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Abstract— As accessing computing resources from the remote
cloud inherently incurs high end-to-end (E2E) delay for mobile
users, cloudlets, which are deployed at the edge of a network, can
potentially mitigate this problem. Although some research works
focus on allocating workloads among cloudlets, the cloudlet
placement aiming to minimize the deployment cost (i.e., consist-
ing of both the cloudlet cost and average E2E delay cost) has not
been addressed effectively so far. The locations and number of
cloudlets have a crucial impact on both the cloudlet cost in the
network and average E2E delay of users. Therefore, in this paper,
we propose the Cost Aware cloudlet PIAcement in moBiLe Edge
computing (CAPABLE) strategy, where both the cloudlet cost
and average E2E delay are considered in the cloudlet placement.
To solve this problem, a Lagrangian heuristic algorithm is de-
veloped to achieve the suboptimal solution. After cloudlets are
placed in the network, we also design a workload allocation
scheme to minimize the E2E delay between users and their cloud-
lets by considering the user mobility. The performance of CAP-
ABLE has been validated by extensive simulations.

Index Terms—Cloudlet placement, mobile cloud computing, mo-
bile edge computing.

1. INTRODUCTION

RECENT mobile applications, such as augmented reality,
on-line gaming, and image processing, are computation-
intensive while the resource of battery powered mobile
devices remains limited. Mobile Cloud Computing (MCC) [1]
is introduced to offload user tasks to a centralized data center
via Internet and thus reduces the task execution time and en-
ergy consumption of users. However, the cloud is usually re-
motely located and far away from its users, and thus inher-
ently incurs a long end-to-end (E2E) delay between a user and
the cloud. Although this E2E delay may meet the demands of
some applications such as web browsing, it is unbearable for
many delay sensitive applications such as augmented reality
and on-line gaming [2]-[4]. Hence, the concept of cloudlets is
employed to reduce the user E2E delay by moving the remote
cloud resources to the network edge [5]-[7]. Since cloudlets,
which are tiny versions of data centers, are generally placed at
access points in the network that are close to users, users can
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access the computing resources with a lower E2E delay [8].

Although the cloudlet concept is a promising technique to
reduce user E2E delay, how to place cloudlets to minimize the
E2E delay as well as the cloudlet cost in the network has not
been addressed. The budget of a cloudlet provider is always
limited. The cloudlet cost of a cloudlet mainly comes from
renting a site and installing a certain number of servers, which
indicate the capacity of the cloudlet. As site rentals are
geographically dynamic, and thus the location of a cloudlet
poses a significant impact on the cloudlet cost. Meanwhile,
once the location of a cloudlet is decided, the cloudlet
provider still needs to determine how many servers (i.c., the
amount of computing resources) to be installed in the cloudlet,
according to the user density (i.e., workload density) near the
cloudlet. Thus, the cloudlet cost of a cloudlet provider
depends on the locations and quantity of cloudlets and their
servers. In addition, when placing the cloudlets, the cloudlet
provider should ensure a low E2E delay between users and
their cloudlets to improve the quality of experience (QoE) of
MCC applications. It can be observed that users can achieve
lower E2E delay from cloudlets in their physical proximity
than from cloudlets far away. The E2E delay of users is
determined by the location and quantity of cloudlets and their
servers. On one hand, if cloudlets with high capacities are
deployed at some strategic positions (i.c., regions with high
user density), more users are able to access the computing
resources in their proximity, thus reducing the total E2E delay
in the network. On the other hand, the number of cloudlets
also affects the total E2E delay of users. If more cloudlets are
placed in the network, each user is more likely to access to a
closer cloudlet, thus incurring the lower E2E delay between
the user and its cloudlet. In the extreme case, when cloudlets
are placed at every base station (BS), most of users can be
served by their local cloudlets, which are attached to their
BSs, and the cloudlet network can thus provision the lowest
E2E delay between users and their cloudlets.

A cloudlet provider aims to minimize the cloudlet cost
while improving the quality of experience (QoE) for its users,
in terms of the E2E delay between users and their cloudlets. In
this case, only optimizing the cloudlet cost or E2E delay
cannot meet the cloudlet provider's objective. Therefore, we
propose the Cost Aware cloudlet PIAcement in moBiLe Edge
computing (CAPABLE) strategy to optimize the tradeoff
between the cloudlet cost and average E2E delay between
users and their cloudlets. Below are major contributions of the
paper.

e The proposed CAPABLE strategy adopts a tradeoff
coefficient r7 to balance the weight of the cloudlet cost and
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average E2E delay in the cloudlet placement. If 7 is large, the
strategy tends to place cloudlets at the sites with low rentals
and deploy as few servers as possible. In contrast, if 7 is
small, the proposed strategy focuses on the average E2E
delay, and thus tends to place a large number of cloudlets and
servers in the network.

e We have proved that the cloudlet placement is an NP-hard
problem. Hence, we design a Lagrangian heuristic algorithm
to obtain the sub-optimal solution.

e After cloudlets are placed in the network, with
consideration of user mobility in the network, we design a
dynamic workload allocation scheme to distribute users'
virtual machines among cloudlets in each time slot to
minimize the E2E delay between the users and their cloudlets.

The remainder of this paper is organized as follows. In
Section II, we briefly review related works. In Section III, we
illustrate the cloudlet network architecture and describe the
system model. In Section IV, we formulate and analyze the
cloudlet placement problem. In Section V, the CAPABLE
algorithm is proposed to obtain the suboptimal solution of the
cloudlet placement problem. In Section VI, the dynamic
Avatar (i.e., virtual machine) allocation scheme is proposed to
minimize the E2E delay in different time slots by considering
the user mobility. Section VII shows the simulation results,
and concluding remarks are presented in Section VIII.

