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ABSTRACT

Huge amounts of data generated on social media during emergency situations is regarded as a trove of 
critical information. The use of supervised machine learning techniques in the early stages of a crisis 
is challenged by the lack of labeled data for that event. Furthermore, supervised models trained on 
labeled data from a prior crisis may not produce accurate results, due to inherent crisis variations. To 
address these challenges, the authors propose a hybrid feature-instance-parameter adaptation approach 
based on matrix factorization, k-nearest neighbors, and self-training. The proposed feature-instance 
adaptation selects a subset of the source crisis data that is representative for the target crisis data. 
The selected labeled source data, together with unlabeled target data, are used to learn self-training 
domain adaptation classifiers for the target crisis. Experimental results have shown that overall the 
hybrid domain adaptation classifiers perform better than the supervised classifiers learned from the 
original source data.
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INTRODUCTION

Social media is becoming a more prevalent part of our everyday life, due to the advancements 
in technology and virtualization. The availability of the Internet, cameras and real-time message 
boards at our fingertips has brought about live and parallel reporting, and witness testimonies during 
many events. These reports can be useful to responders and can help create awareness among the 
populace, especially in emergency situations (Meier, 2015; Watson, Finn, and Wadhwa, 2017). 
Despite the potential benefits, major response groups and organizations under-utilize these sources 
of information, as therein lie many administrative and technical challenges (Meier, 2013). Among 
the challenges, there are reliability issues associated with public and unstructured data, as well as 
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information overload issues, as millions of messages are posted during a crisis situation (Bullock, 
Haddow, and Coppola, 2012).

There are many recent studies that propose the use of machine learning techniques to provide 
automated methods for analyzing social media data to reduce the information overload (Imran et 
al., 2015; Beigi et al., 2016). Machine learning techniques can help transform raw data into usable 
information by labeling, prioritizing and structuring data, and making them beneficial to responders 
and to the populace in times of need (Qadir et al., 2016). However, supervised learning algorithms 
rely on labeled training data to build predictive models. Accurate labeling of data for an emerging 
crisis is both time consuming and expensive, and, hence, it is not appropriate to assume that labeled 
data for a current crisis will be promptly available to be used for analysis. The lack of labeled data 
for emerging crisis events prohibits the use of supervised learning techniques.

To address this challenge, several works proposed to use labeled data from prior “source” crises 
to learn supervised classifiers for a “target” crisis (Verma et al., 2011; Imran et al., 2013; Imran, Mitra, 
and Srivastava, 2016). However, due to the divergence of each crisis in terms of location, nature, season, 
etc. (Palen and Anderson 2016), the source crisis might not accurately represent the characteristics 
of the target crisis (Qadir et al., 2016; Imran et al., 2015). Domain adaptation techniques (Pan and 
Yang, 2010; Jiang, 2008) are designed to circumvent the lack of labeled target data by making use 
of unlabeled target data as guideposts for the readily available labeled source data. Studies in the 
emergency space have shown that using domain adaptation techniques, which use target unlabeled 
data and source labeled data together, significantly improve classification results as compared to 
supervised techniques that solely use labeled source data (Li et al., 2015, 2017). Unlabeled data from 
the target crisis becomes more abundant as the event unfolds, and it can enable the use of domain 
adaptation techniques during emerging or occurring crisis events.

There are several ways in which the unlabeled target data can be used with domain adaptation 
techniques, including parameter-based adaptation, instance-based adaptation and feature-based 
adaptation (Pan and Yang, 2010). In the parameter-based adaptation, the labeled source data is used 
together with the unlabeled target data to identify shared parameters that result in good predictions 
for the target data. In the instance-based adaptation, the unlabeled target data is used to identify and/
or reweigh the most relevant source labeled instances with respect to the target classification task, 
while in feature-based adaptation, the target unlabeled data and source labeled data are used together 
to find a feature representation that minimizes the difference between the two domains. Relevant prior 
work on crisis tweet classification using domain adaptation has relied on parameter-based adaptation. 
Specifically, Li et al. (2017) proposed to learn weighted source and target Naïve Bayes classifiers 
with the iterative methods of Expectation-Maximization (EM) (Dempster, Laird, and Rubin, 1977) 
and Self-Training (ST) (Yarowsky, 1995) and showed that the resulting classifiers can accurately 
predict the target.

Mazloom et al. (2018) proposed to use a combination of two domain adaptation approaches, 
specifically a hybrid between feature-based adaptation and instance-based adaptation, to reduce 
the variation between the two domains. First, the Alternating Nonnegative Least Squares Matrix 
Factorization (LSNMF) in (Lin, 2007) is used on the combined source and target data, represented 
using binary vectors, to create a dense and reduced conceptual representation of source and target 
instances. Subsequently, the k-Nearest Neighbors algorithm (kNN) is used to select a subset of the 
source instances which are most similar to the target instances, according to the cosine similarity 
calculated based on the reduced common representation. Finally, the selected subset is subsequently 
used to learn Naïve Bayes classifiers for the target crisis.

