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Abstract

In transfer learning, one seeks to transfer related infor-
mation from source tasks with sufficient data to help with the
learning of target task with only limited data. In this paper,
we propose a novel Coupled End-to-end Transfer Learning
(CETL) framework, which mainly consists of two convolu-
tional neural networks (source and target) that connect to a
shared decoder. A novel loss function, the coupled loss, is
used for CETL training. From a theoretical perspective, we
demonstrate the rationale of the coupled loss by establish-
ing a learning bound for CETL. Moreover, we introduce the
generalized Fisher information to improve multi-task opti-
mization in CETL. From a practical aspect, CETL provides
a unified and highly flexible solution for various learning
tasks such as domain adaption and knowledge distillation.
Empirical result shows the superior performance of CETL
on cross-domain and cross-task image classification.

1. Introduction

In computer vision, deep learning models such as Con-

volutional Neural Networks (CNNs) have successfully been

applied to analyzing images, e.g., ImageNet [22], and

achieved superior performance than other machine learning

methods. However, such advances are often on account of

the availability of a large amount of labeled training data. In

many cases, manually labeling data can be very expensive,

and when the labeled data is limited, CNN’s performance

will be compromised.

Transfer learning provides a framework to address this

challenge. In transfer learning, one seeks to transfer related

information from source tasks with sufficient data to help

with the learning of target task with only limited data [29].

Recently, the ability to learn and transfer representations in

CNN models has been shown to be important and effective

[11, 34]. In [39], the transferability of features from various

layers in neural networks was discussed. More recently, in

[25], several factors (including width, depth, density, etc.)

affecting the transferability for CNNs were compared.

As a special case of transfer learning, domain adaptation

considers the problem when no labels of the target domain

are available. It assumes that only source domain is labeled,

and source and target domains have different distributions

(domain discrepancy) but share the same task [29]. In recent

years, various works [12, 10, 13, 8, 26] attempt to address

the domain adaptation problem for deep CNNs. Usually,

the domain discrepancy is modeled using Kullback-Leibler

divergence or Maximum Mean Discrepancy (MMD). Then,

a target domain network is fine-tuned from the source net-

work by jointly minimizing the source domain classification

error and the domain discrepancy. However, due to the rela-

tive low model accuracy and extra optimization procedures,

domain adaptation remains a challenging research problem.

Knowledge distillation [17] can be considered as another

special case of transfer learning, in which the knowledge

from a teacher CNN is transferred to a much more concise

student CNN by emulating teacher’s soft-targets (a varia-

tion of softmax outputs). In this setting, teacher and student

networks share the same data distribution and classification

objectives. Later, FitNets [30] was proposed to include the

transfer between intermediate feature maps of CNNs to im-

prove the performance of the student CNN.

In this work, we propose a Coupled End-to-end Transfer

Learning (CETL) framework to transfer the knowledge be-

tween CNNs for related tasks, and address the issues caused

by domain discrepancy. Our major contributions are sum-

marized as follows:
• CETL provides a unified transfer learning solution that

can also be adapted for knowledge distillation and do-

main adaptation tasks, while prior works typically only

consider one of these problems. In addition, through

its novel architecture, CETL has great flexibility on the

choice of the source network and on the architecture of

the target network.

• Different from most prior work on transfer learning,

the training of CETL neither uses the source data nor

directly tunes on the source network. From a computa-

tion perspective, this is critical as the source dataset is

usually large, and the pre-trained source network can

be very big, both leading to a long training time.



• We propose a novel loss function, the coupled loss, for

CETL training. From a theoretical point of view, we

demonstrate the rationale of the new loss function by

establishing a learning bound for CETL.

• We introduce the Generalized Fisher Information

(GFI) to improve multi-objective optimization in

CETL. GFI conducts a dynamic allocation of shared

and private weights for multi-tasks to overcome the

catastrophic forgetting and preserve useful parameters

for the new task. Empirical result shows the superior

performance of CETL on cross-domain and cross-task

image classification.

The rest of this paper is arranged as follows. In Section 2,

we briefly review related work in transfer learning and its

applications on image classification. In Section 3, we intro-

duce the architecture of CETL, give the definition of GFI,

and demonstrate the theoretical soundness of the coupled

loss employed in CETL training. In Section 4, we present

our image classification results on benchmark datasets. Fi-

nally, we conclude in Section 5.

