Triton: A Software-Reconfigurable Federated Avionics Testbed

Sam Crow* Brown Farinholt* Brian Johannesmeyer’ Karl Koscher* Stephen Checkoway®
Stefan Savage® Aaron Schulman* Alex C. Snoeren* Kirill Levchenkol
*UC San Diego "VU Amsterdam *University of Washington $Oberlin College 1University of Illinois

Abstract

This paper describes the Triton federated-avionics security
testbed that supports testing real aircraft electronic systems
for security vulnerabilities. Because modern aircraft are com-
plex systems of systems, the Triton testbed allows multiple
systems to be instantiated for analysis in order to observe the
aggregate behavior of multiple aircraft systems and identify
their potential impact on flight safety. We describe two at-
tack scenarios that motivated the design of the Triton testbed:
ACARS message spoofing and the software update process
for aircraft systems. The testbed allows us to analyze both sce-
narios to determine whether adversarial interference in their
expected operation could cause harm. This paper does not
describe any vulnerabilities in real aircraft systems; instead, it
describes the design of the Triton testbed and our experiences
using it.

One of the key features of the Triton testbed is the ability
to mix simulated, emulated, and physical electronic systems
as necessary for a particular experiment or analysis task. A
physical system may interact with a simulated component or
a system whose software is running in an emulator. To facil-
itate rapid reconfigurability, Triton is also entirely software
reconfigurable: all wiring between components is virtual and
can be changed without physical access to components. A
prototype of the Triton testbed is used at two universities to
evaluate the security of aircraft systems.

1 Introduction

Factories, chemical plants, automobiles, and aircraft have
come to be described today as cyber-physical systems of
systems—distinct systems connected to form a larger and
more complex system. For many such systems, correct opera-
tion is critical to safety, making their security of paramount
importance. Unfortunately, the defining characteristics of
these systems, namely their heterogeneity and special pur-
pose, make them hard to analyze. Today’s security analysis
tools are tailored to the analysis of server, desktop, and mo-
bile software; analyzing systems of systems requires tools and
techniques that can handle multiple heterogeneous systems
working together to form a larger whole.

This paper is concerned with enabling the security analy-
sis of a particular class of cyber-physical systems of systems,
namely those of commercial transport! aircraft exemplified by
the Boeing 737. Aircraft of that design era consist of a large

'We focus on commercial airliners used to transport people and cargo.

number of discrete electronic systems interconnected by digi-
tal communication links. Hence, a security analysis requires
determining whether an attacker who gains control over some
number of constituent systems would be able to adversely
affect flight safety. It should be noted that aircraft such as
the Boeing 737, at least until the recent MAX series, allowed
the pilot to completely override all electronic control of the
aircraft, so that even in the worst case of complete compro-
mise of all electronic systems, a skilled pilot could continue
to fly the plane. However, a security analysis is distinct from
a failure analysis in that a sophisticated adversary can present
the appearance that everything is working correctly, leading
the pilot to leave control of the aircraft to electronic systems.

For the results of a security analysis to be believed, the anal-
ysis must necessarily be carried out on the genuine article—an
aircraft. Unfortunately, a Boeing 737 aircraft costs several
million dollars and requires a ground crew to keep operational.
However, because our analysis is only really concerned with
the electronic systems, having an actual airframe—fuselage,
engines, and all—adds little to the fidelity of a security anal-
ysis. Indeed, at a minimum only the specific systems under
analysis are required, provided that the rest of the aircraft
electronic environment can be adequately simulated.

This paper describes Triton, an avionics testbed that allows
one or more aircraft electronic systems to be studied in an
electronic environment resembling a field deployment. Triton
is a cross-mode testbed, meaning that it enables physical, sim-
ulated, and emulated components to interact to orchestrate
a specific experiment or scenario. For a example, a physi-
cal Flight Management Computer can communicate with a
Communication Management Unit running in an emulator,
interacting with a simulated VHF data radio.

To motivate the design of our testbed, we focus on two
security analysis tasks: determining whether an adversarially
crafted spoofed ACARS message could interfere with correct
operation of aircraft systems that could affect the safety of
flight, and evaluating the security of the software update pro-
cess for aircraft electronic systems. While we designed the
Triton testbed to support these two tasks, the testbed can be
equally well support other kinds of analysis tasks. Further-
more, we expect that both the design, and our experiences
building the testbed, will be of interest to other security re-
searchers working with complex systems of systems.

The rest of this paper is organized as follows. Section 2
presents technical background, including specifics of aircraft

systems, necessary for the rest of the paper. Section 3 de-
scribes the two analysis tasks in more detail. Section 4 then
described the design of the Triton testbed. Section 5 briefly
describes several experiments enabled by the testbed. Sec-
tion 6 discusses our experience with our testbed. Section 8
concludes the paper.

2 Background

Electronic systems used in aircraft—termed avionics—span
a wide range of functionality and design assurance. Avion-
ics used on transport aircraft have evolved from independent
electronic systems on the earliest aircraft, to separate intercon-
nected systems, to fully integrated systems today. Separate
interconnected avionics systems are called federated avion-
ics, while the fully integrated systems are termed integrated
modular avionics.> The most common transport aircraft in the
skies today, including the Boeing 737 and Airbus 320 series,
are of the federated avionics type. This important class of
avionics is the target of our study.

2.1 Federated Avionics Architecture
In a federated avionics architecture, system functionality is
implemented in discrete Line-Replaceable Units (LRUs). Fig-
ure 1 shows part of a simple federated avionics configuration
that is responsible for air-ground communication using the
Aircraft Communications Addressing and Reporting System
(ACARS) on a Boeing 737 aircraft. ACARS, which allows air-
craft to communicate with airline ground-based systems using
220-byte messages, is described in more detail in Section 2.3.
Each box in the figure is a physically separate LRU connected
to other units via serial communication links known by their
standard number, ARINC 429; Section 2.2 describes these in
more detail.

