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—— Abstract

Multiprocessor Systems-on-Chip (MPSoC) integrating hard processing cores with programmable
logic (PL) are becoming increasingly common. While these platforms have been originally designed
for high performance computing applications, their rich feature set can be exploited to efficiently
implement mixed criticality domains serving both critical hard real-time tasks, as well as soft
real-time tasks.

In this paper, we take a deep look at commercially available heterogeneous MPSoCs that
incorporate PL and a multicore processor. We show how one can tailor these processors to support
a mixed criticality system, where cores are strictly isolated to avoid contention on shared resources
such as Last-Level Cache (LLC) and main memory. In order to avoid conflicts in last-level cache, we
propose the use of cache coloring, implemented in the Jailhouse hypervisor. In addition, we employ
ScratchPad Memory (SPM) inside the PL to support a multi-phase execution model for real-time
tasks that avoids conflicts in shared memory. We provide a full-stack, working implementation on a
latest-generation MPSoC platform, and show results based on both a set of data intensive tasks, as
well as a case study based on an image processing benchmark application.
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Digital Object Identifier 10.4230/LIPIcs. ECRTS.2019.24

1 Introduction

Recently there has been an uptrend in the demand for high-performance real-time applica-
tions. The increasing interest in emerging technologies like self-driving cars, drones, cube
satellites, and smart manufacturing, to name a few, has determined a shift in the type
of workload that has to be considered “real-time” [5]. Traditional CPU-intensive tasks
comprise a small percentage of the real-time workload in modern high-criticality systems,
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while increasingly more memory- and I/O-intensive applications have been brought into

the picture. Additionally, hardware manufacturers have anticipated the demand for high-

performance embedded systems by introducing increasingly more feature-rich multiprocessor
systems-on-chip (MPSoC) platforms.

In the race to provide the future de-facto standard for pervasive high-performance
embedded systems, hardware manufacturers have experimentally introduced a plethora
of architectural features. A number of these features have a proven track record in the
general-purpose computing domain and multiple indicators suggest their long-term adoption
in the embedded market [10]. Such features include hardware support for virtualization,
the presence of multiple, potentially heterogeneous processing elements, a rich ecosystem of
high-bandwidth I/O devices and communication channels, and more recently the co-location
of traditional CPUs and programmable logic (PL) implemented using Field Programmable
Gate Array (FPGA) technology.

The presence of on-chip “soft” PL, tightly coupled with a group of “hard” embedded
CPUs, represents a game-changer for systems that need to be tailored to a well-known
application scenario [21]. This is indeed often the case for real-time systems. In fact, this
new class of platforms offers the unprecedented ability to define new hardware components
to complement the high-performance profile of the embedded cores. If it is possible to devise
PL-defined components that mitigate the non-determinism in high-performance CPUs; the
result can be an ideal trade-off between processing power and real-time guarantees [21].

In this paper, we study how it is possible to leverage latest-generation partially reconfig-
urable embedded platforms for a system design that combines high-performance and strict
real-time requirements. In our approach, we define multiple criticality domains to be intended
as subsystems of the computing system. Each criticality domain may be designed with a
different trade-off between high-performance and strict temporal determinism. For instance,
a high-performance domain may run a general-purpose OS with a complex I/O infrastructure.
Conversely, a high-criticality domain is comprised of a Real-Time Operating System (RTOS)
supporting time-sensitive applications.

We demonstrate that it is possible to instantiate a critical core of PL-defined components
to (i) relieve interference on the shared memory hierarchy and achieve temporal isolation
among criticality domains; (ii) support efficient inter-domain communication; (iii) co-locate
a traditional task execution model with a multi-phase execution model; and (iv) overcome
typical limitations of traditional memory partitioning techniques. In summary, this paper
makes the following contributions:

1. We demonstrate that it is possible to leverage partially reconfigurable embedded platforms
to instantiate a system where high-performance and time-sensitive applications co-exist
under strict temporal isolation. Compared to the ideal case (i.e., task running alone
in the system), our set of hardware/software techniques ensures that execution time of
a time-sensitive task does not suffer from the potentially large interference caused by
memory-intensive tasks running on different cores (only 6% of an increase in the execution
time, instead of a large interference).

2. We design and implement a hardware block, named address translator, that prevents the
problem of memory waste when cache partitioning based on page coloring is used.

3. We provide a working implementation on one of the latest-generation partially recon-
figurable embedded MPSoCs. Our implementation is full-stack, with adaptations at an
OS- and application-level, extensions to a partitioning hypervisor, and generation of
PL-defined hardware blocks. We demonstrate the feasibility of the implementation by
using a case study on image processing and show the hard real-time bounds achieved by
our system design.

Organization of the paper. The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the adopted system model and assumptions.
Section 4 discusses the design principles and overviews the proposed approaches. Section 5
presents a design space exploration of a modern MPSoC platform through a set of experi-
ments. It also shows the proposed hardware and software design to support mixed-criticality
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applications on top of the platform. Section 6 details the system implementation with mul-
tiple criticality domains. Section 7 presents some experimental results carried out to evaluate
the proposed real-time computing framework. Finally, Section 8 states the conclusions and
outlines some future work.

2 Related Work

Several recent works have proposed techniques to deal with shared resources in multicore
real-time systems at both OS and hypervisor levels. Mancuso et al. profiled the source code
to extract memory access patterns for each task, allowing frequently-used pages to be locked
in cache in order to avoid cache evictions [19]. Combined with cache partitioning based on
page coloring, their approach significantly improves predictability. Following the same line,
some works used coloring to partition the cache in multicore real-time systems [15, 13, 11].
Other works focused on making DRAM accesses more predictable [38, 14, 17]. MemGuard
regulates each core’s memory request rate by using hardware performance counters to account
for the memory access usage [39]. The work defines a threshold and when the number of
memory accesses reaches the threshold, an overflow interrupt is generated to keep the specified
memory bandwidth. One assumption for MemGuard is that all cores have access to the
same memory bus, while in our work we explore the existence of the programmable logic to
define dedicated memory interfaces. We also show how page coloring can co-exist with the
programmable logic memories and how to prevent wasting cache space due to page coloring.

The use of hypervisors in multicore real-time systems is a recent trend. Modica et al.
proposed a hypervisor-based architecture targeting critical systems similar to ours [22]. Cache
partitioning provided spatial isolation, while a DRAM bandwidth reservation mechanism
provided temporal isolation. Both cache partitioning and memory reservation mechanisms
were implemented in the XVISOR open-source hypervisor [24] and tested in a quad-core
ARM AT processor. Our proposed hypervisor-based approach, instead, uses an MPSoC
platform, which gives us the ability to explore other features, such as specific FPGA direct
memory access (DMA) blocks (for instance, to handle data transfers between the processing
system and programmable logic sides) and data prefetching.

MARACAS addressed shared cache and memory bus contention through multicore schedul-
ing and load-balancing on top of the Quest OS [37]. MARACAS used hardware performance
counters information to throttle the execution of threads when memory contention exceeded
a certain threshold. The counters were also used to derive an average memory request latency
to reduce bus contention. vCAT used the Intel’s Cache Allocation Technology (CAT) to
achieve core-level cache partitioning for the hypervisor and virtual machines running on
top of it [36]. vCAT was implemented in Xen and LITMUSFT. Although interesting, this
approach is architecture dependent and uses non-real-time basic software support (Linux
and Xen).