2. Related Work
Deep CNNs achieved state-of-the-art performance in a

wide range of tasks and applications in computer vision.

However, in supervised learning of a CNN, a large amount

of labeled data is necessary, or the model may encounter

generalization issues. Thus, how to transfer useful knowl-

edge from a source network to boost the performance of a

target network with limited labeled data becomes an impor-

tant research topic. In transfer learning [29, 23], we aim

to learn a new task in a domain of interest called target do-

main when we only have sufficient data to learn a similar

but different task on a source domain with different data

distribution. A learning bound was introduced by [2], which

claimed the error of target task is bounded by the sum of the

error of the task on source and the domain discrepancy.

The research of transfer learning on deep CNN emerged

recently. Yosinski et al. [39] gave one of the earliest em-

pirical study about the feature transferability in various lay-

ers of CNN. Littwin et al. [25] proposed a framework to

transfer the source data representation learned using a set of

orthogonal classifiers. Azizpour et al. [1] discussed several

factors influencing the transferability of features learned by

CNN.

Knowledge distillation can be considered as a special

case of transfer learning, in which the features learned by

a teacher network are exploited to improve the performance

of a relatively concise student network for the same task.

Hinton et al. [17] adopted soft-targets to distill knowledge

from a series of ensemble of CNNs into a single model.

Following Hinton’s work, Romero et al. added a differ-

ence loss between two intermediate layers to improve the

performance [30]. In [38], Yim et al. defined the distilled

knowledge as the Flow of Solution Procedure (FSP) matrix

where the training of the student network was implemented

by mimicking the FSP matrices generated by the teacher.

For domain adaptation, prior work focuses on improving

deep learning models when domain discrepancy arises. A

direct way is to reweigh or select samples from the source

domain that are similar to the ones in the target domain

[12, 9]. Rendering synthetic data is an alternative. Re-

cently, Bousmalis et al. [3] adopted the Generative Adver-

sarial Networks to transform source images into the target

style. Most deep domain adaptation works resolve the train-

ing problem by jointly minimizing the source label classifi-

cation error and the domain discrepancy. Ganin and Lem-

pitsky [8] addressed domain discrepancy by training a CNN

that minimizes the loss of label classification while maxi-

mizing the loss of a domain classifier in an end-to-end style.

Weighted Maximum Mean Discrepancy (WDA) [37] was

proposed later to take class weight bias into account. Tzeng

et al. [35] proposed the Adversarial Discriminative Domain

Adaptation (ADDA) method, where the label classifier and

domain classifier are trained separately in an adversarial

manner.

The proposed CETL framework is motivated by two con-

siderations. The first one is to gradually tweak feature rep-

resentations through target data reconstruction to minimize

domain disparity. As in [4], Chopra et al. mitigated the

domain discrepancy by layer-wise pre-training a CNN us-

ing a series of autoencoders. Later, Ghifary et al.[10] de-

signed the model combining a traditional CNN for source

label prediction with a convolutional autoencoder for target

data reconstruction. The second is that the non-linear map-

ping between cross-modal data provides helpful deep fea-

ture representation for robust object detection with various

backgrounds. For example, Xu et al. addressed the pedes-

trian detection problem under adverse illumination condi-

tions, in which they exploited features in the non-linear

mapping from RGB image to its corresponding thermal data

[36]. Mao et al.[27] proposed a HyperLearner, which is an

architecture that reconstructs various channel features (e.g.,

apparent-to-semantic features, temporal features and depth

features) while performing pedestrian detection. In CETL,

by the multi-task of simultaneous classification and recon-

struction, a pre-trained source network exploits the target

data for cross domain feature generation. Further, it is cou-

pled with the target network to reconstruct those features

while performing classification on the target data.

3. Coupled End-to-end Transfer Learning
In this section, we provide details on CETL. First, we

show the architecture of CETL and explain the learning pro-

cedure with the coupled loss. Then, GFI is introduced for

dynamic allocation of shared and private weights in multi-



Figure 1. The CETL framework. The numbers in the figure indicate the detailed training steps of CETL.

task learning. The theoretical analysis for the coupled loss

follows immediately. Last, we show how CETL can be

adapted to various tasks of transfer learning, knowledge dis-

tillation and domain adaptation.

