

�M
i=1(λ

i
n − ρiα)+ where

(x)+ = max(x, 0). Accordingly, the queuing system of the
deep cloudlet can be modeled as a discrete-time fluid system
consisting of a single server of constant rate C−α and a fluid
input

�M
i=1(λ

i
n−ρiα)+. We assume a buffer of size zero at the

deep cloudlet. At time n, the total amount of fluid loss in the
system can be established as (

�M
i=1(λ

i
n−ρiα)+−(C−α))+.

The average fluid loss in the system is calculated as

Lbl(α) = lim
N→∞

�N
n=1(

�M
i=1(λ

i
n − ρiα)+ − (C − α))+

N

= E((
M�

i=1

(λi
n − ρiα)+ − (C − α))+) (1)

where the second equality is due to the ergodicity assumption.
Note that the focus of this paper is on proposing a network
capacity planning framework rather than a workload place-
ment algorithm. Therefore, to achieve an optimum capacity
provisioning, we propose to solve the following optimization
problem

minimize
α

Lbl(α)

s.t. C1 :
M�

i=1

E(λi
n − ρiα)+ ≤ C − α

C2 : 0 ≤ α ≤ C (2)

where the objective is to minimize the average fluid loss and
constraint C1 is necessary for stabilizing the queue at the deep
cloudlet. The following theorem provides an optimal solution
to problem (2).

Theorem 1: The optimal solution to optimization problem
(2) is achieved when α = 0, i.e., when all the computing
capacity is provisioned at the deep cloudlet.

Proof: To prove Theorem 1, we need to show that Lbl(α)
is an strictly increasing function with respect to α. After some
simple algebraic manipulation on Lbl(α), we have,

Lbl(α) = E((
M�

i=1

max(λi
n, ρiα)− C)+) (3)

Function Lbl(α) is proven to be strictly increasing if we
can show that Lbl(αh) < Lbl(αk) for all αh < αk, where
0 ≤ αh, αk ≤ C. Consider two random variables Xn =�M

i=1 max(λi
n, ρiαh) and Yn =

�M
i=1 max(λi

n, ρiαk). If Xn

and Yn satisfy the stop-loss order, written as Xn <sl Yn, then



KIANI et al.: HIERARCHICAL CAPACITY PROVISIONING FOR FOG COMPUTING 965

Fig. 2. System model for bufferless shallow cloudlets.

Lbl(αh) < Lbl(αk) for all C. In addition, the stop-loss order is
maintained under the summation of independent random vari-
ables. Therefore, if random variable max(λi

n, ρiαh) precedes
random variable max(λi

n, ρiαk) in stop-loss order, so Xn

precedes Yn. Moreover, the dangerous order relation is known
to be a sufficient condition for the stop-loss order [25]–[27].
Therefore, we continue our proof by showing the satisfaction
of the two known conditions for dangerous order relation.
In terms of the first condition, we observe that random
variables max(λi

n, ρiαh) and max(λi
n, ρiαk) satisfy the once-

crossing condition for crossing point αh. Regarding the second
condition, it is simple to show that,

E(max(λi
n, ρiαh)) ≤ E(max(λi

n, ρiαk)) (4)

Therefore, max(λi
n, ρiαh) precedes max(λi

n, ρiαk) in a dan-
gerous order, and accordingly Xn and Yn have the stop-order
relation and the proof is complete.