In this study, we propose to use a combination of all three domain adaptation approaches, 
specifically a hybrid between feature-based adaptation, instance-based adaptation, and parameter-
based adaptation to reduce the variation between the source and target domains. As in Mazloom et al. 
(2018), we first use the Alternating Nonnegative Least Squares Matrix Factorization (LSNMF) Lin 
(2007) on the combined source and target data to create a dense and reduced conceptual representation 
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of source and target instances. Subsequently, the k-Nearest Neighbors algorithm (kNN) is used to 
select a subset of the source instances which are most similar to the target instances, according to the 
cosine similarity calculated based on the reduced common representation. Finally, the parameter-based 
adaptation approach used in Li et al. (2017) is used on the selected subset of the source labeled data 
combined with the available target unlabeled data. The objective is to gain an understanding of the 
benefits provided by the hybrid feature-instance-parameter adaptation approach, as compared to the 
independent feature-instance and parameter-based adaptation approaches.

As an application, we focus on the task of classifying tweets as being relevant to the event of 
interest or not relevant. This is one of the most basic but crucial classifications needed during a 
crisis event, as subsequent analysis should be done only on data relevant to the crisis in question. 
Furthermore, this classification is not trivial: supervised classifiers may not achieve accurate results 
due to domain variations.

To summarize, our main contributions are as follows:

•	 We extend the hybrid feature-instance adaptation approach proposed in Mazloom et al. 
(2018) to a hybrid feature-instance-parameter adaptation approach, where self-training is 
used with the feature-instance adapted source data to transfer parameters from the source 
crisis to the target crisis;

•	 As opposed to Mazloom et al. (2018), where experiments were performed only on the CrisisLexT6 
(Olteanu et al., 2014a) dataset, we perform an extensive set of experiments on pairs of source-
target crisis events from two datasets, CrisisLexT6 (Olteanu et al., 2014a) and 2CTweets (Schulz, 
Guckelsberger, and Janssen, 2017). The goal is to evaluate the feature-instance adaptation 
approach by comparison with approaches that make use of either feature-based adaptation or 
instance-based adaptation, but not both;

•	 We study the variation of performance with the parameters of the feature-based adaptation 
(specifically, the number of features, f), and instance-based adaptation (specifically, the number 
of neighbors, k), respectively, to identify parameters that result in good overall performance.

METHODS

The goal of this study is to design and evaluate a hybrid feature-instance-parameter adaptation 
approach by combining two adaptation approaches that have been successfully used in the context 
of classifying crisis-related tweets, specifically a feature-instance adaptation approach proposed by 
Mazloom et al. (2018), with the self-training adaptation approach proposed by Li et al. (2017). As a 
base classifier, both Mazloom et al. (2018), and Li et al. (2017) have used Naïve Bayes, a simple but 
powerful classifier, which does not have any tunable hyper-parameters. Furthermore, Li et al. (2017) 
have shown that simple Bernoulli Naïve Bayes classifiers are very appropriate for analyzing crisis-
related data posted on social media, as they give results competitive with those of more sophisticated 
algorithms which have tunable hyper-parameters. However, other studies in the crisis domain have 
successfully used Random Forest (Imran, Mitra, and Srivastava 2016), an ensemble-type classifier, 
which is generally known to reduce the variance (Genuer 2012). Given the success of both Naïve 
Bayes and Random Forest classifiers, in this study we investigate both classifiers in the context of 
the hybrid feature-instance-parameter adaptation approach.

We will next review the feature-instance adaptation approach introduced in (Mazloom et al. 
2018), and then describe the combination of this approach with a self-training approach, similar to 
the one proposed in Li et al. (2017).

Feature-Instance Adaptation Approach
Given a source and target pair of crises, the goal is to adapt the source data by reducing the variance 
with respect to the target data, and then train a Naïve Bayes or Random Forest classifier on the adapted 
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source data. The source adaptation is guided by the target unlabeled data. More specifically, a hybrid 
feature-instance adaptation approach is used to select a subset of the source instances, which are most 
similar to the target instances. First, the target instances are used to construct a target vocabulary V, 
which is used to represent both source and target data as bag-of-words binary vectors. As part of the 
feature adaptation step, the resulting data matrix D is decomposed using the popular Least Squares 
Non-Negative Matrix Factorization (LSNMF) proposed by Lin (2007). The implementation of this 
method is available in Python under the “nimfa” package. Intuitively, the decomposition will produce 
a reduced dense representation of the data, which is more suitable for identifying similar instances 
as compared to the sparse binary representation (Guo and Diab 2012).

As part of the instance adaptation step, the reduced representation is used to identify source 
instances that are most similar to the target. More precisely, for each target (unlabeled) instance, 
we calculate the cosine similarity to the source instances and select the k nearest neighbors from 
the source. If two different target instances have the same source instance among the k nearest 
neighbors, the selected subset of the source may contain duplicate instances. Mazloom et al. 
(2018) experimented with two settings, one in which duplicate neighbors were retained (i.e., 
seen as reweighing source instances that are close to many target instances), and another one in 
which duplicates are removed (so that each instance is used with the same weight). Experimental 
results showed that the setting where duplicates are retained gives better results overall, and 
thus, we only use this setting in the current study. Mazloom et al. (2018) also demonstrated that 
results from the joint feature-instance adaptation are superior to that of their standalone versions 
and provide better consistency throughout different datasets. Our experimental results regarding 
this matter had similar results to their work hence, only the joint adaptation results are discussed 
further in this study.

