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Abstract Traditional post-disaster assessment of damage heavily relies on
expensive geographic information system (GIS) data, especially remote sens-
ing image data. In recent years, social media has become a rich source of
disaster information that may be useful in assessing damage at a lower cost.
Such information includes text (e.g., tweets) or images posted by eyewitnesses
of a disaster. Most of the existing research explores the use of text in iden-
tifying situational awareness information useful for disaster response teams.
The use of social media images to assess disaster damage is limited. We have
recently proposed a novel approach, based on convolutional neural networks
and class activation mapping, to locate building damage in a disaster image
and to quantify the degree of the damage. In this paper, we study the useful-
ness of the proposed approach for other categories of infrastructure damage,
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specifically bridge and road damage, and compare two class activation map-
ping approaches in this context. Experimental results show that our proposed
approach enables the use of social network images for post-disaster infrastruc-
ture damage assessment, and provides an inexpensive and feasible alternative
to the more expensive GIS approach.

Keywords Image analysis - convolutional neural networks (CNN) - class
activation mapping (CAM) approaches - damage localization - bridge, building
and road damage

1 Introduction

Fast detection of damaged areas after an emergency event can inform respon-
ders and aid agencies, support logistics involved in relief operations, accelerate
real-time response, and guide the allocation of resources. Most of the existing
studies on detecting and assessing disaster damage rely heavily on macro-level
images, such as remote sensing imageries [37,14], [11], or imageries transmit-
ted by unmanned aerial vehicles [3]. Collection and analysis of macro-level
images require costly resources, including expensive equipment, complex data
processing tools, and also good weather conditions. To benefit the response
teams, the macro-level images have to be collected and analyzed very fast,
which is not always possible with traditional collection and analysis methods.

With the growth of social media platforms in recent years, real-time disaster-
related information is readily available, in the form of network activity (e.g.,
number of active users, number of messages posted), text (e.g., tweets), and
images posted by eyewitnesses of disasters on platforms such as Twitter, Face-
book, Instagram or Flicker. Many studies have shown the utility of social me-
dia information for disaster management and response teams. For example, the
analysis of text data (e.g., tweets from Twitter) has received significant atten-
tion in recent works [13], [17], [19], [22], [39]. However, social media images,
while very informative [4], have not been extensively used to aid disaster re-
sponse, primarily due to the complexity of information extraction from (noisy)
images, as compared to information extraction from text.

By contrast with macro-level images, social media images have higher “res-
olution”, in the sense that they can provide detailed on-site information from
the perspective of the eyewitnesses of the disaster [4]. Thus, social media im-
ages can serve as an ancillary yet rich source of visual information in disaster
damage assessment. Pioneering works with focus on the utility of social media
images in disaster response include [1], [28], where the goal is to use convolu-
tional neural networks (CNN) to assess the severity of the damage (specifically,
to classify social media images based on the degree of the damage as: severe,
mild, and none).

Due to ground-breaking developments in computer vision, many image
analysis tasks have become possible. Disaster management and response teams
can benefit from novel image analyses that can produce quantitative assess-
ments of damage, and inform the relief operations with respect to priority ar-
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eas. In this context, it is useful to locate damage areas in social media images
(when images contain damage), and subsequently use the identified damage
areas to assess the damage severity on a continuous scale. Possible approaches
for localizing damage in social media images include object detection [7,25]
and image segmentation [36]. Object detection can be conducted by classifying
some specific regions in an image as containing damage or not. For example,
Cha et al. [7] used a convolution neural network (CNN) to classify small image
regions (with 256 x 256 pixel resolutions) as containing concrete crack damage
or not. Maeda et al. [25] used a state-of-the-art object detection approach,
called Single Shot MultiBox Detector (SSD) [24], to detect several types of
road damage. Image segmentation has been used in [36] to detect building
damage based on high resolution aerial images.

Regardless of the method used, object detection or image segmentation,
existing approaches for localizing damage first identify objects (i.e., potential
damage regions) and subsequently classify the objects as damage (sometimes,
severe or mild) or no damage. Thus, there is a conceptual mismatch in the
way existing approaches are used, given that damage is generally regarded as a
high-level concept rather than a well-defined object. By first identifying objects
and then assigning discrete hard-labels to them, existing approaches produce a
clear-cut boundary for the damaged areas, although a smooth boundary would
be more appropriate.

To address this limitation, we have recently proposed a novel approach [23],
called Damage Detection Map (DDM), to generate a smooth damage heatmap
for an image. Our approach adopts the gradient-weighted CAM (Grad-CAM)
[32] technique to localize the area in an image which contributes to the dam-
age class. Based on the damage heatmap, we also propose a new quantitative
measure, called Damage Assessment Value (DAV), to quantify the severity of
damage on a continuous scale. Our approach was originally tested on a set of
images that show building damage. In this paper, we evaluate the usefulness of
the proposed approach for localizing and quantifying different types of infras-
tructure damage, including building damage, bridge damage and road dam-
age. Furthermore, in addition to Grad-CAM, we also use its Grad-CAM++
extension [8], which can identify multiple occurrences of a class object, and
compare Grad-CAM and Grad-CAM-++ in the context of damage localization
and quantification.