B. Finite-Size Buffer Shallow Cloudlets

In this section, we investigate the case when the network
delay between the shallow cloudlets and the deep cloudlet is
not negligible. Therefore, α = 0 is not the optimal solution
since the reduction in the average loss is achieved at the
expense of a higher delay. Let D be the average network
delay per unit of workload (one CPU cycle) if it is served
at the deep cloudlet and let’s define each unit of workload
as a job. For this scenario, we enforce a deadline equal to
D seconds at each shallow cloudlet’s buffer. In fact, a job is
forwarded to the deep cloudlet only if it cannot be handled
by deadline D. That is, sizes of the buffers at the shallow
cloudlets are calculated based on D such that the maximum
waiting time in each shallow cloudlet’s buffer is D seconds.
In other words, if one unit of capacity at a shallow cloudlet
can handle a job within D seconds, it is not fair/justfiable to
consider the allocation of that capacity to the deep cloudlet
since the network delay is D seconds. Therefore, if Qi is the

number of waiting jobs in the corresponding buffer of shallow
cloudlet i right before the arrival of a new job, the new job
can be handled after Qi

ρiα
seconds. If Qi

ρiα
≤ D, then the job

can be handled before the deadline D. Otherwise, the job is
not handled before the deadline and it is forwarded to the deep
cloudlet. Therefore, we can model the deadline by a finite-size
queue with length ρiαD. Accordingly, the average fluid loss
is calculated as

Lfb(α)=E((
M�

i=1

(λi
n+Qi

n−1(α)−ρiα−ρiαD)+−(C−α))+)

(5)

where Qi
n−1 is the queue length at shallow cloudlet i at

time n − 1. Therefore, we propose to solve the following
optimization problem,

minimize
α

Lfb(α)

s.t. C1 :
M�

i=1

E(λi
n + Qi

n−1(α)− ρiα− ρiαD)+ ≤ C − α

C2 : 0 ≤ α ≤ C (6)

where the objective is to minimize the average loss via
optimizing α and constraint C1 is required for stabilizing the
queue at the deep cloudlet.

Note that the optimization problem (6) can be compared
to an stop-loss reinsurance model where the objective of the
problem is the stop-loss pure premium E(X − d)+ with
retention equal to d = C − α [28]–[30]. Here, the retention
d = 0, i.e., a flat design with only shallow cloudlets, can be
considered as the special case where the insurer transfers all
loss to the reinsurer, i.e., full reinsurance. On the other hand,
case d = C, i.e., a flat design with only a deep cloudlet,
denotes the special case where the insurer retains all loss,
i.e., the case that implies no reinsurance. In terms of finding the
optimal solution for the reinsurance models, most of the exist-
ing studies assume that the distribution function of X is known



966 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

and satisfies some properties. However, here the distribution
function of X , i.e.,

�M
i=1(λ

i
n + Qi

n−1(α)− ρiα(1 + D))+, is
not known for two reasons. First, the distribution of Qi

n−1(α)
is not known. Second, even if we have the knowledge of
the distribution function for Qi

n−1(α), it is cumbersome to
calculate the M-fold convolution of M pdfs. Moreover, in prac-
tice, we usually know the average of λi

n’s rather than their
distribution function. There are a few studies such as [31],
[32], that consider the case when incomplete information of
X is available. However, those solutions are not applicable
here because they either have to know at least the average and
variance of X or they are interested in finding the optimal
retention d or estimating the minimal stop-loss rather than
the optimum value of X . Note that here we only know
the average of X , i.e.,

�M
i=1 E(λi

n + Qi
n−1(α) − ρiα(1 +

D))+ based on the loss probability of the G/D/1 queue.
Therefore, we propose two different strategies to find the
optimal value of α. Both strategies are developed based
on the Markov’s inequality. That is, instead of minimizing
the original objective, we minimize an upper bound cal-
culated based on the Markov’s inequality in the following
theorem.