Finally, Naïve Bayes and Random Forest algorithms, respectively, are used to learn classifiers 
from the selected subset of the source. For Naïve Bayes, Mazloom et al. (2018) also experimented 
with two settings: one in which the Gaussian Naïve Bayes algorithm is used on the reduced 
representation of the selected source instances, and another one in which the Bernoulli Naïve 
Bayes algorithm is used on the original binary representation of the selected source instances. 
Experimental results showed that the Bernoulli Naïve Bayes classifiers are better than the Gaussian 
Naïve Bayes classifiers. In preliminary examination with Random Forest, we observed similar 
results. Therefore, in this study, we train Bernoulli Naïve Bayes and Random Forest classifiers 
on the original binary representation of the selected source instances. The resulting classifiers 
are evaluated on a separate target test dataset.

Self-Training Adaptation
Self-training is an iterative parameter-based approach for adapting a source classifier to a target event. 
Initially, a classifier is learned from the source labeled data, SL. At each iteration, the current classifier 
is used to label the available unlabeled target data TU, and the most confidently labeled target instances 
n in each class are used to update the classifier. This process is repeated for a fixed number of iterations. 
A parameter γ  controls the contribution/weight of the source instances as opposed to the target 
instances at each iteration i. Intuitively, with each iteration, i, the weight gradually shifts from the 
source instances towards the target instances.

The classifier adaptation works naturally for Naïve Bayes, where the probability estimates can 
be easily adjusted as new training data becomes available. However, this is not the case for Random 
Forest classifiers, where the structure of a tree might be altered when new training data is added. 
Instead of changing the existing trees, or building the whole random forest classifier from scratch, 
it is preferable to add new trees to the existing classifier. This is the approach followed in this study. 
This approach is preferable to rebuilding the entire forest which significantly reduces efficiency and 
scalability for larger datasets.
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Combining Feature-Instance Adaptation With Self-Training
We propose a hybrid feature-instance-parameter adaptation approach by combining the feature-instance 
adaptation with a variant of the self-training approach used by Li et al. (2017), as described above. 
Specifically, instead of directly using the Bernoulli Naïve Bayes and Random Forest classifiers on the 
selected source labeled data, the iterative process of self-training is used to adapt the parameters of 
the classifiers learned from the selected source, reverted to the binary representation, based on target 
unlabeled data. In the case of the feature-instance adaptation, the resulting classifiers are evaluated 
on a separate target test data.

The hybrid feature-instance-parameter approach is summarized in Algorithm 1.

Algorithm 1. Hybrid feature-instance-parameter adaptation

Input: Source labeled data, SL, target unlabeled data, TU, and  
       target test data, TT. 
1: Construct a vocabulary, V, using the target unlabeled data, TU. 
2: Represent source, SL, and target, TU, as V -dimensional binary  
   vectors, and create the combined source and target data matrix, D. 
3: Feature adaptation: Perform the Least Squares Non-Negative  
   Matrix Factorization (LSNMF) on the combined source and  
   target data matrix, D, resulting in a reduced f -dimensional  
   representation of the paired events. 
4: Instance adaptation: Using the reduced representation, for each  
   target instance in TU, find the k nearest source instances in  
   SL, and add them (binary representation) to the adapted source,  
   Adap- SL, while retaining duplicates. 
5: Self-training: Use the adapted source data, Adap- SL, and  
   target unlabeled data, TU (binary representation), to  
   iteratively learn a target classifier. 
6: Evaluate the resulting hybrid classifier on the target test  
   data, TT.

Dataset
This study will use two datasets to evaluate the proposed hybrid adaptation approach. The first dataset, 
CrisisLexT6 (T6) (Olteanu et al., 2014b), is a collection of tweets collected from six disasters that 
occurred in United States, Canada and Australia between the period of October 2012 and July 2013. 
The dataset contains approximately 10,000 tweets per disaster labeled as related to a disaster (“on 
topic”) or not (“off topic”). The second dataset, 2CTweets (2C) (Schulz, Guckelsberger, and Janssen, 
2017), is a collection of tweets about incidents, such as car crash, fire or shooting, which happened 
in 10 different cities. Tweets were labeled as incident related (Yes) or not (No).

The datasets were originally collected though the Twitter API using keywords, geographic 
location and the affected areas of their respective crises. The data was pre-processed using the 
procedure described in Li et al. (2015), which comprises of replacing URLs, usernames, and emails 
with placeholders, as well as removing non-printable ASCII characters, re-tweets, and duplicate 
tweets. Twelve source-target pairs are used for each dataset in the experiments. For the CrisisLexT6 
dataset, the events are paired based on chronological order and the pairs are selected to match the 
pairs in (Mazloom et al., 2018). For the 2C dataset, each event in a dataset is paired with all the other 
events, and a subset of pairs is selected as follows: First, pairs were ranked based on the accuracy 
results produced by the supervised Bernoulli Naïve Bayes classifier learned from the original source. 
Subsequently, a set of pairs was selected to ensure a wide range of accuracy values, while avoiding 



International Journal of Information Systems for Crisis Response and Management
Volume 11 • Issue 2 • July-December 2019

6

using the same event as source or as target in too many pairs. The goal was to obtain a subset of pairs 
that is representative for the set of all possible pairs.