Extensive experimental results show that our approach makes the disaster
infrastructure damage localization possible, and thus extends the use of social
media images in disaster assessment.

The rest of this paper is organized as follows: We discuss related work in
Section 2, and describe the proposed approaches for generating DDM heatmaps,
and computing DAV scores in Section 3. We describe the experimental setup
in Section 4 and present the results in Section 5. Finally, we conclude the
paper in Section 6.
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2 Related Work

Social media data has been shown to have significant value in disaster re-
sponse [6,26,30]. Many machine learning approaches [2,17,22], including deep
learning approaches [5,27], have been proposed and used to help identify and
prioritize useful teztual information (e.g., tweets) in social media. Some works
have focused specifically on identifying situational awareness information [33,
16], including information related to damage assessment [19,39,31,9].

Despite the extensive use of machine learning tools for analyzing social
media text data posted during disaster events, there is not much work on ana-
lyzing social media images posted by eyewitnesses of a disaster. One pioneering
work in this area [28], used trained CNN models, specifically, VGG16 networks
fine-tuned on disaster image datasets, and showed that the CNN models per-
form better than standard techniques based on bags-of-visual-words.

Other prior works focused on image-based disaster damage assessment use
aerial or satellite images, e.g. [37,14]. Compared to such works, which use
more expensive imagery, we focus on the use of social media images, which are
readily available during disasters, together with interpretability approaches,
i.e., Grad-CAM, to produce a damage map and a damage severity score for
each image.

Similar to us, Nia and Mori [29] use ground-level images collected using
Google to assess building damage. Their model consists of three different CNN
networks (fine-tuned with raw images, color-masked or binary-masked images,
respectively) to extract features predictive of damage. Subsequently, a regres-
sion model is used with the extracted features to predict the severity of the
damage on a continuous scale. Compared to [29], we use the features identified
at the last convolutional layer of the CNN network to build a detection map,
and use the map to produce a numeric damage severity score. While CAM-
type approaches have been used to explain model predictions in many other
application domains, to the best of our knowledge, they have not been used
to locate damage and assess damage severity in prior work.

3 Methods

Our approach generates a Damage Detection Map, which visualizes the dam-
age area for a given image, and a score DAV, which quantifies the severity of
the damage. The main components of our approach, shown in Fig. 1, are the
following: 1) a CNN that classifies images into several classes, e.g., building-
damage and no-building-damage, or building-damage, bridge-damage, road-
damage and no-damage; 2) a class activation mapping (specifically, Gradient-
weighted Class Activation Mapping, or Grad-CAM, and Grad-CAM++), which
generates the DDM map by weighting the last convolutional layer of the CNN
model; 3) finally, the damage severity score computed by averaging the values
in the map. The details for the three components of our approach are provided
in what follows.
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Fig. 1: Overview of the proposed approach, when learning to discriminate be-
tween damage and mo-damage images. The model takes an image as input
and produces a Damage Detection Map (i.e., heatmap) and a Damage As-
sessment Value as output. The model shown is a binary model that learns to
discriminate between images showing damage and images not showing dam-
age. However, the model can be generalized to multiple classes (e.g., types of
damage) by changing the number of units in the output (last) layer.

3.1 Convolutional Neural Networks

Convolutional neural networks [21] have been used successfully for many im-
age analysis tasks [20,12]. A Convolutional Neural Network (CNN) takes an
image as input and outputs the class that the image belongs to. It consists of
convolutional layers, together with non-linear Rectified Linear Unit (ReLU)
activations, pooling layers and fully-connected layer. Convolution layers use
learnable filters to identify predictive features in input images. A filter is con-
volved (slided) across an input image, and a new image is produced by com-
puting dot products between the filter and the current window of the input
image. ReLU activation [18] is widely used with modern neural networks, as
they it does not activate all neurons at the same time. Different filters can
potentially identify different features in the input image. Pooling layers are
used to reduce the number of parameters, and help increase the generalizing
ability of the network and avoid overfitting. In particular, max-pooling reduces
the number of parameters by iteratively taking the maximum value in a local
area of the matrix corresponding to its input images. A fully connected layer
connects all its units to units in the next layer.

The ImageNet annual competition (where a dataset with 1.2 million im-
ages in 1000 categories is provided to participants) has led to several popular
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architectures, including AlexNet [18], VGG19 [34], ResNet [15] and Inception
[35]. We choose VGG19 as the architecture for our CNN model, as VGG19 has
good classification accuracy and it is relatively simpler compared to ResNet
and Inception. Furthermore, pre-trained models are available for VGG19 and
it is easy to fine tune them for different classification problems.