Theorem 2: The objective function of optimization prob-
lem (6) is upper bounded as follows,

Lfb≤
� τ

C

�M
i=1 E(λi

n + Qi
n−1(α)−ρiα(1 + D))+

C−α
dx (7)

Proof:

E(
M�

i=1

(λi
n + Qi

n−1(α)− ρiα− ρiαD)+ − (C − α))+

=
� ∞

C

(x− C)dP (
M�

i=1

(λi
n + Qi

n−1(α) − ρiα

− ρiαD)+ + α ≤ x)

=−
� ∞

C

(x− C)dP (
M�

i=1

(λi
n+Qi

n−1(α)−ρiα−ρiαD)+

+ α ≥ x)

=
� ∞

C

P (
M�

i=1

(λi
n+Qi

n−1(α)−ρiα−ρiαD)++α > x)dx

≈
� τ

C

P (
M�

i=1

(λi
n + Qi

n−1(α) − ρiα− ρiαD)+ + α > x)dx

where τ in the approximation can be decided based on the tail
of the distribution of λi

n such that P (
�M

i=1(λ
i
n + Qi

n−1(α)−
ρiα− ρiαD)+ + α > τ) ≤ �, i.e.,

� ∞

τ

P (
M�

i=1

(λi
n + Qi

n−1(α)− ρiα− ρiαD)+ + α > x)dx

<<

� τ

C

P (
M�

i=1

(λi
n+Qi

n−1(α)−ρiα−ρiαD)++α > x)dx

Then, we have
� τ

C

P (
M�

i=1

(λi
n + Qi

n−1(α)− ρiα− ρiαD)+ + α > x)dx

≤
� τ

C

P (
M�

i=1

(λi
n+Qi

n−1(α)−ρiα−ρiαD)+ >C−α)dx

≤
� τ

C

�M
i=1 E(λi

n+Qi
n−1(α)−ρiα(1 + D))+

C−α
dx

where the last inequality is in accordance with the Markov’s
inequality. The proof is complete.

1) G/D/1 Loss Probability Approach: In the first approach,
we rely on the loss probability of the G/D/1 queue. According
to queuing analysis [33], we have,

E(λi
n + Qi

n−1(α)− ρiα(1 + D))+ = Pi(α)λi (8)

where Pi(α) is the loss probability of the finite-size queue and
can be accurately estimated from the tail probability (overflow
probability) of an infinite buffer system as follows [33],

Pi(α) = γi(α)e
− 1

2min
n≥1

Mi
n(α)

, (9)

where

γi(α)=
1

λi

√
2πσi

e
(ρiα−λi)

2

2σ2
i

� ∞

ρiα

(r−ρiα)e
−(r−λi)

2

2σ2
i dr, (10)

and for each n ≥ 1,

M i
n(α) =

(ρiαD + n(ρiα− λi))2

nCλi
n
(0) + 2

�n−1
l=1 (n− l)Cλi

n
(l)

, (11)

and Cλi
n
(l) is the autocovariance of λi

n probability function
and we have σ2

i = Cλi
n
(0). Note that function (9) is valid

when ρiα ≥ λi, i.e., when α ≥ �M
i=1 λi. In addition, it is

known that the estimation yields the highest level of accuracy
when λi

n is characterized by a Gaussian process. Therefore, in
this approach, we focus on the case that the input process to
each queue, i.e., λi

n, follows a Gaussian process and propose
to solve the following optimization problem,

minimize
α

�M
i=1 Pi(α)λi

C − α

s.t. C1 :
M�

i=1

Pi(α)λi ≤ C − α

C2 :
M�

i=1

λi ≤ α < C (12)

To solve optimization problem (12), we propose a cen-
tralized heuristic algorithm. Our algorithm is motivated by
two observations. First, pi(α) is a non-increasing function
with respect to α when α ≥ �M

i=1 λi [34], [35]. Second,
alternative optimization problem (13) is a convex optimization
problem if α is limited to some specific range and can be
solved efficiently by interior point methods. In other words,
problem (12) is generally nonconvex. Therefore, we introduce
a new variable r such that r = C−α�

M
i=1 Pi(α)λi

. Accordingly,
inspired by coordinate descent techniques [36], we solve
successively alternate minimizations (13) in α while holding



KIANI et al.: HIERARCHICAL CAPACITY PROVISIONING FOR FOG COMPUTING 967

Algorithm 1 Heuristic Algorithm to Find α

1: find a feasible stepsize � ≥ 0
2: r ← 1 + �
3: α̂← C
4: repeat
5: solve problem (13) for α in range (14) and find �

α
6: if �

α �= ∅ then
7: α̂← �

α
8: r ← C−α̂�M

i=1 Pi(α̂)λi
+ �

9: end if
10: until �

α = ∅

r fixed. As shown in Algorithm 1, we first choose a feasible
value for stepsize �. Note that Algorithm 1 converges to the
optimal solution provided that the stepsize is selected small
enough. We also set initial ratio r = 1+ � and C is chosen as
the initial solution. Then, we solve the following optimization
problem for the given value of r,

minimize
α

M�

i=1

Pi(α)λi

s.t. C1 :
M�

i=1

Pi(α)λi − C − α

r
≤ 0

C2 :
M�

i=1

λi ≤ α < C (13)

Finally, we update the ratio r and optimal solution α̂ as
shown in Algorithm 1. We repeat this procedure until there
is no optimal solution for problem (13). The convexity of
problem (13) is proven in the following theorem.

Theorem 3: The constrained optimization problem (13) is
a convex optimization problem if α is limited to,

α ∈
M�

i=1

λi + [max
i

.07071
σi

ρi
, min

i
1.4477

σi

ρi
] (14)

Proof: To show the convexity of the proposed optimization
problem, we are required to prove [37]:

• The objective function, i.e.,
�M

i=1 Pi(α)λi, is convex.
• The inequality constraint C1 is convex.

We start by proving the convexity of Pi(α), i.e., loss probabil-
ity function. It is known that the loss probability is a convex
function when the service rate ρiα [34], [35] is limited to,

ρiα ∈ [λi + .07071σi, λi + 1.4477σi] (15)

Accordingly, Pi(α) is a convex function for all i if,

α ∈
M�

i=1

λi + [max
i

.07071
σi

ρi
, min

i
1.4477

σi

ρi
] (16)

Then, the inequality constraint function of C1 and the objective
function are both proven to be convex since they are summa-
tions of convex functions, and the proof is complete.

An interesting extension for the optimization problem (12)
is the case when the loss probability at each shallow cloudlet
i is upper bounded by a constant THi. In other words, this

extension limits the number of jobs that can be forwarded
to the deep cloudlet from the shallow cloudlets. Therefore,
we incorporate this requirement into our optimization problem
by adding the inequality constraints Pi(α) < THi as follows,

minimize
α

�M
i=1 Pi(α)λi

C − α

s.t. C1 :
M�

i=1

Pi(α)λi ≤ C − α

C2 : Pi(α) ≤ THi ∀i = 1, . . . , M

C3 :
M�

i=1

λi ≤ α < C (17)

Note that the new inequality constraints C2 form a convex
set under the same requirement as Theorem 3. Therefore,
Algorithm 1 can still be used to solve problem (17).

2) Queue Length Estimation Approach: In the previous
approach, we rely on the accuracy of loss probability of a
G/D/1 queue and replace loss E(λi

n+Qi
n−1(α)−ρiα(1+D))+

with Pi(α)λi. However, as mentioned earlier, function Pi(α)
is accurate when the input process λi

n is characterized by a
Gaussian distribution, and more importantly, it is derived based
on the assumption that ρiα ≥ λi. Therefore, in this section,
we propose another approach which can be accurate for other
distributions such as the uniform distribution and is valid for
all values of α. The idea is to replace the queue length Qi

n−1

in E(λi
n+Qi

n−1(α)−ρiα(1+D))+ with a linear estimation of
the Average Queue Length (AQL). We propose the following
linear estimation,

eAQLi =

⎧
⎪⎨

⎪⎩

0, λi ≤ ρiα

aα + b, ρiα < λi ≤ ρiα(1 + D)
ρiαD, λi > ρiα(1 + D)

