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Abstract

In transfer learning, one seeks to transfer related infor-
mation from source tasks with sufficient data to help with the
learning of target task with only limited data. In this paper,
we propose a novel Coupled End-to-end Transfer Learning
(CETL) framework, which mainly consists of two convolu-
tional neural networks (source and target) that connect to a
shared decoder. A novel loss function, the coupled loss, is
used for CETL training. From a theoretical perspective, we
demonstrate the rationale of the coupled loss by establish-
ing a learning bound for CETL. Moreover, we introduce the
generalized Fisher information to improve multi-task opti-
mization in CETL. From a practical aspect, CETL provides
a unified and highly flexible solution for various learning
tasks such as domain adaption and knowledge distillation.
Empirical result shows the superior performance of CETL
on cross-domain and cross-task image classification.

1. Introduction

In computer vision, deep learning models such as Con-
volutional Neural Networks (CNNs) have successfully been
applied to analyzing images, e.g., ImageNet [22], and
achieved superior performance than other machine learning
methods. However, such advances are often on account of
the availability of a large amount of labeled training data. In
many cases, manually labeling data can be very expensive,
and when the labeled data is limited, CNN’s performance
will be compromised.

Transfer learning provides a framework to address this
challenge. In transfer learning, one seeks to transfer related
information from source tasks with sufficient data to help
with the learning of target task with only limited data [29].
Recently, the ability to learn and transfer representations in
CNN models has been shown to be important and effective
[11, 34]. In [39], the transferability of features from various
layers in neural networks was discussed. More recently, in
[25], several factors (including width, depth, density, etc.)
affecting the transferability for CNNs were compared.

As a special case of transfer learning, domain adaptation
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considers the problem when no labels of the target domain
are available. It assumes that only source domain is labeled,
and source and target domains have different distributions
(domain discrepancy) but share the same task [29]. In recent
years, various works [12, 10, 13, 8, 26] attempt to address
the domain adaptation problem for deep CNNs. Usually,
the domain discrepancy is modeled using Kullback-Leibler
divergence or Maximum Mean Discrepancy (MMD). Then,
a target domain network is fine-tuned from the source net-
work by jointly minimizing the source domain classification
error and the domain discrepancy. However, due to the rela-
tive low model accuracy and extra optimization procedures,
domain adaptation remains a challenging research problem.

Knowledge distillation [17] can be considered as another
special case of transfer learning, in which the knowledge
from a teacher CNN is transferred to a much more concise
student CNN by emulating teacher’s soft-targets (a varia-
tion of softmax outputs). In this setting, teacher and student
networks share the same data distribution and classification
objectives. Later, FitNets [30] was proposed to include the
transfer between intermediate feature maps of CNNs to im-
prove the performance of the student CNN.

In this work, we propose a Coupled End-to-end Transfer
Learning (CETL) framework to transfer the knowledge be-
tween CNNSs for related tasks, and address the issues caused
by domain discrepancy. Our major contributions are sum-
marized as follows:

e CETL provides a unified transfer learning solution that
can also be adapted for knowledge distillation and do-
main adaptation tasks, while prior works typically only
consider one of these problems. In addition, through
its novel architecture, CETL has great flexibility on the
choice of the source network and on the architecture of
the target network.

Different from most prior work on transfer learning,
the training of CETL neither uses the source data nor
directly tunes on the source network. From a computa-
tion perspective, this is critical as the source dataset is
usually large, and the pre-trained source network can
be very big, both leading to a long training time.
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e We propose a novel loss function, the coupled loss, for
CETL training. From a theoretical point of view, we
demonstrate the rationale of the new loss function by
establishing a learning bound for CETL.

e We introduce the Generalized Fisher Information
(GFI) to improve multi-objective optimization in
CETL. GFI conducts a dynamic allocation of shared
and private weights for multi-tasks to overcome the
catastrophic forgetting and preserve useful parameters
for the new task. Empirical result shows the superior
performance of CETL on cross-domain and cross-task
image classification.

The rest of this paper is arranged as follows. In Section 2,
we briefly review related work in transfer learning and its
applications on image classification. In Section 3, we intro-
duce the architecture of CETL, give the definition of GFI,
and demonstrate the theoretical soundness of the coupled
loss employed in CETL training. In Section 4, we present
our image classification results on benchmark datasets. Fi-
nally, we conclude in Section 5.

