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Objective Detection of Eloquent Axonal
Pathways to Minimize Postoperative Deficits
in Pediatric Epilepsy Surgery Using Diffusion

Tractography and Convolutional
Neural Networks

Haotian Xu, Ming Dong, Min-Hee Lee , Nolan O’Hara, Eishi Asano , and Jeong-Won Jeong

Abstract— Convolutional neural networks (CNNs) have
recently been used in biomedical imaging applications with
great success. In this paper, we investigated the classifi-
cation performance of CNN models on diffusion weighted
imaging (DWI) streamlines defined by functional MRI (fMRI)
and electrical stimulation mapping (ESM). To learn a set of
discriminative and interpretable features from the extremely
unbalanced dataset, we evaluated different CNN architec-
tures with multiple loss functions (e.g., focal loss and
center loss) and a soft attention mechanism and com-
pared our models with current state-of-the-art methods.
Through extensive experiments on streamlines collected
from 70 healthy children and 70 children with focal epilepsy,
we demonstrated that our deep CNN model with focal and
central losses and soft attention outperforms all existing
models in the literature and provides clinically accept-
able accuracy (73%–100%) for the objective detection of
functionally important white matter pathways, including
ESM determined eloquent areas such as primary motors,
aphasia, speech arrest, auditory, and visual functions.
The findings of this paper encourage further investiga-
tions to determine if DWI-CNN analysis can serve as a
noninvasive diagnostic tool during pediatric presurgical
planning by estimating not only the location of essen-
tial cortices at the gyral level but also the underlying
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fibers connecting these cortical areas to minimize or
predict postsurgical functional deficits. This paper trans-
lates an advanced CNN model to clinical practice in the
pediatric population where currently available approaches
(e.g., ESM and fMRI) are suboptimal. The implementation
will be released at https://github.com/HaotianMXu/Brain-
fiber-classification-using-CNNs.

Index Terms— Convolutional neural network, DWI
streamline, eloquent function, epilepsy surgery.

I. INTRODUCTION

THE principle of presurgical evaluation in epilepsy is
to determine the relationships between the epilepto-

genic zone and the surrounding functionally important cortex,
such as primary motor, language, auditory, and visual areas
(“eloquent cortex”) [1]. Without accurate localization of such
brain regions, one cannot achieve the ultimate goal of epilepsy
surgery, which is to eliminate epileptic seizures without creat-
ing new functional deficits. The current gold standard method
to identify eloquent cortex is direct electrical stimulation
mapping (ESM) of brain function [2]. However, ESM is not
an ideal method, since it requires implantation of invasive
intracranial electrodes, carries the inherent risk of electrically-
induced seizures, and sometimes fails to identify eloquent
cortex, especially in children. For instance, our previous
study [3] reported that a contralateral hand movement was
not elicited by electrical stimulation in 15 of 65 children.
The average age of children in this “no motor response
group” was 3.4 years old, suggesting that younger patients
are at risk for ESM failure when identifying motor functions.
Also, of the 50 children with a contralateral hand movement
elicited by electrical stimulation, 24 showed the motor hand
area in the postcentral gyrus, and 17 children showed the
hand area in both pre- and postcentral gyri, indicating that
a substantial proportion of young patients with focal epilepsy
had a prominent variation in the hand motor area between
these two regions. Such variations are more prominent in
lesional cases.

An alternative approach to ESM is functional MRI
(fMRI) [4], [5], which is non-invasive but highly susceptible
to movement artifacts and demands cooperative behavior
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during scanning. Thus, it is challenging to perform fMRI
studies in young patients with epilepsy (success rate < 60%
at age 4-6 years [6]). Furthermore, the epileptogenic zone
frequently involves the bottom of a deep sulcus [5], [7], which
is in close proximity to adjacent axonal pathways. Both ESM
via subdural electrodes and fMRI are inherently unable to
localize crucial subcortical white matter structures, which may
therefore be at risk for damage during surgery. Thus, there is
an urgent need in presurgical planning to accurately identify
eloquent regions of interest including both cortical areas and
white matter pathways to prevent postoperative deficits in
children with intractable epilepsy.

The present study proposes a critical translational
application of a diffusion weighted imaging (DWI)
tractography method that may serve as an efficient noninvasive
localizing tool supplementing, and in some cases replacing,
fMRI and ESM in children with intractable epilepsy. In the
last decade, DWI tractography has been a powerful technique
to visualize whole brain white matter tracts with minimal
patient cooperation [8], [9]. Many investigators have attempted
to dissect the complicated tract patterns of DWI whole brain
tractography by objectively recognizing their shape, length,
and anatomical features within multiple frameworks, including
virtual dissection based on expert knowledge [10], [11],
clustering using fiber similarity measures [12]–[15], atlas-
based labeling and annotation [16]–[19], and machine learning
methods [20], [21]. These approaches apply a set of target
models, including white matter atlases, exemplar stream-
lines, or other pre-defined anatomical information, to extract
known pathways from whole brain tractography with two
common objectives: to remove superficial or spurious tracts
and to save effort in white matter dissection. All of the reported
approaches differ methodologically and mixed outcomes have
been reported depending on the employed tractography
model, features, similarity measures, and data acquisition.

In contrast to previous studies, we focus on clinical
validation of automatic white matter dissection by performing
systemic comparisons of DWI tractography to detect
electrophysiologically-confirmed eloquent white matter
pathways in children. Such pathways are functionally relevant
but challenging to label (or annotate) in the context of
currently available large-scale white matter atlases. Herein,
it should be noted that our fiber targets of interest (i.e., classes)
are not the entire white matter fasciculi but functionally
specific-white matter pathways, including (i) primary
motor areas supporting movement of different body parts:
face/finger/hand/leg, (ii) language areas at which stimulation
elicited different types of symptoms: expressive aphasia/
receptive aphasia/speech arrest, (iii) primary auditory area
associated with stimulation-induced auditory hallucination,
and (iv) visual areas associated with phosphene or perception
of visual distortion. These individual pathways share similar
tract shapes but have different locations of cortical terminals.
For instance, fiber trajectories associated with each category
of primary motor, language, and visual functions are very
similar in pattern and geometry, making classification by
current clustering methods difficult (e.g., see similar patterns
of streamline exemplars (or centroids) presented in Fig. 1).