Each pair was converted to a binary representation using the target vocabulary, which consists 
of approximately 1000 words on the average, after selecting words that are repeated at least ten or 
four times for T6 and 2C, respectively, within source and target combined. These parameters were 
primarily chosen based on prior work (Li et al., 2015; Mazloom et al., 2018) while considering 
sufficient usage and feature loss minimization. This would result in pairs with about 1000 features 
for analysis. Details about the events in each dataset and number of instances/features in each event 
are shown in Table 1. The specific pairs of events used for the two datasets are shown in Table 3. 

Table 1. List of the events in the CrisisLexT6 dataset (top) and the 2CTweets dataset (bottom) used in the experiments, 
together with information about the number of instances/features in each event.

CrisisLexT6 Crisis Instances
Features

Abbreviation Disaster Related Not Related Total

SAN Sandy Hurricane 3870 6138 10008 1380

QUE Queensland Floods 4619 5414 10033 1242

BOS Boston Bombings 4364 5648 10012 1317

OKL Oklahoma Tornado 5165 4827 9992 1143

WES West Texas Explosion 4760 5246 10006 1239

ALB Alberta Floods 4841 5186 10030 1322

2CTweets Crisis Instances
Features

Abbreviation Disaster Related Not Related Total

BOS Boston Bombings 604 2216 2820 1648

BRI Brisbane 698 1898 2587 1287

CHI Chicago 214 1270 1484 862

DUB Dublin 199 2616 2815 1384

LON London 552 2444 2996 1673

MEM Memphis 361 721 1082 771

NYC NYC 413 1446 1859 1119

SAN SanFrancisco 304 1176 1480 935

SEA Seattle 800 1404 2204 1375

SYD Sydney 852 1991 2843 1601

Table 2. List of the selected pairs used for the analysis results in the CrisisLexT6 dataset (top) and 2CTweets dataset (bottom) 
used in the experiments

Pairs CrisisLexT6

Source BOS BOS BOS OKL QUE QUE QUE SAN SAN SAN SAN SAN

Target ALB OKL WES ALB ALB BOS OKL ALB BOS OKL QUE WES

Pairs 2CTweets

Source SYD LON DUB BRI CHI SAN NYC SEA LON BRI LON CHI

Target DUB CHI SYD SAN BOS LON MEM NYC MEM BOS SEA BRI
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In each pair, the first event will be used as the source to adapt, and the second will be used as the 
target to classify.

Experimental Setup
This section states the research questions that motivated the study. It also describes baselines, the 
evaluation strategy, and technical details of the approaches used, including their configuration setup 
in the experiments conducted.

Research Questions
Our experiments are designed to answer the following research questions:

RQ1: Does the feature-instance adaptation approach show similar patterns on both datasets used 
in the study, specifically, T6 and 2C datasets? How do the results of the feature-instance 
adaptation compare with the results of supervised classifiers learned from the source data 
without any adaptation?

RQ2: Can the self-training parameter adaptation help improve the results of the feature-instance 
adaptation approach? Similarly, can the feature-instance adaptation improve the results of the self-
training approach used on the original source labeled data together with the target unlabeled data?

RQ3: Between Bernoulli Naïve Bayes and Random Forest, which classifier benefits most from the 
hybrid feature-instance-parameter adaptation approach?

RQ4: What specific source-target pairs benefit the most from the adaptation?
RQ5: Does the proposed approach benefit the datasets similarly? What characteristics makes a dataset 

more suitable for analysis with the proposed feature-instance-parameter adaptation approach?

Baselines
We compare the proposed hybrid feature-instance-parameter approach against the following baselines:

•	 Supervised Bernoulli Naïve Bayes and Random Forest classifiers learned from the binary 
representation of the source and evaluated on the test target data;

•	 Feature-instance adaptation with Bernoulli Naïve Bayes and Random Forest classifiers, where we 
first use the binary representation of the source and target to find a reduced dense representation, 
and subsequently learn classifiers from the selected source subset with the binary representation;

Table 3. Queensland Flood related example tweets from the CrisisLexT6 dataset where Bernoulli Naïve Bayes classification 
after adaptation has correctly classified the tweets contrary to the baseline (Original). f denotes instance adaptation only, k 
denotes feature adaptation, and f - k denotes feature-instance adaptation. The check symbol (✓) signifies correct classification 
while the cross symbol () signifies misclassification. Parameter adaptation for the examples below had similar results.

CrisisLexT6 Tweets Original f k f - k

USERNAME Dear AziaddictsAU and friends down under in Queensland. It’s all 
over the news once again that the worst flood... URL ...  ✓  

USERNAME My thoughts go out to all of the flood and fire victims around 
Australia, stay strong   ✓ 

DTN Japan: Gladstone flood victims returning home: Floodwaters are receding at 
Gladstone, in central Queensland,... URL    ✓

#Australia | #Queensland | #Flood | #Tornado | Tape your windows in a cross-
shape; windows are shattering due to pressure. Don’t sit close.   ✓ ✓

News Flood crisis unfolding in Lockyer Valley: A serious flood crisis is emerging 
in Queensland’s Lockyer Valle... URL    
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•	 Self-training parameter adaptation with Bernoulli Naïve Bayes and Random Forest as base 
classifiers, on the original source-target binary data, without any feature-instance adaptation.