VGG19 [34] contains 16 convolutional layers (with 5 pooling layers) and 3
fully connected layers. Each convolution layer is equipped with a non-linear
ReLU activation [18]. The convolutional layers can be seen as feature extrac-
tion layers, where each successive layer detects predictive image features (i.e.,
image fragments that correspond to edges, corners, textures, etc.) at a more
abstract level than the previous layer.

As can be seen in Fig. 1, the size of the input to the convolutional layers
is reduced by a factor of 2 through max-pooling layers, but not all convo-
lution layers are followed by a max-pooling layer. After every max-pooling
layer, the width of the convolution layer (i.e., number of filters used) increases
by a factor of 2. After the last max-pooling layer, there are two fully con-
nected layers with dimension 4096, and another fully connected layer whose
neurons correspond to the categories to be assigned to the input image. The
last layer of the standard VGG19 model has dimension 1000 because VGG19
was originally trained on a dataset with 1000 categories. However, as we are
interested in using VGG19 to classify images in two or more categories, e.g.,
building-damage and no-building-damage, we change the dimension of the last
fully connected layer from 1000 to the number of categories used for training
(in the building-damage versus no-building-damage model, the number of cat-
egories is 2). Overall, the model includes more than 130 million parameters,
and it takes a significant amount of time (and a large number of images) to
train it accurately [34]. However, the model parameters are highly transferable
to other image classification problems [38]. Thus, to avoid the need for a large
number of images, we initialize our model with the pre-trained VGG19 model
(except for the last fully connected layer), and fine tune it using disaster-related
images. More specifically, given a training image x with label y represented
as a one-hot vector (e.g., if the label is damage, then y = [1,0], otherwise
y = [0,1]), all the parameters 6 will be updated by:

NN
) g PL.ONN@) "
00
where p is learning rate, £ is the cross-entropy loss, and CNN(z) is the output
of the CNN given input z.

3.2 Class Activation Mapping Approaches

Recent works have focused on approaches that can explain the results of
the deep learning models. Such approaches include Gradient-weighted Class
Activation Mapping (Grad-CAM) [32] and its extension Grad-CAM++ [8].
In a general classification problem, for an input image and a trained CNN
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model, Grad-CAM makes use of the gradients of a target category to com-
pute a category-specific weight for each feature map of a convolution layer.
The weights are used to aggregate the feature maps of the final convolutional
layer, under the assumption that the last level captures the best trade-off
between high-level semantic features and spatial information. The resulting
maps can be used to identify the discriminative regions for the target cate-
gory (which explain the CNN model’s prediction), and implicitly to localize
the category in the input image. Thus, Grad-CAM can be seen as a weakly
supervised approach, which can localize a category in an image based only on
global image labels [32]. Furthermore, the Grad-CAM localized categories or
objects (shown using heatmaps) have soft boundaries, and can be used to gain
both insight and trust into the model.

Chattopadhyay et al. [8] identify two main drawbacks of the Grad-Cam
approach, and proposed an extension, called Grad-CAM++, to address the
Grad-CAM drawbacks. First, they observed that Grad-CAM does not properly
identify/localize all occurrences of a class object. Furthermore, Grad-CAM
may not always localize the whole class object, but only parts of it.

We formally describe the Grad-CAM [32] and the Grad-CAM++ [8] ap-
proaches in the remaining of this subsection.

Let f*, for k=1,...,512, be a feature map in the last convolutional layer
(of dimension 14 x 14 x 512) of the VGG19 network (see Fig. 1). Each f(]j’j)
represents the value at location (4, j) in the k-th feature map, for i = 1,..., 14,
j=1,...,14, k=1,...,512. Let . be the numeric output score corresponding
to a category of interest y. (e.g., damage) just before the softmax function
(which transforms the score g. to a binary 0/1 value) is applied. Given an
input image x and the score 7., we define the weights wy, corresponding to the
feature maps f* as the sum of the gradients of the score §j. with respect to
f(ki’j)7 for all ¢, j. Specifically:

1 07
wy, = (2)
14 x 14 Z]: aft;

For the feature maps f* and their corresponding weights wy, we finally
define a 14 x 14 matrix S, such that

si,j = ReLU <Z wkf(kid)) (3)
k

The ReLU function in Equation (3) is used to cancel the effect of the nega-
tive values, while emphasizing the effect of the positive values. We should note
that the feature maps f* in Equations (2) and (3) are in the last convolutional
layer of the VGG19 network, as this layer generally shows a good trade-off be-
tween high-level features and spatial information in the original image, and
can thus lead to good explanations for the classifications made by the model.