Fig. 1. QuickBundles centroid streamlines of 64 functionally important
white matter pathways of interest, Ci, are obtained from the healthy
children group. QuickBundles distance threshold [13], [15] was set at
20 mm for each of 64 group-streamline clusters, Ci (n = 70).

Motivated by this limitation, our previous studies
(DWI-MAP) [22], [23] proposed a Bayesian inference-based
tract detection paradigm which can effectively discriminate
subtle differences in tract location with minimal effort
towards feature design. A major advantage of DWI-MAP is
the simultaneous localization of functionally-important white
matter and grey matter without using any supplementary
acquisitions like fMRI and ESM. In addition, it does not
require the patient to cooperate with a task, and can ultimately
be extended to localize other important pathways of infants
and young patients, in whom functional localization cannot
be done using either fMRI or ESM (about 30% of surgical
cases). However, DWI-MAP was designed to classify a
given streamline into one of a limited number of target
classes (i.e., six primary motor pathways including face,
finger, and leg fibers in both hemispheres and five language
pathways in left hemisphere), by computing the maximum
posteriori probability of individual fiber streamlines with
fMRI-derived white matter probability maps and equal class
priori assumptions. In this paper, we investigate whether an
end-to-end deep learning framework of DWI tractography
without any priori information can effectively classify
functionally-important white matter pathways for successful
epilepsy surgery.

As one of the most powerful deep learning frameworks,
convolutional neural networks (CNNs) have been widely used
in biomedical imaging tasks with unknown priori distribu-
tion [20], [21], [24]. In this work, an off-line, retrospective
IRB-approved study was conducted to investigate the detec-
tion capability of CNNs for 64 functionally-important white
matter pathways that should be preserved in epilepsy surgery,
including primary motor, language, auditory, and visual path-
ways. Compared to previous approaches, our key insight is
that rather than first building a tract atlas based on priori
information and then feeding the input into a statistical model,
we can instead utilize CNNs to provide an end-to-end learning
which integrates white matter pathway classification with
direct representation learning without any priori distribution
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information [25]. From a computing perspective, the novelty
of present work is as follows:

• Two CNN architectures with different depths were inves-
tigated in this study. The first is a shallow CNN model
with 3 layers from our previous work [26]. Inspired by
the success of very deep CNNs [27], we also adapted
the shallow CNN into a deep model with 21 layers. The
proposed CNN models generate different feature maps of
the input data (i.e., 3D spatial coordinates of individual
fiber streamlines) by using a sequence of convolutional
and pooling layers before classifying input data using
fully connected layers.

• Multiple CNN loss functions [28], [29] were employed
for white matter pathway classification. First, since our
dataset is highly unbalanced and cannot be handled
well by CNNs with conventional cross-entropy loss,
we applied focal loss [29] to train the proposed CNN
models. Focal loss applies a modulating term to the
cross-entropy loss to help focus on hard examples and
down-weight the numerous easy ones. Second, to further
improve the classification performance and generaliza-
tion of the proposed CNN models, center loss [28]
was employed, which adds a cluster-based loss term
to the cross-entropy loss ensuring that the learned rep-
resentations have both compact intra-class variations
and large inter-class margins. That is, the learned
fiber representation is not only separable but also
discriminative.

• Although CNNs have led to breakthroughs in many
applications, the end-to-end learning strategy makes the
entire CNN model a “black box.” This weakness is
particularly prominent in biomedical imaging: if we do
not know how the trained CNNs classify each fiber,
we cannot fully trust the classification results provided
by the CNN models. In this study, we applied a soft
attention mechanism [30] in the proposed CNNs, which
highlights the most useful segments of a fiber for its
classification. We demonstrated that the attention provides
perspectives on how our CNNs classify white matter
pathways.

A goal of the present study is to identify and evalu-
ate a novel deep learning approach that achieves the high-
est accuracy and best interpretability in detecting eloquent
white matter pathways of interest. This is a critical step
toward minimizing postoperative deficits in pediatric epilepsy
surgery. By intensive in vivo comparisons with current gold
standard ESM, this study demonstrates that CNNs have
high translational value, and that the concepts derived from
them might increase localization accuracy of functionally
important brain tissue and minimize risk of postoperative
deficit.

The rest of the paper is organized as follows: Section II
describes the details of our CNN models: the architecture,
the loss functions for training, and the soft attention mech-
anism. Section III describes the setup and results of our
CNN-based fiber classification experiments. Lastly, Section IV
presents discussion, conclusion, and future applications of our
models.

II. METHODOLOGY

A. Subjects

To construct training and test datasets of the proposed
CNN-based fiber classification, 70 healthy children (age:
12.01 ± 4.80, 36 boys) were recruited for the present study.
Also, 70 children with drug-resistant epilepsy who under-
went presurgical workup for epilepsy between 2009 and
2017 were retrospectively selected for the validation dataset
(age: 11.60 ± 4.80 years, 36 males). Inclusion criteria were
1) drug-resistant epilepsy requiring two-stage epilepsy surgery
with chronic subdural ESM mapping at the Children’s Hospital
of Michigan or Harper University Hospital, 2) no motor
and/or language impairment, and 3) MRI abnormalities, except
massive brain malformation and other extensive lesions that
likely destroyed the ipsilateral tracts and led to reorganization.
Exclusion criteria were 1) history of prematurity or perinatal
hypoxic-ischemic event, 2) hemiplegia on preoperative exam-
ination by pediatric neurologists, and 3) dysmorphic features
suggestive of a clinical syndrome.