3.1. The Architecture

As shown in Fig. 1, CETL mainly consists of two CNNs

with softmax outputs (source and target) that connect to a

shared decoder T1 containing deconvolution and unpooling

layers for reconstruction. The pre-trained source CNN, de-

noted as S, aims at extracting cross domain features. The

detailed steps of training in CETL are given by the numbers

in the figure. Specifically, by passing the target data through

S, we obtain the feature maps from each layer in S. Then, by

connecting a specific layer in S to a reversed target CNN T1,

we consider S as an encoder and T1 as a decoder. In train-

ing, we update the weights in T1 with the reconstruction loss

while keeping the weights in S unchanged. Since the feature

maps in S reflect the activations of the source CNN with the

input of target data, by decoding these feature back into the

input space, T1 is updated to represent the weights encoded

in S in a backward manner.

Denote the datasets of target and source domains as

Dsrc = {xsrc,ysrc} and Dtgt = {xtgt,ytgt} with distribution P
and Q, respectively. The source CNN S is pre-trained using

a supervised cross entropy loss based on the source data:

Ls
c(S(θS),xsrc,ysrc) =

1

N

N

∑
i=1

logP(yi
src|xi

src,θS) (1)

where θS denotes the model parameters while T1 is trained

using an unsupervised reconstruction loss on the target data:

Ls
r(T1(θT1

),xtgt) = |T1 ◦S(xtgt)− xtgt|2 (2)

By doing so, we find an underlying feature representation

across two datasets Dsrc and Dtgt. It is decoded in the recon-

struction T1 ◦ S(x), which is a resemblance to the channel

features in [27].

The target CNN denoted as T2 is also connected with

decoder T1 to conduct the coupled learning, in which the

following combined loss is minimized:

λLt
c(T2(θT2

),xtgt,ytgt)+(1−λ )Lt
r(T1(θT1

),T2(θT2
),xtgt)

(3)

where

Lt
c(T2(θT2

),xtgt,ytgt) =
1

N

N

∑
i=1

logP(yi
tgt|xi

tgt,θT2
) (4)

is the classification loss on the target data, and

Lt
r(T1(θT1

),T2(θT2
),xtgt) = |T1 ◦T2(xtgt)−T1 ◦S(xtgt)|2 (5)

is the loss of reconstructing output of T1 ◦S using xtgt as the

input.

Learning: The classifier of S is pre-trained using Dsrc.

First, we train the T1 ◦ S using unlabeled Dtgt . Then, we

train the target network T2 by optimizing the combination

of classification loss Lt
c(T2(θT2

),xtgt,ytgt) using labelled Dtgt
and the reconstruction loss Lt

r(T1(θT1
),T2(θT2

),xtgt) using

all Dtgt . Alternatively, CETL can be trained in an end-to-

end style. That is, we train the coupled networks using sum

of all losses (coupled loss) simultaneously:

Lcoupled = λ1Ls
r(T1(θT1

),xtgt)+λ2Lt
c(T2(θT2

),xtgt,ytgt)
+λ3Lt

r(T1(θT1
),T2(θT2

),xtgt)
(6)

where λi(i = 1,2,3) denotes the constant weights. We will

demonstrate the rationale of the coupled loss in Section 3.3.

3.2. Generalized Fisher Information

We introduce GFI as a novel contribution for transfer

learning in this section. Different from previous work [20],

we take the correlation of two tasks into account and dy-

namically allocate shared and private weights for the corre-

sponding tasks.

In CETL, the coupled networks contain multi-objectives

with shared parameters. That is,

Ls
r(T1(θT1

),xtgt) and Lt
r(T1(θT1

),T2(θT2
),xtgt) (7)



share parameters in T1.

Lt
c(T2(θT2

),xtgt,ytgt) and Lt
r(T1(θT1

),T2(θT2
),xtgt) (8)

share parameters in T2.

Thus, the issues of catastrophic forgetting tend to over-

ride model parameters learned in previous tasks, leading to

impaired performance [20].

Fisher information (FI) is a way of measuring the amount

of information that an observable random variable X carries

for an unknown parameter θ of a distribution that models

X . In [20], Fisher information Fi with respect to certain

weights θi of a neural network is derived from the cross-

entropy loss and used to measure parameters’ importance

to a given task. The Elastic Weight Consolidation loss us-

ing FI from the given task is designed as a regularization to

keep the weights with large Fi unchanged in order to avoid

catastrophic forgetting.