2. Related Work

Deep CNNs achieved state-of-the-art performance in a
wide range of tasks and applications in computer vision.
However, in supervised learning of a CNN, a large amount
of labeled data is necessary, or the model may encounter
generalization issues. Thus, how to transfer useful knowl-
edge from a source network to boost the performance of a
target network with limited labeled data becomes an impor-
tant research topic. In transfer learning [29, 23], we aim
to learn a new task in a domain of interest called target do-
main when we only have sufficient data to learn a similar
but different task on a source domain with different data
distribution. A learning bound was introduced by [2], which
claimed the error of target task is bounded by the sum of the
error of the task on source and the domain discrepancy.

The research of transfer learning on deep CNN emerged
recently. Yosinski et al. [39] gave one of the earliest em-
pirical study about the feature transferability in various lay-
ers of CNN. Littwin et al. [25] proposed a framework to
transfer the source data representation learned using a set of
orthogonal classifiers. Azizpour et al. [1] discussed several
factors influencing the transferability of features learned by
CNN.

Knowledge distillation can be considered as a special
case of transfer learning, in which the features learned by
a teacher network are exploited to improve the performance
of a relatively concise student network for the same task.
Hinton et al. [17] adopted soft-targets to distill knowledge
from a series of ensemble of CNNs into a single model.
Following Hinton’s work, Romero et al. added a differ-
ence loss between two intermediate layers to improve the

performance [30]. In [38], Yim et al. defined the distilled
knowledge as the Flow of Solution Procedure (FSP) matrix
where the training of the student network was implemented
by mimicking the FSP matrices generated by the teacher.

For domain adaptation, prior work focuses on improving
deep learning models when domain discrepancy arises. A
direct way is to reweigh or select samples from the source
domain that are similar to the ones in the target domain
[12, 9]. Rendering synthetic data is an alternative. Re-
cently, Bousmalis et al. [3] adopted the Generative Adver-
sarial Networks to transform source images into the target
style. Most deep domain adaptation works resolve the train-
ing problem by jointly minimizing the source label classifi-
cation error and the domain discrepancy. Ganin and Lem-
pitsky [8] addressed domain discrepancy by training a CNN
that minimizes the loss of label classification while maxi-
mizing the loss of a domain classifier in an end-to-end style.
Weighted Maximum Mean Discrepancy (WDA) [37] was
proposed later to take class weight bias into account. Tzeng
et al. [35] proposed the Adversarial Discriminative Domain
Adaptation (ADDA) method, where the label classifier and
domain classifier are trained separately in an adversarial
manner.

The proposed CETL framework is motivated by two con-
siderations. The first one is to gradually tweak feature rep-
resentations through target data reconstruction to minimize
domain disparity. As in [4], Chopra et al. mitigated the
domain discrepancy by layer-wise pre-training a CNN us-
ing a series of autoencoders. Later, Ghifary et al.[10] de-
signed the model combining a traditional CNN for source
label prediction with a convolutional autoencoder for target
data reconstruction. The second is that the non-linear map-
ping between cross-modal data provides helpful deep fea-
ture representation for robust object detection with various
backgrounds. For example, Xu et al. addressed the pedes-
trian detection problem under adverse illumination condi-
tions, in which they exploited features in the non-linear
mapping from RGB image to its corresponding thermal data
[36]. Mao et al.[27] proposed a HyperLearner, which is an
architecture that reconstructs various channel features (e.g.,
apparent-to-semantic features, temporal features and depth
features) while performing pedestrian detection. In CETL,
by the multi-task of simultaneous classification and recon-
struction, a pre-trained source network exploits the target
data for cross domain feature generation. Further, it is cou-
pled with the target network to reconstruct those features
while performing classification on the target data.

3. Coupled End-to-end Transfer Learning

In this section, we provide details on CETL. First, we
show the architecture of CETL and explain the learning pro-
cedure with the coupled loss. Then, GFI is introduced for
dynamic allocation of shared and private weights in multi-
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Figure 1. The CETL framework. The numbers in the figure indicate the detailed training steps of CETL.

task learning. The theoretical analysis for the coupled loss
follows immediately. Last, we show how CETL can be
adapted to various tasks of transfer learning, knowledge dis-
tillation and domain adaptation.