B. Data Acquisition

All participants underwent DWI using a GE Signa 3T
scanner with eight channel head coil at TR = 12500 ms,
TE = 88.7 ms, FOV = 24 cm, 128 × 128 acquisition
matrix (nominal resolution = 1.89 mm), contiguous 3 mm
thickness in order to cover entire axial slices of whole brain
using 55 isotropic gradient directions with b = 1000 s/mm2,
number of excitations = 1, and single b = 0 image. For
anatomical reference, a three-dimensional fast spoiled gradient
echo sequence (FSPGR) was applied to acquire T1-weighted
image at TR/TE/TI of 9.12/3.66/400 ms, slice thickness
of 1.2 mm, and planar resolution of 0.94 × 0.94 mm2.

Healthy children underwent two fMRI studies at TR =
2000 ms, TE = 30 ms, FOV = 24 cm, 64 × 64 acquisition
matrix, 4 mm thickness in order to localize 4 primary motor
areas (face, fingers, arm, leg), 10 language regions: inferior
frontal operculum (ifop), inferior frontal triangularis (iftr),
middle frontal gyrus (mdfg), inferior precentral gyrus (prec),
superior temporal gyrus (stg), middle temporal gyrus (mtg),
inferior temporal gyrus (itg), supplementary motor area (sma),
angular gyrus (ang), supramarginal gyrus (spm), 2 auditory
regions: stg, mtg, and 7 visual regions: inferior occipital
gyrus (iocc), middle occipital gyrus (mocc), superior occipital
gyrus (socc), calcarine (calc), lingual (ling), fusiform (fusi),
cuneous (cune). Briefly, for mapping primary motor areas,
event-related tasks triggering a single movement of the face,
fingers, arm, and leg to each side (left/right) were presented
every five seconds in a 15-second block. The block was
repeated 10 times for each side, resulting in total 20 sequential
movements of face, fingers, arm and leg in a 5-minute session.
BOLD activation was recorded for each primary motor area of
each hemisphere and utilized as a binary mask to distinguish
relative primary motor tracts to posterior limb of internal cap-
sule (PLIC). To map semantic language, auditory, and visual
areas, three different patterns (square, triangle, and circle)
were randomly displayed every five seconds in a 30-second
block. Subjects were instructed to press one of two buttons
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TABLE I
22 ELOQUENT ESM ELECTRODE CLASSES, Dj, ARE THE PRESENT
TARGETS FOR DETECTION USING THE PROPOSED CNN METHODS

(yes, no) in response to an audio question (ON 30-second
block) or visual pattern comparison (OFF 30-second block).
These ON-OFF blocks were repeated four times, resulting in
a 4-minute session. BOLD activation was recorded for each
functional area and utilized as a binary mask to distinguish
relative pathways from the inferior colliculus geniculate (icg,
hearing) and lateral geniculate nucleus (lgn, vision). SPM
12 software package (https://www.fil.ion.ucl.ac.uk/spm/) was
used to process all fMRI data, including motion correction,
general linear modeling, and statistical analysis, to identify the
locations of brain activation in response to functional tasks at
uncorrected p-value <0.05 [31].

Epilepsy patients underwent subdural electrode placement
as a part of their clinical management for medically-
uncontrolled seizures. ESM, using the method previously
established [32], [33], was performed as part of clinical care
during extraoperative electrocorticography recordings. Briefly,
subdural electrode pairs were stimulated by an electrical pulse-
train of 5-second maximum duration using pulses of 300 μsec
duration and 50 Hz frequency. Initially, stimulus intensity
was set to 3 mA. Stimulus intensity was increased from 3 to
9 mA in a stepwise manner by 3 mA increments until a
clinical response or an after-discharge on electrocorticography
was observed. When after-discharge without an observed
clinical response occurred, or when neither clinical response
nor after-discharge was induced by the maximally-intense
stimuli, the site was declared “not proven eloquent.” When
both clinical response and after-discharges occur, another
pulse-train of the same or 1 mA smaller intensity was
used until either clinical response or after-discharge failed
to develop. Finally, a site with a contralateral movement
induced by stimulation, without after-discharges, was defined
as the “primary motor area” for the associated body part.
Likewise, a site with speech arrest, expressive aphasia,
receptive aphasia, auditory hallucination, or visual perception
was classified as an essential eloquent area for comparison
with the proposed CNN-based fiber classification (Table I).
Using the landmark based registration procedure [34], those
electrodes were spatially registered to native brain space (i.e.
T1-weighted and DWI b = 0 image) and used as the ground
truth of the CNN-based fiber classification.

Fig. 2. Shallow CNN (SCNN) architecture for DWI streamline
classification.

C. DWI Tractography Analysis

NIH TORTOISE [35] and FSL eddy package [36] were used
to correct motion, noise, physiological artifacts, susceptibility-
induced distortion, and eddy current-induced distortion in
the DWI data. Whole brain streamline tractography was
reconstructed using probabilistic tractography with second-
order integration over fiber orientation distributions (iFOD2)
to sample the FOD at three equi-distant sample points along
each candidate path segment for the next step [37]. Spherical-
deconvolution informed filtering of tractograms (SIFT) [38]
was applied to the resulting whole brain tractography in
order to make streamline densities proportional to the fiber
densities as estimated by spherical deconvolution throughout
the white matter. At every voxel of grey/white matter boundary
identified by the FSL FAST package [39], 100 dynamically
randomized seeding points were applied in the framework
of anatomically constrained tractography [40] to reconstruct
biologically realistic streamlines. Then, the binary masks
from fMRI activation were applied as an inclusion mask to
sort out class relative streamline pathways from whole brain
tractography (Table II). The resulting streamline pathways
were spatially normalized to FreeSurfer average template
space with Advanced Normalization Tools [41], sampled into
100 equal-distance segmentation points (sk=1−100), and finally
3D coordinates of these 100 segmentation points were used to
represent each fiber for subsequent CNN classification. Fig. 1
presents 64 centroid streamlines of Ci obtained by applying the
QuickBundles algorithm [13] to Ci of the 70 healthy children,
which illustrates the most representative streamline trajectories
of Ci in the FreeSurfer average template.