However, when all parameters are determined as impor-

tant by the prior task, update of weights with respect to the

new task will be trivial. The training of the new task may

fail to converge. Thus, we introduce a new measure, Rel-

ative Fisher (RF) information, to determine the correlation

of FIs derived from the two tasks. Denote the losses for two

tasks as L1 and L2, with shared parameters θi, i = 1, · · · ,m,

where m denotes the total number of parameters, we have:

RFi = I(F1,i,F2,i|θ ∗
i ) (9)

where I(·, ·) denotes the mutual information normalized in

[0,1], F1,i and F2,i are random variables representing the FI

with respect to L1 and L2, respectively. The higher RFi is,

the more probable the two tasks may share the weights θi.

Finally, the Generalized Fisher Information (GFI) is defined

as:

GFIi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
0 with probability p
Fi with probability 1− p

if RFi < u{
0 with probability 1− p
Fi with probability p

if RFi ≥ u

(10)

where RFi is used to indicate whether two tasks should share

the same weights, and the hyperparameters u and p are set at

0.5 and 0.9, respectively. Specifically, if RFi ≥ 0.5, weights

will be shared, and we set the GFIi = 0 with a low proba-

bility 0.1 to retain flexibility. Otherwise (RFi < 0.5), Fi has

a high probability 0.9 to be dropped, and thus the new task

can be better learned without regularization.

We define the Dynamic Weight Allocation (DWA) loss

as the regularization term:

DWA = ∑
i

λ
2

GFIi(θi −θ ∗
i )

2 (11)

which allows dynamic allocations of shared and private pa-

rameters for different tasks. We apply it on the joint opti-

mization of the multi-objectives in Eqs. (7) and (8).

3.3. Theoretical Analysis of the Coupled Loss

In this section, we derive an error bound for CETL learn-

ing, which provides a rigorous theoretical explanation on

the rationale for the coupled loss function adopted in CETL

(Eq. (6) in Section 3.1).

We assume the ground truth concept for the source and

target as csrc and ctgt , respectively. Denote T1 ◦ T2(x) for

x ∈ P as T1 ◦T2 ∈ P, and for x ∈ Q as T1 ◦T2 ∈ Q, respec-

tively. The similar notations work for T1 ◦ S as well. We

denote all constant numbers in proofs as C for simplicity. In

addition, EZ denotes the expectation on distribution Z, and

sup f represents taking the maximum value over the collec-

tion of functions f .

Lemma 1 If EP|S− csrc| ≤ C, C > 0, EQ|csrc − ctgt | ≤ λ1,
sup f |EP f −ET1◦S∈P f | ≤ λ2, for any f ∈ P,Q, λ1,λ2 > 0,
then there exists some constant C > 0, for any measurable
function f ∈ P,Q, f > 0,

EQ|T2 − ctgt | ≤C+ |ET1◦S∈P f −EQ f |+EQ|T2 −S|
+2sup f |ET1◦S(x)∈Q f −Ex∈Q f |
+2sup f |ET1◦T2(x)∈Q f −Ex∈Q f |

(12)

Proof: See Supplementary Material A.1.

Lemma 2 Assume ET1◦S∈P|csrc − ctgt | ≤ C, ET1◦S∈Q|csrc −
ctgt | ≤C, ET1◦S∈P|ctgt | ≤C, ET1◦S∈Q|csrc|<C, for some C >
0, then there exists some constant C > 0, such that for any
measurable function f > 0, and f ∈ P,Q,

sup f |ET1◦S∈P f −EQ f | ≤C+ET1◦S∈P|S− csrc|
+sup f |ET1◦S∈Q f −EQ f |
+EQ|T2 −S|

(13)

Proof: See Supplementary Material A.2.

Theorem 3 If all conditions in Lemma 1 and 2 hold. We
have the bound for CETL as:

EQ|T2 − ctgt | ≤ EP|S− csrc|+2EQ|T2 −S|
+3sup f |ET1◦S(x)∈Q f −Ex∈Q f |
+2sup f |ET1◦T2(x)∈Q f −Ex∈Q f |

(14)

Proof
Combing the results of Lemma 1 and 2, the desired result

follows.