We briefly describe the high-level functionality of each
LRU in Figure 1.

VHF Data Radio (VDR). The physical and link layer of
ACARS is handled by the VHF Data Radio (VDR), which
includes both the VHF transceiver and modem [6].

Communication Management Unit (CMU). In a feder-
ated avionics aircraft, the higher layers of ACARS commu-
nication are handled by the Communication Management
Unit (CMU), a general-purpose communication gateway be-
tween aircraft systems and the outside world [9]. The CMU
receives an incoming message from the VDR and either pro-
cesses the message itself or relays it to another aircraft system,
depending on the type of message.

Flight Management Computer (FMC). The FMC pro-
vides a variety of flight planning and execution tools. In partic-
ular, the FMC includes a navigation database, and can control

2For transport aircraft, the transition from federated to integrated avionics
occurred with the Boeing 777, which entered commercial service in 1995.
All new Boeing and Airbus designs after the Boeing 777—namely the Boe-
ing 787, the Airbus A380, and the Airbus A350 currently in development—
use integrated avionics.

MCDU
1 | Vooans
Other » >
aircraft FMC |e—1 CMU [] VDR
systems T ¢ - -
—I —_—
ADL 429 bus

Figure 1: Fragment of Boeing 737 avionics interconnection
centered at the Communication Management Unit (CMU).

the autoflight (autopilot and autothrust) system directly to fly
a pre-programmed route.

Multi-Function Control and Display Unit (MCDU). The
MCDU consists of a small display and keyboard located in the
cockpit. It serves as the pilot interface to the CMU and FMC.
In the case of former, for example, it displays ACARS mes-
sages to the pilot and allows the pilot to request certain types
of information, such as destination airport weather reports,
via ACARS. When interacting with the FMC, the MCDU dis-
plays the flight plan, and allows the pilot to automatically load
a flight plan sent via ACARS from the airline’s dispatcher.
Airborne Data Loader (ADL). The ADL is responsible
for uploading software updates and navigation databases to
various LRUs as well as downloading aircraft monitoring and
flight data. The ADL consists of two parts: an in-cockpit con-
trol panel which selects which LRU to upload to or download
from and a portable maintenance unit which performs the
actual data transfer. Data transfer occurs via the ARINC 615
standard [4] which specifies the low-level network encod-
ing and framing of data. Higher-level protocols like “upload
firmware” or “download flight data” are not standardized. In-
stead, maintenance units are required to implement the data
loading protocol for each LRU.

2.2 ARINC 429 Bus

Federated systems found on large transport aircraft are inter-
connected using the ARINC 429 bus, a unidirectional, multi-
receiver bus [5]. Two-way communication between systems
requires a pair of 429 buses, one in each direction, as shown
in Figure 1.

ARINC 429 was originally designed to transmit simple
status messages (as described below) and thus only sup-
ports sending a single 32-bit word at a time. Bits are sent
as differential, bipolar, return-to-zero pulses at either 12.5
or 100kbps. Eight of the 32 bits are reserved for the mes-
sage label which identifies either the type of message or the
destination LRU.

General word messages. General word messages are sim-
ple status messages broadcast by LRUs and identified by label.
They may contain binary or binary-coded decimal values, as
well as fields with discrete values. The most-significant bit is a

parity bit, followed by two sign/status matrix bits, which indi-
cate either the sign of the value encoded, or some other status
(e.g., no computed data, failure warning, or a functional test
result). A numeric value, padding, and discrete value fields
may follow.

Character-Oriented Protocol (COP). ARINC 619 [8] de-
fines a character-oriented protocol for sending character
streams across a 429 bus. Originally intended for ACARS
(see Section 2.3) applications (e.g., uploading a text message
to the cockpit printer), it is also used to communicate with the
MCDU. The COP can send up to three 7-bit characters at a
time. A simple RTS/CTS, STX/ETX, and ACK/NAK scheme
are used to ensure reliable delivery, with a single control
character in the most-significant bits, followed by character-
dependent control data. The destination is encoded in the
message label.

Bit-Oriented Protocols (BOP). A limitation of the COP is
that it only supports 7-bit characters. To transfer binary data,
a byte stream had to be converted to a hexadecimal ASCII
string first. The new bit-oriented protocols address this issue.

Version 1 of the BOP [8] is similar to the COP and trans-
mits data words that can contain between 1 and 5 nibbles. A
protocol word is used for flow control and protocol version
negotiation. A solo word can transmit up to 16 bits without
protocol overhead. The start-of-transmission word contains
transmission metadata and the end-of-transmission word con-
tains a 16-bit CRC.

2.3 ACARS

The Aircraft Communications Addressing and Reporting Sys-
tem (ACARS), defined in ARINC specification 618 [7], pro-
vides digital communication between an aircraft and ground
systems using 220-byte messages. ACARS is used by airlines
to track aircraft in flight and on the ground, by airline dis-
patcher to send flight plans to the cockpit, and by pilots to
request and receiver weather reports, among other uses. Some
ACARS downlink (aircraft-to-ground) messages are automat-
ically generated by equipment on board, and some uplink
(ground-to-aircraft) messages may be automatically acted on
by systems on board. The original ACARS protocol used
audio-frequency modulation sent using the AM-modulated
VHEF voice radio at a data rate of 2.4 kbps. While ACARS-
over-AM continues to be used to this day, ACARS messages
can also be carried over a newer 31.5-kbps data link called
VHF Data Link Mode 2 (VDL2), HF Data Link, and satellite
links. Neither the original ACARS protocol nor the data links
commonly used to carry ACARS messages provides authenti-
cation, making it possible for an attacker to spoof both uplink
and downlink messages. This raises some security concerns,
as discussed below in Section 3.1.