3.1. The Architecture

As shown in Fig. 1, CETL mainly consists of two CNNs
with softmax outputs (source and target) that connect to a
shared decoder 77 containing deconvolution and unpooling
layers for reconstruction. The pre-trained source CNN, de-
noted as S, aims at extracting cross domain features. The
detailed steps of training in CETL are given by the numbers
in the figure. Specifically, by passing the target data through
S, we obtain the feature maps from each layer in S. Then, by
connecting a specific layer in S to a reversed target CNN T,
we consider S as an encoder and 77 as a decoder. In train-
ing, we update the weights in 77 with the reconstruction loss
while keeping the weights in S unchanged. Since the feature
maps in S reflect the activations of the source CNN with the
input of target data, by decoding these feature back into the
input space, 77 is updated to represent the weights encoded
in S in a backward manner.

Denote the datasets of target and source domains as
Dgre = {Xsrc,Ysrc } and Dyge = {Xigt, Yigt} With distribution P
and Q, respectively. The source CNN S is pre-trained using
a supervised cross entropy loss based on the source data:

1 X L
L;(S(65),Xsrc, Ysie) = N ZlogP(ylsrC|xlsrC, Os) ey
i=1

where O denotes the model parameters while 77 is trained
using an unsupervised reconstruction loss on the target data:

Li(Tl(eTl )7xtgt) = |T1 OS(tht) —tht‘z 2)

By doing so, we find an underlying feature representation
across two datasets Dy and Dyg. It is decoded in the recon-
struction 7j o S(x), which is a resemblance to the channel
features in [27].
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The target CNN denoted as 7> is also connected with
decoder 7T to conduct the coupled learning, in which the
following combined loss is minimized:

/,LLtc(TZ(eTz)vxtghytgl) + (1 - ;L)Ltr(Tl (6T1 )7 T2(9T2)7xlgt)
3

where
1 _
LZC(TZ(QTZ)»xtgt»ytgt) = N Zlogp(yigth:ign 0r) @)
i=1

is the classification loss on the target data, and
Ltr(Tl (GTI ), T2(9T2);xtgt) = |T1 ol (xtgt) —Tio S(xtgt) |2 Q)

is the loss of reconstructing output of 77 o S using xg as the
input.

Learning: The classifier of S is pre-trained using Dg.
First, we train the 7; oS using unlabeled D;g. Then, we
train the target network 7> by optimizing the combination
of classification loss L,.(7>(0r, ), Xtgt, Vgt ) Using labelled D
and the reconstruction loss L.(71(6r,),T>(6r,),X) using
all D;g. Alternatively, CETL can be trained in an end-to-
end style. That is, we train the coupled networks using sum
of all losses (coupled loss) simultaneously:

= MLNTi(07,), Xtgt) + A Li.(To (01, ), Xigt, Vigt)
+ALL(Ti(607,), T2(6r, ) Xigt)

Leou pled

(6)
where A;(i = 1,2,3) denotes the constant weights. We will
demonstrate the rationale of the coupled loss in Section 3.3.

3.2. Generalized Fisher Information

We introduce GFI as a novel contribution for transfer
learning in this section. Different from previous work [20],
we take the correlation of two tasks into account and dy-
namically allocate shared and private weights for the corre-
sponding tasks.

In CETL, the coupled networks contain multi-objectives
with shared parameters. That is,

Li(Tl (0T| )7-xtgt) and L;(Tl (GTl )7 T2(9T2 ) 7xtgl) (7)



share parameters in 7.
L(Tx(6r,) xigt, ygr) and L (T1(67,), T2(6p3) xigr)  (8)

share parameters in 75.

Thus, the issues of catastrophic forgetting tend to over-
ride model parameters learned in previous tasks, leading to
impaired performance [20].

Fisher information (FI) is a way of measuring the amount
of information that an observable random variable X carries
for an unknown parameter 6 of a distribution that models
X. 1In [20], Fisher information F; with respect to certain
weights 6; of a neural network is derived from the cross-
entropy loss and used to measure parameters’ importance
to a given task. The Elastic Weight Consolidation loss us-
ing FI from the given task is designed as a regularization to
keep the weights with large F; unchanged in order to avoid
catastrophic forgetting.

