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Abstract—A new class of neuromorphic processors promises
to provide fast and power-efficient execution of spiking neural
networks with on-chip synaptic plasticity. This efficiency de-
rives in part from the fine-grained parallelism as well as event-
driven communication mediated by spatially and temporally
sparse spike messages. Another source of efficiency arises from
the close spatial proximity between synapses and the sites where
their weights are applied and updated. This proximity of com-
pute and memory elements drastically reduces expensive data
movements but imposes the constraint that only local opera-
tions can be efficiently performed, similar to constraints present
in biological neural circuits. Efficient weight update operations
should therefore only depend on information available locally
at each synapse as non-local operations that involve copying,
taking a transpose, or normalizing an entire weight matrix are
not efficiently supported by present neuromorphic architec-
tures. Moreover, spikes are typically non-negative events, which
imposes additional constraints on how local weight update
operations can be performed. The Locally Competitive Algo-
rithm (LCA) is a dynamical sparse solver that uses only local
computations between non-spiking leaky integrator neurons,
allowing for massively parallel implementations on compatible
neuromorphic architectures such as Intel’s Loihi research chip.
It has been previously demonstrated that non-spiking LCA
can be used to learn dictionaries of convolutional kernels in an
unsupervised manner from raw, unlabeled input, although only
by employing non-local computation and signed non-spiking
outputs. Here, we show how unsupervised dictionary learning
with spiking LCA (S-LCA) can be implemented using only local
computation and unsigned spike events, providing a promising
strategy for constructing self-organizing neuromorphic chips.

Keywords-Sparse Coding; Unsupervised Dictionary Learn-
ing; Spiking Locally Competitive Algorithm; Neuromorphic
Processor.

I. INTRODUCTION

Spiking neural networks (SNNs) are computational mod-

els that mimic biological neural networks. Compared

with artificial neural networks (ANN), SNNs incorporate

integrate-and-fire dynamics that increase both algorithmic

and computational complexity. The justification for such

increased complexity is two-fold: First, by using dedicated,

potentially analog, circuit elements to instantiate individ-

ual neurons and by exploiting the low-bandwidth event-

based communication enabled by SNNs, such networks

can be implemented in extremely low-power neuromorphic

hardware [3], enabling real-time remote applications that

depend on scavenged power sources such as solar recharge.

Second, there is evidence that biological neural circuits

utilize spike timing to transmit information more rapidly

and to dynamically bind distributed features via synchronous

oscillations [11] [15] [14] [6]. The potential for mimicking

the dynamics of biological neural networks in fast, low-

power neuromorphic processors has motivated several efforts

to develop such devices [4] [5] [9] [2] [13].

To fully exploit the potential of neuromorphic hardware,

it is likely that such devices must be able to learn from

their environment in a manner similar to biological neural

systems. In particular, these devices must be able to learn

in an unsupervised manner how to infer representations that

support subsequent processing tasks. The Locally Competi-

tive Algorithm (LCA) describes a dynamical neural network

that uses only local synaptic interactions between non-

spiking leaky-integrator neurons to infer sparse representa-

tions of input stimuli [10]. Unsupervised dictionary learning

using convolutional LCA [12] has been used to infer sparse

representations that support a number of signal processing

tasks [17][16][8][7]. However, as previously implemented,

unsupervised learning with non-spiking LCA utilizes non-

local computations, specifically transpose and normalization

operations performed globally on the entire weight matrix,

and further requires signed outputs in order to represent the

sparse reconstruction error. Thus, it remains unclear how

unsupervised dictionary learning can be accomplished using

only local operations and unsigned spiking output.

In this work, we show that unsupervised dictionary learn-

ing can be accomplished using a modified Spiking Locally

Competitive Algorithm (S-LCA) that employs only local

computations and uses only unsigned spiking output from

all neurons. Thus our results provide a proof-of-concept for

how neuromorphic processors can be configured so as to

self-organize in response to natural environmental stimuli

without sacrificing efficiency.



II. METHODS

A. Unsupervised Dictionary Learning with a Non-Spiking
LCA

Given an overcomplete basis, non-spiking LCA [10] can

be used to find a minimal set of active neurons that represent

the input to some degree of fidelity. Each neuron can be

thought of as a generator that adds its associated feature

vector to the reconstructed input with an amplitude equal

to its activation. For any particular input, the optimal sparse

representation is given by a vector of neural activations that

minimizes the following cost function:

1 1
E = ||I− {Φ ∗ a}||22 + λ2||a||0 (1)

2 2

where I is the input vector and Φ is a dictionary of feature

kernels that are convolved with the activation coefficients

a. The L0 norm ||a||0 simply counts the number of non-

zero activation coefficients. The factor λ acts as a trade-off

parameter; larger λ values encourage greater sparsity (fewer

non-zero coefficients) at the cost of greater reconstruction

error.

LCA finds a local minimum of the cost function defined in

Eq. (1) by introducing the dynamical variables (membrane

potentials) u such that the output a of each neuron is given

by a hard-threshold transfer function, with threshold λ, of
the membrane potential: a = Tλ(u) = H(u − λ)u, where
H is the Heaviside function[10].