3 Targeted Analysis Tasks

In designing the Triton testbed, our goal was to support a set
of security analysis tasks, two of which we describe below.

3.1 ACARS Attack Vector

An important problem in an aircraft communication security
is to ensure that untrusted input from the VHF radio can-
not influence the operation of systems responsible for flight
controls. Unfortunately, the ACARS protocol does not itself
provide any authentication, and proposals for adding authen-
tication at the application layer [21] have not been adopted
in practice. Without a means to authenticate an ACARS mes-
sage, and thus ensure that it comes from a trusted ground
system, ACARS messages should be treated as untrusted by
aircraft systems acting on these messages. Indeed, several
recent presentations at computer security conferences have
raised concerns about the potential for abusing any misplaced
trust in ACARS [19, 25, 28]. One of the analysis tasks en-
visioned for the Triton testbed is to evaluate the practical
possibility of such attacks.

In the federated avionics models, evaluating whether an
aircraft is vulnerable to ACARS-based attacks means deter-
mining whether there is a control path from the over-the-air
ACARS input to a critical system, such as the FMC. Because
these systems are not physically isolated, we cannot auto-
matically rule out the possibility that such a path exists: for
example, a malicious ACARS message might cause the CMU
to send a message to the FMC that would cause it to issue
commands to the autopilot without the pilots’ knowledge. If
such an attack is possible, we should be able to reproduce it
in our testbed. On the other hand, if such an attack is impos-
sible, we would like to show that this is the case through an
analysis of the software running on these components. Even
if it is impossible to completely rule out such an attack, being
able to rule out certain classes of attacks would give us more
confidence in the security of the aircraft system as a whole.
Figure 1 shows that there are several potential paths for such
an attack:

o Direct: VDR — CMU — FMC,
o ViaMCDU: VDR — CMU — MCDU — FMC, or
o Via ADL: VDR — CMU — ADL — FMC.

A real Boeing 737 aircraft has additional LRUs that could act
as an intermediate hop between CMU and FMC. We chose the
set of LRUs illustrated in Figure 1 because these systems are
connected by bidirectional ARINC 429 links that exchange
multi-word messages using some variant of the bit-oriented
protocol designed for messages larger than would fit in a
32-bit ARINC 429 word.

It should be noted that each attack path may involve real-
time message forwarding along the path, or may require com-
promising intermediate systems to enable them to send arbi-
trary messages. For example, the CMU is usually configured
to relay certain ACARS messages to the FMC, such as flight
plans generated by the airlines dispatcher. In normal use, such
flight plans must be explicitly accepted by a pilot before the
FMC acts on it. We would like to rule out the possibility
that an adversarially crafted message causes the FMC to act

on a flight plan without pilot input. We would also like to
consider the possibility that the CMU is compromised by a
adversarially crafted message, allowing the attacker to then
send arbitrary ARINC 429 messages to the FMC (rather than
ARINC 429 messages encapsulating ACARS messages). In
this case, we would like to determine whether such a com-
promise of the CMU is possible, and, if so, whether the FMC
could be co-opted to command the autopilot system without
pilot approval by an attacker with the ability to send arbitrary
messages from the CMU to the FMC.

3.2 Data Loader Attack Vector

Virtually all LRUs with significant computing capability are
built to be field-upgradable, or in the vernacular of the aviation
industry, to accommodate Loadable Software Parts (LSPs) [3].
LSPs can include both the core software installed on the LRU,
databases used by the LRU (e.g., the navigation database
used by the FMC) or configuration data (e.g., reflecting per
carrier customization via well-defined interfaces). ARINC
defines a series of standards governing this process, with the
665 series [3] defining the file formats and the 615 series [4]
defining the transfer protocol (the most common 615 protocol
is a point-to-point protocol based on ARINC 429, while the
more recent 615A protocols are IP-based and use TFTP for
data transfer). Note that these protocols only define how to
transfer data to an LRU and thus a great deal of semantic
detail (e.g., how an LRU is directed to start running new
code) is vendor specific. Lastly, the path by which ADLs
interface with an LRU can vary as well. While many LRUs
provide a standard 53-pin ARINC 615 connector for updating,
it is also common for such LRUs to be directly wired into a
physical selector switch that allows a maintenance technician
to use a single such port to multiplex update access across
LRUs. One common approach is for technicians to preload the
necessary LSPs on a portable data loader such as the PMAT-
2000 [27] (which is a ruggedized PC with an appropriate
interface and cable) and physically connect to each LRU they
need to update. In some modern aircraft, a library of LSPs
may instead be staged on an onboard mass storage ADL,
which is periodically refreshed via USB or wireless protocols
(e.g., such as Teledyne’s GroundLink).

Because Airborne Data Loaders can directly update both
LRU software and support data, their security is critical to the
overall security of an aircraft. This situation is exacerbated
because digital signatures for LSPs are a relatively modern
innovation (the key standards, ARINC 835 [10] and 842 [11]
were only published in 2011 and 2012) and thus many LRUs
are unable to detect if an update has been tampered with. We
have configured our testbed to explore several aspects of this
threat vector, including reverse engineering which LRUs are
vulnerable to rogue updates, vulnerabilities in popular ADLs
and threats associated with LSP staging outside the aircraft
(historically, LSPs were shipped via floppy disk, but today
most are delivered via Internet-based services).

FMC CcMU
physical physical
TREZD IEED
USB 429 USB 429
adapter adapter
I Tuss I Tuss
USB 429 USB 429
driver driver
429 r429
r429d L I
1 1429 i 1429 i 1429
a429 a429 a429
mux mux mux
}] a429 }] a429 4] a429
MCDU VDR ADL
virtual virtual virtual
r618d | rots
i 1618 ¢ 1618
OTA Ground GND
inject station inject

@ 1 r618 I r618

Figure 2: Portion of the Triton testbed.