(18)

where constants a and b can be calculated by solving two

equations a(
�M

i=1 λi

1+D ) + b = ρiD(
�M

i=1 λi

1+D ) and a(
�M

i=1 λi) +
b = 0. After reordering, we have

eAQLi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, α ≥�M
i=1 λi

−ρiα + ρi

�M
i=1 λi,

�M
i=1 λi

1 + D
≤ α <

M�

i=1

λi

ρiαD, α <

�M
i=1 λi

1 + D
(19)

Note that estimation (19) yields a higher accuracy for a smaller
variance of λi

n. In case that the variance is not small, we can
adjust the estimation as follows

eAQLi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α ≥�M
i=1 λi + κi

−ρi(α− κi) + ρi

�M
i=1 λi,

�M
i=1 λi

1+D
+κi≤α <

M�

i=1

λi+κi

ρi(α− κi)D, α <

�M
i=1 λi

1 + D
+ κi

(20)



968 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 3. The comparison between the shape of the loss probability with the shape of the proposed upper bound versus α for D = 0.1. (a) When the input is
a Gaussian AR process. (b) When the input is a Gaussian process. (c) When the input is a uniform process.

Fig. 4. Loss probability versus α for different input processes and when
D = 0.

where constant κi is calculated heuristically and according to
the variance of λi

n. Therefore, in order to find an approximate
solution, we can replace the optimization problem (12) with
the following problem,

minimize
α

�M
i=1 E(λi

n + eAQLi − ρiα(1 + D))+

C − α

s.t. C1 :
M�

i=1

E(λi
n + eAQLi − ρiα(1 + D))+ ≤ C − α

C2 : 0 ≤ α ≤ C (21)

The same procedure as Algorithm 1 is still valid to solve
problem (21) for two reasons. That is, function E(λi

n +
eAQLi−ρiα(1+D))+ is a non-increasing and convex function
with respect to α as proved in the following theorem.

Theorem 4: Function gi(α) := E(λi
n + eAQLi − ρiα(1 +

D))+ is a non-increasing and convex function with respect to
α.

Proof:

gi(α)=
� ∞

ρiα(1+D)−eAQLi

(x−ρiα(1 + D)+eAQLi)fλi
n
(x)dx

(22)

Then, according to Leibniz integral rule, we have

g�i(α) =
� ∞

ρiα(1+D)−eAQLi

(−ρi(1 + D) + e�AQLi
)fλi

n
(x)dx

(23)

where −ρi(1 + D) + e�AQLi
≤ −ρi and thus g�i(α) ≤ 0.

Therefore, function gi(α) is proven to be non-increasing.
Moreover, by taking the second derivative with respect to α,
we have

g��i (α)=(ρi(1+D)−e�AQLi
)2fλi

n
(ρiα(1+D)−eAQLi)≥0

(24)

Therefore, gi(α) is convex and the proof is complete.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
upper bound for the average loss based on both randomly
generated input and real trace data. In both cases, we consider
a fog computing network consisting of three shallow cloudlets
connected to a deep cloudlet, i.e., a network architecture
similar to Fig. 1.

A. Random Input

For the randomly generated input, we assume a total capac-
ity budget of 20 Gigacycles per second. It is also assumed
that the average computation workload at shallow cloudlets
1, 2, and 3 is equal to 4, 8, and 6 Gigacycles, respectively.
The variance of the input process is also set to one. Moreover,
when the input process is modeled by a Gaussian autoregres-
sive (AR) process, the autocovariance is set to (0.3)n

1−(0.3)2 . For
the simulation curves in the figures, the corresponding loss
probabilities are calculated by simulations. That is, we neither
use the loss probability function formula nor our estimation
technique.

Fig. 3 compares the shape of the loss probability with the
that of the proposed upper bound versus α when D = 0.1
sec. In particular, Figs. 3 (a), (b) and (c) show the results for
Gaussian AR, Gaussian, and uniform processes, respectively.
Note that the loss probability is defined as the average loss



KIANI et al.: HIERARCHICAL CAPACITY PROVISIONING FOR FOG COMPUTING 969

Fig. 5. Optimal α versus D. (a) When the input is a Gaussian AR process. (b) When the input is a Gaussian process. (c) When the input is a uniform
process.