II. RELATED WORKS

As the cloud is usually physically far away from their users,
offloading tasks from users to the remote cloud suffers from
prohibitively long latency and increases the burden of the
network [1]. This can be especially problematic for mobile
applications where the response time is critical to their user
experience, such as augmented reality applications and on-line
games. Recently, many studies have proposed to utilize
cloudlets deployed at the network edge to reduce the E2E
delay between users and their computing resources, and thus
improve the performance of MCC applications. Tawalbeh et
al. [9] proposed a mobile cloud computing model to run the
big data applications in cloudlets rather than remote clouds.
Quwaider and Jararweh [10] proposed a cloudlet-based
wireless body area network. The huge amount of data
generated by the users are transmitted to a nearby cloudlet
through WiFi. The nearby cloudlet stores and processes the
data streams locally to reduce the latency as well as
communications power consumption as compared to the
traditional cloud-based wireless body area network.
Satyanarayanan et al. [11] proposed the GigaSight
architecture to perform the video processing in local cloudlets
to reduce the latency while saving the bandwidth of core
networks. Sun and Ansari [12] proposed a profit maximization
virtual machines (VMs) placement strategy for mobile edge
computing, referred to as PRIMAL, which makes a tradeoff
between the E2E delay reduction and migration overheads by
selectively migrating VMs to their optimal cloudlets. In
addition, Sun et al. [13], [14] proposed a green cloudlet
network architecture, where all cloudlets are powered by both
green energy and on-grid energy. To minimize the on-grid
energy consumption, users' designated VMs are migrated to
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cloudlets with excessive green energy while ensuring low E2E
delay for users.

Although the research on cloudlets has recently received
much attention, few has addressed the cloudlet placement
problem, which poses a crucial impact on the E2E delay. Xu
et al. [15], [16] formulated a capacitated cloudlet placement
problem and placed K capacitated cloudlets to some strategic
locations to minimize the average E2E delay between mobile
users and their cloudlets. Jia et al. [17] proposed a model to
place K cloudlets in the network and realize the load
balancing among the cloudlets to minimize the response time
of users. However, the above works only minimize the E2E
delay by placing a certain number of cloudlets, without
considering the cloudlet cost and E2E delay at the same time.
Moreover, these works assume that the cloudlet capacity of
each cloudlet is given before the cloudlet placement. In
contrast, another work [18] determines the locations of
cloudlets and their servers based on each BS’s workload by
jointly considering the cloudlet cost and average E2E delay.
As compared to existing studies, this paper presents several
enhancements. First, we have proposed the cloudlet network
architecture, where each user is assigned a dedicated VM (i.e.,
an Avatar) to process its own data and applications. Second,
we consider the average E2E delay of users as well as the
cloudlet cost in the cloudlet placement and adopt a coefficient
n to adjust their tradeoff relationship. Third, when placing the
cloudlets, we not only choose strategic locations for cloudlets,
but also determine the optimal number of cloudlets. Fourth,
when the number and locations of cloudlets are decided, we
also determine the optimal number of servers (i.e., the cloudlet
capacity) for different cloudlets based on the geographical
user density around them. Fifth, considering the user mobility,
we have proposed the dynamic Avatar allocation scheme to
optimize the locations of all the Avatars in each time slot in
order to minimize the E2E delay for all users during the time
slot.

III. SYSTEM MODEL

A cloudlet network architecture is illustrated in Fig. 1,
where cloudlets are collocated with some selected BSs.
Meanwhile, the software defined network (SDN) based
cellular network is employed as the cellular core network to
provide efficient and flexible communications paths between
BSs [19], [20]. Meanwhile, mobile providers offer seamless
wireless communications between a user and its BS, and thus
each user can access its BS and then connect to a nearby
cloudlet. Based on the geographical distribution of users, the
numbers of servers in cloudlets are different (i.e., the
capacities of cloudlets are different). In the cloudlet network,
each user is mapped to a specific Avatar in a cloudlet (i.e., a
designated VM for the user), which only runs task requests
offloaded from the corresponding user. An Avatar is a
software clone of a user and always offers service to the user
wherever it moves [14], [21]. We assume that every user's
Avatar is homogeneous (i.e., the configurations of Avatars are
the same) although the workloads of Avatars are different.
Also, the computational resources of every server is the same,
and thus each server is assumed to accommodate the same
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Fig. 1.  Cloudlet network architecture.

number of Avatars.

Denote I as the set of potential sites of cloudlets; denote K
as the set of BSs; denote J as the set of users. To indicate the
locations of cloudlets in the network, a binary variable y; is
introduced to represent whether a cloudlet is placed at site i
(i.e., yi = 1) or not (i.e., y; = 0). For brevity, we define cloudlet
i as the cloudlet located at site i. Meanwhile, we denote z; (i.c.,
a non-negative integer variable) as the number of servers
installed in cloudlet i, and thus z; should not exceed the
maximum number of servers in cloudlet i, which is denoted as
e. Note that if no cloudlet is deployed at site i (i.e., y; =0), z;
will also be zero. The key notations of this paper are
summarized in Table 1.

A. Cloudlet Cost Model

When cloudlet providers decide to deploy a cloudlet at a
BS, they have to rent a facility (site), whose cost depends on
the geographical location, and then install the basic
equipment. Thus, this part of the cloudlet cost is considered as
the fixed cost, which is decided by the location of the cloudlet.
In addition, cloudlet providers also need to install servers into
a cloudlet to provide computing resources. Given the price of
a server, the cost of servers in a cloudlet, which is considered
as the dynamic cost, just depends on the number of servers in
the cloudlet. Therefore, the cloudlet cost in the cloudlet
network consists of the fixed cost and the dynamic cost, which
can be expressed as

Pi= Zﬁyi + Zs‘fizi

iel iel

)

where f; is the fixed cost of a cloudlet at site i and &; is the
price of a server at cloudlet i.