4 Architecture

With the analysis tasks above in mind, we set out to design
and build the Triton avionics testbed. Figure 2 shows the
architecture of the testbed, described in more detail next.

4.1 Design Philosophy

Software-defined bus wiring. At the outset, we knew that
we would be dealing with physical LRUs that we would want
to connect to each other and to software-simulated compo-
nents, and that we would want to reconfigure these arrange-
ments for each experiment. To make this possible, we chose
to virtualize the ARINC 429 bus, connecting the hardware
LRUs to the virtual bus via adapters, rather than connecting
simulated components to a physical ARINC 429 bus.

We modeled each physical bus as a broadcast medium for
32-bit ARINC 429 words. Both emulated LRUs and hardware
LRUs (via an ARINC 429 adapter) could be connected to the
same virtualized bus that, from the hardware LRUs point of
view, would be logically indistinguishable from a physical
interconnect. In Section 4.2, we describe our virtualized AR-
INC 429 bus and the underlying software components. When
it came time to design the ACARS VHF communication
medium to model the interception and injection of ACARS
messages, the design philosophy of virtualizing physical me-
dia led to a similar design, where we modeled the ACARS
data link as a broadcast medium to which software compo-
nents could be connected as needed.

Unix philosophy. In designing the Triton testbed, we fol-
lowed the Unix philosophy of creating simple programs that
do one thing well and whose power lies in their composition.
Applying this philosophy, we built each component of the

testbed as a separate program that would communicate with
others using TCP sockets and Unix pipes. Making Unix pro-
cesses the basic unit of the system meant that components
could be developed using any programming environment and
language (e.g., C, Python) that supported TCP sockets. We
discuss potential alternatives in Section 6.4.

The process-oriented model also made it easier to make
the system hot-pluggable. While this was never an explicit re-
quirement, the practical benefit was that it was easier to debug
a specific component while the rest of the system continued
to operate.

4.2 ARINC 429 Interconnect

Recall that the physical ARINC 429 bus connects a single
transmitter to multiple receivers, allowing one device to trans-
mit 32-bit ARINC 429 words to multiple listeners at once.
A natural way to model this in software is using a publish-
subscribe pattern, where each transmitter is a publisher and
each receiver on the transmitter’s bus a subscriber. The r429d
daemon is a message broker that accepts TCP connections
from other processes and routes ARINC 429 words between
them. The r429d daemon multiplexes multiple virtual AR-
INC 429 busses over a single TCP connection; a connected
process may be both a publisher and subscriber.

The R429 Protocol. We call the protocol spoken by the
r429d daemon R429. Each R429 messages encapsulates a
single 32-bit ARINC 429 word. Each virtual ARINC 429
bus is identified by an integer included in the R429 mes-
sage, allowing the r429d daemon to route the ARINC 429
word to the correct set of receivers (subscribers). ARINC 429
adapters connect to r429d as publishers for their physical re-
ceiver channels and as subscribers for their physical transmit
channels. Simulated devices (such as the VDR) connect to
r429d as publishers for the ARINC 429 buses on which the
LRU would normally be the transmitter, and as subscribers
for the ARINC 429 buses on which the LRU would normally
be the receiver.

The R429 protocol also includes provisions for times-
tamps on received ARINC 429 words and for scheduling
ARINC 429 words for transmission at a precise time. This fea-
ture is intended for use with ARINC 429 adapters that support
timestamps and fine-grained control over transmission time.

The A429 Protocol. In addition to the R429, which car-
ries multiplexed ARINC 429 words, we also created A429,
a simpler stream-oriented protocol that carries raw 32-bit
ARINC 429 words without any encapsulation. The A429 pro-
tocol is intended to further simplify development of virtual
ARINC 429 devices. In our current implementation, R429
is de-multiplexed into unidirectional A429 channels imple-
mented as named Unix pipes. We can then connect a process
to the virtual ARINC 429 bus by passing it the names of the
named pipes on the command line. For example, the virtual
MCDU command-line usage is
$ a429_mcdu MAL out in

where out and <n are the names of the input and output files
(pipes), and #AL is the MCDU Address Label (an ARINC 429
protocol identifier used to distinguish multiple MCDUs).

Programs that use A429, such as a429_mcdu above, need
an adapter to communicate using R429. This is implemented
by r429_piped daemon (labeled a429 mux in Figure 2),
which connects to the r429d daemon and demultiplexes the
single R429 TCP connection into one or more unidirectional
A429 named pipes. The r429_piped daemon handles pro-
cesses repeatedly opening and closing the pipes as the client
process is restarted.

Limitations. Triton replaces the physical ARINC 429 bus
with message channels built on TCP and Unix pipes. Al-
though this affords great flexibility, it does not reproduce the
ARINC 429 medium perfectly. In particular, our virtualized
ARINC 429 bus does not capture the electrical and timing
characteristics of the signal, and thus Triton is not appropriate
for experiments that require precise control of these properties.
None of the experiments we consider require such fine control
over timing and all of our devices are able to communicate
correctly.

4.3 ACARS Medium

The ACARS communication medium is simulated by the
R618 protocol and the r618d daemon. Similar to R429, the
R618 is a TCP-based protocol that encapsulates and multi-
plexes ACARS communication channels, with r618d serving
as the message broker. Devices that want to communicate
using ACARS connect to the r618d daemon and monitor
messages tagged with a specific frequency. There are two
R618 domains, one simulating the air—ground link, and the
other simulating the ground segment. The two are joined by an
ACARS ground station, which takes care of downlinked mes-
sage acknowledgement and uplinked message block number
sequencing. ACARS messages injected into the air—ground
R618 domain are received by the VDR as sent, while mes-
sages injected into the ground R618 domain are processed by
the ground station and correctly numbered before being up-
linked. Injecting messages into the air—ground domain models
an attacker who can communicate directly with the aircraft
without involving a real ground station. Injecting messages
into the ground domain models an attacker who must deal
with ground station contention.