Evaluation Strategy
The 5-fold cross-validation strategy was used for evaluation. This is achieved by creating five 
random folds from the target unlabeled data (using the stratified splitting mechanism that ensures 
that the overall data distribution is maintained in each fold). In a cross-validation experiment, 
four folds are used for the adaptation, as target unlabeled data TU (together with the whole source 
labeled data SL), while the fifth fold is used as target test TT. The folds are then rotated such that 
each fold is used as the test fold exactly once. As a different TU set is used for adaptation, there 
will be a different adapted source at each rotation, which in turn creates a different classifier 
for each test fold. For a particular source-target pair, the accuracy results are averaged over five 
folds. Furthermore, for a global visual analysis corresponding to a dataset, the accuracy results 
are averaged over all the pairs in the dataset.

Classification Setup
Two base classifiers are used in the experiments, Bernoulli Naïve Bayes and Random Forests, as 
explained in the previous section (Methods). The classification algorithms are always used with the 
binary representation of the data, both when the original source data is used and also when a selected 
subset of the source data is used. Bernoulli Naïve Bayes does not have any hyper-parameters that 
need to be set. For Random Forest, the number of trees used is set to 100. The values of the other 
parameters are the default values.

Matrix Factorization Setup
Each source-target pair of events is represented by an instance-feature data matrix consisting of 
binary BOW (Bag-of-Words) vectors, based on the target vocabulary. Using LSMNF, the matrix is 
reduced from approximately 1,000 features into matrices of 30, 50, 100, 200, and 500 features, while 
retaining the same instance count.

K-Nearest Neighbors Setup
A key element in the feature-instance adaptation approach is the k -NN step. Given a similarity metric, 
in our case, cosine similarity, this process will select the k nearest neighbors for each instance of the 
target unlabeled set, TU, from the entire source labeled set, SL. The following k values were used 
in the experiments: 1, 3, 5, 7, 9, and 11, to understand the effects of this parameters on the results. 
Using this method of instance selection, especially for higher values of k, the selected source will 
potentially include duplicates. Given the prior work in Mazloom et al. (2018) we will keep duplicate 
instances in the selected source.

Self-Training Setup
The self-training classifiers have several hyper-parameters that can be tuned, including the number 
of iterations i, the number of target instances n to be added to the training data at each iteration i, and 
the parameter γ  that is used to shift the weight from the source to the target at each iteration. Based 
on prior work (Li, Caragea, and Caragea 2017), for the CrisisLexT6 dataset, we set n to 5, and γ  to 
i * 0.002, where i is the current iteration number, and we ran the self-training approach until 
convergence, as it was observed that the accuracy increased when more target instances were added 
to the training set. For the 2CTweets dataset, where the event size is significantly smaller than the 
event size in CrisisLexT6, we set n to 2, γ  to i * 0.002, and did some preliminary tuning of the 
number of iterations, as sometimes, the performance decreased when more target instances were 
added to the training set. When Random Forest is used as the base classifier, two new trees are built 
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using the selected target unlabeled instances and added to the classifier with weight γ . Based on 
preliminary experimentation, it was also observed that when the number of target trees increases by 
1.5 times the source trees, initially set to 100, the integrity of the classifier’s training collapses, hence, 
the classifier is limited by the initial number of source trees.

EXPERIMENTAL RESULTS AND DISCUSSION

The average results for different adaptation approaches, over the 12 pairs in the CrisisLexT6 dataset, 
are visually shown in Figure 1 for Bernoulli Naïve Bayes and Random Forest as base classifiers, 
respectively. Similarly, the average results for different adaptation approaches, over the 12 pairs in the 
2CTweets dataset, are visually shown in Figure 2 for Bernoulli Naïve Bayes and Random Forest as 
base classifiers, respectively. The results are discussed in what follows, by analyzing each adaptation 
approach with respect to its baseline.

Feature-Instance Adaptation
The results of the feature-instance adaptation are discussed in this section and used to answer our 
research question RQ1. As part of the feature-instance adaptation, the original binary feature set for 

Figure 1. Average classification accuracy results for the 12 source-target pairs from the CrisisLexT6 dataset. The left side of the 
graph shows the results of the following approaches: supervised learning on the original source data, Original, and feature-instance 
adaptation (with different values for the number of features f and different values for the number of neighbors k). For example, 
the two sections of 30f-1k are interpreted as follows: 30f means LSNMF has reduced the features to 30, while 1k means that one 
source instance was selected for each target instance. Duplicates were retained in all feature-instance adaptation experiments, 
and the selected source instances were remapped back to their original representation after the adaptation. The right side of the 
graph shows combinations of the previous approaches with ST. Results for Bernoulli Naive Bayes are shown in the top graph, 
while results for Random Forest are shown in the bottom graph.



International Journal of Information Systems for Crisis Response and Management
Volume 11 • Issue 2 • July-December 2019

10

each dataset is first reduced to a denser representation using the feature adaptation technique (i.e., 
LSNMF). Afterwards, source instances in the reduced representation are adapted to the target using 
the instance adaptation technique (i.e., k-NN). As the last step, the source instances are remapped 
back to their original binary representation. The goal of the feature-instance adaptation is to increase 
the similarity of the source and target distributions.

We used the TSNE technique (Van Der Maaten 2014), before feature-instance adaptation and after 
feature-instance adaptation, to reduce the dimensionality of the source and target data to 2. As a result, 
each instance from the source and target data is represented by a two-dimensional vector. We plot the 
source and target instances together to visually analyze their distributions before and after adaptation. 
The results of the visualization are shown in Figure 3 for a pair of events in the CrisisLexT6 dataset 
(specifically, Boston Bombings versus the West Texas Explosion), before adaptation (left) and after 
adaptation (right). As can be seen, the two events have distinct distributions before adaptation, but 
their distributions are more similar after adaptation.