Remark 4 The left hand side (LHS) of Eq. (14) is the ex-

pected classification error on the target domain. It is the

ultimate objective to be minimized, but direct optimization

is virtually impossible. This is our motivation and ratio-
nality to provide our theoretical analysis for the error
bound. Specifically, we derive the upper bound of LHS as

the right hand side (RHS) in Eq. (14) and proposed to min-

imize RHS instead. More importantly, it guides us to define



the coupled loss in Eq. (6). Specifically, RHS in Eq. (14)

and Eq. (6) correspond as follows. Classification loss: the

first term in RHS and the second term in Eq. (6); Cross do-

main loss: the second term in RHS and the third term in Eq.

(6); And reconstruction loss: the last two terms in RHS and

the first term in Eq. (6).

3.4. Algorithms of CETL

In this section, we will show that CETL is a unified

framework that can be adapted into different tasks of trans-

fer learning, knowledge distillation and domain adaptation.

Moreover, CETL outperforms these instantiations by incor-

porating GFI. For better illustration, we first give the pseudo

code of CETL for transfer learning in Algorithm 1, and then

we show its variants.

Algorithm 1 Algorithm of CETL

1: procedure STAGE 1

2: top:
3: Input xtgt
4: feature encoding ← S
5: feature decoding ← T1

6: loss1, recons1 ← reconstruct xtgt
7: update T1 ← loss1(w/DWA2)
8: GFI1 ← recons1
9: procedure STAGE 2

10: Input xtgt
11: feature encoding ← T2

12: feature decoding ← T1

13: loss2, recons2 ← reconstruct recons1
14: update T1 ◦ T2 ← loss2 w/ DWA1
15: GFI2, GFI3 ← recons2
16: procedure STAGE 3

17: Input xtgt
18: classification loss3 ← T2

19: update T2 ← loss3 w/ DWA3
20: if loss1, loss2, loss3 not converged

21: goto top
22: end if

The rationale for the three-stage training in Algorithm 1

is given below. In the coupled loss (Eq. 6), there are three

loss terms. According to [20], catastrophic forgetting hap-

pens in multi-task training. If we optimize Lcoupled directly

using SGD, weights learned by certain tasks can be over-

ridden by others, leading to the failure of convergence on

these tasks. Thus, we carefully designed an iterative three-

stage training, in which GFI is introduced to indicate the im-

portance of weights learned in the previous task, and DWA

loss is applied as a regularization to remember the important

ones during updating.

The main drawback of FI in [20] is that if most of the

weights are considered important by the previous task, the

model’s ability to learn a new task will be dramatically

weakened. Differently, GFI uses hyperparameters to deter-

mine if the new task learning should be affected by FI. We

define DWA loss using GFI to allow a dynamic allocation

of shared and private weights for all the tasks.

3.4.1 Transfer Learning

When we consider a traditional transfer learning problem,

T2 has an architecture similar to S, and T1 has the one with

reversed layers. As shown in Algorithm 1, we have three

learning stages in total. For the first stage, with S pre-

trained on the source data, we reconstruct the target data

with T1 ◦S, in which the weights in S are frozen while T1’s

are updated by the reconstruction loss to simulate S in the

reversed order. After the reconstruction by T1 ◦ S, we can

obtain GFI1, the GFI for the weights in T1 with respect to

the reconstructed output recons1.

During the second stage, we transfer the information in

T1 to T2 while incorporating DWA1. Specifically, by passing

the target data through T1 ◦ T2, we get the reconstruction

loss2. We use loss2 to update T2 and loss2 with DWA1 to

update T1. In this way, we keep weights unchanged if they

were considered important by GFI1 in T1◦S, and update the

other weights for the reconstruction in T1 ◦T2. At the end of

this stage, we can obtain GFI2 and GFI3, which quantify

the gradients of outputs with respect to weights in T1 and T2,

respectively. Later, DWA2 will be incorporated with loss1

to update T1 ◦S.

In the third stage, we have the classification loss on the

target data given by T2, and we update T2 with this loss using

DWA3 as the regularization. Thus, part of the weights in T2

will be updated for reconstruction while the rest would be

for classification. The three stages are repeated iteratively

until all losses are converged.

3.4.2 Knowledge Distillation

In knowledge distillation [17], teacher (source) and student

(target) networks are generally assumed to share the same

dataset. To adapt CETL for knowledge distillation, we sim-

ply need to let T1 be a much more concise architecture com-

paring with S and let T2 have the reversed layers of T1.

Furthermore, with CETL, we can also handle the situation

when source and target have different datasets. Actually, we

don’t need the source data (usually a large dataset) for (ex-

pensive) training as long as we can utilize the weights from

S to take advantage of the soft targets.