The cost function defined in equation (1) is then mini-

mized by taking the gradient of the cost function with respect

to a and solving the resulting set of coupled differential

equations for the membrane potentials u:

∂E
u̇ ∝ − = −u+ΦT {I−ΦTλ(u)}+ Tλ(u). (2)

∂a

An update rule for feature kernels can be obtained by

taking the gradient of the cost function with respect to Φ:

∂E
ΔΦ ∝ − = a⊗ {I −Φa} = a⊗R (3)

∂Φ

where we introduced an intermediate residual layer R cor-

responding to the sparse reconstruction error.

For non-spiking LCA, online unsupervised dictionary

learning is achieved via a two step process: First, a sparse

representation for a given input is obtained by integrating

Eq. (2), after which Eq. (3) is evaluated to slightly reduce

the reconstruction error given the sparse representation of

the current input.

As illustrated in Figure 1, the weight update (3) resem-

bles a local Hebbian learning rule for Φ with pre- and

post-synaptic activities a and R respectively. However, the

computation of ΦT renders the overall dictionary learning

process a non-local operation.

We have previously shown that our implementation of

non-spiking LCA can be used to learn a convolutional

Figure 1: A non-spiking LCA model that supports unsupervised dictio-
nary learning via a residual or sparse reconstruction error layer.

dictionary in an unsupervised, self-organizing manner that

factors a complex, high-dimensional natural image into an

overcomplete set of basis vectors that capture the high-

dimensional correlations in the data [12]. In the next section,

we show how this implementation can be adapted to an

S-LCA model that uses only local computations and un-

signed spiking output.

B. Neuromorphic Constraints and Solutions

Recasting LCA in terms of spiking neurons producing

unsigned spike events and using only local computations

in a manner that still supports unsupervised dictionary

learning introduces a number of challenges when mapping

this algorithm to neuromorphic architectures. First, the

non-spiking LCA model illustrated in Figure 1 relies

on a non-local transpose operation of Φ which is only

inefficiently or not at all supported by present neuromorphic

architectures. Second, to support local Hebbian learning,

the reconstruction error represented by the residual layer

in Figure 1 must be signed, to encode both positive and

negative errors. However, most current neuromorphic

architectures support only unsigned spike events. Third,

with an L0 sparsity penalty, there exists degenerate

solutions in which the weights may be arbitrarily small

while the activation coefficients become correspondingly

large. Conversely, with an L1 sparsity penalty, there exist

degenerate solutions in which the weights can be arbitrarily

large and activation coefficients correspondingly small. The

non-spiking LCA model illustrated in Figure 1 avoids such

degenerate solutions by normalizing the feature kernels

after each weight update, but this again represents a non-

local computation that cannot be efficiently implemented

on neuromorphic architectures. Finally, neuromorphic

architectures typically employ low precision representations

of numerical quantities whereas the algorithm illustrated

in Figure 1 assumes conventional floating point values are

available.



Challenge A: Computations must be local, which

prevents employing a transpose operation.

Proposed Solution: Replace ΦT with a separate connection

Ψ that obeys its own local Hebbian learning rule. Since

both the Φ and Ψ connections link the same set of pre- and

post-synaptic layers but with pre and post swapped, a local

Hebbian learning rule that depends on pre × post results

in the same change for both ΔΦ and ΔΨ. We initialize Φ
and Ψ to be transposes of each other but beyond that no

further formal synchronization is allowed or needed.

Challenge B: Both positive and negative reconstruction

errors must be represented by unsigned spike events.

Proposed Solution: Modulate firing relative to a baseline

rate for representing positive and negative values. Establish

a baseline firing rate for the residual error layer, so that

signed quantities can be encoded relative to the baseline

rate. Firing rates below the baseline firing rate correspond

to negative error whereas firing rates above the baseline

firing rate correspond to positive error. This baseline firing

rate can be maintained via local homeostatic regulation.

Challenge C: Weight normalization during unsupervised

learning is non-local.

Proposed Solution: The dynamics of spiking neurons

naturally imposes bounds on neuronal firing rates. Firing

rates are bounded from below because there cannot be a

fractional number of spikes, and are bounded from above

because neurons have a finite refractory period. Weights

naturally remain bounded because the activity is bounded

and thus no normalization is needed.

Challenge D: Weight values have limited precision.

Proposed Solution: Sparse coding in general is very robust

to noise due to the underlying attractor dynamics. Even

with low precision representations of dynamical values, the

system should still settle close to a local minimum of cost

function Eq. 1.

C. S-LCA Unsupervised Dictionary Learning

Our S-LCA model for unsupervised dictionary learning

is shown in Figure 2, where the superscripts indicate the

different layers (e.g. aI denotes the input spikes). We replace

the non-spiking leaky-integrator model of Eq. 2 with a leaky

integrate-and-fire (LIF) model consisting of a membrane

potential, u, and a binary spiking output, a:

u̇ ∝ −u+ uinput (4){
0 u < λ

a = (5)
1;u − u ≥ λ→ 0

where λ again plays the role of a threshold that controls the

level of sparsity and uinput is the sum of the input received

Figure 2: S-LCA with unsupervised dictionary learning.

from connected neurons. When u crosses the threshold λ a

spike is generated and u is reset to zero.