Figure 1 shows results for combinations of f = 1,5,9 neighbors and k = 30,50,100 features, 
respectively, as these values gave better overall results. Figure 1, in the case of CrisisLexT6, the 
hybrid feature-instance adaptation approach outperforms the supervised baseline by a significant 
margin, Original, for all k, f combinations considered, and for both Bernoulli Naïve Bayes and 
Random Forest classifiers. On the average, very small differences are seen between different k, f 
combinations, when Bernoulli Naïve Bayes is used, while smaller k and f values give better results 
when Random Forest is used.

Figure 2. Average classification accuracy results for the 12 source-target pairs from the 2CTweets dataset. The left side of the graph 
shows the results of the following approaches: supervised learning on the original source data, Original, and feature-instance 
adaptation (with different values for the number of features f and different values for the number of neighbors k). For example, 
the two sections of 30f-1k are interpreted as follows: 30f means LSNMF has reduced the features to 30, while 1k means that one 
source instance was selected for each target instance. Duplicates were retained in all feature-instance adaptation experiments, 
and the selected source instances were remapped back to their original representation after the adaptation. The right side of the 
graph shows combinations of the previous approaches with ST. Results for Bernoulli Naive Bayes are shown in the top graph, 
while results for Random Forest are shown in the bottom graph.
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Somewhat similar patterns are observed for the 2CTweets dataset in Figure 2 when comparing 
feature-instance adaptation with the supervised baseline. However, the difference between the feature-
instance adaptation and the supervised baseline is smaller than what was observed for CrisisLexT6. 
Furthermore, when using Bernoulli Naïve Bayes as a base classifier, a larger k values leads to better 
results, while in the case of Random Forest a larger f value gives better results. This may be explained 
by the smaller size of the 2CTweets dataset as compared to CrisisLexT6. A larger k value leads to 
larger subsets of selected instances, and subsequently better probability estimates for Bernoulli Naïve 
Bayes. In the case of Random Forest, a larger set of features leads to a more diverse set of trees in 
the Random Forest, and subsequently better results.

When comparing the results of the feature-instance adaptation with respect to the classifier used, 
overall the Bernoulli Naïve Bayes classifier gives better results than the Random Forest classifier for 
CrisisLexT6, while the Random Forest classifier gives slightly better results for 2CTweets. This result 
could also be explained by the size of the dataset used for training. When the size of the dataset is 
smaller, Random Forest, an ensemble classifier, can help boost the results. However, for larger datasets, 
the estimates obtained with Bernoulli Naïve Bayes are more accurate and lead to accurate classifiers.

Finally, it should be noted that the variance in accuracy observed across different source-target 
pairs is relatively small for the instance-adaptation approach, as well as for the original supervised 
classifiers. This observation suggests that the adaptation approach is able to consistently improve the 
results without causing much variation to the overall data distribution when compared to the Original 
data. Examples provided in Table 3 demonstrate that keyworks (Australia) and hash tags are best 
identified by the instance adaptation approach, denoted by k, whilst feature adaptation best captures 
news concept and negative sentiments. Consequently, instance-feature adaptation makes use of the 
best from both techniques.

Hybrid Feature-Instance-Parameter Adaptation
The self-training classification method was used as a parameter adaptation approach and combined 
with the feature-instance adaptation. As can be seen in Figure 1, for the CrisisT6 dataset, both Bernoulli 
Naïve Bayes and Random Forest classifiers benefit from parameter adaptation with self-training. 
Specifically, for Bernoulli Naïve Bayes, on the average, the results of the self-training classifier, ST-
Original, are better than the results of the supervised baseline, Original, by 8%. Similarly, for Random 
Forest, on the average, the results of the self-training classifier, ST-Original, are better than the results 

Figure 3. Combined source (blue) and target (red) CrisisLexT6 data visualization before (left) and after feature-instance 
adaptation (right). It can be seen that before feature-instance adaptation (left), source (blue) instances and target (red) 
instances are partially separated into different clusters due to their different distributions. However, after feature-instance 
adaptation (right), the clusters have dispersed, and the distributions of the source and target instances have become 
similar. This shows that the adaptation technique has minimized variability between source and target distributions. The 
visualization is performed using the TSNE technique.
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of the supervised baseline, Original, by 6%. Furthermore, the results of ST-Original are better than 
the results of the feature-adaptation approaches for both Bernoulli Naïve Bayes and Random Forest 
classifiers, showing that parameter adaptation is better than the feature-instance adaptation when 
each approach is used by itself. However, when combining feature-instance adaptation with self-
training, accuracy is further increased. The increased accuracy of the combined feature-instance and 
parameter adaptation supports the idea that each adaptation approach is able to transfer complementary 
information from the source, and together they provide a better training base for the target when a 
large enough sample set is available.