Kim and Rajkumar proposed a predictable shared cache framework for multicore real-time
virtualization systems [16]. The proposed framework introduced two hypervisor techniques
(VLLC and vColoring) that enabled cache-aware memory allocation for individual tasks
running in a virtual machine. CHIPS-AHOYy is a predictable holistic hypervisor [23]. Tt
integrates shared hardware isolation mechanisms, such as memory partitioning, with an
observe-decide-adapt loop to achieve predictability and energy and thermal management.

Crespo et al. used hardware performance counters within the hypervisor to regulate the
memory bandwidth of critical and non-critical cores [6]. The work used control theory to do
the regulation and presented a set of experiments to tune the controller parameters. Awan et
al. proposed a memory regulation mechanism for mixed-criticality applications [2]. Mendez
et al. also proposed to use FPGA together with a processing system to reduce interference of
mixed-criticality applications. However, in their system model, the authors did not consider
multicore processors or shared caches [21].

SPM-centric OS combined scratchpad, resource specialization, scheduling of shared
resources as well as a three-phase model to achieve predictability in multicore real-time
systems [28]. The three-phase model is also used in this work. It consists of a load phase,
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in which code/data is loaded from main memory to the scratchpad (SPM), an execution
phase, and an unload phase in which code/data is unloaded from the SPM to main memory.
The model relies on a DMA engine to support the load/unload phases. The idea is to load
data/code for a task using a DMA before it starts and to unload it after completion, as
depicted in Figure 1. Because the SPM is divided into two halves, while one task is executing
in one half, DMA is active on the another one. Up arrows in the figure represent the release
times of three tasks. While for simplicity we draw the figure assuming that all load and
unload phases take an equal amount of time to complete, in reality, their length can vary on
a per-task basis. Note that each job starts executing on the core after it is loaded in the
scratchpad and the previous job finishes executing, whichever happens last. Also note that
while load phases have higher priority over unloads, at time ¢ = 3 (and ¢t = 5) an unload
must be performed first in order to free Partition A for the successive load phase of task
73. If there are multiple ready tasks, the decision of which task to schedule is made when
starting a load phase; hence, while 7; has a higher priority than 73, the latter is executed
at time 5 because 7 is released right after the start of another load phase at ¢ = 4. This
behavior causes blocking time on the higher priority task and must be accounted for in a
schedulability analysis.
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Figure 1 Example of a schedule using the three-phase model.

The work in [28] used a time division multiple access (TDMA) arbitration among cores
based on a fixed slot size for DMA transfers. Only a single DMA operation (either a task
load or unload) was carried out during a slot. The TDMA slot size length was designed so
that it was possible to load or unload an entire scratchpad partition within one slot. Hence,
it always allowed to transfer an amount of data equal to the largest scratchpad size, which is
undesirable if the SPM size is different per-core. On the contrary, in this work the DMA
scheduling employs variable memory phase sizes, similarly to what has been described in [33].
Notice, though, that the work in [33] mainly targets single-core processors, and it does not
provide a working implementation for multi-core systems.

3 System Model and Assumptions

In this section we summarize the system model and assumptions of the proposed architecture.

3.1 Criticality Domains

Our goal is to implement multiple criticality domains on a single multicore SoC. Given C,
the total number of cores in the SoC, we target a system with up to C criticality domains, so
that each criticality domain is statically assigned to at least one core. One of the key design
principles is that criticality domains are isolated from each other, both in time and space [5].
In other words, we minimize the impact that the activity of applications in one criticality
domain can have on tasks in a different criticality domain.

Domain Types: Albeit strong isolation exists between criticality domains, each domain
may have different requirements in terms of performance, amount of memory resources, and
runtime environment. We envision three types of criticality domains. First, a low-criticality
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domain is used to perform I/O with complex devices, processing of large amounts of data,
using general-purpose libraries and applications. A low-criticality domain may run a generic
operating system (OS) — e.g. Linux — and require a large amount of memory with fast-
on-average performance. While applications in this domain are shielded from interference
from the rest of the system, no strong temporal guarantees can be expressed due to the
best-effort nature of the software stack. Second, a high-criticality domain consolidates all the
hard real-time tasks of the system and interfaces with simple I/O devices. In this domain,
applications have strong timing guarantees. Finally, a third mid-criticality domain is used to
process tasks with intermediate criticality. Within this domain, and unlike the low-criticality
domain, temporal guarantees for real-time tasks are still provided; however, the degree of
hardware resource isolation offered to the mid-criticality domain is lower when compared to
the high-criticality one. The number of cores allocated to high- and mid-criticality domains
isM <C.

3.2 Processor and Programmable Logic

We consider an embedded MPSoC platform with two main subsystems, the processor
subsystem (PS) and the programmable logic (PL), and a communication engine, as exemplified
by Figure 2.

Processor Subsystem (PS)

Programmable Logic (PL)

PS-to-PL
interfaces

‘SPMO ‘ ‘SPMn

DMA

\ PL-to-PS PL DRAM

interfaces T
A J \ Communication Engine

With TDMA

Main Memory
PS DRAM

Figure 2 Overview of the platform with the main components.

Processor Subsystem (PS): The PS has a multicore embedded processor with C' cores.
Each core has a private Level-1 (L1) cache, and all the cores share a Level-2 (L2) cache
which is also the last-level cache (LLC). While other organizations for the memory hierarchy
are possible, we adopt a widespread model in modern multicore embedded systems. A key
difference in the considered class of partially reconfigurable systems is the following. A miss
in LLC causes a memory transaction to be performed towards either the main memory (PS
DRAM) or the Programmable Logic (see Figure 2). This behavior depends on the exact
physical memory address being accessed. Because our goal is to define strongly isolated
criticality domains, we assume that hardware support for virtualization exists in the PS.

Programmable Logic (PL): The PL is an on-chip block of Field-Programmable Gate
Array (FPGA) cells that coexists with the embedded PS cores. We consider systems where
high-bandwidth, low-latency memory interfaces connect the PS to the PL and vice-versa, as
demonstrated in Figure 2. Such a feature for the emerging class of partially reconfigurable
embedded systems is of crucial importance, and manufacturers [35] are well aware of it.
While we assume that one or more PS-PL interfaces exist, it cannot be assumed that at least
C interfaces are available. The number and capacity, in terms of memory throughput, of the
PL-PS interfaces directly impact the performance and degree of temporal isolation that can
be enforced among criticality domains. The FPGA can also provide different memory blocks,
such as scratchpad (SPM) and PL-side DRAM. Examples of existing MPSoC platforms that
fit into our system model are the Intel Stratix 10 SoC FPGA, Intel Arria 10 SoC FPGA,
Intel Cyclone SoC FPGA, Xilinx Ultrascale+ ZCU102, and Xilinx Zynqg-7000.
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Communication Engine: We assume that a communication engine capable of accessing
and transferring memory from/to PL and PS memories is available. Usually, a Direct Memory
Access (DMA) component is available in either the PS or the PL and it can act as the
communication engine. Its main role is to provide means for the load and unload phases
of the three-phase task model. Differently from the previously implemented three-phase
solution in [28], which used TDMA arbitration with fixed slot sizes, we propose a TDMA
mechanism with finer granularity and per-core slots of different sizes. In this scheme, each
real-time core j is assigned a slot size o;, with 3 = ZJle o; being the length of the TDMA
round. We do not require the slots to be sized based on the SPM dimension; instead, if a
DMA phase cannot finish within a slot, we break it down into multiple transfers and perform
them over multiple TDMA rounds. The price we pay is extra overhead: since it takes some
time to re-program the DMA controller, during each slot we can only perform DMA transfers
for a maximum of ¢; time. Hence, (0; — 7;) represents the DMA overhead. Assume that
two consecutive unload/load phases (refer to Figure 1) require k¥ TDMA slots. Then it is
easy to see that the total transfer time A is upper bounded by:

A=k-X+o0j; (1)

the core receives one slot every ¥ time, but its initial slot can be wasted if the first memory
phase arrives just after the beginning of the slot.