4.4 Physical Components

Our research tasks (Section 3) involve analyzing the behavior
of real avionics and so we connect several LRUSs to our testbed,
as shown at the top of Figure 2. Since our initial focus is on
the Communication Management Unit (CMU) and the Flight
Management Computer (FMC), these are the first physical
LRUs we use. In particular, our testbed has several Rockwell—
Collins CMU-900s, Honeywell Mark III CMUs, and Smiths
FMCs from Boeing 737 aircraft. We purchased these LRUs on
eBay or from aircraft parts dealers in “as removed” condition
traceable to specific aircraft.

4.5 Simulated Components

In addition to the physical LRUs, our testbed includes several
LRUs simulated in software. Each simulated LRU communi-
cates using the A429 protocol described above.

Multi-Function Control and Display Unit (MCDU). The
virtual MCDU communicates with a CMU using a protocol
defined in ARINC characteristic 739 [2]. It simulates a 24
column by 14 row MCDU display and keyboard, allowing us
to interact with a CMU using a computer terminal rather than
a physical MCDU.

VHF Data Radio (VDR). The simulated VDR communi-
cates with a CMU using the ARINC 429 Bit-Oriented Pro-
tocol. The RF medium is simulated using the R618 protocol
and the r618d daemon (Section 4.3), which route ACARS
messages to each device (virtually) tuned to a given frequency.
Other devices, described below, can inject ACARS messages
into this medium, modeling an attacker who can transmit
ACARS messages in the appropriate VHF frequency. Our
virtual VDR simulates messages received over both the origi-
nal ACARS-over-AM and the newer ACARS over VHF Data
Link Model 2.

Printer. The virtual printer communicates with a CMU us-
ing a protocol defined in ARINC characteristic 740 [1]. It
supports printing ACARS messages received by the CMU. In
particular, the ACARS protocol allows ACARS messages to
be forwarded directly to the printer (without pilot interaction).
This allows us to test whether the CMU provides any filtering
of such ACARS messages or whether it forwards all such
messages to the printer indiscriminately.

Flight Management Computer (FMC). In addition to a
real FMC (Section 4.4), our testbed also has an implementa-
tion of a virtual FMC, which can communicate with a CMU as
defined in ARINC characteristic 758 [9]. Our simulated FMC
does not support all the features of a real FMC, such as a nav-
igation database, but it can receive and acknowledge ACARS
messages forwarded from a CMU. As with the printer, this al-
lows us to test whether the CMU provides any filtering of such
ACARS messages or whether it forwards all such messages
to the FMC indiscriminately.

4.6 Emulated Components

Both the Honeywell and Rockwell-Collins CMU use an x86
main processor. We have extracted the firmware of both
CMUss, allowing us to run the firmware in an x86 emula-
tor such as QEMU. We have two modes of emulation, pure
emulation and hybrid emulation. In the pure emulation mode,
we emulate firmware using QEMU using custom QEMU
machines and devices. In the hybrid emulation mode, the
firmware is run in QEMU with I/O redirected to the real
hardware using an approach similar to Surrogates [17].

The Rockwell-Collins CMU-900 uses an AMD AM486
processor as its main CPU. This feature-poor processor lacks
the necessary debugging hardware for hybrid emulation. In-
stead, we reverse-engineered enough of its peripherals, includ-

ing its ARINC 429 controller to implement our own versions
as QEMU devices. The 429 connections are exposed as TCP
sockets. Our current implementation is sufficient to support
the firmware’s data loading protocol which is handled by the
main CPU. Other uses of 429 are handled by a dedicated
I/O processor, an Intel 386EX; support for emulating the I/O
processor is in progress.

We plan to support emulation of the Smiths FMC in future
work.

5 Experiment Examples

The Triton testbed supports several kinds of experiments.
Here, we describe two such experiments based on the analysis
tasks outlined in Section 3.

5.1 ACARS Experiments

Our testbed allows us to inject arbitrary messages for process-
ing by the CMU and FMC. In particular, sending an ACARS
message over the virtual air-ground medium takes only a few
lines of code. The message is then processed by the simulated
VDR and delivered to the CMU, which may be the physi-
cal CMU or the CMU code running in QEMU. The latter
allows us to snapshot and examine the state of memory as
the message is processed, as well as to add more sophisti-
cated analysis tasks such as taint-tracking the message data.
Delivering the message to hardware provides the highest de-
gree of execution fidelity and is useful to confirm whether
behaviors observed in emulation are an artifact of emulation
or not. During message processing, we can interact with the
CMU using the virtual MCDU to observe how it responds to
various messages and to test whether certain messages trigger
a notification or not.

The CMU may also be connected to an FMC, which may
be simulated or physical. With a simulated FMC, we can
test which ACARS messages are forwarded by the CMU
to the FMC. To observe how an FMC would react to these
messages, we can connect the physical FMC to the virtual
bus and forward ARINC 429 traffic from physical CMU to
physical FMC over the virtual ARINC 429 links.

The most complex testbed configuration realized in the lab
so far consisted of the Honeywell Mark III CMU code running
in QEMU (as described in Section 4.6) using the physical
ARINC 429 interfaces of the CMU to communicate with a
simulated MCDU, VDR, and cockpit printer. The VDR is also
connected to a simulated ACARS ground station, allowing
us to send ACARS messages to the CMU and observe its
behavior in QEMU.