However, when all parameters are determined as impor-
tant by the prior task, update of weights with respect to the
new task will be trivial. The training of the new task may
fail to converge. Thus, we introduce a new measure, Rel-
ative Fisher (RF) information, to determine the correlation
of FIs derived from the two tasks. Denote the losses for two

tasks as Ly and Lo, with shared parameters 6;, i = 1,--- ,m,
where m denotes the total number of parameters, we have:
RF; =1(F;,F>6;) )

where I(-,-) denotes the mutual information normalized in
[0,1], F1; and F>; are random variables representing the FI
with respect to L; and L, respectively. The higher RF; is,
the more probable the two tasks may share the weights 6;.
Finally, the Generalized Fisher Information (GFI) is defined
as:

0 with probability p

F with probability 1 —p R
“FE=N (0 with probability 1 —p
F; with probability p HRE 24
(10)

where RF; is used to indicate whether two tasks should share
the same weights, and the hyperparameters « and p are set at
0.5 and 0.9, respectively. Specifically, if RF; > 0.5, weights
will be shared, and we set the GF[; = 0 with a low proba-
bility 0.1 to retain flexibility. Otherwise (RF; < 0.5), F; has
a high probability 0.9 to be dropped, and thus the new task
can be better learned without regularization.

We define the Dynamic Weight Allocation (DWA) loss
as the regularization term:

DWA:Z%GFIi(B,-—B,-*)z (11)

which allows dynamic allocations of shared and private pa-
rameters for different tasks. We apply it on the joint opti-
mization of the multi-objectives in Eqs. (7) and (8).

3.3. Theoretical Analysis of the Coupled Loss

In this section, we derive an error bound for CETL learn-
ing, which provides a rigorous theoretical explanation on
the rationale for the coupled loss function adopted in CETL
(Eq. (6) in Section 3.1).

We assume the ground truth concept for the source and
target as cy and c¢;g, respectively. Denote Tj o T (x) for
x€PasTioT, € P,and forx € Q as Ty o T, € Q, respec-
tively. The similar notations work for 77 o § as well. We
denote all constant numbers in proofs as C for simplicity. In
addition, Ez denotes the expectation on distribution Z, and
sup, represents taking the maximum value over the collec-
tion of functions f.

Lemma 1 If Ep|S — cye| < C, C> 0, Eglcge — cral < A1,
supy |[Epf — Erjoserf| < Ao, for any f € P,Q, A1,A2 >0,
then there exists some constant C > 0, for any measurable
function f € P,Q, f >0,

Eo|Th — 1| < C+|Erjoserf —Eof|+Eo|T> — S|
+2 Sup |ET| oS(x)EQf_Eerf|
+2supf|ET]OT2(X)€Qf_EXEQf‘

(12)

Proof: See Supplementary Material A.1.

Lemma 2 Assume Er,oscp|csre — Crgr| < C, Eryosco|csre —
Crgt| <C, ETIOS€P|Ctgt| <C, ETloSEQ|Csrc| <C, for some C >
0, then there exists some constant C > 0, such that for any
measurable function f >0, and f € P,Q,

< C+ET|OSEP‘S - Csrc‘
+supy [Eqioseof —Eof| (13)
+EQ|T2 —S\

sups|Erjoserf — Eof|

Proof: See Supplementary Material A.2.

Theorem 3 If all conditions in Lemma 1 and 2 hold. We
have the bound for CETL as:

EQ|T2_Ctgt| SEPls_Csrc|+2EQ|T2_S|
+3 Sup ¢ ‘ETI oS(x)le - ExEQf| (14)
+28up ¢ |Eq, o1y (x)c0f — Exeof]
Proof

Combing the results of Lemma 1 and 2, the desired result
follows.

Remark 4 The left hand side (LHS) of Eq. (14) is the ex-
pected classification error on the target domain. It is the
ultimate objective to be minimized, but direct optimization
is virtually impossible. This is our motivation and ratio-
nality to provide our theoretical analysis for the error
bound. Specifically, we derive the upper bound of LHS as
the right hand side (RHS) in Eq. (14) and proposed to min-
imize RHS instead. More importantly, it guides us to define
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the coupled loss in Eq. (6). Specifically, RHS in Eq. (14)
and Eq. (6) correspond as follows. Classification loss: the
first term in RHS and the second term in Eq. (6); Cross do-
main loss: the second term in RHS and the third term in Eq.
(6); And reconstruction loss: the last two terms in RHS and
the first term in Eq. (6).