Fig. 6. Optimum loss probability versus D. (a) When the input is a Gaussian AR process. (b) When the input is a Gaussian process. (c) When the input is
a uniform process.

divided by
�M

i=1 λi. To be comparable with loss probabil-
ity, the upper bound is also divided by

�M
i=1 λi in all the

corresponding figures. As depicted in this figure, the upper
bound is minimized almost for the same value of α as the loss
probability which confirms the accuracy of the proposed upper
bound in terms of optimizing α. This figure also evaluates
the accuracy of the queue length estimation approach by
comparing the upper bound based on this approach with the
upper bound based on the simulation. As shown in the figure,
the estimated upper bound is lower than the simulated one
when α approaches 20 because our proposed linear queue
length estimation method estimates the average queue length
as zero (eAQLi = 0) for α ≥�M

i=1 λi. We do not include the
upper bound based on the G/D/1 loss probability function (9)
since this function is valid only for α ≥�M

i=1 λi. Moreover,
Fig. 4 shows the loss probability versus α for Gaussian,
Gaussian AR, and uniform input processes when D = 0. As
shown in Fig. 4, in the case of D = 0, regardless of the dis-
tribution, the loss probability exhibits a non-decreasing shape
versus α, thus confirming the result of Theorem 1. In fact, the
loss probability is minimized when all the computing capacity
is provisioned at the deep cloudlet, i.e., α = 0, because the
network delay is negligible.

Figs. 5 and 6 provide the optimization results for different
values of D and different input processes. Specifically, Fig. 5
compares the optimum α of the simulation result with both the
G/D/1 loss probability function approach and the queue length
estimation approach. Note that the optimum α is increased by
increasing D because the queue length at the shallow cloudlets
in increased by increasing D and thus, it is more efficient to
provide higher capacity at the shallow cloudlets. As depicted
in Fig. 5, the optimal α for the G/D/1 loss probability approach
is always greater than 18 since the optimum α for this
approach is lower bounded by

�M
i=1 λi.

Fig. 6 also compares the same approaches but in terms
of the optimum loss probability which is equivalent to the
optimum average loss since the loss probability is the average
loss divided by constant

�M
i=1 λi. As depicted in Figs. 5 and 6,

while both approaches have high accuracy, the estimation
approach yields higher accuracy because the loss probability
function is limited to a short range of values of α. In addition,
the better performance of G/D/1 loss probability approach
when the input is Gaussian is due to the higher accuracy
of function (9) for Gaussian input. Nevertheless, while the
estimation approach provides an accurate solution quite close
to the simulation, the loss probability of the estimation



970 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 7. Real data trace based simulations. (a) Loss probability versus α when D = 0. (b) Optimal α versus D. (c) Optimum loss probability versus D.

approach is sometimes lower than that of the simulation.
This observation is attributed to the fact that the estimation
approach can underestimate the average queue lengths. For
example, the queue length estimation method estimates the
average queue length as zero (eAQLi = 0) for α ≥ �M

i=1 λi

while the average queue length based on the simulation is not
necessarily zero.

B. Real Trace Data

In this section, we simulate the total incoming tasks at
shallow cloudlets by the requests made to the 1998 World Cup
web site [38] in which we use one hour trend of a sample
day for each shallow cloudlet. We also assume that each
task requires on average 1 Gigacycles. Fig. 7 (a) depicts the
shape of the loss probability versus α when D = 0. The loss
probability versus α when D = 0 is a non-decreasing function
for real trace data as well. This observation is supported by
the fact that the result of Theorem 1 is valid regardless of
distribution of the workload. Moreover, Figs. 7 (b) and (c)
compare the optimization results, i.e., the optimum α and
optimum loss probability, of two proposed approaches with
the simulation result. As depicted in these figures, the queue
length estimation approach outperforms the G/D/1 approach
for the real trace data as well for the same reasons mentioned
above for the results of Figs. 5 and 6.