As an improvement, FitNets was proposed later to utilize

not only the soft targets but also the feature maps from the

middle layer of the S network [30]. CETL can be similarly

modified for FitNets and we will not repeat it here due to

space limit.



3.4.3 Domain Adaptation

The major issue we need to resolve when using CETL for

domain adaptation is regarding the amount of labeled data

in the target domain. We consider the following two scenar-

ios: 1) When we have limited training labels for the target

domain, we can still use them to compute the classification

loss in the third stage of learning. As for the reconstruc-

tion losses, we can incorporate the reconstruction of test-

ing samples in the target domain, similar to other domain

adaptation methods [10], to improve the performance. 2)

For the extreme case when no training labels are available,

based on prior work in [10], we will have to use the training

data from source domain to update the networks with the

classification loss. In this way, the features in T2 are consid-

ered invariant for both source and target domains, and thus

the classification performance on target domain can be im-

proved. Specifically, Algorithm 1 will be modified as fol-

lows: we will use source data xsrc as the input in line 17

instead of xtgt .

3.4.4 Advantages of CETL

The advantages of CETL over existing transfer learning

models can be summarized as follows:

• Comparing with directly fine-tuning on S, CETL can

handle the situation when target data are not sufficient

to update a deep/big source network.

• By incorporating GFI, CETL keeps the useful weights

for reconstruction while updating the others. This

leads to higher efficiency and better performance.

• From a practical perspective, CETL provides a very

high level of flexibility on the selection of source net-

works. Regardless of the source architecture, source

data availability, and the choice of computing plat-

form, CETL can always leverage the pre-train source

network for performance gain as long as the source

output can be obtained with a forward pass. No re-

training or fine-tuning is required. This unique nature

makes CETL highly practical in solving various real-

world problems.

We show these advantages through extensive experiments

in the next section.

4. Experiments
In this section, we conduct experiments from three as-

pects to show the superior performance and flexibility of

CETL. First, for general transfer learning tasks, we demon-

strate the functionality of the components in the CETL al-

gorithm and validate the configuration of CETL, followed

by the performance analysis of the preferred architecture

on various scenarios. Then, we compare CETL with other

models on the performance of knowledge distillation task,

and explicitly explain the rationale of using GFI. Last, we

compare CETL with other state-of-the-art models on do-

main adaptation experiments.

In the experiments, we adopt widely used benchmark

datasets to evaluate the performance of CETL, including

CIFAR-10 (CI) and CIFAR-100 [21], STL-10 (ST) [5], Im-

ageNet [6], MNIST (MN) [24], USPS (US) [18] and SVHN

(SV) [28]. The descriptions of these datasets are given in

Table 1, and we explain how to use them in different tasks

in the following sections.

4.1. Transfer Learning

As mentioned before, both knowledge distillation and

domain adaptation can be considered as special cases of

transfer learning. To avoid any confusion, in this section,

we consider the scenario where both domains and tasks are

different between the source and the target.

4.1.1 Configurations of CETL

To start with, we consider the transfer between ImageNet

and CIFAR-10 to decide the preferred configuration of

CETL in Theano [33]. For ImageNet, we use the trained

AlexNet model [22] provided by Caffe [19] as S. For

CIFAR-10, as generally handled in transfer learning ap-

proaches, we randomly select only 20% of the original

training data while keeping all the original testing data to

form a subset of CIFAR-10 called CIFAR-10-s as the tar-

get dataset. Also, since the input image size in CIFAR-10

is much smaller than that in ImageNet, we adopt a reduced

AlexNet and call it CI-CNN.

In CI-CNN, there are still five convolutional layers and

three fully-connected layers, but the numbers of kernels in

each layer are all reduced to about 1/2 to 1/4 of the ones in

AlexNet. Also, the convolutional kernels are all set to be

3×3. As for the reverse architecture of CI-CNN, there are

three fully connected layers followed by alternative unpool-

ing and deconvolution layers. For each reverse layer, the

number of kernels is the same as the one in the correspond-

ing layer in CI-CNN.

Specifically, we resize and pass the training data in

CIFAR-10-s to the trained AlexNet to extract features be-

fore the last fully connected layer. Then, T1 with the reverse

architecture of CI-CNN reconstructs the feature from S. Af-

ter that, the CI-CNN in T2 carries out the multi-objective

optimization to simultaneously reconstruct the CIFAR-10-s

images with T1 and classify them into ten image categories.