5.2 Data Loader Experiments

We implemented the low-level, generic ARINC 615 [4] data
loading protocol as a Python module which we can use to up-
load data to LRUs. Using this capability as a building block, it
is easy to implement the higher-level, LRU-specific protocols.
We reverse engineered and implemented the high-level data
loading protocol for one of our CMUs, the Rockwell-Collins

CMU-900. In the lab, we can configure our testbed to connect
our simulated data loader to either an emulated or physical
CMU and upload data.

We are expanding this capability to other LRUs and in-
vestigating both the ACARS attack vector which leverages
the ADL (Section 3.1) and the data loader attack vector (Sec-
tion 3.2).

6 Discussion

We believe that the Triton testbed meets the explicit and im-
plicit requirements for which it was designed. In this section,
we start by describing some of the challenges associated with
working with avionics in the lab. Next we discuss two lessons
learned from our early testbed design. We end with a discus-
sion of alternative designs.

6.1 Challenges Working with Avionics

Integrating physical avionics components with simulated and
emulated components as described in Section 4 is complicated
by several factors, including boutique power requirements,
ARINC 429 networking, and unusual system design choices
made by the avionics manufacturers.

Many avionics, including our CMUs and FMCs, are pow-
ered by a 115V, 400 Hz alternating-current power supply.
While some avionics also support the standard US residential
120V, 60 Hz AC for ground-based testing, others do not.?
This choice of frequency complicates running the LRUs on a
lab bench by requiring either an expensive power supply or
hardware modifications to allow 60 Hz power. We chose the
former approach.

In contrast to other common vehicular networks like the
automotive CAN bus, which connects multiple electronic
control units (the automotive equivalent of an LRU) together
using a single shared bus which is frequently exposed via
the standard OBD-II port, ARINC 429 requires bi-directional
links between communicating LRUs. For example, a CMU
that follows ARINC 758 has forty-eight 429 inputs and twelve
429 outputs [9, Attachment 1-6]. Wiring just the desired 429
connections to the appropriate pins in the 300-pin connector
is a delicate task.

The design of our Rockwell-Collins CMU-900 complicates
its analysis. The CMU-900 is itself a system-of-systems with
three heterogeneous processors: The main processor is an
AMD Am486 and its I/O processor is an Intel 386ex. The
firmware for both make extensive use of x86’s protected mode
segments which are not well-supported by most debugging
tools. Other, less problematic, but similarly custom design
choices include using RS-232 serial ports in nonstandard
configurations.

6.2 Lessons Learned: Two Early Lessons
Following the Unix philosophy (Section 4.1), we designed
the Triton testbed around the concept of a process as the ba-

3The authors received a first-hand lesson in what happens when a too-low
frequency AC current is applied to avionics of the second type, to wit a fried
transformer.

sic component of the system. ARINC 429 adapter drivers,
simulated components, and tools are all processes that com-
municate via a shared medium simulated by the r429d and
r618d daemons. As noted, this process-oriented design keeps
the system program-language agnostic, allowing components
to be developed using any language or programming environ-
ment that supports TCP sockets.

One early failure to adhere to this philosophy was the de-
cision to make the ARINC 429 adapter part of the r429d
daemon. On startup, the r429d daemon read a configura-
tion file that specified which adapter driver to use and how
ARINC 429 channels identified by the driver would map to
ARINC 429 channels presented by r429d. The r429d dae-
mon would load the adapter driver, actually a child process
that would communicate with r429d using pipes, at startup.
At the time we made this decision, we imagined that most of
the debugging and troubleshooting would be in the simulated
components; this proved not to be the case. We built the first-
generation ARINC 429 adapter ourselves, which involved
considerable debugging of both the driver and the firmware.
We never managed to make it completely reliable, necessi-
tating frequent adapter power cycling and driver restarts. To
restart the driver, we needed to restart the r429d process,
which tore down the virtual 429 bus between physical and
simulated components. Each time we restarted the r429d, we
needed to re-attach the R429 monitoring tool, virtual MCDU,
and virtual VDR to the bus.

We eventually changed the model to one where the adapter
driver is a separate process that attaches to the r429d daemon
independently of other components. This greatly simplifies
the r429d daemon, which no longer needs a configuration
or the ability to spawn a driver process. It also simplifies
adapter-driver testing and debugging, because it does not re-
quire restarting the r429d daemon.

We also eventually abandoned our own ARINC 429 adapter
hardware completely and opted for a commercial product,
which proved to be much more reliable in practice. While
the process of building our own ARINC 429 adapter was
educational, that decision cost us many hours that could have
been better spent on security analysis.

6.3 Two Virtual ARINC 429 Protocols
Recall that our testbed has two protocols used to virtualize
ARINC 429 buses: R429 and A429. The R429 protocol car-
ries multiplexed ARINC 429 words between devices attached
to a virtual ARINC 429 bus and the message broker daemon,
r429d, which implements the ARINC 429 one-transmitter,
multiple-receivers topology as a publish-subscribe scheme.
To simplify application interfaces, we also created the A429
protocol, which carries raw 32-bit ARINC 429 words. This
requires running at least one (often more than one) instance of
the r429_piped daemon to bridge between R429 and A429.
While the intent was to simplify application design, having
two protocols communicating via the r429_piped daemon
acting as a software adapter actually adds additional steps. At-

taching a device such as an MCDU to the virtual ARINC 429
bus should have been a simple process. Instead, the user first
needs to make sure the correct named pipes exist in the file
system, and, if not, create them using the mkfifo command.
Next, the user has to run an instance of the r429_piped
daemon, specifying on the command line the named pipes
and to which virtual R429 channels they map. Only then
can the user run the virtual device, providing it the names of
the pipes on the command line. Combined with the physical
ARINC 429 adapter and driver problems (Section 6.2) that
required restarting the r429d daemon, this design led to a
lot of open terminal windows and process restarts, needlessly
increasing workflow complexity.