D. Shallow CNN Model for DWI Streamline Classification

Fig. 2 presents our shallow CNN model which has one input
layer, one convolution layer, one sub-sampling layer and one
fully connected layer with the softmax function. The details
of each layer are described as follows.
1) Input Layer: Formally, we denote xl ∈ R

k as the
k-dimensional point representation for the lth point in a fiber.
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TABLE II
64 FUNCTIONALLY IMPORTANT WHITE MATTER PATHWAYS OF
INTEREST, Ci (LEFT, RIGHT HEMISPHERE), ARE THE PRESENT

TARGETS FOR DETECTION USING THE PROPOSED
CNN METHODS

A fiber of length L is denoted as

X1:L = x1 ⊕ x2 ⊕ · · · ⊕ xL, (1)

where ⊕ is the concatenation operator. By this, each input
fiber is represented as a L × k matrix. In practice, we sample
100 points for each fiber and utilize coordinates of each point
as its representation. Thus, each matrix has the same size,
100 × 3.
2) Convolution Layer: A convolution filter w ∈ R

h×k is
applied to a window of h points of k-dimensional embedding
in the convolution layer to produce a feature map. For instance,
given a window of points Xl:l+h−1 and a bias term b ∈ R,
a feature gi is generated by

gi = f (w · Xl:l+h−1 + b), (2)

where f is a non-linear function. In our case, we apply ReLU
to the input matrices which sets negative elements in gi as 0.
A feature map g = [g1, g2, · · · , gL−h+1] is obtained from all
the possible windows of a fiber of length L. In our system,
multiple filters of various sizes are applied in the convolution
layer to produce multi-scale feature maps.
3) Sub-SamplingLayer: In the sub-sampling layer, we apply

max pooling over each feature map produced in the convolu-
tion layer and output the maximum element ĝ = max {g}.

We denote features generated by the max pooling layer as

Ĝ = ĝ1 ⊕ ĝ2 ⊕ · · · ⊕ ĝM , (3)

where M is the number of feature maps.
4) Dropout: Dropout is a technique to reduce the chance of

overfitting for neural networks [42]. Given feature map Ĝ,
we generate a dropout mask vector r ∈ R

m of Bernoulli
variables with probability pd of being set as 0 and 1 − pd

of being set as 1. The output of dropout is

Ĝd = Ĝ ◦ r, (4)

where ◦ denotes the element-wise multiplication operator.
Empirically, we chose pd = 0.5 in this study.
5) Fully Connected Layer: Given Ĝd as the input, fully

connected layers generate output

Ĝ f c = ReLU(w · Ĝd + b). (5)

6) Output Layer: On the output layer, we apply softmax
function instead of ReLU to get the final classification prob-
abilities

pi = sofmax(Ĝ f c), (6)

where pi denotes prediction probabilities of the i th fiber
belonging to each class. The class with highest probability is
chosen as the final classification result for the corresponding
fiber.
7) Optimization: Cross-entropy loss is selected as the train-

ing objective to minimize. The cross-entropy loss for the i th
fiber is defined as

Li
C E = − log pi

c, (7)

where pi
c is the prediction probability of the i th fiber in the

dataset belonging to the ground truth class c.

E. Deep CNN Model for DWI Streamline Classification

Fig. 3 shows the proposed deep network consisting of a
series of stages. The first stage is composed of two types
of layers: convolution layers and pooling layers. The input
fibers are passed through a set of filters followed by non-
linear transformations. Then, the maximum of local patches
are extracted. Second, four blocks of convolution, pooling,
and concatenation layers are applied to learn high-level fine
features from the brain fibers. For each residual unit, its input
is added to the output before the ReLU layer. The basic idea is
that, rather than expecting blocks to approximate the fiber clas-
sification function, we explicitly let these layers approximate
a residual function, which is easier to be optimized. Third,
fully connected and softmax layers are induced to get the final
prediction which contains the probabilities of the input fiber
belonging to each class. The class with the highest probability
is taken as the final prediction. The dropout units are also
applied to help prevent overfitting.

For optimization, the cross-entropy loss is applied to com-
pare the shallow and deep CNN models. To further improve
the classification performance, we also applied and evaluated
two novel loss functions:
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Fig. 3. Deep CNN (DCNN) architecture for DWI streamline classification.

1) Focal Loss: In general, the large class unbalance encoun-
tered during training overwhelms the cross-entropy loss. Easily
classified fibers comprise most of the loss and dominate the
gradient. In this work, we replace the conventional cross-
entropy loss in CNN with focal loss [29] in order to reduce the
loss for well-classified fibers and focus on harder, misclassified
ones. We define the focal loss for the i th fiber as

Li
F = −(1 − pi

c)
γ log pi

c, (8)

where γ is the focusing parameter. Empirically, we choose
γ = 2. The modulating factor (1 − pi

c)
γ reduces the

loss contribution from easy examples: a fiber classified with
pi

c ≥ 0.9 contributes at least 100× lower focal loss compared
to cross-entropy loss; while hard examples with pi

c ≤ 0.5
would only be scaled down at most 4×.
2) Center Loss: The conventional cross-entropy loss only

encourages the separability of features. To further improve
the performance and generalization ability of the proposed
CNN classifier, the learned fiber representation needs to be
not only separable but also discriminative. We added an
item, i.e., center loss [28], to the classification loss, which
simultaneously learns a center for deep features of each class
and penalizes the distances between the deep features and their
corresponding class centers. Formally, we denote the center
loss of the i th fiber as

Li
C = ‖ f i

c − ec‖2, (9)

where f i
c ∈ Rd denotes the deep feature vector of the i th

fiber in class c, and ec ∈ Rd denotes the current centroid of
class c. Note that the centroid updates itself during the mini
batch training of our model [28]. Thus, the overall loss to be
optimized is

Li = Li
class + λLi

C , (10)

where Li
class denotes the classification loss, and Li

C is the
center loss. Empirically, we choose λ = 1 in this study.
As defined in Eq. (6), the class with highest probability, pi

c is
taken as the final prediction of the i th fiber.