As can be seen in Figure 2, the 2CTweets dataset presents a similar pattern when the Bernoulli 
Naïve Bayes is used, although the increase produced by self-training is smaller than the increase 
observed for CrisisLexT6. When the Random Forest classifier is used, the results produced by self-
training, ST-Original, are worse on the average than the results produced by the supervised baseline, 
Original, and a high variance is observed between different source-target pairs. The results improve 
when self-training is used in combination with the feature-instance adaptation, but overall, they are 
still worse than their feature-instance adaptation counterparts. Intuitively, the poor performance of 
self-training, in this case, can be explained by the size of the data and the way the self-training is 
implemented for Random Forest. Specifically, given the small size of the data, we only add two 
target instances from each class to the training set (four instances all together). Those instances are 
used to create two new trees, that are added to the previous trees in the Random Forest. Given that 
the two new trees are based on four instances, they will be somewhat biased. On the other hand, we 
observed that adding more target instances to the training set results in incorrectly labeled instances 
being used, which also leads to poor performance. Different ways to implement the Random Forest 
classifier with self-training will be explored in future work. It should be noted that this is not an issue 
for the Bernoulli Naïve Bayes, where the counts are simply updated based on the new training data.

Thus, the answer to our research question RQ2 is that the feature-instance approach generally 
improves the results of the self-training approach (by comparing ST-Original versus feature-instance 
adaptation). Similarly, the feature-instance adaptation can improve the results of self-training (by 
comparing ST-Original with feature-instance-parameter adaptation), especially for larger datasets. 
However, the two adaptation approaches, self-training and feature-instance adaptation, are very 
competitive by themselves and give better results than the supervised baselines in most cases. 
Regarding research question, RQ3, as discussed above both Bernoulli Naïve Bayes and Random 
Forest classifiers benefit from feature-instance adaptation. The Bernoulli Naïve Bayes classifier also 
benefits from self-training adaptation consistently. However, with the current implementation, the 
Random Forest classifier benefits from self-training only in the case of larger datasets.

Finally, to answer RQ4, it should be noted that differences between CrisisLexT6 and 2CTweets 
datasets lead to different behavior of the self-training algorithm when used on one dataset versus the 
other. Specifically, as mentioned before, the events in CrisisLexT6 have significantly larger sizes 
when compared to the events in the 2Ctweets dataset. This ensures that accurately labeled training 
instances are identified at each iteration, and thus a larger number of iterations are possible. As a 
consequence, the performance generally increases with the number of iterations. Furthermore, the 
pairs of events in CrisisLexT6 have better contextual overlap, as compared to the pairs of events in 
2CTweets, a fact that also contributes to accurate labels for some target instances at each iteration. As 
opposed to that, the events in the 2CTweets dataset are smaller in size, and the pairs of events show 
less overlap. Therefore, there is a higher chance that incorrectly labeled target instances are added 
to the training set decreasing the performance with more data. This behavior can be seen clearly in 
Figure 4, where the 2C pair classification shows an unusual instability in accuracy, as more target 
instances are introduced at each iteration. The CrisisLexT6 pair, on the other hand, has a more stable 
accuracy which increases with the number of iterations. Given this behavior, the number of iterations 
for 2CTweets was roughly tuned for a source-target pair (as opposed to tuning for each split) in the 
preliminary examination. More fine-tuning may lead to better results.
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When comparing the feature-instance adaptation method to the baselines using Bernoulli Naïve 
Bayes in both datasets, the adapted results tend to significantly improve the baseline results in 83% and 
89% of the cases for CrisisLexT6 and 2CTweets, respectively. Similarly, when parameter adaptation is 
used, the results are significant in 71% and 89% of the cases, respectively, demonstrating that parameter 
adaptation was more effective in 2CTweets due to the dataset’s smaller size. The feature-instance 
adaptation was also able to significantly outperform individual instance adaptation in 61% and 42% 
of the cases, as well as individual feature adaptation in 60% and 40% of the cases, for CrisisLexT6 
and 2CTweets, respectively. However, when using Random Forest, parameter adaptation is able to 
increase the significant results from 43% to 60% in CrisisLexT6, when compared to no feature-instance 
adaptation, while in 2CTweets the significant results decrease from 45% to 36%. As discussed above, 
this is most likely due to the lack of instances that are used to create new trees at each iteration of 
the parameter adaptation. Both adaptation sets are able to outperform individual feature and instance 
adaptation in both datasets by about 60% with the exception of feature-instance-parameter adaptation 
compared to individual instance adaptation in 2CTweets.

RELATED WORK

Machine learning algorithms have been used to help responders sift through the huge amounts of crisis 
data and prioritize information that may be useful for response and relief. Some studies have used 
images to identify such data (Alam, Imran, and Ofli, 2017; Li et al., 2019) whereas others have relied 
on the more abundant text data (Verma et al., 2011; Caragea et al., 2011; Vieweg, 2012; Terpstra et al., 