B. E2F Delay

When a request of a mobile user is sent to a cloudlet, the
request goes through its BS and the SDN-based cellular core
network. Therefore, the E2E delay between a user and its
Avatar consists of two parts: first, the E2E delay between the
user and its associated BS, i.e., the wireless delay; second, the
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TABLE1
LIST OF SYMBOLS

Symbol Definition

I Set of potential sites of cloudlets.

K Set of BSs.

J Set of mobile users.

Xij Binary variable of user j’s Avatar being assigned to cloudlet i.
Yi Binary variable of a cloudlet being placed at site I.

Zi Number of servers installed in cloudlet i.

fi Fixed cost of a cloudlet at site i.

&i Price of a server at cloudlet i.

d;; Average E2E delay between user j and cloudlet i.

Y Weight of the average E2E delay in the objective function.
n Tradeoft coefficient.

Pjk Occurrence probability of user j in the coverage of BS k.
Hj Lagrangian multipliers.

LB Lower bound of the original problem.

UB Upper bound of the original problem.

J1 Set of users whose Avatars are waiting to be allocated.

1 Set of cloudlets that can still host at least one more Avatar.

E2E delay between the BS and the cloudlet that hosts the
user's Avatar. However, changing the locations of cloudlets
does not affect the wireless delay, which only depends on the
user's service plan and the mobile provider's bandwidth
allocation strategy [22]. Thus, we just consider the E2E delay
between the BS and cloudlet in this paper (i.e., the E2E delay
between a user and its Avatar is defined as the E2E delay
between its BS and the cloudlet that hosts its Avatar). Denote
Ti; as the E2E delay between BS k and cloudlet i. The value of
Tr; can be measured and recorded by the SDN controller
[23], [24].

As we know, mobile user movement often follows a
repetitive pattern, i.e., a user usually commutes among several
places such as home, workplace and gym for most of the time
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of one day [17], [25]. In this case, we can estimate the
occurrence probability of users in different BSs, based on the
historical data of user movements [21]. Thus, the average E2E
delay between user j and cloudlet i can be expressed as

dij = ijkai @)
7

where p i is the occurrence probability of user j in the cover-
age of BS k.

Denote x;; as a binary variable indicating whether user j's
Avatar is located at cloudlet i (i.e., x;;=1) or not (ie.,
x;j =0); denote d; as the average E2E delay between user j
and its Avatar; then, we have:

dj = injdij. (3)

iel

IV. PROBLEM FORMULATION AND ANALYSIS

A cloudlet provider, in placing cloudlets, has to consider
two issues: cloudlet cost and average E2E delay [26]. On one
hand, the average E2E delay between users and their Avatars
should be minimized to improve the QoE of mobile
applications. Hence, a cloudlet provider should place as many
cloudlets as possible in the cloudlet network, thus enabling
each user's Avatar to be allocated to a nearby cloudlet. If the
number of cloudlets and their capacities are increasing, the
average E2E delay of users will be reduced accordingly. We
assume the maximum number of cloudlets in the network
allowed by cloudlet providers is p. On the other hand, the
cloudlet provider aims to minimize the capital expenditures
(CAPEX) in deploying cloudlets, i.e., placing fewer cloudlets
on suitable positions. Thus, only optimizing the cloudlet cost
or the average E2E delay cannot meet the provider's
requirement. Therefore, we design the Cost Aware cloudlet
PlAcement in moBiLe Edge computing (CAPABLE) strategy
to optimize the tradeoff between the cloudlet cost and the
average E2E delay. In this paper, the deployment cost of a
cloudlet network is defined as the sum of the cloudlet cost and
the average E2E delay cost. Denote p as the deployment cost;

we have
p= > fyi+ ) Ezi+ty ) Y xijdi “)
iel iel i€l jeJ
Note that y is the weight of the average E2E delay, and is
modeled as follows:

_ ZiEJmmcf;'-l_fie 1_77

Zjd,j 7

Here, d;; indicates the largest average E2E delay for user j,
where cloudlet J is the farthest cloudlet for user j.
Furthermore, the maximum number of cloudlets in the
network allowed by cloudlet providers is p; let 7, be the set
of p sites with the highest rental costs in the network (i.e.,
[Lmaxl = p ). Thus, Xcr, fi+&e represents the maximum
cloudlet cost of the network by deploying p cloudlets at sites
in 7 ,,,, and each cloudlet has the maximum number of servers
(i.e., €). Meanwhile, 3’ ;d; represents the largest average E2E
delay of all users (i.e., when each user is served by its farthest

®)

cloudlet). In order to set different tradeoff relations between
the cloudlet cost and average E2E delay, we introduce a
tradeoff coefficient 5, where 1 € (0, 1). Increasing the value of
n would reduce the weight ratio of the average E2E delay to
the cloudlet cost, and encourage the cloudlet provider to place
fewer cloudlets. Thus, 7 is used to adjust the tradeoff between
the cloudlet cost and average E2E delay, and can be chosen
between 0 and 1 via experiments based on the cloudlet
provider's practical requirements.

The objective of the CAPABLE strategy is to minimize the
deployment cost of a cloudlet network. Consequently, we
formulate the problem as follows:

P1 ){I}}}IIZII ZﬁyﬁZszﬁ)’ZZ’Cw ij (6)

iel iel jeJ

S.t. injzl VjeJ )
iel

Dixij<sy Viel ®
jeg

zi<ey; Viel )

Dvi<p Vierl (10)
iel

x;;€{0,1} Viel Vjeg (11)

€{0,1} Vierl (12)

7z >0 integer Vie 7. (13)

Here, s is the capacity of a server in terms of the number of
Avatars, and e is the maximum number of servers in cloudlet
i. Constraint (7) ensures that the Avatar of each user is
assigned to only one cloudlet. Constraint (8) imposes the
number of Avatars hosted by a cloudlet not to exceed the
maximum number of Avatars in the cloudlet. Constraint (9)
imposes the number of servers in a cloudlet to be no more
than the maximum number of servers in the cloudlet.
Constraint (10) imposes the number of cloudlets not to exceed
the maximum number of cloudlets in the network.