However, Chattopadhyay et al. [8] noted that if a target class object has
multiple occurrences in an image, marked by footprints with different orienta-
tions and sizes, then only the object occurrences with larger footprint will be
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visible in the heatmaps produced by Grad-CAM. To alleviate this problem,
they proposed Grad-CAM++, which assigns weighting coefficients aﬁ ; to the
pixel (i,7) gradients for target category score . and feature map k. Thus, in
Grad-CAM++, Equation (2) becomes:

wi =Y af;ReLU (6?‘?50 ) 4)
i, (4,5)

The effect of the ReLU function in Equation (4) is similar to the effect of
ReLU in Equation (3): it helps emphasize the positive values that contribute
to the importance (i.e., weight) of a particular feature map. Chattopadhyay et
al. [8] derived closed-form formulas for calculating the pixel-wise coefficients
af, ; for a feature map f; and a target category y.. Replacing wy with wy,
in Equation (3) leads to higher weights for features maps corresponding to
target objects with a smaller footprint in the original images, and thus allows
for multiple occurrences of the object to be identified (and similarly allows for
the localization of an object in its entirety).

We will experiment with both Grad-CAM and Grad-CAM++ approaches
to identify and localize damage in disaster images.

3.3 Damage Detection Map

Our proposed Damage Detection Map (DDM) is inspired by Class Activation
Mapping approaches. As described in the previous section, Grad-CAM /Grad-
CAM-++ identify target class objects and localize them using heatmaps. The
heatmaps are simply created based on the class labels of the original images,
and show the target objects using soft-boundaries. This makes CAM-based
approaches particularly attractive for the problem of localizing damage in
disaster images, assuming that only coarse labels of images as damage (or
specific type of damage, e.g., bridge-damage, road-damage, building-damage)
and no-damage are available for training. We would like to emphasize that
the heatmaps showing categories of interest using soft-boundaries are very
appropriate for localizing damage, as damage boundaries are inherently soft.
Moreover, the heatmaps that explain the model’s predictions can be used to
gain the trust of disaster management teams, and thus increase the usability
of social media images in disaster response and recovery.

Given an input disaster image z and a category of interest (e.g., building-
damage), we use the Grad-CAM and Grad-CAM++ to produce a 14 x 14
matrix S (and correspondingly a 14 x 14 image) as described in the previous
section. Using a bilinear interpolation technique, we further resize S to S¢
to match the dimensions of the input image. The same resizing method and
dimensions were used in Grad-CAM to generate heatmaps for explaining the
predictions of a CNN [32], and have been widely adopted in the literature. The
heatmap showing the S¢ values is the final Damage Detection Map, and can
be used to visualize regions of the image that are discriminative with respect
to the category of interest.



Localizing and Quantifying Infrastructure Damage 9

3.4 Quantifying Damage Severity

When a disaster occurs, eyewitnesses of the disaster will produce a huge num-
ber of images in a short period of time. An important goal of disaster assess-
ment is to extract and concisely summarize the information contained in the
images posted by eyewitnesses. To meet this demand, we propose to use a
damage assessment value (DAV) derived from the DDM heatmap to represent
the damage severity for each image.

The disaster damage map uses numerical values to measure the intensity of
each pixel of the image (the higher the intensity, the more severe the damage),
and can be represented as a heatmap. We take the average over all the numer-
ical values in the heatmap of a given image, and use the resulting value as an
overall score for the severity of the damage. Formally, we define the damage
assessment value (DAV) as:

1

.3
where s; ; are the elements of the S matrix defined in Equation (3), and 14 x 14
is the dimension of the matrix S.

4 Experimental Setup

We perform a series of experiments to evaluate the performance of our pro-
posed method. The experiments are designed to answer the following questions:

Can the Damage Detection Map accurately locate the damage areas?

What type of damage can be localized more accurately?

Can the DAV scores provide a reliable measure for damage severity?
Among two-class (damage or no-damage), four-class (building-damage, bridge-
damage, road-damage, or no-damage) or six-class (building-damage, no-
building-damage, bridge-damage, no-bridge-damage, road-damage, or no-
road-damage) models, what model leads to better results overall?

5. Between Grad-CAM and Grad-CAM++, which approach is better?

W N

4.1 Data Description

The main dataset we used in this paper was originally published in [28] and
it is available from http://crisisnlp.qcri.org. The dataset was assembled
from Google by using search queries such as building-damage, bridge-damage,
road-damage. In addition to images in one of these three categories, the dataset
contains images labeled as no-damage. The numbers of images in the building-
damage, bridge-damage, road-damage and no-damage categories are 903, 813,
826, 463, respectively. From the original dataset, we manually filtered out


http://crisisnlp.qcri.org

10 Xukun Li et al.

Category Bridge Building Road Total
Damage 347 709 525 1581
No-Damage 731 510 497 1738
Total 1078 1219 1022 3319

Table 1: Statistics about the Google damage dataset, which contains images
in the following categories: bridge-damage, no-bridge-damage, building-damage,
no-building-damage, road-damage, and no-road-damage

images that did not contain buildings, bridges or roads, and also noisy/mis-
labeled images. Furthermore, we manually classified the remaining no-damage
images as no-building-damage, no-bridge-damage and no-road-damage, and
used Google search to crawl more images in these specific no-damage cate-
gories. Finally, as we aim to localize damage in images, we manually marked
the damage area in each damage image. As damage is not an object, heatmaps
with smooth boundaries are preferable to bounding boxes when localizing dam-
age. However, human annotators cannot provide precise heatmaps, unless they
have professional knowledge of disaster damage, in which case their annota-
tion would be very expensive. To reduce the cost, generally human annotators
will simply mark the regions of an image that contain damage (resulting in
a binary included/not included representation). We used the tool LabelMe,
available from http://labelme.csail.mit.edu, to mark the damage.