F. Learning Interpretable Fiber Representation

CNNs have achieved great success in many tasks. However,
the end-to-end learning strategy makes the CNN model a

Fig. 4. An example of the attention map of feature maps (with width W
and height H) in different channels.

“black box.” This weakness is particularly prominent in bio-
medical imaging: if we do not know how the trained CNN
classifies each fiber, we cannot fully trust the classification
results provided by this model. By incorporating an attention
mechanism [30] into our CNN fiber classifiers, we are able to
highlight the attention of our CNN model and understand how
it makes predictions.

As shown in Fig. 4, each soft attention unit returns a
continuous, weighted average over different locations on all
the feature channels. We denote the location variable as s
where the model decides to focus, the attention weight as α,
and the feature of the i th fiber as f i . The expectation of
the attention-weighted output feature map zi is then given as
follows,

Ep(s)[zi ] = α f i . (11)

In practice, we insert one attention unit to the end of each
residual block as shown in Fig. 5. Since the soft attention is
smooth and differentiable, it is straightforward to update the
attention weights by using standard backpropagation during
the training of CNNs.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

We performed thorough ablation study of our CNN models
and compared ours with the current state-of-the-art models
in brain fiber classification. Specifically, based on the same



1916 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 8, AUGUST 2019

Fig. 5. Soft attention unit in CNN models.

Fig. 6. Convergence of training (a) and testing (b) losses in DCNN-CL-
ATT obtained from different sample sizes of (training/testing) subjects.

training and testing splits, we evaluated and compared the
following models:

• Baseline: linear SVM (LSVM) and Logistic Regression
(LR). Since our dataset is large, the implementation was
approximated using PyTorch 0.2 [43].

• State-of-the-art models: RecoBundles [15], a clustering
method based on fiber similarity, and FiberNet [20],
which has an architecture similar to our shallow CNN
model.

• CNN models with different loss functions including shal-
low CNN with cross-entropy loss (SCNN-CE), deep CNN
with cross-entropy loss (DCNN-CE), deep CNN with
focal loss (DCNN-FL), and deep CNN with both focal
loss and center loss (DCNN-CL).

• Deep CNN models with attention mechanism combined
with DCNN-CL (DCNN-CL-ATT).

• Fiber shapes, i.e., curvature and torsion, were also com-
puted using an open resource code provided by [21] and
then concatenated with spatial coordinates of a fiber as
the input to our DCNN-CL-ATT (DCNN-CL-ATT-TC).

All the proposed CNN models were implemented using
PyTorch 0.2. Adam [44], an adaptive learning rate approach
for Stochastic Gradient Descent, was utilized to minimize the
selected loss functions. The learning rate was empirically set
at 0.0001 for all CNNs.

In our study, we first evaluated the impact of training
sample size on network convergence. Fig. 6 shows training
and testing losses of DCNN-CL-ATT obtained by varying
sample size of training subject (i.e., 14, 28, 42, and 56). Red
curves represent the training and testing losses with 14 training
subjects. Clearly, this convergence is the slowest, and stability
is lower when compared to the training losses with a larger
number of subjects. Also, it is notable that the training and
testing losses of 56 training subjects were slightly reduced
compared with ones of 42 subjects. Thus, we decided to utilize
streamline fibers from 56 randomly chosen healthy subjects
as our training Ci set. Streamline fibers from the remaining

Fig. 7. Histogram of fiber streamlines in training set, Ci.

TABLE III
MEAN AND STANDARD DEVIATION OF THE DCNN-CL-ATT
MACRO-AVERAGED F1 SCORES OVER ALL CLASSES

AT DIFFERENT TRAINING SET SIZE

TABLE IV
MEAN AND STANDARD DEVIATION OF THE MACRO-AVERAGED
F1 SCORES ACROSS ALL CLASSES FOR EACH METHOD.

BEST SCORES IN BOLD

14 healthy subjects were used as the testing Ci set in our
experiments.

The number of fiber streamlines for each class Ci in the
training set is presented in Fig. 7. Clearly, the distribution
is highly unbalanced: the most frequent classes have 40× to
220× more fibers than the least frequent classes. To evaluate
the performance of each model over the highly unbalanced
dataset we assessed F1 score, which is calculated as follows:

F1 = 2 · precision · recall

precision + recall
. (12)

The corresponding macro-averaged F1 scores with different
numbers of training subjects are reported in Table III for
DCNN-CL-ATT, which confirms that 56 subjects are sufficient
for training a deep CNN.

B. Fiber Classification Results

Average classification performance over all classes is listed
in Table IV for each of the aforementioned methods. For the
baselines, LR performed better than LSVM, demonstrating
the advantage of non-linear models over linear models in
brain fiber classification. Also, RecoBundles outperformed LR
(12.30%) when thresholding to a 15 mm pruning distance from
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Fig. 8. Confusion matrices of the top four DCNNs which present actual
F1 scores in training data. (a) DCNN-CE. (b) DCNN-FL. (c) DCNN-CL.
(d) DCNN-CL-ATT.

the 64 QuickBundles centroids presented in Fig. 1. 15 mm
pruning distance threshold was selected because it provided
the best macro-averaged F1 score in our training set (i.e.,
0.368 ± 0.182 and 0.327 ± 0.182 for 10 mm and 20 mm
threshold, respectively).