Lemma 1: The cloudlet placement problem (i.e., P1) is an
NP-hard problem.

Proof: Suppose the price of a server (i.e., &) is zero; p
equals the total number of BSs in the network. Therefore, P1
can be transformed into:

L min Dty 2 0 s
XijYiZi c

(14)
iel jeJ

S.t. le'jzl V]Ej (15)

iel
le-jgsey,- VYiel (16)

VA

x;;€{0,1} Viel Vjeg (17)
€{0,1} Viel. (18)
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Obviously, the above problem R1 is a capacitated facility
location problem, which is a well known NP-hard problem
[27]. Thus, the capacitated facility location problem is
reducible to the problem P1, i.e., P1 is NP-hard. [ |

V. CAPABLE ALGORITHM

Some studies have shown that Lagrangian relaxation is an
efficient algorithm to solve the capacitated facility location
problem [28], [29]. Thus, we design the CAPABLE algorithm
(i.e., a Lagrangian heuristic algorithm) to place cloudlets to
suitable sites. The basic idea of the algorithm is to iteratively
improve the lower bound (LB) and upper bound (UB) of the
original problem by the subgradient method. In each iteration,
given a sequence of Lagrangian multipliers, the LB can be
obtained by solving a Lagrangian relaxation problem. Based
on the solution of the Lagrangian relaxation problem, the UB
can be obtained by a heuristic algorithm. Then, the
subgradient method is used to adjust the Lagrangian
multipliers based on the UB and LB. When the Lagrangian
multipliers are updated in each iteration, the gap between the
UB and LB becomes smaller, i.e., the solution is approaching
the optimal one.

A. The Lower Bound

We can derive the following Lagrangian relaxation problem
by relaxing Constraint (7) of P1:

LR : {g(w) = )g_li_n_ Z Jiyi+ Z &izi+ YZ Z xijdi,j
T il il jeJ
+Zﬂj[1 —inj]

JjegJ iel
s.t. Constraints(8),(9),(10),(11),(12),(13), (19)
where 1 (j €9, pj > 0) are Lagrangian multipliers. When the
Lagrangian multipliers are given, the optimal objective value
of the Lagrangian relaxation problem becomes a LB on any
feasible solution of the original problem (i.e., P1).

We first ignore Constraint (10). Then, for any given set of
multipliers, it can be observed that LR can be decomposed
into |/| subproblems, i.e., one for each cloudlet site. Thus, for
each site, we have

LR;: g; = min fiy;+&zi+ Z(Vdij — Mj)Xij

min 24 (20)

s.t. inj < 87 1)
€T

zi S ey (22)

x;;€{0,1} VjeJg (23)

yi €{0,1} 24

z; 2 0 integer. (25)

For each cloudlet i, define vector A; = {A;j|j € J}, where
Ajj = min{yd;; —1;,0}. Given the number of servers in cloulet
i (i.e., z;), the capacity of cloudlet i in terms of the number of
Avatars is z;s; thus, we define a user set Ji; (VielT,
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0 <z; <e) for cloudlet i, where |Ji;| = z;s and {A;;]j € T} is
composed of z;s smallest elements of A;. Furthermore, let
Vi = &izi+ Ljeg, Aijs We define vector ¥; = {¥;;,[0<z; <e},
where the minimlum value in ¥; is denoted as ‘Pl.’;iand the
corresponding number of servers is z;. It can be observed that
the optimal objective value of of LR; can be expressed as
min{f; + Y’i’zi,O}.

Define vector @ = {®;|i € I}, where @; = min{f; + SV;;!_,O}.
Since the maximum number of cloudlets allowed by cloudlet
providers is p, we define a cloudlet set 7 " where (@i € I’} is
composed of p smallest elements of .

Lemma 2: For a given set of multipliers u = {u;]j € J}, the
optimal solution of the Lagrangian relaxation problem (i.e.,
LR) can be expressed as follows:

. % 1,fi+‘Pi*,<0;ie[’
Yiel,y, = i (26)
0, otherwise
Viel,z;‘ :Z;y?, (27)
viepx = {Lvhimni<0ijeTgyi=l o0
T 0, otherwise

Proof: For each cloudlet site 7, y can equal 1 or 0 for a
given set of u = {u;|j € J}. Hence, to validate (27) and (28),
we only need to consider two cases for each LR; (i.e., y; = 1 or
y; =0). In the first case, y: = 1, and thus the problem LR; can
be transformed into:

Ki: ki =ming;z; + Z (ydij = pj)xij

TRt 2y (29)
S.t. Z Xij < 8z (30)

jeg
zi<e €1y
x;€{0,1} VjeJg 32)
zi 2 0 integer. (33)

As we know, z; can be selected from 0 to e. For any fixed z;,
the problem K; can be transformed into the following.

M;:: ki =min D =i

(34)
€I
S.t. Zx,'j < SZi (35)
€T
xj€{0,1} VjeJ. (36)

In order to optimize the problem M;, if yd;;—u; <0, it is
beneficial to allocate user j's Avatar to cloudlet j (i.e.,
x;j =1). Since the capacity of cloudlet site i in term of the
number of Avatars is sz;, we need to select sz; users (i.e. the
user set J;;,) with sz; smallest A;; (i.e., min{yd;;—pu;,0} ) in
A;. Thus, the optimal objective value of M; can be expressed
as Y jeq;. Nij. Consequently, in the first case, for a certain z;
of cloudlet i, we can derive only if
ydij—pj < 0&j € Jig;.