3.4. Algorithms of CETL

In this section, we will show that CETL is a unified
framework that can be adapted into different tasks of trans-
fer learning, knowledge distillation and domain adaptation.
Moreover, CETL outperforms these instantiations by incor-
porating GFI. For better illustration, we first give the pseudo
code of CETL for transfer learning in Algorithm 1, and then
we show its variants.

Algorithm 1 Algorithm of CETL
1: procedure STAGE 1

2: top:
3: Input x4
4: feature encoding +— S
5: feature decoding < T}
6: loss1, reconsl < reconstruct X
7: update 7} < lossI(w/DWA2)
8: GFI1 < reconsl
9: procedure STAGE 2
10: Input x4
11: feature encoding < T
12: feature decoding < T}
13: loss2, recons2 < reconstruct reconsl
14: update 7} o T; < loss2 w/ DWAI
15: GFI2, GFI3 + recons2
16: procedure STAGE 3
17: Input x4
18: classification loss3 < Tp
19: update 7> < loss3 w/ DWA3
20: if loss1, loss2, loss3 not converged
21: goto fop
22: end if

The rationale for the three-stage training in Algorithm 1
is given below. In the coupled loss (Eq. 6), there are three
loss terms. According to [20], catastrophic forgetting hap-
pens in multi-task training. If we optimize Lcoypieq directly
using SGD, weights learned by certain tasks can be over-
ridden by others, leading to the failure of convergence on
these tasks. Thus, we carefully designed an iterative three-
stage training, in which GFT is introduced to indicate the im-
portance of weights learned in the previous task, and DWA
loss is applied as a regularization to remember the important
ones during updating.

The main drawback of FI in [20] is that if most of the
weights are considered important by the previous task, the
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model’s ability to learn a new task will be dramatically
weakened. Differently, GFI uses hyperparameters to deter-
mine if the new task learning should be affected by FI. We
define DWA loss using GFI to allow a dynamic allocation
of shared and private weights for all the tasks.

3.4.1 Transfer Learning

When we consider a traditional transfer learning problem,
T> has an architecture similar to S, and 7} has the one with
reversed layers. As shown in Algorithm 1, we have three
learning stages in total. For the first stage, with S pre-
trained on the source data, we reconstruct the target data
with 77 o S, in which the weights in S are frozen while 77’s
are updated by the reconstruction loss to simulate S in the
reversed order. After the reconstruction by 77 oS, we can
obtain GFI1, the GFI for the weights in 77 with respect to
the reconstructed output recons]1.

During the second stage, we transfer the information in
T to T> while incorporating DWA1. Specifically, by passing
the target data through 7j o 75, we get the reconstruction
loss2. We use loss2 to update 7> and /oss2 with DWAL to
update 7. In this way, we keep weights unchanged if they
were considered important by GFI1 in T; oS, and update the
other weights for the reconstruction in 77 o 7. At the end of
this stage, we can obtain GFI2 and GFI3, which quantify
the gradients of outputs with respect to weights in 77 and 73,
respectively. Later, DWA2 will be incorporated with loss|1
to update 7y o S.

In the third stage, we have the classification loss on the
target data given by 75, and we update 7> with this loss using
DWA3 as the regularization. Thus, part of the weights in 7>
will be updated for reconstruction while the rest would be
for classification. The three stages are repeated iteratively
until all losses are converged.

3.4.2 Knowledge Distillation

In knowledge distillation [17], teacher (source) and student
(target) networks are generally assumed to share the same
dataset. To adapt CETL for knowledge distillation, we sim-
ply need to let 77 be a much more concise architecture com-
paring with S and let 7, have the reversed layers of Tj.
Furthermore, with CETL, we can also handle the situation
when source and target have different datasets. Actually, we
don’t need the source data (usually a large dataset) for (ex-
pensive) training as long as we can utilize the weights from
S to take advantage of the soft targets.

As an improvement, FitNets was proposed later to utilize
not only the soft targets but also the feature maps from the
middle layer of the S network [30]. CETL can be similarly
modified for FitNets and we will not repeat it here due to
space limit.