3.3 Application Model

Because multiple criticality domains exist in the system, we make different assumptions on
applications in different domains. We make no assumption on the behavior of applications
operating in low-criticality domains. They can perform complex I/O operations and they
can be arbitrarily memory intensive.

Conversely, we assume that mid- and high-criticality applications adhere to more con-
servative assumptions. Mid-/high-criticality applications are structured as real-time tasks:
a sequence of jobs whose activation is time- (periodic) or event-triggered (sporadic). Mid-
/high-criticality applications are also statically assigned to cores, and locally scheduled using
non-preemptive rate-monotonic scheduling (RM). Inter-task communication is performed via
message passing. Only input data —from other tasks or devices— available by a given job’s
activation instant are used by the job itself. Similarly, output data are produced by a job
only at its completion.

We assume that the memory footprint of mid-/high-criticality tasks is limited. On one
hand, this allows to place code and data of real-time applications onto local memories of
constrained size. On the other hand, it allows to load and unload applications in and out
of local memories —following scheduling decisions— without incurring into high overheads.
Tasks follow the three-phase model, as discussed in Section 2. Since we employ similar
scheduling rules with variable time memory phases, we argue that the analysis in [33] can be
adapted to provided scheduling guarantees for our proposed system, after using Equation 1
to bound the length of memory phases. Due to space limitations, we defer a complete
schedulability evaluation to future work, while in this paper we focus on the hardware and
software design of the computing platform.

4 Design Principles and Approach Overview

Our design revolves around the idea of freedom from interference among criticality domains [5].
The ideal software stack and assignment of resources to domains is depicted in Figure 3. We
hereby provide a short description of the main challenges and techniques used to achieve
a close approximation of what is depicted in Figure 3 by using a commercially available
MPSoC embedded platform. We describe additional important implementation details in
Section 6.

Inter-domain Interference: Temporal interference between criticality domains should
be limited. More specifically, it is fundamental that any interference from a lower-criticality
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Figure 3 Ideal software and hardware stack organization.

domain towards a higher-criticality domain is prevented —solid vertical lines in Figure 3. It
is desirable that higher-criticality applications do not interfere with lower-criticality domains.
But some degree of interference is acceptable in this case —dashed vertical lines in Figure 3.
The paradigm follows traditional safety-critical systems certification guidelines [21]. High-
criticality applications need to be certified regardless of the behavior of lower-criticality
workload. Conversely, some degree of knowledge of higher-criticality applications can be
assumed when certifying lower-criticality applications.

Partitioning Hypervisor: Applications in different domains operate in self-contained
address spaces, with inter-domain communication channels handled at the hypervisor level.
Hardware resources (e.g., cores, cache partitions, main memory storage, I/O devices) are
statically assigned to criticality domains. As such, we employ a thin partitioning hypervisor
which does not perform any online scheduling. The partitioning hypervisor has a number
of roles, including (1) providing spatial isolation for RTOSes that do not support virtual
memory; (2) partitioning cores to criticality domains; (3) enforcing LLC partitioning via
memory coloring; (4) performing tasks’ relocation to/from DRAM into local memories; and
(5) providing message-passing channels for inter-domain communication.

LLC Partitioning: We rely on LLC partitioning based on page coloring! [10]. Hypervisor-
level coloring has been proposed in [4, 16, 18]. An extensive discussion of the subtle practical
challenges to enforce coloring at the hypervisor level is provided in [18]. In this work, we use
the same hypervisor as in [18].

Preventing Memory Waste: A well known drawback of cache partitioning via coloring
is memory waste. Coloring enforces a restriction on the physical addresses, and hence actual
memory, that can be assigned to applications. For instance, if one wants to assign one-fourth
of a shared LLC to a guest OS, then one-fourth of available main memory cannot be assigned
to any other OS. This represents a significant drawback. The problem is even more severe
when local memories like scratchpads are used. In fact, the size of scratchpads is typically
very limited —a few hundreds of kilobytes to a few megabytes. Enforcing coloring essentially
cripples the ability of applications to access the majority of an already limited memory
resource. In this work, we leverage the Programmable Logic (PL) and propose a technique
to prevent coloring-induced memory waste. Specifically, we introduce a bus translator that
acts on transactions forwarded to local memories. In short, the component redirects colored
—and hence scattered— memory accesses to contiguous memory locations.

Main Memory Partitioning: Partitioning main memory among guest OSes is necessary
due to the problem of shared memory contention. Allowing the access to the same memory
bank from cores allocated to different criticality domains would violate the requirement

! In this work we use the terms cache coloring and page coloring interchangeably.
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of enforcing strict isolation. Additionally, multiple domains can saturate the shared bus
and/or memory controller, experiencing significant contention and delays. Both problems
are well known. Solutions based on coloring have been proposed for the former [38, 18, 14].
Software [20, 1] and hardware [40] solutions based on bandwidth regulation have been
explored to address the latter. In this work, we propose and explore an alternative approach
to both issues. Our approach is made possible by the capability of defining new hardware
components in the Programmable Logic (PL). First, we instantiate dual-ported memories
that are only accessible by a single criticality domain. Next, we dedicate a PL-PS interface
to criticality domains, and on each PL-PS interface we instantiate two memory controllers
inside the PL. The first controller is used for memory accesses generated by applications
running on the processor. Whereas, the second controller is used for memory transactions
originated by the communication engine.

Handling Tasks’ Relocation: As described in Section 3, tasks’ code and data are
moved to/from local memories defined in the PL by the communication engine. To implement
task relocation (for loading/unloading), a possible approach consists in compiling applications
using position-independent code (PIC) [28]. However, compilation as PIC results in less
optimized binaries [28]. Additionally, migrating a running task to a different memory region
is challenging 2. In this work, we propose to compile tasks against absolute intermediate
physical addresses (IPA). Then, after the communication engine has located a new task at a
potentially new physical location in local memory, a hypervisor routine is invoked to map
the new physical addresses (PAs) to the set of IPAs against which tasks have been compiled.

5 Design Space Exploration for Mixed-Criticality in a Modern
MPSoC

In this section, we first describe the architectural overview of the considered platform. We
then describe the experimental setup and different scenarios that were evaluated to justify
our final design.