As we know, when y? = 1, z; of cloudlet i varies from 0 to e.

xij=1
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For each z;, based on the optimal solution of Problem M;, the
objective value of Problem K; can be expressed as

Vi, = &izi+ Yje Tiz A;j. Thus, the optimal z; can be achieved
by z; = argmin S”,Zl As S”l’;l is denoted as the minimum value
of ¥; and zy is the corresponding number of servers, z; can be
expressed as 7 = Z/y*

In the second case, y; = 0; thus, both z; and x should be set
as 0. Specifically, z; can be expressed as 7] = z .v;. Therefore,
(27) and (28) have been proved.

Since the optimal objective value of K; is ¥ P if y7 =1, the
objective value of LR; is fi+ 5”!*1, and 0, otherwise. It is
beneficial to set y; =1, only if fi+ ?’;l < 0. Hence, the
minimum objective value of LR, can be derived as
@; = min{f; + &”;;i,O}. At this time, to achieve the optimal
solution of LR, we should consider Constraint (10) of LR,
which is the limitation of the number of cloudlets (i.e., p). In
other words, if @; is within p of smallest values of @& (i.c.,
iel’)and f;+ SV:; <0, y7 = 1; otherwise, y7 = 0. Thus, (26) is
validated.

After obtaining the optimal solution of LR by Lemma 2, we
still need to derive its optimal objective value. As we know,
@; is the minimum objective value of the problem LR; based
on its definition. Denote 7 as the set of the selected cloudlet
I= {ily; = 1,ie I'}. Consequently, the minimum
objective value of LR, which is a LB of the original problem,

is expressed as:
LB=) &+ u;
ief €T

sites, 1i.e.,

(37)

B. The Upper Bound

The Lagrangian relaxation problem yields the LB of the
original problem. However, the solution may not be a feasible
solution with respect to the original problem, i.e., the relaxed
Constraint (7) may not be satisfied. Specifically, by solving
the Lagrangian relaxation problem, we obtain a cloudlet
vector Y* ={y/lie I'} and a server vector Z*={|i€ I}.
However, the cloudlet capacity in the network, corresponding
to Y* and Z*, may be insufficient to host all users' Avatars.
Furthermore, without constraint (7), some users' Avatars are
allocated to multiple cloudlets (i.e., X7 x;; > 1), while some
are not allocated to any cloudlet (i.e., X ;cyxi; =0). Hence,
based on the result of the Lagrangian relaxation problem, we
design a heuristic algorithm to achieve a feasible solution of
the original problem, which is also an UP of the problem.

1) Adjust the capacity of the cloudlet network

If the total capacity of all cloudlets is insufficient to serve
all users, new servers should be added to some cloudlets until
all users can be served. In each iteration, the algorithm checks
each cloudlet i that can still accommodate more servers (i.e.,
{ilz; <e,i€I}), and calculates the weight of cloudlet i (i.e.,
denoted as w;):

ifyr =1,

[EG+D)

T \EE@+ D)+ f

Then, the cloudlet with the smallest w; is selected, and z; of
the selected coudlet is increased by one. Meanwhile, if y of
the selected cloudlet is equal to 0, let y7 =1. The above
procedure is repeated (i.e., Y* and Z* are updated in each
iteration) until the capacity of the cloudlet network is large
enough.

2) Heuristic Avatar allocation algorithm

When the updated Y* and Z* provide sufficient capacity,

the original problem can be transformed into:

P2 mmz Zd,/x,j

il J€J

S.t. injzl VjeJ

iel

(39

(40)

Z/ljx,-szz;k Viel 41)
€T

xij€{0,1}y Viel VjeJ.

where [ is the set of selected cloudlet sites.
Lemma 3: P2 can be equivalently transformed into:

3: mm Z Z i i
Y et jejy
st Y xj=1 VjeJ
iel
D Axij< g Viel
€T
x;;€1{0,1} Viel VjeJ.
where € is a small positive value close to zero.
Proof: For each jeJ, if y;=0 (ie., i€ I\I), then
d;j/(y] + €) = +oo, and thus x;; should equal 0 to optimize P3.
Ify;=1(e.,i€ 1), since € is a small positive value close to
zero, the value of d;;/(y; +€) is approximately equal to d;;.
Hence, P2 and P3 are equivalent. [ ]
Based on Lemma 3, problem P2 can be transformed into:

(42)

P4: min Z > eijxij (43)
i€l jeJ
s.t. Constraints (40) — (42), (44)

where c¢;; =d;j/(y; +€) is the weighted average E2E delay
between user j and its Avatar located in cloudlet i. It can be
seen that P4 is an integer programming problem, which is
computationally expensive to achieve the optimal solution. In
this case, we design a HEuristic Avatar allocaTion (HEAT) al-
gorithm to obtain the suboptimal solution.

Let J; be the set of users, whose Avatars are waiting to be
allocated among cloudlets, and 7 be the set of cloudlets
having excess resources to host at least one more Avatar. Note
that at the beginning of HEAT, all users are included in 77,
while all available cloudlets are included in 7. For user j
(i.e., j€J1), the optimal cloudlet in 7 is the one incurring
the lowest weighted average E2E delay, i.c.
i’ = argmin{c;;li € 71}; the suboptimal cloudlet is the one that
incurs the second lowest c;j among the cloudlets in 17, i.e.,
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i"” = argmin{c;;li € {Z1\i'"}}. The basic idea of HEAT is to
select a suitable user in each iteration, whose suboptimal
cloudlet incurs a significant E2E delay degradation as
compared to the optimal cloudlet, and then allocate the user's
Avatar into the optimal cloudlet. In other words, if allocating
user j's Avatar to its suboptimal cloudlet has a significantly
negative impact on the weighed average E2E delay, we should
place it into its optimal cloudlet to avoid the corresponding
E2E delay degradation.