3.4.3 Domain Adaptation

The major issue we need to resolve when using CETL for
domain adaptation is regarding the amount of labeled data
in the target domain. We consider the following two scenar-
ios: 1) When we have limited training labels for the target
domain, we can still use them to compute the classification
loss in the third stage of learning. As for the reconstruc-
tion losses, we can incorporate the reconstruction of test-
ing samples in the target domain, similar to other domain
adaptation methods [10], to improve the performance. 2)
For the extreme case when no training labels are available,
based on prior work in [10], we will have to use the training
data from source domain to update the networks with the
classification loss. In this way, the features in 75 are consid-
ered invariant for both source and target domains, and thus
the classification performance on target domain can be im-
proved. Specifically, Algorithm 1 will be modified as fol-
lows: we will use source data xg, as the input in line 17
instead of x;;.

3.44 Advantages of CETL

The advantages of CETL over existing transfer learning
models can be summarized as follows:

e Comparing with directly fine-tuning on S, CETL can
handle the situation when target data are not sufficient
to update a deep/big source network.

By incorporating GFI, CETL keeps the useful weights
for reconstruction while updating the others. This
leads to higher efficiency and better performance.

From a practical perspective, CETL provides a very
high level of flexibility on the selection of source net-
works. Regardless of the source architecture, source
data availability, and the choice of computing plat-
form, CETL can always leverage the pre-train source
network for performance gain as long as the source
output can be obtained with a forward pass. No re-
training or fine-tuning is required. This unique nature
makes CETL highly practical in solving various real-
world problems.

We show these advantages through extensive experiments
in the next section.

4. Experiments

In this section, we conduct experiments from three as-
pects to show the superior performance and flexibility of
CETL. First, for general transfer learning tasks, we demon-
strate the functionality of the components in the CETL al-
gorithm and validate the configuration of CETL, followed
by the performance analysis of the preferred architecture
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on various scenarios. Then, we compare CETL with other
models on the performance of knowledge distillation task,
and explicitly explain the rationale of using GFI. Last, we
compare CETL with other state-of-the-art models on do-
main adaptation experiments.

In the experiments, we adopt widely used benchmark
datasets to evaluate the performance of CETL, including
CIFAR-10 (CI) and CIFAR-100 [21], STL-10 (ST) [5], Im-
ageNet [6], MNIST (MN) [24], USPS (US) [18] and SVHN
(SV) [28]. The descriptions of these datasets are given in
Table 1, and we explain how to use them in different tasks
in the following sections.

4.1. Transfer Learning

As mentioned before, both knowledge distillation and
domain adaptation can be considered as special cases of
transfer learning. To avoid any confusion, in this section,
we consider the scenario where both domains and tasks are
different between the source and the target.

4.1.1 Configurations of CETL

To start with, we consider the transfer between ImageNet
and CIFAR-10 to decide the preferred configuration of
CETL in Theano [33]. For ImageNet, we use the trained
AlexNet model [22] provided by Caffe [19] as S. For
CIFAR-10, as generally handled in transfer learning ap-
proaches, we randomly select only 20% of the original
training data while keeping all the original testing data to
form a subset of CIFAR-10 called CIFAR-10-s as the tar-
get dataset. Also, since the input image size in CIFAR-10
is much smaller than that in ImageNet, we adopt a reduced
AlexNet and call it CI-CNN.

In CI-CNN, there are still five convolutional layers and
three fully-connected layers, but the numbers of kernels in
each layer are all reduced to about 1/2 to 1/4 of the ones in
AlexNet. Also, the convolutional kernels are all set to be
3x3. As for the reverse architecture of CI-CNN, there are
three fully connected layers followed by alternative unpool-
ing and deconvolution layers. For each reverse layer, the
number of kernels is the same as the one in the correspond-
ing layer in CI-CNN.

Specifically, we resize and pass the training data in
CIFAR-10-s to the trained AlexNet to extract features be-
fore the last fully connected layer. Then, 77 with the reverse
architecture of CI-CNN reconstructs the feature from S. Af-
ter that, the CI-CNN in 75 carries out the multi-objective
optimization to simultaneously reconstruct the CIFAR-10-s
images with 77 and classify them into ten image categories.

Table 2. Comparison of different configurations of CETL.

Baseline CETLy; CETL, CETL. CETLy CETL

61.29% 6241% 62.63% 63.97% 64.19%  65.33%




Table 1. The properties of the benchmark datasets adopted in the experiments.