5.1 Architectural Overview of the Chosen Platform

For our implementation, we have used the Xilinx UltraScale+ ZCU102 MPSoC [34]. On this
platform, the PS comprises two ARM Cortex-R5 cores, each having its own tightly coupled
memory of 128 KB. There are also four application (ARM Cortex-A53) cores, each having
its own local instruction and data cache (32 KB each). The Last-Level Cache (LLC) of 1 MB
is shared by all application cores. There is no dedicated SPM provided for the application
cores. This is in line with many high-performance embedded multicore processors. The PS
includes a DDR4-2666 (main memory) controller with a data bus width of 64-bit, which on
our reference board is connected to a 4GB DDR4 memory module. The PL also includes a
separate, 16-bit synthesized memory controller, which on our board is wired to a 512 MB
DDR4 memory module.

Multiple interfaces between the PL and the processor subsystem (PS) exist. There are
three interfaces going from the PS 2 to the PL. Out of the three, two are high performance
master interfaces (HPMO and HPM1) whereas the third interface is the low performance
domain (LPD) interface. There are also interfaces from the PL to the PS, specifically the
high-performance coherent (HPC) and high-performance (HP — non-coherent). Finally, there
are 3 MB of block RAM (BRAM) inside the PL. For the rest of the paper we will use BRAM
and SPM interchangeably.

2 This is because registers and stack in a saved context may contain absolute addresses.

3 Here the direction of the interface indicates which side of the system can initiate transactions towards
the other side. On an interface from PS to PL, the PS is the master of the interface, while the PL is
the slave.
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5.2 Experiments

When exploring the characteristics of modern MPSoC platforms, it is easy to realize that
there are many possible designs one can create to achieve predictability for mixed criticality
domains. For the Xilinx ZCU102, for instance, the communication between the PL and the
PS can have one or two high performance master ports (HPMO0O and HPM1). Tasks running
on the application cores (A53) can use the PS or PL DRAMS or even access the block RAM
(BRAM) in the FPGA. We have designed a set of experiments to evaluate the behavior of
different configurations under stress. Based on the related work [31, 28, 20], we chose two
memory-intensive applications (disparity and mser) from the San Diego Visual Benchmark
Suite (SD-VBS) [32] to be used in the evaluations. We chose the SD-VBS benchmark suite,
because it provides vision applications similar to those used in autonomous cars. Thus, they
represent real-time applications that demand both predictability and performance. We then
ported disparity and mser to Erika RTOS/Jailhouse (we describe Erika and Jailhouse
later in Section 6) and executed them with SQCIF (128 x96) input data size. To stress the
memory subsystem, we used a bandwidth benchmark (BW) from [12]. This benchmark is
tailored to issue writes to the main memory (DRAM) or SPM (i.e., block RAM in the PL)
by ensuring that every write is a miss in the LLC.

Using the memory intensive and bandwidth benchmarks, we evaluate the scenarios
described in Table 1. We consider two legacy (LCY) scenarios, and three scenarios in which
our solution is used (OUR). In the first legacy scenario (LCY-SOLO), the benchmark under
analysis (disparity or mser) runs solo from the PS DRAM without cache coloring on top
of Linux (kernel 4.14). Note that it does not use any high performance master (HPM) port,
because it does not access the PL. In the second legacy scenario (LCY-STRESS), contention
is added. Specifically, three bandwidth benchmark instances access the PS DRAM also
from different cores in Linux. This scenario represents the simplest possible design in the
platform since no special technique is used to avoid contention. Next, we consider our
solution. In scenario OUR-SOLO, the benchmark under analysis runs alone in the system
using a dedicated HPM port and accessing an SPM in FPGA. In this and the following cases,
the cache has also been partitioned via coloring. In scenario OUR-MID, the benchmark under
analysis runs from the mid-criticality domain and three contending bandwidth benchmark
instances are added. The first runs in the low-criticality domain (Linux), the second in
the high-criticality domain, and the third in the mid-criticality domain. The latter shares
an HPM port with the benchmark under analysis. Finally, in scenario OUR-HIGH, the
benchmark under analysis executes from a high-criticality domain, using a dedicated HPM
port. Two contending bandwidth benchmark instances run from a mid-criticality domain
and share a single HPM port, while an additional contending bandwidth benchmark instance
runs in the low-criticality domain.

Table 1 Summary of the five scenarios considered for the evaluation.

. . Accessed i K
Scenario Experiment Memory Coloring | HPM Port | Contention Type
Lcy-SoLo Solo PS DRAM No Not used None
Lcy-STrESS | Contention PS DRAM No Not used 3x BW
OUR-SOLO Solo SPM Yes Dedicated None
1x BW from low-crit.
OUR-MID Contention SPM Yes Shared 1x BW from mid-crit.
1x BW from high-crit.
. . 1x BW from low-crit.
Our-HicH Contention SPM Yes Dedicated 9% BW from mid-crit.

Figure 4 and Figure 5 depict the results for the mser and disparity applications,
respectively, under the five aforementioned scenarios. Each experiment reports the result of
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1000 executions. In both figures, the 2-axis reports the execution time in clock cycles*. On
the left y-axis we present the experimentally derived execution time distribution, while on
the right y-axis we show the cumulative distribution function (CDF'). The vertical dashed
line shows the average, while the vertical dotted line corresponds to the observed WCET.
The annotation in each plot provides the numerical values for average, WCET, best-case
execution time (BCET), and variability window — which is a metric of predictability and is
computed as (WCET — BCET)/ WCET.

A few important trends can be highlighted in the results for mser (Figure 4). First, for
the two legacy scenarios, in Lcy-STRESS (Figure 4b) the application exhibits a drastic 1.73x
increase in WCET compared to Lcy-SoLo (Figure 4a) due to added contention. Moreover,
the execution time in the LCY-STRESS case becomes unstable, with a variability window
of 27.8%. Next, when executing in a mid-criticality (or high-criticality) domain without
contention (OUR-SOLO case — Figure 4c), the performance of the application under analysis
is comparable to the LCY-SOLO case. If the application is deployed in a mid-criticality
domain (OUR-MID case — Figure 4d), a sharp improvement in predictability and WCET is
observed compared to the LCY-STRESS case. In fact, the variability window is reduced by
42% and the WCET is reduced by 31%. Finally, in Figure 4e, the application is run inside
a high-criticality domain, and hence with a dedicated HPM port — OUR-HIGH case. By
considering the LCY-STRESS case as the baseline, we observe a 58% reduction in variability
window, as well as a 37% reduction in WCET. Additionally, note that in the OUR-HIGH case
the application performance is remarkably close to what is observed in the OUR-SOLO case.

The results for disparity reported in Figure 5 follow similar trends. First, the WCET
shows a 1.27x increase between LCY-SOLO and LCY-STRESS, reported in Figure 5a and
Figure 5b respectively. When the benchmark is executed alone in the system in a mid-
criticality (or high-criticality) domain (case OUR-SOLO in Figure 5¢), its WCET and average
execution time increases only slightly by 1.04x and 1.07x respectively. Intuitively, this
is because the SPM is a slower memory compared to the PS DRAM. Next, consider the
OUR-MID (Figure 5d) case where disparity is executed in a mid-criticality domain with
contention from the rest of the system. Compared to the LCY-STRESS case, we observe a
8% reduction in WCET and a 32% decrease in variability. When the application runs in a
high-criticality domain (case OUR-HIGH in Figure 5e), its WCET is minimally affected by
contending workload, with a 1.06x increase compared to the OUR-SOLO case. Notably, the
variability window in the OUR-HIGH case is lower than in the LCY-SOLO case.