Denote Ac; as the E2E delay degradation by allocating user
j's Avatar from the optimal cloudlet i/ to the suboptimal
cloudlet i, i.e.,

ACj=Ci”j—Ci’j’ Vjejl. (45)

Therefore, in an iteration, HEAT will choose to allocate a
suitable user }'s Avatar, where }: argmax{Ac;|j € J1}, to its

J
optimal cloudlet in order to mitigate the E2E delay degrada-

tion. Then, user } is removed from J;. Afterwards, if the
optimal cloudlet has no extra space for hosting more Avatars,
it is removed from 7. Note that once 7; is updated, the
algorithm has to recalculate /', i” and Ac; for each user j € 7.
The above iteration is repeated until all users' Avatars are
allocated, i.e., J1=0. As a result, we obtain a feasible
solution of the original problem, yielding an UP. The details
of the algorithm is shown in Algorithm 1.

Algorithm 1: HEAT algorithm

Input: The cloudlet placement vector Y* = {y;li € I'}. The
server vertor Z* ={zli € I}. The average E2E delay vector,
i.e., C= {C,’jli GI,jEJ}.

Output: Avatar allocation vector, i.e., X* ={§y) € I,| € T}.

1: Initialize J; and 7 based on their definitions;

2: Vje€Jy, calculate Ac; based on Eq. (45);

3: while 91 #0 do

4 Find user J, where}:argmax{ch|j€jl};

5 Allocate user ] to its”’ optimal cloudlet # (i.e.,
vi=1
Update the user set 71, i.e.; J1 = J1\J.

6
7: if cloudlet ¢’ is full then
8 Update 1, i.e., I =1 \i’;

<

argm_in{cl-]cli € I1}), and let x

9: ¥ j € J1, recalcuate Ac; based on Eq. (45);
10: end if

11: end while

12:  return X.

C. Subgradient Algorithm

When the LB and UP of the original problem are obtained,
we need to update the Lagrangian multipliers u; by solving
the following Lagrangian dual problem to improve the LB and
UP of the next iteration. In this paper, we apply the
subgradient method to derive the Lagrangian multipliers in
each iteration [30], [31]. The Lagrangian dual problem is

expressed as
LD : max g(u). (406)
u

The subgradients are calculated as follows:
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Vi=1->"x5,

iel

Vjied, 47)
where x:fj is derived from the optimal solution of the Lag-
rangian relaxation problem.

Moreover, the step size ¢ in the subgradient algorithm is
defined as [31]:

- o(UB°P' — LB)
5, ¥?
jer
where UB°P' indicates the best UP so far, and o is a scalar
ranging from 0 and 2. If the improvement of B cannot be
achieved within a fixed number of subsequent iterations, o is
halved to facilitate the search for a better .B.
Therefore, the Lagrangian multipliers u; in iteration n+ 1
can be updated as follows:

(43)

n+l

Wi = /1;5 + ¥t (49)

If the number of iterations exceeds the predefined maximum
number M, the subgradient algorithm stops.

The details of the complete CAPABLE algorithm are shown
in Algorithm 2.

Algorithm 2: The CAPABLE algorithm

1: Initialize the Lagrangian multipliers u;,Vj € J;

2:  Solve the problem LR to obtain the optimal solution
(i.e., Y*, Z" and X*) according to Eq. (26) (27) (28); calculate
LB.

3. Based on the optimal solution of LR, use the HEAT
algorithm to get a UP of the original problem;

4: if UP < UP°"" then

5 Let UP°P' = UP;

6: else

7 Leto =0\2;

8: endif
9: Update the step size ¢ based on Eq. (48);

10:  Update the Lagrangian multipliers u;,Vj€ g, based
on Eq.(49);

11: ifiter < M then

12: Go to Step 2;

13: else
14: STOP;
15: endif.

VI. DYNAMIC AVATAR ALLOCATION (DARA)

As we know, users move around in the network
dynamically. If a user roams to a new BS in a time slot, it is
desirable to reallocate the user's Avatar to a nearby cloudlet,
thus reducing the E2E delay between the user and its Avatar.
Therefore, after cloudlets have been deployed by the above
CAPABLE algorithm, it is necessary to design a Dynamic
AvataR Allocation (DARA) scheme to reallocate Avatars
among cloudlets to minimize the E2E delay between users and
their Avatars in each time slot. Note that if a user's Avatar is
assigned to a different cloudlet as compared to the previous
time slot, the Avatar will migrate from the previous cloudlet
to the destination cloudlet by the live migration method.

Let 7, be the cloudlet vector generated by the above

CAPABLE strategy, i.e., 7o ={ily; = 1,i€ I}. Let x;.j be the
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binary variable indicating whether user j's Avatar is located at
cloudlet i in the current time slot. Denote k; as the BS where
user j is located, and #; as the E2E delay between user j and
its Avatar in the current time slot, which is equal to the E2E
delay between user j’s BS and its cloudlet (i.e., #;j = 7).
Therefore, we formulate the Avatar allocation problem in each
time slot as follows:

P5: min Z Zt,-jx;j

(50)
ij jelcjed
s.t. Zx'i,:l Vjed (51)
iel¢
Z/l]x;JSSZ;k Vielc (52)
jeT
x;€{0.1} Viel, VjeJ. (53)

Based on Lemma 3, problem P5 can be transformed into:

P6: min Z Z c:-jx;j (54)
Yij el jeJ
s.t. Constraints (51),(52),(53), (55)

where c;.j = 1;j/(y} +€) is the weighted E2E delay between user
Jj and its Avatar located in cloudlet i in the time slot.