V. CONCLUSION

In this study, we have proposed a new hierarchical capac-
ity provisioning scheme based on accurate queuing analysis.
Specifically, we have considered a 2-tier edge computing
network architecture consisting of shallow and deep cloudlets,
and explored both the case that the network delay between
the shallow cloudlets and the deep cloudlet is negligible
as well as the case in which the deep cloudlet is located
somewhere deeper in network. Moreover, we have formulated
optimization problems for each case and investigated the
solution to each problem by using stochastic ordering and
optimization algorithms. We have also validated the perfor-
mance of our capacity provisioning scheme via extensive
simulations.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009.

[2] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan,
“How close is close enough? Understanding the role of cloudlets in
supporting display appropriation by mobile users,” in Proc. IEEE Conf.
Pervasive Comput., Mar. 2012, pp. 122–127.

[3] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” IEEE Pervas.
Comput., vol. 12, no. 4, pp. 40–49, Oct. 2013.

[4] K. Ha et al., “Adaptive VM handoff across cloudlets,” CMU School of
Computer Science, Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-113,
2015.

[5] F. Bonomi, “Connected vehicles, the Internet of things, and fog
computing,” in Proc. 8th ACM Int. Wksp. Veh. Inter-Netw. (VANET),
Las Vegas, NV, USA, Aug. 2011, pp. 1–10.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of things,” in Proc. MCC Workshop Mobile Cloud
Comput., Aug. 2012, pp. 13–16.

[7] Y. C. Hu et al., “Mobile edge computing—A key technology towards
5G,” ETSI, Sophia Antipolis, France, White Paper, Nov. 2015.

[8] X. Sun and N. Ansari, “Green cloudlet network: A distributed green
mobile cloud network in future networks,” IEEE Netw., vol. 31, no. 1,
pp. 64–70, Jan./Feb. 2017.

[9] P. Corcoran and S. K. Datta, “Mobile-edge computing and the Internet
of Things for consumers: Extending cloud computing and services to
the edge of the network,” IEEE Consum. Electron. Mag., vol. 5, no. 4,
pp. 73–74, Oct. 2016.

[10] X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the Internet
of things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[11] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484,
Jul. 2017.

[12] Q. Fan, X. Sun, and N. Ansari, “Energy driven avatar migration in green
cloudlet networks,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1601–1604,
Jul. 2017.

[13] X. Sun and N. Ansari, “Adaptive avatar handoff in the
cloudlet network,” IEEE Trans. Cloud Comput., to be published.
doi: 10.1109/TCC.2017.2701794.

[14] A. Shahini and N. Ansari, “Joint spectrum allocation and energy
harvesting optimization in green powered heterogeneous cognitive radio
networks,” Comput. Commun., vol. 127, pp. 36–49, Sep. 2018.

[15] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[16] M. Jutila, “An adaptive edge router enabling Internet of Things,” IEEE
Internet Things J., vol. 3, no. 6, pp. 1061–1069, Dec. 2016.

[17] N. M. Gonzalez et al., “Fog computing: Data analytics and cloud
distributed processing on the network edges,” in Proc. 35th Int. Conf.
Chilean Comput. Sci. Soc. (SCCC), Oct. 2016, pp. 1–9.

[18] R. Tandon and O. Simeone, “Harnessing cloud and edge synergies:
Toward an information theory of fog radio access networks,” IEEE
Commun. Mag., vol. 54, no. 8, pp. 44–50, Aug. 2016.

http://dx.doi.org/10.1109/TCC.2017.2701794


KIANI et al.: HIERARCHICAL CAPACITY PROVISIONING FOR FOG COMPUTING 971

[19] A. Kiani and N. Ansari, “Towards hierarchical mobile edge computing:
An auction-based profit maximization approach,” IEEE Internet Things
J., vol. 4, no. 6, pp. 2082–2091, Dec. 2017.