Based on the evaluated scenarios, we can conclude that the hardware isolation provided
by a dedicated memory interface, a dedicated SPM memory, together with cache coloring
(OUR-HIGH case), is able to deliver better predictability and performance close to the ideal
case (OUR-SOLO). We present and discuss the final hardware design in the next section.

6 Support for Mixed-Criticality Applications on MPSoCs

In this section we present a general overview of the implementation carried out in the
ZCU102 platform to provide predictability for mixed-criticality applications. We start
giving an overview of the implementation in Section 6.1, then we present the details for
each implemented component (hypervisor, cache coloring, address translator, RTOS, and
code/data relocation).

6.1 Overview of Implementation

Based on the experiments described in the previous section, our final hardware design is
depicted in Figure 6. We assign one of the A53 cores to be a low-criticality core, two of
them to be mid-criticality cores, and one of them to be a high-criticality core. The mid- and
high-criticality cores run their own Real-Time Operating System (RTOS). A few noticeable

41 clock cycle is equal to 0.01 us.
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Figure 4 Results for mser application. See the summary of the scenarios in Table 1.

features of our proposed design are: (i) the low-criticality domain is assigned direct access to
DRAM because this domain features applications with sizable footprints; (ii) each mid- and
high-criticality domain is assigned a private SPM; (iii) each of these SPMs is dual-ported
and a controller is instantiated on each port to prevent contention between DMA and core
at the SPM controller; and (iv) the high-criticality domain also occupies a dedicated PS-PL
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Figure 5 Results for disparity application. See the summary of the scenarios in Table 1.

interface to access its private SPM. It should be noted that the SPM (BRAM) memories
in the Xilinx FPGA are dual-ported and thus there is no extra overhead (which may not
be the case when using dual-ported memories in Application Specific Integrated Circuits).
Moreover, the size of each SPM can be defined according to the applications and RTOS
requirements for each criticality domain. Since in our platform the maximum size of all
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SPMs is 3 MB, the size of the SPM used by the high-criticality domain was set to 2 MB,
while the size of the other two SPMs used by mid-criticality domains was set to 512 KB each.

The low-criticality core is also responsible for booting a hypervisor (Jailhouse). Jailhouse
allows us to partition shared memory resources, especially the LLC and DRAM by imple-
menting cache coloring. We have two partitions in the DRAM; one dedicated to run Linux
and another one to place the code/data of the tasks running on the A53 application cores
(to support the three-phase model as will be discussed below).

Processing System (PS) Programmable Logic (PL)
SmartConnect 0
Wil > DMAEngine |€F2 S SPM (2MB)
R5 g 8 M opt ) s Trans. | ™l ctrio Partition 1
1/0 Domain I SPM Partition 2
LLC . Ctrl 1
Cortex NR’ M <2r. SmartConnect 1| SPM (512KB
es A5z |p| T le u > Kernel & Trans. SPM PM (512KB)
(Linux) 8 Code/Data | NN 3 C ctrl2 | L ,[Partition 1
Cortex © |_ predictable eal-time cores SPM Partition 2
> s 5 HPMO » Trans. Ctrl 3 SPM (512KB
o ~ SmartConnect 2 SPM /(—\ )
> e P E < » HPMI1 Ctrl 4 Partition 1
—— < » SPM Partiti
oy o | R >< >< » artition 2
i S = 5 <+ Ctrl 5

Figure 6 PS-PL interface and design

We propose creating separate SPM in the PL for all the mid- and high-criticality cores.
Thus, a dedicated or fast interface such that each core can access its own SPM without seeing
a delay from another core is required. Unfortunately, there are only two high performance
interfaces between PL and PS available in the platform and three A53 application cores.
Therefore, in our design we assign one shared high performance interface to two A53 cores
while the third core has a dedicated interface to its own SPM memory (see Figure 6).

Although there is another interface between PS and PL called low performance domain
(LPD) that can be used for the third A53 core, we opt not to use it. We have used a latency
benchmark [12] to measure the performance when one single core is accessing the LPD
interface and when two cores access the same HPM interface under stress. The obtained
latency for the HPM interface under stress was 202 ns, while for the LPD was 220 ns. Thus,
the LPD interface is used to carry DMA transfers to/from the SPM/DRAM on the behalf
of the A53 application cores, as part of the TDMA-based scheduling. The TDMA-based
scheduling of the DMA is handled by the R5 core. To pipeline the execution of a currently
running task with the load of the next task, we divide the SPM into two halves. A dual
ported SPM was used so that a DMA and an application core can both write/read to/from
SPM at the same time.

In order to avoid the contention between A53 cores in different criticality domains, we
partition the LLC via coloring. Coloring is used since no hardware support is available to
partition the LLC. The use of coloring generally results in portions of physical memory being
unusable to applications. This is generally acceptable for main memory, because its size is
not constrained (few GBs). Conversely, SPMs in the PL are usually limited in size (few KBs
or MBs). For instance, if coloring is used to define four equally sized LLC partitions, this
would reduce the size of each SPM to 1/4. To avoid this side effect of coloring, we introduce
an address translator between the A53 and the SPM. Since the cache is physically indexed,
coloring both the PS DRAM and SPM is required to avoid interference (otherwise there
would be a cache interference at every SPM access).

In the following subsections, we provide a detailed discussion on each of the main
components including Jailhouse, page coloring, address translator, how the A53 cores in
different criticality domains communicate using the hypervisor, RT'OS support for the system
model, and task relocation to support the three-phase model.
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6.2 Jailhouse to Partition the Shared Resources

As the hypervisor we use Jailhouse. Jailhouse is a partitioning hypervisor which can be used
to transform a symmetric multiprocessing (SMP) system into an asymmetric multiprocessing
(AMP) system [25]. Jailhouse is bootstrapped via a Linux driver and favors simplicity and
low-overhead over sophisticated (para-)virtualized techniques, which is ideal for real-time
systems [25]. It requires at least one core to be assigned to Linux —the root cell. Once the
driver is loaded, it takes control of the entire hardware and reassigns a partitioned view of the
hardware resources back to Linux, based on a configuration file. Then, to create additional
domains (called non-root cells), Jailhouse removes hardware resources assigned to Linux
(such as a processor core or a specific I/O device) and reassigns them to the new cell [25].
The idea is to have non-critical tasks running on the Linux cell and critical tasks running on
isolated partitions on top of an RTOS.

The Ab53 cores support a two-stage virtual memory translation. User-space applications
in a guest-OS, such as Linux or an RTOS, are assigned virtual addresses (VA). The first stage
of translation uses page tables maintained by the guest OS to translate VAs into intermediate
physical addresses (IPA). The second stage of translation is in control of the hypervisor, and
it is used to translate IPAs to physical addresses (PAs) via a second set of page tables.