CIFAR-10 STL-10 CIFAR-100 ImageNet MNIST USPS SVHN
# of classes 10 10 100 1000 10 10 10
Purpose image classification image classification digit recognition
Training samples 50000 5000 50000 1.2 million 60000 7291 73257
Testing samples 10000 8000 10000 100000 10000 2007 26032
Image type color color color color grayscale grayscale grayscale
Image size 32x32 96x96 32x32 256x256 (resized)  28x28 16x16 32x32

In Table 2, we compared different settings of CETL for
the classification accuracy of testing samples in CIFAR-10-
s. The baseline accuracy shows the result of directly train-
ing on CI-CNN. For CETL, we train 7 oS until conver-
gence and then train 77 o 7> with T; fixed. In this case, the
reconstruction objective of 75 can only be partially fulfilled
since half of the weights in 7} o 7; are not updated. CETL,,
takes a step further to update 77 o T after 77 o S converged,
but the problem is that 77 could be tuned as a convolutional
auto-decoder without maintaining the knowledge learned
from S. In CETL,, we update 7; oS and 7} o 7> iteratively
until 77 converges for both reconstruction objectives. How-
ever, without the control of GFI, all the weights in 77 and T
are updated in the same way regardless of their importance
for a given task.

It is also clear from Table 2 that the performance of
CETL, can be improved with FI, but the gain of CETL;
is not much. Finally, CETL with GFI dynamically allocates
the weights in 77 and 75 to either shared or private, and up-
dates them according to their importance for various tasks.
Obviously, the best performance is achieved by CETL with
GFL

Notice that in this experiment, we neither update S which
is more complicated than 77, nor use the source dataset, Im-
ageNet, which is dramatically larger than CIFAR-10-s. In-
stead, we take advantage of the trained AlexNet to improve
the performance on CIFAR-10-s. In the following, we de-
note the selected configuration, CETL with GFI, as CETL,
and use it in all the experiments. The architectures of S, T}
and 7> will be modified for different tasks.

4.1.2 Different Source Networks

To show the flexibility of CETL, we perform the experi-
ments with various combinations of source and target net-
works. In Table 3, all source architectures except for CI-
CNN are pre-trained networks for the classification of Ima-
geNet [19], and then transferred to CIFAR-10-s and STL-10
respectively with CETL to improve their performance. CI-
CNN was trained on CIFAR-100 from scratch and used as
one of the source networks for STL-10. We used the same
architecture CI-CNN for both CIFAR-10-s and STL-10 as
the target network. As a comparison, we obtained the base-
line accuracy by directly training on CI-CNN. In addition,

we replaced the last fully-connected layer in VGG and fine-
tuned it using the target datasets. The accuracy is reported
as FT-VGG.

Table 3. Comparison of different source networks.

CIFAR-10-s+ STL-10+

CI-CNN CI-CNN
AlexNet [22] 65.33% 62.98%
VGG [31] 65.57% 62.61%
GoogleNet [32] 65.14% 62.30%
ResNet-50 [16] 64.37% 62.77%
CI-CNN - 65.49 %
Baseline 61.29% 60.52%
FT-VGG 61.35% 61.17%

Apparently, fine-tuning is not as effective as CETL, pro-
viding little improvement. For CIFAR-10-s, highest accu-
racy is achieved when transferred from VGG. For STL-10,
transferring from CI-CNN performs the best. The reason is
that STL-10 dataset is more similar to CIFAR than to Ima-
geNet. Also, it is clear that source data is a more important
factor for the performance gain than the source architecture.

4.2. Knowledge Distillation

Knowledge distillation considers the problem when
source and target data are the same while the student net-
work is much smaller (thinner) than the teacher network. In
this section, we compare CETL with other state-of-the-art
knowledge distillation models on CIFAR-10 and CIFAR-
100 datasets. To make a fair comparison, we follow some
recent work [38] and choose ResNet-26 as the teacher net-
work and CI-CNN as the student network with less than
10% parameters of AlexNet. Specifically, for CIFAR-10,
the teacher architectures are exactly the same. The student
networks differ, but the initial accuracy (before distillation)
are very close (87.91% in [38] and 87.55% in CETL). Same
holds for CIFAR-100.