In retrospect, A429 was not necessary and adds additional
complexity to our workflow. The intended benefit of A429,
namely simplifying the application interface to the virtualized
ARINC 429 bus, could be provided by library functions that
connect to r429d using the R429 protocol.

6.4 Alternate Designs

It is worth considering alternatives to the architecture of the
Triton testbed. For example, the entire testbed could have
been built following the GNU Radio model: a monolithic pro-
cess where components such as simulated LRUs are modules
connected together by intra-process queues. A configuration
file, or even straight-line initialization code, could assemble
an experiment using components defined as C++ classes with
inputs and outputs wired together at initialization. Such close
integration of components is arguably necessary for GNU
Radio to achieve the signal processing throughput needed
to implement a software-defined radio application. However,
the bandwidth requirements for ARINC 429 are much more
modest—high speed links signal at 100 kHz—and well within
the bandwidth of a loopback TCP link.

The process model also allows components to be hot plug-
gable: simulated components, diagnostic tools, and injection
tools can be attached and detached from the system as nec-
essary without stopping the experiment. A monolithic de-
sign model would have required considerable engineering
to support such a feature—one we probably would not have
implemented. Finally, the monolithic design would not offer
the same flexibility in the choice of programming language
used to develop each component. We find this flexibility to
be useful in practice: Although we wrote the majority of the
Triton testbed in C, we implemented our simulated Airborne
Data Loader (ADL) in Python.

7 Related Work

While little of the work related to empirical aviation cyber-
security is public, there is an emerging open literature both
from the academic and independent security research com-
munities. Most of this has focused on threats and vulnera-
bilities associated with particular aviation communications
channels including ACARS [16,26], ADS-B [15], and Satel-
lite [22—-24] channels. In general, these efforts have focused

on individual protocols or receivers in isolation—exploring
design and implementation vulnerabilities and the potential
for effects through that channel alone. An exception to this
is Hugh Teso’s 2013 Hack In The Box talk which discussed
the possibility of lateral movement from one avionics compo-
nent to another. While Teso’s claims are controversial (and
widely disputed) his presentation describes a software testbed
purporting to run emulated code from different avionics com-
ponents [28]. However, a criticism of Teso’s testbed is that as
it is entirely based on software and lacks real avionics compo-
nents, it has limited fidelity for describing the behavior of real
aircraft. By contrast, the Department of Homeland Security
recently acquired an operational Boeing 757 to explore end-
to-end security issues as part of their Aviation Cybersecurity
Initiative (ACI) program [12]. This approach has the benefit
of extremely high fidelity but is expensive to procure, operate,
and maintain.* We are motivated by the same kinds of system-
wide security questions, but the combination of our goals and
means has led to a hybrid testbed that combines both LRUs
from real aircraft (physical components), emulated avionics
software, and simulated components.

Outside security, we are aware of multiple industry efforts
to create avionics testbeds in support of development and
test for commercial aircraft. Indeed, we believe that such
testbeds have been created internally by a range of airframe
and avionics manufacturers. Publicly described examples of
such testbeds include Eurocontrol’s Link 2000+ testbed [13]
and the Air Force’s Reconfigurable Cockpit and Avionics
Testbed (RCAT) operated by MITRE [20,29]. The purpose
of these testbeds is to test the integration of new or modi-
fied components in a realistic environment. Unlike the DHS
approach, these involve only a small subset of key compo-
nents; however, they are similar in (typically) using only real
avionics equipment and no software emulation or simulation.

Finally, there are a broad array of emulation testbeds that
have supported security research. Among the best known are
Utah’s Emulab [30] which allow experiments over hundreds
of machines in a contained environment. This architecture
was expanded to include complex topologies and routing
combinations of emulated and real network equipment in
the DETER testbed [18] and expanded yet more in DARPA’s
National Cyber Range program [14]. Our work is both smaller
scale and significantly more bespoke, but borrows from the
hybrid nature of these later testbeds—combining real and
emulated components in a single environment as needed.

8 Conclusion

While its design continues to evolve as we acquire additional
physical components, the Triton testbed has allowed us to
operate a number of critical avionics components, namely the
CMU, FMU and MCDU, for several years in their as-installed
configurations without the need for an actual Boeing 737

4Note that some of our authors participated in the DHS ACI program, but
the work described in this paper is entirely separate from that effort.

airframe. Several of these components will not even boot
without interrogating the ARINC 429 bus for the (apparent)
presence of various additional pieces of equipment that the
Triton design allows us to faithfully simulate—or at least stub
out with sufficient fidelity such that the components under
test proceed without error.

Our simulated ARINC 429 bus greatly simplifies inspect-
ing and interposing on inter-component messaging, thereby
facilitating security analyses that attempt to expose any poten-
tial stepping-stone attacks. One key challenge that remains to
be addressed by our cross-mode design, however, is systemat-
ically identifying and addressing tight timing constraints that
components occasionally place on inter-component messag-
ing. Such constraints are especially challenging to deal with
in emulated components which may not be as performant or
deterministic as their physical counterparts.

Even in its current state, however, Triton enables us to con-
duct not only the two exemplar analyses discussed in this
paper, but several additional, ongoing studies that will dramat-
ically increase our understanding—and the security—of the
complex interdependence between the federated avionics that
underpin much of the world’s commercial air transport fleet.

9 Acknowledgements

We are grateful to the anonymous reviewers for their many
helpful comments and suggestions.