This problem is also an integer programming problem,
similar to P2, and thus it is computationally expensive to get
the optimal solution. Since we have to solve this problem in
each time slot to dynamically allocate Avatars among
cloudlets, we apply the above HEAT algorithm to obtain the
suboptimal solution.

Note that the DARA scheme will incur some specific
overhead in the network. When users’ Avatars are reassigned
to a new cloudlet in a time slot, the Avatars have to be
migrated to the new cloudlet to provision service to the users.
Meanwhile, the HEAT algorithm has to be performed in each
time slot to reassign the Avatars among cloudlets, and thus
the complexity of the algorithm directly impacts the overhead.
We now analyze the computational complexity of the
algorithm. The complexity of Step 2 is |J|. Meanwhile, the
complexity of Steps 4 and 5 is O(/J|+|Z]) in the worst case.
As the algorithm allocates one user's Avatar to its optimal
cloudlet in each iteration, the number of iterations is |, and
thus the total complexity of Steps 4 and 5 can be expressed as
O((IJN1+1IDT]). Meanwhile, as Steps 8 and 9 repeat for |7]
times in the worst case, the corresponding complexity is
O((|J ]+ c0)|I]). Summarizing all these steps, the complexity
of the algorithm can be expressed as O((|S |+ |Z DT ).

VII. SIMULATION RESULTS

In this section, we set up the simulation of the CAPABLE
strategy and the DARA scheme to evaluate their performance.
We begin by describing the simulation environment setting.
To demonstrate the effectiveness of the CAPABLE algorithm,
we compare the solutions of CAPABLE and the CPLEX tool
in a small-scale randomly generated network. Then, we apply
a large-scale network in the real world to further evaluate the
performance of the proposed strategies.

A. Simulation Environment

In the simulation, the capacity of each server in terms of the
number of Avatars is set as 30; the maximum number of
servers in a cloudlet is 10. The rental cost at each site f; is
determined by the Normal distribution with an average of 500,
and a variance of 100; the price of a server is 50. To construct
the E2E delay matrix, we assume that the E2E delay between
BS k and cloudlet i (i.e., Tx;) is a function of the geographic
distance between them [32], [33], i.e., Tx; = 3.3 * Ly;, where Ly;
is the distance between BS k and cloudlet i in km and the unit
of 7; 1s ms. Note that if k=i, it means that cloudlet i is
attached to BS k, and thus 73; =0. We can apply historical
data to calculate the occurrence probability py;! of user j
among BSs.

B. Performance in the Small-scale Randomly Generated Network

In the small-scale randomly generated network, 100 BSs are
placed in an 10*10 km? area, where each BS has a coverage
area of 1 km2. Meanwhile, the number of users in the network
is 500. To emulate the real scenario, each user randomly
chooses five BSs and randomly moves among the five BSs in
different time slots.

For the small-scale network, we can use the CPLEX tool to
generate the optimal solution of the cloudlet placement
problem. To evaluate the performance of the proposed
algorithm, we can compare the results of CAPABLE with that
of CPLEX. Hence, both deployment cost and simulation time
are examined to verify the effectiveness of the CAPABLE
algorithm.

In Fig.2, we study the deployment cost delivered by
CAPABLE and CPLEX, where n are set as 0.2 and 0.4,
respectively. Note that the deployment cost of the proposed
algorithm is only a little higher than that of CPLEX, which
suggests that the performance of CAPABLE does not degrade
significantly as compared to CPLEX because the proposed
algorithm is able to improve the UB and LB of the original
problem in each iteration, and so it yields a desirable feasible
solution when the gap between the UB and LB becomes
small. Similarly, Fig. 3 and Fig. 4 compare the cloudlet cost
and average E2E delay of the two algorithms, respectively.
Both the cloudlet cost and average E2E delay of the proposed
algorithm is very close to the near optimal solution of
CPLEX, which suggests that the number and locations of the
cloudlets selected by CAPABLE is close to that of CPLEX.

As seen from Fig. 5, the simulation time of the proposed
scheme is 90.6% and 77.8% fewer than that of CPLEX
respectively, when 5 equals 0.2 and 0.4. In each iteration, we
can apply a closed-form solution of Lemma 2 to calculate the
LB, and then obtain the UB by a heuristic algorithm.
Consequently, its simulation time is remarkably decreased as
compared to that of CPLEX. As the proposed algorithm can
achieve a suboptimal solution by consuming much less time
as compared to CPLEX, it is effective to solve the cloudlet
placement problem.

1 __ the amount of time that user j is associated with BS k
Pkj = the total time period
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C. Performance in A Large-scale Network

To further evaluate the performance of the proposed
algorithms, we study the impact of system parameters on the
proposed algorithms in a real mobile network in Harbin,
China, with 8826 users and 500 BSs and extract user mobility
activities in one day. To continuously track user locations,
each packet of a user is monitored, and thus we can extract the
BS information from each packet and consider the BS's
location as the current location of the user (e.g., if a packet of
the user contains the information of BS A, we can say that the
user is currently associated with BS A). As shown in below,
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the proposed CAPABLE algorithm can also effectively solve
the cloudlet placement problem in the large-scale network.
1) Performance of the CAPABLE strategy

The tradeoff coefficient n (0 <7 < 1) determines the wight
ratio of the cloudlet cost to the average E2E delay in the
cloudlet placement. If 7 increases, the cloudlet providers focus
more on the cloudlet cost than the average E2E delay. Thus,
we should test the impact of 1 on the performance of the
proposed algorithm to help cloudlet providers choose a proper
n based on their practical requirement. For comparison, we
consider the scenario that all users’ Avatars are allocated to a
remote data center that is placed at the southwest point of the
network. Moreover, we also consider the Heaviest-AP First
placement (HAF) strategy [17] for comparison, which places a
certain number of cloudlets (i.e., 30 cloudlets in the
simulation) at the BSs having the heaviest workloads to
reduce the E2E delay between users and their cloudlets.