We should note that the task of localizing damage in an image is very
subjective, as different people may see things differently in a damaged area.
While subjective, the datasets we created, which will be made available to
the research community, can be used to gain insights into computational ap-
proaches and challenges posed by the nature of the data. Meanwhile, a better
dataset could potentially be assembled by collaborating with infrastructure
damage experts in the future. The statistics about the final dataset used are
shown in Table 1. Sample images in the damage categories, together with the
ground-truth localization annotations, are shown in Fig. 2. We will refer to
this dataset as Google dataset in what follows.

We randomly split the Google dataset into training (80%) and test (20%)
subsets. The VGG19 models were fine-tuned on the training subset, and the
evaluation was performed on the test subset.

To evaluate the ability of the DAV scores to capture the severity of the
damage in an image, we used the dataset published in [29]. This dataset con-
tains images with building damage caused by natural disasters. Each image
was manually labeled using one of the following categories, which are indicative
of the degree of damage: no-damage, slight-damage, moderate-damage, heavy-
damage, and total-destruction. Each category is associated with a numeric
value: no-damage < 0, slight-damage <> 0.25, moderate-damage <> 0.5, heavy-
damage<> 0.75, total-destruction <> 1. The statistics about the final dataset
used are shown in Table 2. Sample images with different degrees of severity,
are shown in Fig. 3. We will refer to this dataset as Building Damage Severity
dataset in what follows.
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(c) Original bridge-damage images

(d) Annotated bridge-damage images

(f) Annotated road-damage images

Fig. 2: Sample images together with their corresponding damage localization
annotation for building-damage, bridge-damage and road-damage, respectively.
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Severity 0 0.25 0.5 0.75 1 Total
Damage | 46 15 47 86 56 250

Table 2: Statistics about the Building Damage Severity dataset, which con-
tains building images in the following categories: no-damage (0), slight-damage
(0.25), moderate-damage (0.5), heavy-damage (0.75), and total-destruction (1)

1

Slight-damage (0.25) Moderate-damage (0.5) Heavy-damage (0.75) Total-destruction (1)

Fig. 3: Sample images from the Building Damage Severity dataset, together
with their severity annotations

4.2 VGG19 Models Trained

We trained two-class, four-class and six-class VGG19 models. There are three
two-class models trained to discriminate between damage and no-damage im-
ages, specifically, building-damage versus no-building-damage, bridge-damage
versus no-bridge-damage, and road-damage versus mo-roda-damage, respec-
tively. The four-class model was trained to discriminate between road-damage,
building-damage, bridge-damage and no-damage images. Finally, the six-class
model was trained to discriminate between building-damage, no-building-damage,
bridge-damage, no-bridge-damage, road-damage, and no-road-damage.

4.2.1 Hyper-parameters

We used TensorFlow’s GradientDescentOptimizer to train the model using
mini-batch gradient descent on a GeForce GTX 1070 graphic card. Based
on preliminary experimentation, we chose to use a learning rate of 0.001
and a batch size of 32 images in all our experiments. Furthermore, we used
the dropout technique with a rate of 0.5 to prevent overfitting. The code
for the VGG19 model was adapted from https://github.com/machrisaa/
tensorflow-vgg.

4.3 Evaluation Metrics

We used several metrics to evaluate the performance of the proposed ap-
proaches on the test data. First, we evaluated the performance of the VGG19
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Fig. 4: Visualization of Damage Detection Maps for a building image (top two
rows), a bridge image (middle two rows) and a road image (last two rows). The
first row corresponding to an image shows the original image and the DDM
maps produced with a six-class (6¢), four-class (4c) and two-class (2¢) VGG19
model, respectively. The Grad-CAM (GCAM) is used with all models. For each
model, the IoU value of the image is also shown. The second row corresponding
to an image shows the manual damage annotation of the image, together with
the binary maps obtained from the DDM heatmaps (the binary maps are used
to calculate the IoU values).
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models using the classification accuracy, precision, recall and F1l-measure (by
comparing the predicted image labels with the ground truth labels). The
ability of the Grad-CAM and Grad-CAM++ approaches to produce DDM
heatmaps that accurately localize the damage was evaluated using the aver-
age intersection-over-union (IoU) metric [10] over all correctly classified im-
ages. The IoU metric is defined as follows:

_Area of Overlap

ToU = (6)

Area of Union
where the ‘Area of Overlap’ and ‘Area of Union’ are computed with respect
to a ground truth image, where damage is manually marked. IoU takes values
in [0, 1]. The IoU value is large, when the predicted damage area is similar to
the ground truth damage area.