Table 2. Comparison of different configurations of CETL.

Baseline CETL f CETLu CETLe CETL f i CETL

61.29% 62.41% 62.63% 63.97% 64.19% 65.33%



Table 1. The properties of the benchmark datasets adopted in the experiments.

CIFAR-10 STL-10 CIFAR-100 ImageNet MNIST USPS SVHN

# of classes 10 10 100 1000 10 10 10

Purpose image classification image classification digit recognition

Training samples 50000 5000 50000 1.2 million 60000 7291 73257

Testing samples 10000 8000 10000 100000 10000 2007 26032

Image type color color color color grayscale grayscale grayscale

Image size 32×32 96×96 32×32 256×256 (resized) 28×28 16×16 32×32

In Table 2, we compared different settings of CETL for

the classification accuracy of testing samples in CIFAR-10-

s. The baseline accuracy shows the result of directly train-

ing on CI-CNN. For CETL f , we train T1 ◦ S until conver-

gence and then train T1 ◦T2 with T1 fixed. In this case, the

reconstruction objective of T2 can only be partially fulfilled

since half of the weights in T1 ◦T2 are not updated. CETLu
takes a step further to update T1 ◦T2 after T1 ◦S converged,

but the problem is that T1 could be tuned as a convolutional

auto-decoder without maintaining the knowledge learned

from S. In CETLe, we update T1 ◦ S and T1 ◦T2 iteratively

until T1 converges for both reconstruction objectives. How-

ever, without the control of GFI, all the weights in T1 and T2

are updated in the same way regardless of their importance

for a given task.

It is also clear from Table 2 that the performance of

CETLe can be improved with FI, but the gain of CETL f i
is not much. Finally, CETL with GFI dynamically allocates

the weights in T1 and T2 to either shared or private, and up-

dates them according to their importance for various tasks.

Obviously, the best performance is achieved by CETL with

GFI.

Notice that in this experiment, we neither update S which

is more complicated than T1, nor use the source dataset, Im-

ageNet, which is dramatically larger than CIFAR-10-s. In-

stead, we take advantage of the trained AlexNet to improve

the performance on CIFAR-10-s. In the following, we de-

note the selected configuration, CETL with GFI, as CETL,

and use it in all the experiments. The architectures of S, T1

and T2 will be modified for different tasks.

4.1.2 Different Source Networks

To show the flexibility of CETL, we perform the experi-

ments with various combinations of source and target net-

works. In Table 3, all source architectures except for CI-

CNN are pre-trained networks for the classification of Ima-

geNet [19], and then transferred to CIFAR-10-s and STL-10

respectively with CETL to improve their performance. CI-

CNN was trained on CIFAR-100 from scratch and used as

one of the source networks for STL-10. We used the same

architecture CI-CNN for both CIFAR-10-s and STL-10 as

the target network. As a comparison, we obtained the base-

line accuracy by directly training on CI-CNN. In addition,

we replaced the last fully-connected layer in VGG and fine-

tuned it using the target datasets. The accuracy is reported

as FT-VGG.

Table 3. Comparison of different source networks.

CIFAR-10-s+ STL-10+

CI-CNN CI-CNN

AlexNet [22] 65.33% 62.98%

VGG [31] 65.57% 62.61%

GoogleNet [32] 65.14% 62.30%

ResNet-50 [16] 64.37% 62.77%

CI-CNN - 65.49%
Baseline 61.29% 60.52%

FT-VGG 61.35% 61.17%

Apparently, fine-tuning is not as effective as CETL, pro-

viding little improvement. For CIFAR-10-s, highest accu-

racy is achieved when transferred from VGG. For STL-10,

transferring from CI-CNN performs the best. The reason is

that STL-10 dataset is more similar to CIFAR than to Ima-

geNet. Also, it is clear that source data is a more important

factor for the performance gain than the source architecture.

4.2. Knowledge Distillation

Knowledge distillation considers the problem when

source and target data are the same while the student net-

work is much smaller (thinner) than the teacher network. In

this section, we compare CETL with other state-of-the-art

knowledge distillation models on CIFAR-10 and CIFAR-

100 datasets. To make a fair comparison, we follow some

recent work [38] and choose ResNet-26 as the teacher net-

work and CI-CNN as the student network with less than

10% parameters of AlexNet. Specifically, for CIFAR-10,

the teacher architectures are exactly the same. The student

networks differ, but the initial accuracy (before distillation)

are very close (87.91% in [38] and 87.55% in CETL). Same

holds for CIFAR-100.