The CNN models significantly outperformed RecoBundles
by 127.34% or more, which indicates the strong classification
ability of deep learning models. Since the architecture of
FiberNet is similar to our shallow CNN but with one more
convolution layer and one more fully-connected layer, it was
found that FiberNet performed better than the proposed
shallow CNN but worse than the other deep CNN models.
In addition, DCNN-CE outperformed SCNN-CE by 6.71%,
which shows the advantage of deep learning in CNN
architecture. It is worth pointing out that introducing focal
loss to deep CNN improved the performance by 1.64%
comparing to deep CNN with conventional cross-entropy
loss. This demonstrates that the focal loss function is
better suited for the classification of our highly unbalanced
dataset. Moreover, DCNN-CL achieved better performance
than DCNN-FL by 1.41%, indicating the advantage of
discriminative representation learning using the center loss.

Our experiments showed that the best results could be
obtained by DCNN-CL-ATT, with a macro-averaged score
of 0.9525. It also showed that adding curvature and torsion to
the spatial coordinates (DCNN-CL-ATT-CT) would negatively
impact the classification performance (0.9337). This is likely
because fibers from different classes often share highly
similar shapes (i.e., curvature and torsion values), causing
the learned features to be less discriminative. Thus, we used
DCNN-CL-ATT-derived white matter pathways in the
validation and visualization studies subsequently presented.

To demonstrate high sensitivity and specificity of DCNN
based fiber classification, Fig. 8 presents confusion matrices
of the top four DCNN models (i.e., DCNN-CE, DCNN-FL,
DCNN-CL and DCNN-CL-ATT), which show actual F1 scores
obtained from training Ci set. The detailed F1 scores of
all models reported in Table IV are also available in the
supplementary material.

Fig. 9. An example of DCNN-CL-ATT derived-white matter pathway,
C5, for cortical area associated with finger movement of right hand, D5.
Black colored boxes indicate ESM electrodes of D5 which are spatially
well-matched to cortical terminals of C5 obtained at β = 0.95.

C. Validation Results

An illustrative example of white matter tracts associated
with finger movement, C5, detected by DCNN-CL-ATT, is pre-
sented in Fig. 9. This example shows the clinical case where
right hand finger movement was successfully induced during
the ESM procedure of an 8 year old patient. DCNN-CL-ATT
successfully localized the individual streamlines that have high
prediction probability of pi

c for class C5 (Eq. (6), greater than
specific threshold β) and also terminate in ESM-defined finger
areas of the precentral gyrus (two black-colored boxes). Our
experiments show that false detections localized outside the
electrodes were significantly reduced at β = 0.95 without
reducing true positives, suggesting high specificity of the
proposed DCNN-CL-ATT method to delineate functionally
eloquent areas and pathways from individual patients. Thus,
in the following validation study, we decided β = 0.95 as
the threshold value to distinguish true positive fibers belong
to each class Ci .

To assess the ability of DCNN-CL-ATT to detect eloquent
areas of interest determined by ESM, we performed receiver
operating characteristic (ROC) curve analysis at the group
level (n = 70 children with a diagnosis of focal epilepsy,
Fig. 10 and 11). For each of four functional categories
(primary motor, language, auditory, and visual function),
voxel-wise overlap count of the ESM electrodes (D j ) was
measured in FreeSurfer average template surfaces (i.e.,
lh.inflated, rh.inflated) by spatially transforming individual
electrodes from native T1 space to FreeSurfer average
T1 space (Fig.10, left column). The resulting count was
scaled by its maximum value in the template space in order
to estimate overlap probability across subjects. Moreover, the
voxel-wise overlap count of DCNN-CL-ATT classifications
corresponding to the same function was measured in the
template and scaled by its maximum value to estimate overlap
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Fig. 10. Comparison of DCNN-CL-ATT derived-white matter path-
ways Ci with ESM electrode classes Dj. For each functional category of
70 children with a diagnosis of focal epilepsy, voxel-wise overlap count of
the ESM electrodes (Dj) was measured in FreeSurfer average template
and scaled by its maximum value to estimate overlap probability across
subjects in whole bran (left). Similarly, voxel-wise overlap count of corre-
sponding DCNN-CL-ATT classification (Cj) was measured in FreeSurfer
average template and scaled by its maximum value to estimate overlap
probability across subjects (right).

Fig. 11. Performance of DCNN-CL-ATT derived-white matter pathways,
Ci, to detect ESM electrode classes, Dj, at the group level (n = 70).
ROC curve analysis was performed as a function of overlap probability
(streamline) in Ci in order to evaluate (a) area under curve, (b) sensitivity,
and (c) specificity overlapping between all surface vertices of Ci and Dj.

probability across subjects (Fig.10, right column). Since both
probability measurements were obtained from different
numbers of observations (651 electrodes vs. >106 streamlines
at β = 0.95), we applied Gaussian surface smoothing to both
measurements at full width at half maximum (FWHM) =
5mm (i.e. half of ESM resolution). Finally, to assess area under
curve (AUC), sensitivity, and specificity of the classification,
we first thresholded the overlap probability map of ESM
at 0.01 to define the “target area” and then sequentially
thresholded the overlap probability map of DCNN-CL-ATT
to define the “classification area” as a function of overlap
probability(streamline). Fig. 11 presents the results of the
ROC curve analysis. At group level, it was found that

TABLE V
PROBABILITY OF AN INDIVIDUAL DWI CLASS Ci TO MATCH AN
INDIVIDUAL ESM CLASS Ci USING DCNN-CL-ATT. FOUR
DISTANCE THRESHOLDS WERE APPLIED AT β = 0.95.