To compare heatmaps with images where damage is manually marked in
terms of IoU values, we transform the heatmaps to a binary representation as
follows: we determine the maximum value in S¢ and use 20% of the maximum
value as a cutoff value for including a region in the disaster damage “object” or
not [40]. In other words, only the regions in DDM with values larger than the
cutoff value will be part of the localized damage. In the resulting transformed
image (as well as in the human annotated images), the damage pixels have
value 255, while no damage pixels have value 0.

To evaluate the ability of the proposed approaches to properly detect “dam-
age areas/objects” we consider different IoU detection thresholds & (i.e., an
object is detected if its IoU with the ground object is greater than the thresh-
old k), and calculate the average precision over the detected objects. This
metric is denoted as APQk.

Finally, the ability of the DAV scores to capture the severity of the damage
was evaluated using the root mean square error (RMSE).

5 Experimental Results and Discussion

In this section, we show the results of the experiments for evaluating the
damage detection maps produced by our approach on the bridge. building and
road categories, as well as the damage assessment value computed based on
the damage detection maps. Finally, we use the results of the experiments to
answer the research questions that we raised in Section 4.

5.1 Damage Detection Map Evaluation

The results of the experiments on the Google test dataset are shown in Table
3. The table first shows the accuracy of the VGG19 models used on the test
data, as intuitively, a more accurate model will lead to a better DDM map. As
can be seen in the table, the two-class VGG19 models are more accurate than
the four-class and six-class models. The two-class model that discriminates
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between road-damage and mo-road-damage is the most accurate among the
two-class models, while the six-class model has the lowest accuracy overall.
The same pattern is observed also for precision, where the two-class models
perform better than the four-class and six-class models. In terms of recall,
the two-class building and two-class road models have recall above 90%, while
the two-class bridge model has recall around 75%, most probably due to the
class imbalance in this dataset. Overall, the two-class road model is the best in
terms of accuracy and Fl-measure. The two-class road model is also the best
in terms of the average IoU regardless of the CAM approach used to construct
the DDM heatmap, but the six-class model is slightly better than the four-class
model. Given the class imbalance, the two-class bridge model has worse IoU
values as compared to the other models. We should also note that the standard
deviation for all IoU values is relatively high, which means that some some
images have high IoU, while others have low IoU. A sample image in each
category, together with its manual annotation, the DDM heatmaps obtained
with different models, and the corresponding binary maps are shown in Figure
4. As can be seen, the heatmaps produced by different models are not very
different, but they lead to different binary maps and consequently different
ToU values. Finally, it can be seen that overall the Grad-CAM approach leads
to better average IoU values as compared to the Grad-CAM-++ approach,
regardless of the model used.

In addition to accuracy, precision, recall, F1-measure and average IoU, Ta-
ble 3 also shows the average precision for each category of interest (i.e., bridge,
building, and road) at different IoU thresholds k (specifically, k = 0.5, 0.4, and
0.3) with different VGG19 models (six-class, four-class and two-class) and dif-
ferent CAM approaches (Grad-CAM and Grad-CAM++). For a particular
VGG19 model, one of the two CAM approaches is used to create a heatmap.
Subsequently, a “damage object” is detected by taking a threshold on the val-
ues in the heatmap, as explained in Section 4.3. The IoU between the detected
object and the corresponding ground truth object is computed. If the IoU is
greater than the threshold k, the object is considered to be a true positive,
otherwise it is considered to be a false positive. This information is used to
compute APQF. Intuitively, a higher threshold k£ may lead to some objects not
being detected, while a lower threshold k& may lead to false positives. As can be
seen in Table 3, when using the six-class and four-class models, for the bridge
category the AP@Q0.4 is worse than then AP@Q.5 and also worse than AP@0.3,
while for the other two categories, the values increase as k decreases. A similar
pattern is consistently observed for the two-class models, where the perfor-
mance increases as k decreases. It can also be seen that Grad-CAM generally
gives better results than Grad-CAM++. When comparing the models for a
particular category, we can see that the two-class road model is competitive in
terms of average precision for the road category, although the four-class model
perform well on this category as well. However, the six-class model is the best
overall in terms of average precision for the bridge and building categories.
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5.2 Damage Assessment Value Evaluation

To evaluate the ability of the DAV scores to capture damage severity, we
used the two-class VGG19 model fine-tuned to discriminate between building-
damage and no-building-damage and tested it on the Building Damage Severity
dataset. More specifically, we first used the two-class VGG19 building model
and Grad-CAM/Grad-CAM++ to create a re-scaled DDM heatmap S¢ for
each test image in the Building Damage Severity dataset. Subsequently, we
used the heatmap S¢ to compute a DAV score for each test image. Finally, we
computed the RMSE over the set of images in the Building Damage Severity
dataset, by comparing the DAV score of an image with the numeric anno-
tation of the image (which captures damage severity). The resulting RMSE
value for the Grad-CAM approach is 0.2538, while the RMSE value for the
Grad-CAM++ approach is 0.4189, a result which further confirms the previ-
ous finding that Grad-CAM performs better than Grad-CAM++ in terms of
damage detection and quantification.