The RTOS used for mid-/high-criticality domains is Erika Enterprise version 3, which is
open-source and OSEK/VDX certified [9, 7]. Erika supports fixed-priority scheduling and a
porting for Xilinx Ultrascale+ platform is available.

6.3 Page Coloring

To enforce strong inter-domain (inter-cell) and hence inter-core performance isolation, we
leverage page coloring (see [18, 10] for a complete overview of the technique). We use the
virtualization extensions of the processor to implement coloring by enforcing appropriate
restrictions on the color of pages that Jailhouse maps to IPAs of virtualized cells. Specifically,
we impose that physical pages with non-overlapping colors are assigned to cells activated on
different cores. The advantage of this approach is twofold. On the one hand, it allows us to
localize the changes required to implement coloring-based partitioning in a single software
component (Jailhouse). On the other hand, it allows deploying unmodified and possibly
closed-source OS inside our criticality domains. A similar technique was used in [22, 16, 18].

6.4 Address Translator to Overcome Limitations of Cache Coloring

To overcome the problem of memory waste imposed by coloring, we designed an address
translation hardware IP. The component performs physical address translation for memory
transactions originating from the PS towards the PL. To better understand how the component
operates, let us consider our specific setup. To access an SPM with a size of 2 MB, 22
bits of the address are provided for requests originated from the PS. With cache coloring
enabled (and four colors, one for each core), only one in four memory pages can be used,
with addresses aligned at 16 KB boundaries (each page has a size of 4 KB). The adopted
solution is the following. Instead of receiving 22 bits of an address, the translator IP receives
24 bits (8 MB) from the PS, removes the specific color bits from that, and passes it to the
SPM controller.

Given the geometry of the LLC (1 MB, 16 ways) the color bits that can be used to
perform partitioning are bits 12 to 15 of each physical address. To create 4 partitions, one
could use bits 12 and 13. Pages with bits [12, 13] = 0b0 would be assigned to partition 1;
pages with bits [12, 13] = Obl to partition 2; and so on. In this way, four sequential physical
pages will be assigned to four different partitions. This is not ideal, however, because the
L1-Data cache in this platform is Physically Indexed, Physically Tagged (PIPT) and fits 2
pages per way. If a CPU is only given access to one every four pages, only half of the L1-D
cache will be utilized. To avoid this problem, we use bits 14 and 15 as the LLC color bits. In
this configuration, each partition is given 4 consecutive pages.
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Let us assume that the address of the translator in Figure 6 responds under the address
range 0xA0000000 to 0xAO7FFFFFF (8 MB). Following the discussion above, bits 14 and
15 are used as LLC coloring bits. Figure 7 shows an example where a request address of
0xA0023456 (offset 0x023456) from a core arrives to the translator IP. Bits 14 and 15 of the
offset are dropped by the translator and the resulting offset is 0x0B456 in a 2 MB non-colored
space.

Translator IP

Figure 7 Translator IP operation. The two most significant bits from the fourth byte (in red) of
the input address are dropped.

In our design (Figure 6), there are three translators to handle the requests coming from
each core. With this mapping mechanism, the SPM capacity is not affected by the cache
coloring (we do not lose space) and since the translator IP is burst-capable, we do not lose
bandwidth nor increase latency in accessing the SPMs. Besides that, the area overhead of
the module in terms of the numbers of Flip-Flops (FF) and Lookup tables (LUTs) compared
with the design without any translation IP are 0.57% and 0.41% respectively, while the block
RAM cell count remains the same.

6.5 Communication among Jailhouse Cells

Usually, communication among processors is done by sharing memory buffers and Inter-
Processor Interrupts (IPIs). Jailhouse allows to issue direct IPIs only among processors that
are assigned to the same cell, and hence the same criticality level. To avoid a low-criticality
domain (i.e., Linux) to interfere with higher-criticality domains (by sending an unlimited
number of IPIs), currently we do not allow issuing IPIs among processors with different
criticality levels. In the future, the communication among tasks from different criticality
levels will be performed through the Jailhouse shared memory mechanism, based on the
creation of virtual PCI devices and their legacy interrupts in the static configuration for
each cell [25]. This means that the system designer could specify which criticality level
(i.e., Jailhouse cell) can communicate with other criticality levels. As future work, we will
investigate how to enhance Jailhouse with a server-based scheduling mechanism for IPIs [8],
such that real-time guarantees can be preserved in the event that a low-criticality domain
tries to send an unlimited number of IPIs to a higher-criticality one. Also, we propose the use
of FIFO buffers implemented in the shared memory (which can also be colored) to support
the communication among OSes.

6.6 Erika RTOS Running on Real-Time Cores

All the A53 application cores run a partitioned fixed priority scheduler, provided by the
Erika RTOS, and always execute from dedicated SPM memory assigned to them. Both the
dedicated SPMs and the PS DRAM assigned to Linux are colored to avoid cache evictions in
the shared cache. Erika does not support virtualization on ARMv8 CPUs, as such it would
not use virtual addresses (VAs). By default, however, Jailhouse performs the setup of a
flat 1:1 stage-one (virtual address to intermediate physical address — VA—IPA) addressing
space before booting any non-root cell. This is required to support cacheable memory. An
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application in the Erika RTOS is always statically compiled against VA /IPA addresses. As
shown in Figure 8, the task running on the Erika core can be in one of the following states:

Running: The tasks is executing from SPM.

Ready Loaded: The task is loaded and is ready to execute from SPM.

Ready Unloaded: The task is released but it is not yet loaded to SPM.
Completed: A task has completed.

Waiting on Event (Unloaded): The task is waiting on a timer or on an event.

Completed
: Completed
i Using Last
Data
Scheduled e
___________ aiting
Loaded Compisisdl oM Data
¥ Unloaded
Processing
_______ the Event
Lo T e e
05, 9%, New Event
O{O‘S\CY@O_ o
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Figure 8 Overview of the different states of a task in Erika RTOS.

Note that the transition from Waiting on Event Unloaded to Ready Loaded is performed
when there is no other ready task and the waiting task that was unloaded receives all the
events it needs. The state transition also encompasses the loading phase. To allow the
load and unload of code and data of Erika’s tasks, we use the support for virtual memory
implemented in Jailhouse, described in the next subsection.

6.7 Code/Data Relocation

Relocation is the process of assigning addresses to position-independent code and data. We
use code/data relocation to support the loading and unloading of Erika tasks’ code and data.
Relocation is initiated by the Erika RTOS when its scheduler decides to load or unload a task
as required. Recall, however, that applications in Erika are statically compiled against a set
of virtual addresses (or intermediate physical addresses, since Erika does not support virtual
memory). As such, relocation is performed by modifying the mapping from intermediate
physical addresses to physical addresses (IPA—PA) managed by Jailhouse.