Fig. 6 shows that the average E2E delay achieved by
CAPABLE is significantly reduced as compared to the
traditional big data network and the HAF strategy as i varies.
With the increase of 7, the average E2E delay achieved by
CAPABLE grows. When 7 is small, the cloudlet providers
will deploy a large number of cloudlets at the BSs with high
user density, and thus most users can access their Avatars in
the nearby cloudlets, incurring a low average E2E delay
between users and their Avatars. Then, with the increase of 7,
fewer cloudlets are available because cloudlet providers are
more conscious of placing cloudlets in a cost-effective way,
i.e., a user's Avatar has a higher probability to be allocated to
a cloudlet with higher average E2E delay. The average E2E
delay of the traditional big data network and HAF, on the
other hand, is not impacted by n because each user's Avatar is
located in the remote data center in the traditional big data
network. With regards to HAF, the cloudlet placement is
determined by the workloads of different BSs.

As shown in Fig. 7, we examine how the cloudlet cost of
CAPABLE varies with the increase of 7. It can be seen that
the cloudlet cost of CAPABLE drops and finally plateaus.
When 7 is high, the cloudlet cost of CAPABLE is less than
that of HAF because the cloudlet providers tend to decrease
the number of cloudlets and their servers to reduce the
cloudlet cost, with the increase of 7. However, the numbers of
cloudlets and their servers are bounded from below by the
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demands of all users' Avatars. When the capacity of cloudlets
is close to the minimum value that can serve all users' Avatars,
increasing 7 has very little effect on the numbers of cloudlets
and servers.

CAPABLE aims to reduce the number of cloudlets and
servers while decreasing the average E2E delay between users
and their Avatars. With the increase of the cloudlet size (i.e.,
the maximum number of servers in a cloudlet), the cloudlet
providers are more likely to install more servers to cloudlets in
the areas with high user density so as to maintain low E2E
delay, while reducing the total number of cloudlets in the
network. To study how the maximum number of servers in a
cloudlet impacts the performance of CAPABLE, we examine
the cloudlet cost and average E2E delay of CAPABLE by
changing the maximum number of servers in a cloudlet. As
shown in Figs. 8 and 9, when the maximum number of servers
in a cloudlet increases from 2 to 16 (n = 0.4), the cloudlet cost
is reduced significantly while the average E2E delay
increases. If the maximum number of servers of a cloudlet is
small, the cloudlet providers need to deploy a large number of
cloudlets to provision enough computing resources for users'
Avatars, thus users' Avatars are more likely to be placed at a
nearby cloudlet (i.e., incurring low average E2E delay). If the
maximum number of servers of each cloudlet is large, in order
to reduce the cloudlet cost, the cloudlet provider will put more
servers to cloudlets in areas with high user density and reduce
the total number of cloudlets in the network. As the number of
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cloudlets degrades, the average E2E delay between users and
their Avatars also significantly increases. Moreover, the
cloudlet cost of CAPABLE does not diminish significantly
when the maximum number of servers of a cloudlet is close to
16. This is because when the number of cloudlets is very
small, the further reduction of the number of cloudlets will
tremendously increase the total average E2E delay, which has
a negative impact on the deployment cost of the network.
Hence, to minimize the deployment cost, the cloudlet cost of
CAPABLE changes slowly when the maximum number of
servers of a cloudlet is close to 16.

2) Performance of DARA

After cloudlets are placed at the selected BSs by
CAPABLE, we further evaluate the performance of the
DARA scheme. As we know, user mobilities follow the data
trace that we sampled from the real world, while the cloudlet
placement is static. As a result, it is important to reallocate
users' Avatars among cloudlets to maintain the low E2E delay
in different time slots.

In Fig. 10, we compare the E2E delay in different time slots
delivered by the two strategies, given n =0.4. It can be seen
that the E2E delay of DARA is significantly reduced as
compared to CAPABLE, which does not reallocate Avatars in
different time slots. This is because when users roam to new
BSs in a time slot, DARA can allocate users to new suitable
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cloudlets to reduce their E2E delay. For instance, if user j
roams to a new BS i, the new BS may be far away from user
j's previous cloudlet A (i.e., incurring the E2E delay 7;4).
Meanwhile, there is an alternative cloudlet B (i.e., incurring
the E2E delay 7;p). In this case, if 7;p < 7;4, reallocating user
Jj's Avatar from cloudlet A to cloudlet B can reduce the E2E
delay between user j and its Avatar.
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Fig. 10.  Total E2E delay in different time slots.

VIII. CONCLUSION

In this paper, we have presented the cloudlet network
architecture which facilitates mobile cloud computing at the
network edge. Specifically, each user can access its Avatar,
which is considered as the designated VM for the user, with
low E2E delay. In order to minimize the average E2E delay
between users and their cloudlets, some existing studies
deploy a certain number of cloudlets to some suitable sites.
However, aside from the E2E delay, a cloudlet provider also
has to pay attention to the cloudlet cost. Hence, we have
proposed the CAPABLE strategy to determine the location
and capacity of each cloudlet, so as to optimize the tradeoff
relation between the E2E delay and cloudlet cost. As the
cloudlet placement problem is NP-hard, we have proposed a
Lagrangian heuristic algorithm to achieve the suboptimal
solution. After cloudlets are placed in the network, because
users roams among the BSs, their Avatars should be allocated
to cloudlets in each time slot. Hence, we have designed the
DARA scheme to optimally allocate Avatars to suitable
cloudlets, so that the E2E delay between users and their
Avatars are minimized in different time slots. We have
demonstrated that CAPABLE achieves a low deployment cost
of the cloudlet network consisting of both the cloudlet cost
and E2E delay cost. Moreover, DARA can improve the
performance of E2E delay of users in different time slots.
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