The DAV values for the sample images in Fig. 3 are shown below the
corresponding heatmap images in Fig. 5. As can be seen, images that present
a more severe damage scene have higher DAV values, while images with less
damage have smaller DAV scores. Thus, the DAV scores accurately reflect the
degree of damage.

5.3 Discussion of the Results

Given the results presented above, in this subsection we answer the research
questions that we raised in Section 4.

1. Can the Damage Detection Map accurately locate the damage areas? Con-
ventionally, if the IoU value corresponding to a detected object (marked
with a bounding box) is larger than 0.5, the detection/localization of that
object is considered to be correct [10]. However, given that the damage is
not an object but a concept, we find that the 0.5 threshold is too strict in
the context of detecting and localizing damage. To explain this, we got an
estimate for the average IoU agreement between two human annotators.
Specifically, we had a second annotator mark damage for a random sub-
set of the images in our dataset (precisely, 768 images). The average IoU
between the two manual annotations was 0.5356, with standard deviation
0.2323 (larger than the standard deviation obtained with the automated
approaches). Furthermore, recall that that the average precision for differ-
ent categories was generally best for IoU threshold & = 0.3. This result,
together with the relatively low agreement between annotators and the
large standard deviation, suggests that the average IoU obtained using the
automated approaches, which is as high as 0.4184 for road damage, is an
indication that the damage detection map does a reasonable job at identi-
fying infrastructure damage. This can also be seen from the samples images
in Figure 6, which shows both images with DDMs that produce high IoU
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Slight-damage (0.25) Moderate-damage (0.5) Heavy-damage (0.75) Total-destruction (

DAV=0.33 DAV=0.48 DAV=0.68 DAV=0.82

Fig. 5: Heatmaps (top row) and the corresponding binary maps (bottom row)
for the sample images from the Building Damage Severity dataset, together
with their severity annotations (shown below the top images) and the DAV
scores (shown below the bottom images). The DAV scores properly reflect the
severity of the damage.

values, and images with DDMs that produce low IoU values. As can be
seen, for some of the images with low IoU values (e.g., the building image),
one can argue that the annotations may not best capture the damage area
in the first place, while for others (e.g., the bridge image), the model fails
to annotate the most relevant damage area.

2. What type of damage can be localized more accurately? The two-class VGG19
road model is the most accurate and produces the highest average IoU val-
ues. Furthermore, a high average precision value (specifically, 0.722) is ob-
tained for the road category when using the same two-class VGG19 model
and an IoU threshold of 0.3. However, the highest average precision value
overall is 0.7267, and it is obtained for the building category with the six-
class VGG19 model. Thus, we can say that both road damage and building
damage can be detected with high accuracy. For the bridge category, the
highest average precision value is 0.5738 and it is also obtained with the
six-class VGG model. One reason for bridge damage being harder to lo-
calize may come from the fact that bridge damage can be mistaken for
road damage or building damage, as has been observed when analyzing
the original labels of the images in the Google dataset.

3. Can the DAV scores provide a reliable measure for damage severity? Our
results show that the RMSE between the DAV scores produced by our ap-
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six-class  four-class two-class two-class two-class

all all bridge building road
Accuracy 0.8099 0.8421 0.8143 0.9325 0.9550
Precision 0.8232 0.8489 0.9722 0.9184 0.9775
Recall 0.8099 0.8421 0.7447 0.9053 0.9158
Fl-measure 0.8134 0.8441 0.8434 0.9173 0.9456
Avg. IoU (Grad-CAM) 0.3299 0.3132 0.2477 0.3361 0.4184
Std. IoU (Grad-CAM) 0.1758 0.1837 0.1575 0.1971 0.1745
Avg. IoU (Grad-CAM++) 0.3148 0.3054 0.2345 0.3366 0.3836
Std. IoU (Grad-CAM++) 0.1825 0.1876 0.1565 0.1926 0.1644
AP@O.5 bridge (Grad-CAM) 0.3167 0.2935 0.2803 N/A N/A
AP@0.5 building (Grad-CAM) 0.5221 0.3493 N/A 0.4424 N/A
AP@O0.5 road (Grad-CAM) 0.2454 0.3049 N/A N/A 0.2718
AP@O.5 bridge (Grad-CAM++) 0.3167 0.2934 0.2038 N/A N/A
AP@O0.5 building (Grad-CAM-++) 0.5156 0.3560 N/A 0.4559 N/A
AP@O.5 road (Grad-CAM++) 0.2416 0.2516 N/A N/A 0.2725
AP@0.4 bridge (Grad-CAM) 0.5738 0.5526 0.2006 N/A N/A
AP@0.4 building (Grad-CAM) 0.5425 0.5159 N/A 0.4729 N/A
AP@0.4 road (Grad-CAM) 0.4172 0.4678 N/A N/A 0.4547
AP@0.4 bridge (Grad-CAM++) 0.2349 0.2934 0.2146 N/A N/A
AP@0.4 building (Grad-CAM++) 0.5420 0.5160 N/A 0.4943 N/A
AP@0.4 road (Grad-CAM++) 0.3749 0.4757 N/A N/A 0.3952
AP@0.3 bridge (Grad-CAM) 0.4537 0.4270 0.5005 N/A N/A
AP@Q0.3 building (Grad-CAM) 0.7267 0.7098 N/A 0.6049 N/A
AP@O0.3 road (Grad-CAM) 0.5881 0.6998 N/A N/A 0.7222
AP@0.3 bridge (Grad-CAM++) 0.4537 0.4270 0.4455 N/A N/A
AP@Q0.3 building (Grad-CAM++) 0.7178 0.6639 N/A 0.6113 N/A
AP@O0.3 road (Grad-CAM++) 0.5589 0.6558 N/A N/A 0.6918