[20] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network
design optimization,” in Proc. IFIP Netw. Conf., May 2015,
pp. 1–9.

[21] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,” IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct./Dec. 2017.

[22] L. Zhao, W. Sun, Y. Shi, and J. Liu, “Optimal placement of cloudlets
for access delay minimization in SDN-based Internet of things net-
works,” IEEE Internet Things J., vol. 5, no. 2, pp. 1334–1344,
Apr. 2018.

[23] P. Östberg et al., “Reliable capacity provisioning for distributed
cloud/edge/fog computing applications,” in Proc. Eur. Conf. Net. Com-
mun. (EuCNC), Jun. 2017, pp. 12–19.

[24] E. Cuervo et al., “Maui: Making smartphones last longer with code
offload,” in Proc. 8th Int. Conf. Mobile Sys., App., Serv., Jun. 2010,
pp. 49–62.

[25] W. Hürlimann, “Higher degree stop-loss transforms and stochastic
orders—(i) theory,” Blätter der DGVFM, vol. 24, no. 3, pp. 449–463,
2000.

[26] W. Hürlimann, “Extremal moment methods and stochastic orders,” Appl.
Actuarial Sci. Monograph Manuscript, to be published.

[27] Y. Cheng and J. Pai, “The maintenance properties of nth stop-loss
order,” in Proc. 30th Intl. ASTIN Colloq./9th Intl. AFIR Colloq., vol. 95,
Aug. 1999, p. 118.

[28] J. Cai and K. S. Tan, “Optimal retention for a stop-loss reinsurance under
the VaR and CTE risk measures,” Astin Bull., vol. 37, no. 1, pp. 93–112,
May 2007.

[29] K. S. Tan, C. Weng, and Y. Zhang, “VaR and CTE criteria for optimal
quota-share and stop-loss reinsurance,” North Amer. Actuarial J., vol. 13,
no. 4, pp. 459–482, Oct. 2009.

[30] K. Tan, C. Wang, and Y. Zhang, “Optimality of general reinsurance
contracts under CTE risk measure,” Insurance Math. Econ., vol. 49,
no. 2, pp. 175–187, 2011.

[31] X. Hu, H. Yang, and L. Zhang, “Optimal retention for a stop-loss rein-
surance with incomplete information,” Insurance Math. Econ., vol. 65,
pp. 15–21, Nov. 2015.

[32] R. Reijnen, W. Albers, and W. C. Kallenberg, “Approximations for stop-
loss reinsurance premiums,” Insurance Math. Econ., vol. 36, nos. 3–5,
pp. 237–250, Jun. 2005.

[33] H. S. Kim and N. B. Shroff, “Loss probability calculations and asymp-
totic analysis for finite buffer multiplexers,” IEEE/ACM Trans. Netw.,
vol. 9, no. 6, pp. 755–768, Dec. 2001.

[34] M. Ghamkhari and H. Mohsenian-Rad, “Energy and performance man-
agement of green data centers: A profit maximization approach,” IEEE
Trans. Smart Grid, vol. 4, no. 2, pp. 1017–1025, Jun. 2013.

[35] A. Kiani and N. Ansari, “Profit maximization for geographical dispersed
green data centers,” IEEE Trans. Smart Grids, vol. 9, no. 2, pp. 703–711,
Mar. 2018.

[36] J. Bezdek, R. Hathaway, R. Howard, C. Wilson, and M. Windham,
“Local convergence analysis of a grouped variable version of coor-
dinate descent,” J. Opt. Theory App., vol. 54, no. 3, pp. 471–477,
May 1987.

[37] S. Boyd and L. Vandenberghe, Convex Optimazation. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[38] Web Requests Recorded at Servers for the 1998 World Cup.
Accessed: Jun. 2015. [Online]. Available: http://ita.ee.lbl.gov
/html/contrib/WorldCup.html