N.A INDICATES NO ESM ACQUIRED

DCNN-CL-ATT classification provides excellent prediction
for primary motor/language/auditory/visual function, AUC =
0.972/0.954/0.904/0.965 yielding outstanding sensitivity,
0.930/0.909/0.842/0.906 and specificity, 0.929/0.910/0.841/
0.906 at the threshold of overlap probability(streamline) =
0.147/0.126/0.011/0.011.

Finally, fiber streamlines classified by DCNN-CL-ATT, Ci ,
were compared with the gold standard ESM, D j , for validation
(Table. V). Cortical terminals of the selected Ci were spatially
matched with their gold standard ESM electrode locations D j ,
where a match was considered to occur if the DCNN area
contacted and overlapped the area of the gold standard.
The percentage of matching was assessed as a function of
Euclidean distance between the center point of each ESM
electrode and the cortical terminal point of an individual
DCNN-driven fiber streamline. For this validation, cortical
terminals of class fibers Ci whose pi

c values were thresholded
at β = 0.95 were spatially matched with the locations of
ESM results, D j , in 70 children with focal epilepsy. The
overlap match was counted if any of the fiber terminals
included the measured ESM electrode within each of four
Euclidean distances, contact (<1 cm, within a diameter of
individual electrode), 1 cm, 1.5 cm, and 2 cm. The detection
probability gradually increased according to this distance. For
instance, the average values of detection probability were
0.72/0.83/0.90/0.90 (contact/1 cm/1.5 cm/2 cm) for primary
motor areas, 0.74/0.81/0.87/0.93 (contact/1 cm/1.5 cm/2 cm)
for language areas, 0.4/0.8/0.8/0.9 (contact/1 cm/1.5 cm/
2 cm) for auditory areas, and 0.57/0.85/0.87/0.88 (contact/
1 cm/1.5 cm/2 cm) for visual areas, respectively. We found that
compared with our previous DWI-MAP analysis of primary
motor and language function [22], [23], the proposed DCNN-
CL-ATT method improved about 9-14% of the detection
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Fig. 12. Representative examples of DCNN-CL-ATT derived-white matter pathways Ci of which cortical terminals completely overlap Dj. Light green
colored clusters indicate ESM class electrodes Dj, spatially well-matched to cortical terminals of the obtained Ci.

probability by classifying more true positive streamlines (e.g.,
association fibers) into the correct ESM localizations.

Representative examples of DCNN-CL-ATT-derived white
matter fibers Ci at β = 0.95 are presented in Fig. 12 and com-
pared with eloquent areas determined by ESM. These areas
were obtained from four different test subjects: D2,8 from an
8 year old boy, D3,5 from a 12 year old girl, D9,11 from
another 8 year old boy, and D13,15,17,19 from a 14 year old
girl. It is notable that all predictions given by DCNN-CL-ATT
(i.e., RGB-colored fibers) are spatially well matched to the
gold standard ESM electrodes, which highlights the transla-
tional value of this approach: if an imaging tool can suggest
likely eloquent areas, clinical ESM may more accurately place
electrodes there for useful mapping. In contrast, Fig. 13 shows
two cases where DCNN-CL-ATT-derived white matter fibers,
C25 and C39 at β = 0.95, did not match with their correspond-
ing ESM classes, D17 and D22, representing left auditory and
right visual pathways, respectively. This is reflected by the
poor contact probability (0.2 and 0.33) reported in Table V.

With regard to the computation time, the proposed CNN
framework is implemented with PyTorch 0.2 and trained
on a NVidia GeForce GTX 1080 Ti graphic card. It takes
about 6 hours to train DCNN-CL-ATT. Given whole brain
tractography consisted of about 1 million streamlines,
DCNN-CL-ATT took about 15 minutes to classify them into
64 classes. As a comparison, our prior work (DWI-MAP)
took about 20 minutes to classify 11 classes of primary motor
and language related fiber streamlines.

D. Discriminative Fiber Representation

Center loss helps us learn a discriminative fiber represen-
tation. We extracted the output from the penultimate layer in
DCNN-FL and DCNN-CL models as the representations of

Fig. 13. Representative examples of DCNN-CL-ATT derived-white
matter pathways Ci of which cortical terminals incompletely overlap Dj.
White dotted circles indicate ESM class electrodes, D17 and D22,
spatially ill-matched to cortical terminals of the obtained C25 and C39,
yielding their low contact probability reported in Table V.

corresponding brain fibers. Then, we performed a quantitative
analysis by computing the intra- and inter-class distances of
representation vectors learned by DCNN-FL and DCNN-CL.
To make the distances comparable, the average intra-class
distances were normalized to 1. The normalized average
distances over all fiber classes are reported in Table VI.
The inter/intra distance ratio of fiber representations learned
with DCNN-CL is 32.55 times greater than that of the
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Fig. 14. Attention maps of representative classes related to primary motor, language, auditory, and visual functions. Higher values are more
important for classification. Left: Attention maps for C1, C4, C5, and C16. Right: Attention maps of C11, C21, C24 and C32.

TABLE VI
NORMALIZED MEAN AND STANDARD DEVIATION OF INTRA- AND

INTER-CLASS DISTANCES OF THE REPRESENTATIONS
LEARNED BY DCNN-FL AND DCNN-CL

representations learned with DCNN-FL, indicating that center
loss results in more discriminative fiber representation, better
intra-class compactness, and higher inter-class variations.

E. Visualization of Interpretable Fiber Representation
To illustrate how our DCNN models classify streamlines,

we visualized the attention maps for brain fibers in several
representative classes. First, we selected fibers with high
classification confidence (pi

c > 0.85). Next, the corresponding
attention maps over 100 points of the selected fibers were
extracted from the trained DCNN-CL-ATT model. Finally,
we computed the average attention weights for fibers belong-
ing to the same class and took that as the attention map of the
class.