Figure 4. Variation of accuracy with the self-training iterations for a representative pair of events from CrisisLexT6 (Top), and a 
representative pair of events from 2CTweets (Bottom). Self-Training Bernoulli Naïve Bayes is used to train the classifiers in the 
graphs on the left, while Random Forest is used to train the classifiers in the graphs on the right. For the pair from CrisisLexT6, 
five target instances per class are added at each iteration, while for the 2CTweets pair, two target instances per class are added. 
This figure depicts the self-training instability for the 2CTweets pair as compared to the CrisisLexT6 pair.
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2012; Purohit et al., 2013; Imran et al., 2013; Caragea et al., 2014; Ashktorab et al., 2014; Imran and 
Castillo 2015; Sen, Rudra, and Ghosh, 2015; Huang and Xiao, 2015; Imran, Chawla, Castillo, 2016; 
Derczynski et al., 2018; Zahera, Jalota, and Usbeck, 2018), or in some cases a combination of both 
image and text data (Jomaa, Rizk, and Awad, 2016; Zhang et al., 2019; Mouzannar, Rizk, and Awad 
2018). For example, Imran et al. (2013) used conditional random fields and Karami et al. (2019) used 
sentiment analysis and topic modeling to find tweets within specific situational awareness categories. 
Sen, Rudra, and Ghosh (2015) used Support Vector Machine (SVM) classifiers to differentiate between 
situational and non-situational tweets. Huang and Xiao (2015) introduced a detailed list of situational 
awareness categories, divided based on three stages of a disaster (preparedness, emergency response, 
and recovery), and used k-Nearest Neighbors, Logistic Regression and Naïve Bayes classifiers to 
automatically classify tweets with respect to their defined categories. And others such as Zade et al. 
(2018) use different mediums such as surveys and interviews to aid in the effort.

While research on supervised machine learning in the area of emergency response has shown that 
it is possible to automatically classify disaster-related data, it has also emphasized one of the most 
important challenges that precludes the use of supervised machine learning in real time in an emerging 
crisis situation: the lack of labeled data to train reliable supervised models as the crisis unfolds. To 
address this challenge, several works proposed to use labeled data from prior “source” crises to learn 
supervised classifiers for a “target” crisis (Verma et al., 2011; Imran, Mitra, and Srivastava, 2016; 
Caragea, Silvescu, and Tapia, 2016; Nguyen et al., 2017). One drawback of this approach is that 
supervised classifiers learned in one crisis event, does not generalize well to other events (Qadir et 
al., 2016; Imran et al., 2015), as each event has unique characteristics (Palen and Anderson, 2016). 
These problems are widely known as domain adaptation or transfer learning (Kouw, 2018). Domain 
adaptation approaches (Pan and Yang 2010; Jiang 2008) that make use of unlabeled data from the target 
disaster in addition to label data from a source disaster are desirable. Some recent works (Li et al., 
2015; Li, Caragea, and Caragea, 2017; Li et al., 2017) have shown that the use of domain adaptation 
approaches can significantly improve the results of the supervised classifiers learned from source 
only. According to Pan and Yang (2010), domain adaptation is achieved by performing parameter 
adaptation, feature adaptation or instance adaptation. A comprehensive description of works in each 
category can be found in (Pan and Yang, 2010).

In the space of disasters, the domain adaptation approaches proposed by Li et al. (2015, 2017) 
can be seen as parameter-based adaptation approaches. Mazloom et al. (2018) proposed a hybrid 
feature-instance adaptation approach and tested it on the CrisisLexT6 dataset using the Bernoulli 
Naïve Bayes. Mazloom et al. (2018) demonstrated the complementary strengths of feature and instance 
adaptation approaches, which can significantly improve classification when combined and used with 
supervised approaches such as Bernoulli Naïve Bayes.

To the best of our knowledge, there are no feature-instance-parameter adaptation approaches that 
have been used for classifying disaster related data. As a consequence, we first extend the work by 
Mazloom et al. (2018) by studying another dataset (2CTweets) and another base classifier (Random 
Forest), and subsequently we introduce a hybrid feature-instance-parameter approach and study it 
using both CrisisLexT6 and 2CTweets as datasets, with both Bernoulli Naïve Bayes and Random 
Forests as base classifiers.

CONCLUSION AND FUTURE WORK

Social media data taken from sources such as Twitter contain invaluable data which can be used in 
times of crisis and emergency situations to improve response and awareness. Despite many supervised 
learning approaches being proposed, not many agencies and groups use these approaches to identify 
useful information, due to lack of labeled data for training the supervised models. In this study, we 
proposed a simple but powerful feature-instance-parameter adaptation approach to first reduce the 
variation between source and target disasters, and subsequently use self-training on the modified 
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source together with target unlabeled data to address the scarcity of the labeled data in the target 
domain. Experimental results on pairs of events from two disaster datasets, CrisisLexT6 and 2CTweets, 
using Bernoulli Naïve Bayes and Random Forest classifiers, show that the proposed approach can 
help improve the results of self-training used by itself, and also the results of the feature-instance 
adaptation approach used by itself. However, the two adaptation approaches, self-training and feature-
instance adaptation, are also powerful by themselves and give very competitive results in some cases, 
and better results than the supervised baselines in most cases. Between Bernoulli Naïve Bayes and 
Random Forest, the Bernoulli Naïve Bayes classifiers work better with the self-training approach, 
although both benefit from the feature-instance adaptation approach. In terms of datasets, the results 
show that a larger number of sources labeled and target unlabeled instances are beneficial, especially 
when self-training is used. Furthermore, the incremental updates that were used to implement self-
training work well in the case of Bernoulli Naïve Bayes but not so well in the case of Random Forest.

In future work, more experiments can be done using different classifiers, including deep learning 
classifiers, on the selected source data. Furthermore, different matrix factorization and clustering 
approaches (potentially, with different distance metrics) can be explored. Finally, different domain 
adaptation classifiers, including different implementations of self-training, can be used.
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