As shown in Table 4, CETL outperforms other knowl-

edge distillation models on both CIFAR-10 and CIFAR-

100 datasets. As more training samples are available for

each category in CIFAR-10, the improvement is marginal

through knowledge distillation. However, classification ac-

curacy is significantly increased in the case of CIFAR-100,

close to the teacher performance. This mainly attributes to



Table 5. Comparison on domain adaptation. A dash means that the result is not reported by the model.

MN-US US-MN SV-MN MN-SV ST-CI CI-ST

Source 85.55% 65.77% 62.33% 25.95% 54.17% 63.61%

SA [7] 85.89% 51.54% 63.17% 28.52% 54.04% 62.88%

ReverseGrad [8] 91.11% 74.01% 73.91% 35.67% 56.91% 66.12%

DRCN [10] 91.80% 88.67% 81.97% 40.05% 58.86% 66.37%

ADDA [35] 89.40% 90.10% 76.00% - - -

WDA [37] 72.30% 65.50% 67.30% 23.5% - -

CETL 92.96% 90.89% 83.33% 45.27% 60.11% 66.39%

Table 4. Comparison on knowledge distillation.

CIFAR-10 CIFAR-100

Teacher 91.86% 65.23%

Student 87.55% 60.71%

FitNets [30] 88.57% 61.28%

Soft-targets [17] 88.45% 61.03%

FSP DNN [38] 88.70% 63.33%

CETL 89.11% 64.83%

Figure 2. Learning curves of CETL.

the low number of samples per category in CIFAR-100.

To further demonstrate the rationale of the DWA loss, we

trace the changes of classification loss of T2 and normalized

DWA losses by the solid lines in Fig. 2 for the CIFAR-10

classification task. Clearly, the classification loss decreases

with the epochs as usual. However, note that the DWA1

loss first increases to a peak value before decreasing and

getting converged. This is because at the very beginning of

training, T1 is randomly initialized and for the first a few

epochs, most of the weights in T1 are not important for T1 ◦
S and thus the loss is small. Around epoch 32, the weights

in T1 becomes more important for T1 ◦ S, leading to a larger

DWA1 loss, after which the DWA1 loss decreases as the

changes of weights decrease until converged. The trends of

DWA2 and DWA3 losses follow a similar pattern.

4.3. Domain Adaptation

For the last task, we compare CETL with current state-

of-the-arts on domain adaptation where target data does not

have labels but has same categories as the source data. In

this case, similar to other models, the multi-objective in

CETL is to use target data for reconstruction and source

data for classification. Following the same settings used in

some recent work [10], we directly compare CETL with the

reported performance in the literature in Table 5. ADDA

and WDA results are directly obtained from [35] and [37],

and a dash in the table means that the result is not reported

by the corresponding model on the given dataset.

Clearly, CETL significantly improved from the prior arts

and achieved the best performance on all domain adap-

tion combinations. In particular, CETL with coupled loss

and GFI can overcome the catastrophic forgetting in multi-

tasks and outperforms models (e.g., DRCN) that consider

the tasks (i.e., reconstruction and classification) separately.

Furthermore, we compared CETL with associative domain

adaptation models in [15, 14]. Results show that CETL is

very competitive with these models on domain adaptation

while having the flexibility of also performing knowledge

distillation and transfer learning. For example, in “SV-MN”

(one of the best results mentioned in [14]), the relative im-

provement is 40.86% (before and after domain adaptation)

in [14], 22.16% in [15], while CETL gains 33.69%.

Finally, to validate Remark 4 from an experimental per-

spective, we demonstrate the normalized values of RHS and

LHS in Eq. (14) w.r.t the training epochs in “SV-MN”. As

shown by the dashed and dotted lines in Fig. 2, LHS is

bounded by RHS, and clearly, their difference converges to

almost zero as the training epoch increases.

5. Conclusion
In this paper, we proposed a novel CETL framework

for image classification. A novel loss function, the cou-

pled loss, established base on the learning bound of CETL,

was introduced for CETL training. In addition, GFI was

integrated to improve the multi-task optimization in CETL.

Experimentally, we extensively compared CETL with other

state-of-the-art models for various tasks on benchmark

datasets and achieved superior performance.
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