Fig. 14 provides a clue on how the DCNN model makes
predictions for brain fiber streamlines. Primary motor stream-
lines C1,4,5,16 showed noticeable changes in attention weight
only at both s1(prec) and s100(PLIC). These changes directly
support the traditional homunculus representation of the
human brain’s precentral gyrus and posterior limb of internal
capsule [45], [46]: specific cortico-spinal tracts connect unique
segments of prec and PLIC, resulting in multiple classes of
prec and PLIC associated with the unique motor functions
of C1,4,5,16. Meanwhile, other language and auditory tracts
of C11,21,24,32, whose anatomical trajectories terminate at
different cortices (s1, s100), show different patterns of attention
weights widely spread through the entire range of spatial
coordinates s1−100. This example demonstrates the potential
of this attention map to identify the most important segments
of a streamline, providing a supplementary marker which
can be used to identify incorrectly tracked outliers (i.e. false
positives).

IV. DISCUSSION

The present study demonstrated that our deep CNN model
with focal and center losses and soft attention mechanism
can effectively learn discriminative and interpretable feature

representations of in-vivo DWI streamline trajectories, and
accurately detect eloquent functional areas determined by gold
standard ESM data. Actual streamline coordinates outper-
formed shape features such as curvature and torsion in train-
ing the DCNN-CL-ATT model, providing better anatomical
characteristics of individual fiber classes in most white matter
trajectories. The higher reliability of streamline coordinates
might be partially explained by taking into consideration that
malformation of cortical development (MCD) is by far the
most common epileptogenic pathology in pediatric epilepsy
surgery cohorts, accounting for up to 50% of the cases
(or even higher in some reports) [47], [48]. A diagnosis
of MCD includes a variety of pathologies, most commonly
focal cortical dysplasia type I/II, in which MRI can detect
cortical thinning/thickening, hypointense/hyperintense signals,
abnormal gyrification, and enlargement of the lateral ventri-
cles [49], [50]. Thus, the proposed DCNN method utilizing
spatial coordinates of entire white matter trajectories may
better minimize the effect of cortical malformations on tract
classification, where cortical-atlas-based tract clustering would
likely be limited by malformed gyrification, especially near the
cortical mantle. In contrast to parametric Gaussian approaches,
the proposed DCNN method makes no assumption regarding
a priori probabilistic distribution of individual streamlines.

In vivo visualization of white matter connections using DWI
tractography is a promising but challenging task in clinical
applications, which relies on a complex model characterizing
diffusion signals of water displacement on either multi shells
or Cartesian grids in the diffusion-encoding q-space [51]–[54].
The present study aimed to generalize the application of
a state-of-the-art DCNN classification to clinical DWI data,
which is typically limited by low angular resolution and
diffusion weighting [55], [56]. Importantly, the accuracy of
this DCNN model is highly dependent on DWI model and
the reconstruction algorithm used to generate training data
for the DWI streamlines. Given these dependencies and the
controversial limitations of DWI reconstruction (i.e. crossing
fiber problem), we elected to use an open source pipeline
(MRtrix3: www.mrtix.org) based on the principle of spher-
ical deconvolution reconstruction, which provides promising
reproducibility [37]. Although this reconstruction provided
clinically acceptable accuracy of 73-100% to detect eloquent
functions within the spatial resolution of ESM (1cm),
future implementation of advanced methods that overcome
the previously mentioned limitations may create a significantly
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better training set, which is essential to improve the accuracy
of this and alternative methods.

In this study, we mainly attempted to detect white matter
pathways with sufficient size and high coherence, since
smaller tracts like the association fibers or less coherent
connections are not reliably assessable in our current DWI
data. Higher resolution imaging that employs greater field
strength, stronger diffusion gradients, and high angular
resolution DWI (i.e., human connectome data available at
http://www.humanconnectomeproject.org) could enable the
delineation of such structures in the proposed DCNN-CL-ATT
model. Our target classes were also constructed using fMRI,
inevitably limited by ill-posed neurovascular coupling [57].
More importantly, fundamental ambiguities in current DWI
tractography models have been reported, limiting continuous
tracking of valid long-range fiber bundles in-vivo and generat-
ing a large amount of false-positive bundles near the cortical
mantle [58], [59]. Thus, the detection of eloquent areas using
the proposed DCNN-CL-ATT model may only be naturally
effective and valid on the gyral level and within relatively
short range, rather than at the nominal voxel resolution.

From a technical point of view, the proposed DCNN-
CL-ATT model requires a large amount of training data.
In the future, we plan to investigate how transfer learning
techniques [60] can help alleviate this limitation. Moreover,
we will further investigate the proposed attention map to see
if it can be used to detect malformed or incorrectly tracked
white matter trajectories (e.g., “wiggly tracked” fibers [61])
by systematically labeling a specific range of a given input
tract with significantly altered attention weights. It would
also be interesting to investigate whether the total number
of individual streamline coordinates in sk may affect overall
performance in relatively longer (or shorter) pathways by
disturbing the proposed DCNN-CL-ATT model at the pre-
fixed learning parameters.

In conclusion, the benefits of the proposed DCNN-CL-
ATT method in presurgical planning for epileptic resection
candidates include: 1) no added risk or cost to identify
functionally important areas, including both cortex and
subcortical pathways, 2) no need for patient task cooperation,
which is particularly important in young children, and 3) easy
applicability to other types of neurosurgical procedures (e.g.,
brain tumor resection). This study translates advanced deep
learning techniques to clinical practice in the pediatric pop-
ulation, where currently available approaches are suboptimal;
ESM often provides low sensitivity to localize eloquent areas
in young children, and fMRI suffers from motion artifact
and poor cooperation to map eloquent areas in children with
cognitive deficits. Systematic investigation of the proposed
DCNN-CL-ATT method will further improve presurgical
planning and provide a unique opportunity to minimize or
predict postsurgical functional deficits in the future.
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