As shown in Table 4, CETL outperforms other knowl-
edge distillation models on both CIFAR-10 and CIFAR-
100 datasets. As more training samples are available for
each category in CIFAR-10, the improvement is marginal
through knowledge distillation. However, classification ac-
curacy is significantly increased in the case of CIFAR-100,
close to the teacher performance. This mainly attributes to
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Table 5. Comparison on domain adaptation. A dash means that the result is not reported by the model.

MN-US US-MN SV-MN MN-SV  ST-CI CI-ST
Source 85.55% 65.77% 62.33% 2595% 54.17% 63.61%
SA [7] 85.89% 51.54% 63.17% 28.52% 54.04%  62.88%
ReverseGrad [8] | 91.11% 74.01% 7391% 35.67% 5691% 66.12%
DRCN [10] 91.80% 88.67% 81.97% 40.05% 58.86%  66.37%
ADDA [35] 89.40% 90.10%  76.00% - - -
WDA [37] 72.30%  65.50% 67.30%  23.5% - -
CETL 92.96% 90.89% 83.33% 45.27% 60.11% 66.39%

Table 4. Comparison on knowledge distillation.

CIFAR-10 CIFAR-100
Teacher 91.86% 65.23%
Student 87.55% 60.71%
FitNets [30] 88.57% 61.28%
Soft-targets [17] 88.45% 61.03%
FSP DNN [38] 88.70% 63.33%
CETL 89.11% 64.83 %

—classification loss
#-DWA1

DWA2
=-DWA3
[==LHS
" * RHS

- _—

0 10 20 30 40 50 60 70 80 90 w

Figure 2. Learning curves of CETL.

the low number of samples per category in CIFAR-100.

To further demonstrate the rationale of the DWA loss, we
trace the changes of classification loss of 75> and normalized
DWA losses by the solid lines in Fig. 2 for the CIFAR-10
classification task. Clearly, the classification loss decreases
with the epochs as usual. However, note that the DWAI
loss first increases to a peak value before decreasing and
getting converged. This is because at the very beginning of
training, 77 is randomly initialized and for the first a few
epochs, most of the weights in 77 are not important for 77 o
S and thus the loss is small. Around epoch 32, the weights
in 71 becomes more important for 77 o S, leading to a larger
DWAI1 loss, after which the DWA1 loss decreases as the
changes of weights decrease until converged. The trends of
DWAZ2 and DWA3 losses follow a similar pattern.

4.3. Domain Adaptation

For the last task, we compare CETL with current state-
of-the-arts on domain adaptation where target data does not
have labels but has same categories as the source data. In
this case, similar to other models, the multi-objective in

CETL is to use target data for reconstruction and source
data for classification. Following the same settings used in
some recent work [10], we directly compare CETL with the
reported performance in the literature in Table 5. ADDA
and WDA results are directly obtained from [35] and [37],
and a dash in the table means that the result is not reported
by the corresponding model on the given dataset.

Clearly, CETL significantly improved from the prior arts
and achieved the best performance on all domain adap-
tion combinations. In particular, CETL with coupled loss
and GFI can overcome the catastrophic forgetting in multi-
tasks and outperforms models (e.g., DRCN) that consider
the tasks (i.e., reconstruction and classification) separately.
Furthermore, we compared CETL with associative domain
adaptation models in [15, 14]. Results show that CETL is
very competitive with these models on domain adaptation
while having the flexibility of also performing knowledge
distillation and transfer learning. For example, in “SV-MN”
(one of the best results mentioned in [14]), the relative im-
provement is 40.86% (before and after domain adaptation)
in [14], 22.16% in [15], while CETL gains 33.69%.

Finally, to validate Remark 4 from an experimental per-
spective, we demonstrate the normalized values of RHS and
LHS in Eq. (14) w.r.t the training epochs in “SV-MN". As
shown by the dashed and dotted lines in Fig. 2, LHS is
bounded by RHS, and clearly, their difference converges to
almost zero as the training epoch increases.

5. Conclusion

In this paper, we proposed a novel CETL framework
for image classification. A novel loss function, the cou-
pled loss, established base on the learning bound of CETL,
was introduced for CETL training. In addition, GFI was
integrated to improve the multi-task optimization in CETL.
Experimentally, we extensively compared CETL with other
state-of-the-art models for various tasks on benchmark
datasets and achieved superior performance.
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