Table 3: Experimental results on the Google test dataset

proach and the ground truth damage severity annotations is 0.2538, when
the Grad-CAM approach is used to generate the DDM heatmaps and sub-
sequent DAV scores. Given that the damage severity is in the range [0,1],
we find this result to be very promising, in other words, we can claim that
the DAV score provide a good measure for damage severity, although the
reliability can be further improved. While the dataset that we used in this
experiment is relatively low, it is the only dataset we found publicly avail-
able, which is labeled with respect to damage severity. However, given the
transferability power of CNNs, and the fact that we used a pre-traied VGG
network, our model may not improve significantly with a larger number of
training images. To validate this claim, we plan to collaborate with dam-
age infrastructure experts in the future to produce a larger damage severity
dataset.

4. Among two-class, four-class, or siz-class models, what model leads to better
results overall? Overall, the six-class VGG19 model together with Grad-
CAM works best for our set of images, although the four-class model is
also competitive, and the two-class VGG19 road model is the best for road
damage. Intuitively, the six-class model, which is trained to discriminate
between bridge-damage, no-bridge-damage, building-damage, no-building-
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Manual Annotation Manual Annotation Manual Annotation

DDM, IoU=0.5198

Manual Annotation Manual Annotation Manual Annotation

DDM, IoU=0.1732 DDM, IoU=0.1663 DDM, IoU=0.1890

Fig. 6: Examples of images with DDM heatmaps that lead to high/low IoU
values. The first two rows show images with high IoU values, while the last
two rows show images with low IoU values.

damage, road-damage, and no-road-damage, learns not only features that
are indicative of damage versus no-damage, but also features that are in-
dicative of a specific category among the three target categories (bridge,
building, road). As opposed to that, the four-class model, which is train to
discriminate between bridge-damage, building-damage, road-damage, and
no-damage may learn features that identify no-damage in general, as op-
posed to no-damage in a particular category (in addition to features for
discriminating between different categories), and thus leads to worse re-
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sults than the six-class models. While the two-class road model works the
best for road damage, as expected, it seems surprising that the two-class
bridge and building models are generally worse than the other models.
Given that some bridge images look similar to building images, it may
be that the richer features extracted from the combined dataset help get
better DDM heatmaps. As opposed to that, road damage might be more
distinctive and easier to identify with a two-class model.

5. Between Grad-CAM and Grad-CAM++, which approach is better? Our
results show that the Grad-CAM approach is consistently better than the
Grad-CAM++ approach. This may seem surprising, as Grad-CAM++ is
an extension of Grad-CAM, which has been shown to give better results
on datasets with multiple occurrences of an object in an image. However,
in the context of damage localization, damage is rather as a concept with
soft boundaries rather than an object with hard boundaries, and as such,
it doesn’t present multiple occurrences. The Grad-CAM++ may highlight
additional regions that are not representative of damage, as marked by
human annotators. Therefore, Grad-CAM++ can lead to worse results as
compared to Grad-CAM, which focuses on the most representative regions
for the damage.

6 Conclusion

Given the large number of social media images posted by eyewitnesses of dis-
asters, we proposed an approach for detecting and localizing disaster damage
at low cost. Our approach is built on top of a fine-tuned VGG19 model, and
utilizes the Grad-CAM approach to produce a DDM heatmap. Furthermore,
the DDM is used to calculate a DAV score for each image. This scoring is
performed on a continuous scale and can be used to assess the severity of the
damage. The DAV score, together with the DDM heatmap, can be used to
identify and prioritize useful information for disaster response, while provid-
ing visual explanations for the suggestions made to increase the trust in the
computational models. Quantitative and qualitative evaluations of DDM and
DAV components show the feasibility of our proposed approach.

As part of future work, it is of interest to study the applicability of the pro-
posed approach to estimate the global damage produced by a disaster based on
aggregating the DAV values from individual images. Also, geo-tagging images
would enable disaster response teams not only to identify damage, but also to
find its physical location.
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