Erika first informs Jailhouse that a relocation must be performed. This is done via a
hypercall (i.e., hvc assembly instruction), which was added to Erika. Hypercalls in Jailhouse
are services provided by the hypervisor to its cells. A Jailhouse hypercall receives three
arguments; the hypercall code or ID and two arguments that are specific to the hypercall. We
added to Jailhouse two new hypercall IDs, indicating either load or unload operations. The
second argument is used to encode (i) the source/destination address in DRAM (page-aligned,
least-significant 12 bits are zero); and (ii) the offset in pages from the beginning of the
SPM where the task needs to be loaded to/unloaded from (the largest SPM is 2 MB, so
the maximum offset is 512 - 1 pages, and it takes the 9 least-significant bits). The third
argument encodes the size of the task that needs to be loaded/unloaded. As shown in [3],
the overhead of a hypercall in Jailhouse on the ZCU102 platform is around 400 ns.

Once Jailhouse receives a request to relocate a task’s code/data, it performs the following
steps. First, it determines the absolute source (resp., destination) in DRAM and destination
(resp., source) in SPM for a load (resp., unload) operation. Next, it modifies the IPA—PA
mapping so that the range of intermediate physical addresses starting at the provided source



G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo

address (resp., destination), and spanning for the number of pages specified by the size
parameter, map to the destination address. After the remapping is completed, Jailhouse
returns control to the calling environment (Erika RTOS). The effective copy of the task
into/from SPM is performed by the DMA engine.

7 Evaluation

In this section, we present the evaluation of our system design. We start showing an evaluation
of the DMA performance, including the time to transfer different data sizes from PS DRAM
to the SPM and its programming overhead. We then demonstrate the limits in terms of hard
real-time guarantees of our system through a case study on image processing.

7.1 DMA Evaluation

In order to move data between the PS DRAM and the SPM memory inside the PL, we
use the PS-side DMA. Because only one DMA is used to move data on behalf of three A53
cores, we propose a fine granularity TDMA-based scheduling of the DMA. When activated,
the DMA transfers data between PS DRAM and SPMs using the low-power domain (LPD)
interface. In our design, a dedicated LPD port is used instead of a shared HPM port to
avoid contending with the application cores when performing DMA transfers. The TDMA
schedule is handled by one of the ARM Cortex-R5 cores. For this purpose, a bare-metal
firmware was deployed on the R5, created using the Xilinx SDK 2018/02. The SDK uses
the armr5-none-eabi-gcc compiler. The following compilation flags were used: -DARMRS
-W -Wall -00 -g3.

We measured the DMA transfer time for different data sizes, extracting the average
transfer time, standard deviation (STD), and the worst-case transfer time among 1000
samples. Table 2 shows the obtained results. Recall that 1 MB represents half the size
of the largest SPM in our design. The results show that the standard deviation remains
within the range [0.057, 0.1]. It can also be noted that the achievable bandwidth increases
proportionally to the amount of contiguous memory transferred, peaking at around 870 MB/s
with transfers of 1 MB in size.

We also measured the DMA programming overhead (i.e., the time to program and
start a DMA transfer). The worst-case DMA programming overhead obtained from all
the experiments was 3.89 us. For small data sizes (2 and 4 KB for instance), the relation
between the programming overhead and the transfer time is significant. In this case, it may
be beneficial to avoid small data transfer whenever possible or use the own task’s core instead
of the DMA. We plan to fully analyze the impact of the DMA programming overhead into
the schedulability of real-time tasks in future work. However, based on insights provided by
previous work on the three-phase model [28, 33|, we would like to point out that the model
behaves well as long as task execution times are longer than the time required to reload
an SPM partition. As an example, if we consider a partition of 256 KB (half the size of
a 512 KB scratchpad), and a TDMA slot with transfer size of 32 KB for each core, then
based on Equation 1 we obtain o; = 38.81 + 3.89 = 42.7 us, ¥ = 3-42.7 = 128.1 us, and
k =2-256/32 = 16 as the number of slots required to unload/load the partition. This results
in a memory reload time A = 2092.3 us, meaning that tasks should execute for at least 2 ms
to hide the memory time.

7.2 Case Study: Image Processing

To evaluate our system design we consider a system where video frames captured from a
camera are processed in a high-criticality domain. Video frames are processed using the
disparity benchmark from the SD-VBS suite [32]. Disparity computes depth information
for objects represented in two input images, obtaining relative positions of objects in the
scene. This kind of algorithm is useful in applications such as cruise control, pedestrian
tracking, and collision control [32]. The objective of this evaluation is to demonstrate how
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Table 2 DMA transfer time (in us) and bandwidth for different data sizes.

. Transfer Time .
Transfer Size Average (jis) | STD | Worst-case (3) Bandwidth (MB/s)
2 KB 4.92 0.057 5.11 397.0
4 KB 7.15 0.04 7.27 546.3
8 KB 11.63 0.01 12.01 671.8
9.1 KB 12.91 0.05 13.11 688.4
16 KB 20.62 0.08 20.96 757.8
22 KB 27.42 0.10 27.72 783.5
32 KB 38.52 0.05 38.81 811.3
1 MB 1149.44 0.05 1149.78 870.0

the proposed system behaves in a realistic setup and to show its limits in terms of achievable
hard real-time guarantees.

To this end, the disparity benchmark is executed as a periodic task. During each
activation, it computes the disparity of two input images. At every new period, disparity
reuses one image from the previous iteration and uses a new image transferred by the
communication engine. We performed two experiments with two different image resolutions,
i.e., 64x48 and 128x96 (SQCIF). We only used these image resolutions due to limitations
in the size of the SPM. Also, disparity requires input images to be in the bitmap image
file (BMP) format, which is uncompressed. Thus, for a resolution of 64x48, an image has a
size of around 9.1 KB, while for 128x96 an image has a size of 22 KB. We use a set of 20
images of a scene from the KITTI vision benchmark suite dataset [27]. In particular, we
used 20 frames from the 2015 stereo multiview dataset. The original images had a resolution
of 1241x376. We converted the frames to the lower resolutions described above. We move
the I/O data of the tasks from/to DRAM to/from the SPM at load/unload phase of the task
using the same approach as described in [29]. Table 2 shows the DMA transfer time for both
image resolutions (9.1 KB and 22 KB). Erika RTOS consumes 294 KB of memory (including
data and code) and it is fixed on the SPM (we do not load nor unload code/data of the
RTOS). Disparity using image resolution of 64x48 consumes 349 KB, while for 128x96 it
consumes 745 KB, also including data and code. Although not required in this case study,
note that when input data is too large to fit into the SPM, it is possible to use compiler-level
techniques to break the load/unload phases into small chunks [26].

We considered four out of the five scenarios described in Table 1. We run disparity
alone in the system from the PS DRAM on top of Linux (LCY-SOLO), next disparity
runs from the PS DRAM with three bandwidth (BW) benchmark instances (see Section 5)
also executing and accessing the PS DRAM (LCY-STRESS). The disparity benchmark is
then executed from SPM on top of Erika/Jailhouse with coloring and using our hardware
design without (OUR-SOLO) or with (OUR-STRESS) interference from the rest of the system.
Ideally, when disparity runs with contention from the SPM (OUR-STRESS) it should exhibit
comparable performance with respect to the case when disparity runs without interference
from the SPM (OUR-SOLO). The case when disparity runs solo from PS DRAM (Lcy-
SOLO) serves as a baseline, while the case when it runs from PS DRAM under contention
(Lcy-STRESS) provides an idea of what we gain in terms of isolation and performance thanks
to the proposed set of software/hardware techniques. Periodic execution of the disparity
task was achieved under Linux by using a CLOCK_REALTIME timer to invoke a handler at the
desired frequency. The handler then releases the disparity thread using a semaphore. The
disparity benchmark, Erika OS, and the BW benchmark instances were compiled using
gcc version 5.4 for the ARM64 architecture with the -02 flag.