This work was supported by the National Science Founda-
tion grants NSF-1901728 and NSF-1646493 and by generous
research, operational, and/or in-kind support from the UCSD
Center for Networked Systems (CNS).

References

[1] ARINC. Multiple-Input Cockpit Printer. Aeronautical Radio,
Inc., June 1988. ARINC Characteristic 740-1.

[2] ARINC. Multi-Purpose Control and Display Unit. Aeronauti-
cal Radio, Inc., Dec. 1998. ARINC Characteristic 739A-1.

[3] ARINC. Loadable Software Standards. Aeronautical Radio,
Inc., Jan. 2001. ARINC Report 665.

[4] ARINC. Airborne Computer High Speed Data Loader. Aero-
nautical Radio, Inc., May 2002. ARINC Report 615-4.

[5] ARINC. Mark 33 Digital Information Transfer System (DITS)
Part I Functional Description, Electrical Interface, Label As-
signments and Word Formats. Aeronautical Radio, Inc., May
2004. ARINC Specification 429 Part 1-17.

[6] ARINC. VHF Data Radio. Aeronautical Radio, Inc., Aug.
2004. ARINC Characteristic 750-4.

[7] ARINC. Air/Ground Character-Oriented Protocol Specifica-
tion. Aeronautical Radio, Inc., June 2006. ARINC Report
618-6.

[8] ARINC. ACARS Protocols for Avionc End Systems. Aeronau-
tical Radio, Inc., June 2009. ARINC Specification 619-3.

[9] ARINC. Communications Management Unit (CMU) Mark 2.
Aeronautical Radio, Inc., Jan. 2011. ARINC Characteristic
758-3.

[10] ARINC. Guidance for Security of Loadable Software Parts
Using Digital Signatures. Aeronautical Radio, Inc., Nov. 2011.
ARINC Characteristic 835.

[11] ARINC. Guidance for Usage of Digital Certificates. Aeronau-
tical Radio, Inc., June 2012. ARINC Characteristic 842.

[12] C. Biesecker. Boeing 757 testing shows airplanes vulnerable
to hacking, DHS says. Avionics International, Nov. 2017.

[13] Eurocontrol LINK 2000+ Programme. The LINK2000+ test
facility presentation. Oct. 2004.

[14] B. Ferguson, A. Tall, and D. Olsen. National Cyber Range
overview. In Proceedings of the IEEE Military Communica-
tions Conference, Oct. 2014.

[15] B. Haines. Hackers + airplanes: No good can come of this.
Presented at DEFCON 20, 2012.

[16] D. Hoffman and S. Rezchikov. Busting the BARR: Tracking
“untrackable” private aircraft for fun & profit. Presented at
DEFCON 20, 2012.

[17] K. Koscher, T. Kohno, and D. Molnar. Surrogates: Enabling
near-real-time dynamic analyses of embedded systems. In 9th
USENIX Workshop on Offensive Technologies (WOOT), Aug.
2015.

[18] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T. Wroclawski,
and S. Schwab. The DETER Project: Advancing the science of
cyber security experimentation and test. In Proceedings of the
IEEE International Conference on Technologies for Homeland
Security 2010, Nov. 2010.

[19] P. Polstra and C. Polly. Cyberhijacking Airplanes: Truth or
Fiction? Presented at DEFCON 22, Aug. 2014.

[20] C.Risley, J. McMath, and B. Payne. Experimental encryption
of aircraft communications addressing and reporting system
(ACARS) aeronautical operational control (AOC) messages.
In Proceedings of Digital Avionics Systems Conference, Oct.
2001.

[21] A. Roy. Secure Aircraft Communications Addressing and
Reporting System (ACARS). In Proceedings of the Digital
Avionics Systems Conference, 2001.

[22] R. Santamarta. SATCOM terminals hacking: By air, sea and
land. Presented at Blackhat USA, 2014.

[23] R. Santamarta. A wake-up call for SATCOM security. 2014.

[24] R. Santamarta. Last call for SATCOM security. Presented at
Blackhat USA, 2018.

[25] M. Smith, D. Moser, M. Strohmeier, V. Lenders, and 1. Marti-
novic. Undermining Privacy in the Aircraft Communications
Addressing and Reporting System (ACARS). Proceedings of
the Privacy Enhancing Technologies Symposium, 2018(3):105—
122, 2018.

[26] M. Smith, D. Moser, M. Strohmeier, V. Lenders, and 1. Mar-
tinovic. Undermining privacy in the aircraftcommunications
addressing and reportingsystem (ACARS). Proceedings on
Privacy Enhancing Technologies, (3):105-122, 2018.

[27] Teledyne Controls. PMAT 2000 System: Portable Maintenance
Access Terminal 2000, Nov. 2017.

[28] H. Teso. Aircraft hacking: Practical aero series. Presented at
Hack In The Box Security Conference, Apr. 2013.

[29] D. Van Cleave. RCAT: Tool to achieve GATM. Avionics
Magazine, pages 30-32, Sept. 2003.

[30] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems and
networks. In Proceedings of the Symposium on Operating
Systems Design and Implementation, pages 255-270. USENIX
Association, Dec. 2002.

	Abstract
	Introduction
	Background
	Federated Avionics Architecture
	ARINC 429 Bus
	ACARS

	Targeted Analysis Tasks
	ACARS Attack Vector
	Data Loader Attack Vector

	Architecture
	Design Philosophy
	ARINC 429 Interconnect
	ACARS Medium
	Physical Components
	Simulated Components
	Emulated Components

	Experiment Examples
	ACARS Experiments
	Data Loader Experiments

	Discussion
	Challenges Working with Avionics
	Lessons Learned: Two Early Lessons
	Two Virtual ARINC 429 Protocols
	Alternate Designs

	Related Work
	Conclusion
	Acknowledgements
	References