As with non-spiking LCA, the residual layer R in S-LCA

is driven by the difference between the input and the

reconstructed input generated by the LCA layer, which for

S-LCA is given by aI−ΦaL. In addition, S-LCA includes a

homeostatic mechanism to set the baseline firing rate of the

residual layer to a target value 〈aB〉. Values of 〈aR〉 above
and below the target baseline firing rate encode positive and

negative errors, respectively. Eq. 4 for the residual layer R
then becomes

Ru̇R ∝ −u + aI −ΦaL. (6)

We augment Eq. 6 with a firing condition analogous to Eq. 5

with λ→ λR.

The input to the sparse coding layer L in Figure 2 is
Ldenoted by u , given by,input

Luinput = ΨaR − 〈ΨaR〉. (7)

In Figure 2, 〈ΨaR〉 is an exponentially moving temporal

average (i.e. low-pass filtered output) of ΨaR, so that the

average input to the LCA layer L is zero.

Likewise, in Figure 2, the LCA layer L is again an LIF

layer whose equation of motion is given by:

Lu̇L ∝ −u +ΨaR − 〈ΨaR〉, (8)

where we again augment Eq. 8 with a firing condition

analogous to Eq. 5 with λ → λL. Recent neuromorphic

architectures such as the Intel Loihi research chip [4] support

the computations in Eq. 7, 8 if the sparse code layer

is implemented in terms of multi-compartment neurons,

allowing the instantaneous and low-pass filtered inputs from

the residual layer to be combined.

Unsupervised dictionary learning can be used to update

the weight matrices Φ and Ψ efficiently on-chip given only



(a) (b) (c) (d)

Figure 3: (a) Initial stage dictionary at one epoch of training. (b-c) Middle stages dictionary during one epoch of training.(d) Final stage
dictionary within one epoch of training.

(a) Original Images (b) Residuals (c) Reconstructions

Figure 4: Image reconstruction examples based on the learned
dictionary.

information locally available at each synapse. To compute

the weight updates, we introduce the low-pass filtered spike

trains, or instantaneous firing rates, of the LIF neurons in

the residual layer 〈aR〉 = 〈aR〉 − 〈aB〉 computed relative

to the target baseline firing rate of the residual layer. The

firing rates of the LIF neurons in the sparse coding layer

〈aL〉 are likewise represented as low-pass filtered versions

of the corresponding spike trains. In terms of these local

firing rates, the update of Φ and Ψ is given by a local

Hebbian learning rule:

ΔΦ ∝ 〈aL〉 ⊗ 〈aR〉, ΔΨ ∝ 〈aR〉 ⊗ 〈aL〉. (9)

III. RESULTS

We implemented the S-LCA unsupervised dictionary

learning model in PetaVision[1], an open source neural

simulation toolbox that enables multi-node, multi-core and

GPU accelerated high-performance implementations of both

non-spiking LCA and S-LCA.

We simulated an S-LCA model consisting of a single

convolutional layer containing 64 features with a patch size

of 9×9 pixels and a stride of 1 (	 10.7 times overcomplete).

In our implementation, we chose a convolutional model

to greatly decrease the time required to train a dictionary,

as a convolutional model allowed us to average weight

changes over multiple patches and to take advantage of GPU

acceleration. Although a convolutional network architecture

requires non-local operations, our results and conclusions

apply to both convolutional and non-convolutional models

in general. In addition, recent attempts have been made

to support connection-sharing in neuromorphic architectures

[4].

We initialized the dictionary by assigning 10% of the

synaptic weights a nonzero random value, and then rescaled

each dictionary element to have zero mean and unit standard

deviation. We used CIFAR-10 images as input, where the

input spike firing rate for each pixel is proportional to the

pixel value. The evolution of the dictionary learning over one

epoch is illustrated in Figure 3. Figure 4 shows examples of

original, residual error and reconstruction images based on

the trained unsupervised dictionary from our S-LCA model.

IV. CONCLUSION

An algorithm must observe locality of computation in

order to map successfully to recent neuromorphic hard-

ware architectures [4] [5] [9]. Furthermore, to enable

communication-efficient implementation, algorithms must

exploit the low-bandwidth spike-based communication that

such architectures provide. Utilizing these features promises

vastly lower energy consumption and/or faster execution

time on neuromorphic architectures compared to traditional

CPU/GPU architectures. In this work, we demonstrated for

the first time, how a spiking locally competitive algorithm

(S-LCA) can be implemented using only unsigned spike

events and local computations. S-LCA allows for both unsu-

pervised dictionary learning and inference to be performed in

a manner compatible with the constraints of recent architec-



tures, such as the Intel Loihi research chip. As unsupervised

dictionary learning via sparse coding accounts for many

aspects of cortical development, our results thus suggest

a viable strategy through which neuromorphic processors

can self-organize efficiently in response to unlabeled natural

environmental stimuli.
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