First, we present the execution time of disparity in each of the four cases using an
image resolution of 64x48 in Table 3, and a resolution of 128x96 in Table 4. We measured
the execution time of 1000 individual processing jobs and extracted the average execution
time, standard deviation (STD), BCET, WCET, and variability window. The variability
window is calculated as (WC ETstress — BCETso10) /W CETgtress. Time measurements were
taken using the processor cycle counter and converted to ms. Note that when working at
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64x48 resolution, the two input images (9 KB each) fit into the L1 cache (32 KB). Thus,
the observed worst-case when disparity is running alone is similar for both memories
(PS DRAM and SPM). However, when contention is introduced, the benchmark suffers
visible interference in the LCY-STRESS setup. Note that there is still some contention when

disparity uses the dedicated HPM interface and cache coloring in the OUR-STRESS setup.

This may be due to contention over Miss Status Holding Registers (MSHRs) in the last level
cache [30]. The results for 128x96 (SQCIF size) input images were presented in Section 5
and correspond to the cases analyzed in Figure 5(a), 5(b), 5(c), and 5(e).

Table 3 Average, standard deviation, BCET, and WCET obtained from 1000 executions for the
considered four cases with input image size of 64x48. All values in ms. Highlighted values in bold
are used to calculate the variability window.

[ Ley-Soro | Ley-StrEss | Our-SoLo [ Our-HIGH |

Average 15.89 17.86 15.94 16.49
STD 0.01 0.07 0.01 0.06
BCET 15.88 17.69 15.92 16.34
WCET 16.00 18.18 15.96 16.73
Var. Window 12.6% 4.8%

Table 4 Average, standard deviation, BCET, and WCET obtained from 1000 executions for the
considered four cases with input image size of 128x96. All values in ms. Highlighted values in bold
are used to calculate the variability window.

[ Ley-Soro | Ley-Stress | Our-Soro [ Our-HIGH |

Average 61.50 75.09 66.04 69.80
STD 0.02 0.34 0.07 0.26
BCET 61.45 74.32 65.79 69.04
WCET 61.80 77.09 66.30 70.59
Var. Window 20.2% 6.8%

Based on the observed WCET in the various experiments, we vary the image processing
task period and study when disparity starts missing deadlines in each case. Table 5 presents
the obtained results for image size of 64x48. We vary the frequency from 55 Hz (18.18 ms
period) to 63 Hz (15.87 ms period). A tick mark in the table indicates that the desired image
processing rate was sustainable. In other words, that no instance of disparity missed its
relative deadline (equal to the period). Whereas a cross mark indicates that the desired rate
was not sustainable. From the results in Table 5, we can see that by running disparity
without any interference, the maximum sustainable rate is 62 Hz. However, when running
under contention and no isolation enforcement (LCY-STRESS case) the sustainable image
processing rate drops to 55 Hz. Conversely, a rate of 59 Hz is sustainable if disparity
executes from within a high-criticality domain defined using the proposed software/hardware
techniques. Note that in this setup each image processing job has to wait for an image to
be transferred in input by the DMA before it can start execution. Because DMA accesses
to DRAM can experience contention, a decrease in sustainable rate is visible between the
Lcy-SoLo and the LCY-STRESS cases. Nonetheless, this experiment shows that our design
provides better predictability and enables higher processing rates when the system is under
heavy load.

Table 6 shows results for input images with resolution 128x96 when running the disparity
benchmark. The average execution time for disparity with image resolution of 128x96 when
running solo from PS DRAM is 61.5 ms — see Table 4, Lcy-SoOLO case. Thus, we vary the
frequency from 10 Hz until 17 Hz and observe that the image processing task starts missing
deadlines when activated at 17 Hz. With 128x96 input images, the disparity benchmark
under contention can sustain a rate of 14 Hz in spite of heavy system load when isolated
in a high-criticality container (OUR-HIGH case). Conversely, the sustainable rate decreases
to 12 Hz when no isolation is enforced. In the OUR-SOLO case, disparity can run at a
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Table 5 Supported frequencies for image size of 64x48.

[ Freq. (Hz) [ Period (ms) [ Loy-SoLo | Loy-STRESs | OUR-SoLo [ OUR-HIGH |

55 18.18 v v v 4
56 17.86 v X 4 4
57 17.54 v X v 4
58 17.24 v X v v
59 16.95 v X v 4
60 16.67 v X 4 X
62 16.13 v X v X
63 15.87 X X X X

maximum frequency of 15 Hz, which is slightly lower than what can be achieved in the
Lcy-Soro case (16 Hz). The drop arises from the fact that the SPM memory in PL is a bit
slower than the PS DRAM [34]. We did not see the same behavior for an image resolution of
64x48 due to the cache. Importantly, however, the sustainable rate in the OUR-SOLO case is
very close to the OUR-STRESS case. Thus, it can be concluded that our software/hardware
co-design is able to deliver performance to highly critical applications that are close to the
best-case. It is also important to highlight the low performance achieved by disparity for
higher resolution images. We plan to investigate how to achieve better processing rates for
image applications on top of the platform in future work.

Table 6 Supported frequencies for image size of 128x96.

[ Freq. (Hz) [ Period (ms) [ Loy-SoLo | Loy-STRESS | OUR-SoLo [ OUR-HIGH |

10 100.00 v 4 v 4
11 90.91 v 4 v 4
12 83.33 v 4 v 4
13 76.92 v X v v
14 71.43 v X v 4
15 66.67 v X v X
16 62.50 v X X X
17 58.82 X X X X

8 Conclusion and Future Work

In this paper, we have shown how one can define multiple criticality domains by exploiting the
rich hardware features provided by a modern heterogeneous SoC that incorporates multiple
CPUs and PL. Following the proposed design, the PL is used to define dedicated portions
of scratchpad memory for mid-/high-criticality applications. Additionally, we ensure that
no contention exists for high-criticality applications by routing their memory transactions
using a dedicated high-performance memory interface inside the PL. Similarly, mid-criticality
applications access their SPM using a memory interface shared only with other mid-criticality
applications. External I/O and communication data from the rest of the system is transferred
to the mid- /high-criticality domains by a TDMA-scheduled DMA engine using a real-time R5
core. We described our full-stack implementation of the proposed techniques and evaluated
the system using realistic SD-VBS benchmarks.

As a part of future work, we plan to investigate how to enhance Jailhouse with a
server-based scheduling mechanism for limiting the number of IPIs between processors from
different criticality levels, how to integrate compiler code generation to automatically generate
load /unload requests for tasks following the three-phase model, to discuss the schedulability
analysis of the proposed fine-granularity DMA transfer based on TDMA, how to guarantee
that the communication engine executes safely, since if it fails (due to a security attack for
instance) the entire system also fails, and how to achieve higher computational power for
image processing applications without giving up on the relatively strong isolation achieved
by the current design.
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